JP2010220373A - Balancing circuit of energy storage element - Google Patents

Balancing circuit of energy storage element Download PDF

Info

Publication number
JP2010220373A
JP2010220373A JP2009063727A JP2009063727A JP2010220373A JP 2010220373 A JP2010220373 A JP 2010220373A JP 2009063727 A JP2009063727 A JP 2009063727A JP 2009063727 A JP2009063727 A JP 2009063727A JP 2010220373 A JP2010220373 A JP 2010220373A
Authority
JP
Japan
Prior art keywords
power storage
semiconductor switching
storage element
series
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009063727A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yoda
和之 依田
Kazunari Komatsugi
和成 小松木
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2009063727A priority Critical patent/JP2010220373A/en
Publication of JP2010220373A publication Critical patent/JP2010220373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a balancing circuit of energy storage elements capable of miniaturizing the balancing circuit by reducing the number of semiconductor switching elements and diodes, when voltages of a plurality of energy storage elements connected in series are equalized with low loss. <P>SOLUTION: In the balancing circuit of the energy storage elements, the semiconductor switching elements SW1-SW4 and diodes D1-D4, which are connected in the reverse parallel to the semiconductor switching elements SW1-SW4, are connected in parallel to the energy storage elements C1-C4, and inductors L1-L3 are connected between the connection points of the energy storage elements C1-C4 and those of the semiconductor switching elements SW1-SW4. An average voltage V<SB>ave</SB>of all the energy storage elements C1-C4 connected in series and a voltage of each of the energy storage elements are compared to turn on the switching element connected in parallel to the energy storage elements having a voltage higher than the average voltage V<SB>ave</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、一括で充放電される直列接続された複数個のキャパシタ,電池等の蓄電素子の電圧を均等化させるための蓄電素子のバランス回路に関する。   The present invention relates to a storage element balance circuit for equalizing voltages of a plurality of capacitors, batteries, and other storage elements that are charged and discharged in a batch.

複数個の蓄電素子を直列接続した電源では、電力の有効利用や長寿命化を図るために各蓄電素子の電圧を均等化する必要がある。通常、直列接続された各蓄電素子の電圧を均等化するために各蓄電素子と並列にバランス抵抗を接続することが採用されるが、この場合、高電位の蓄電素子の電荷を抵抗で消費させるために発生損失が大きくなるという問題がある。そこで、複数個の蓄電素子の各電圧を低損失で均等化させる技術として、例えば、特許文献1に記載された回路が提案されている。   In a power supply in which a plurality of power storage elements are connected in series, it is necessary to equalize the voltages of the power storage elements in order to effectively use power and extend the life. Usually, in order to equalize the voltages of the power storage elements connected in series, a balance resistor is connected in parallel with the power storage elements. In this case, the charge of the high potential power storage elements is consumed by the resistance. Therefore, there is a problem that generated loss increases. Therefore, as a technique for equalizing the voltages of a plurality of power storage elements with low loss, for example, a circuit described in Patent Document 1 has been proposed.

図16は、蓄電素子のバランス回路の従来例を示すものである。図16において、C21,C22,C23,C24はキャパシタ,電池等の蓄電素子、L21,L22,L32はインダクター、SW21,SW22,SW23,SW24,SW31,SW32は半導体スイッチング素子、D21,D22,D23,D24,D31,D32はそれぞれ半導体スイッチング素子に逆並列に接続されたダイオードである。   FIG. 16 shows a conventional example of a balance circuit of a storage element. In FIG. 16, C21, C22, C23, C24 are capacitors, storage devices such as batteries, L21, L22, L32 are inductors, SW21, SW22, SW23, SW24, SW31, SW32 are semiconductor switching devices, D21, D22, D23, D24, D31, and D32 are diodes connected to the semiconductor switching element in antiparallel.

図16において、4個の同一容量の蓄電素子C21〜C24を直列に接続し、この直列回路と並列に半導体スイッチング素子SW21〜SW24の直列回路が接続されている。そして、インダクターL21の一端が蓄電素子C21,C22の接続点に接続されるとともに、インダクターL21の他端が半導体スイッチング素子SW21,SW22の接続点に接続されている。同様に、インダクターL22の一端が蓄電素子C23,C24の接続点に接続されるとともに、インダクターL22の他端が半導体スイッチング素子SW23,SW24の接続点に接続されている。さらに、蓄電素子C22,C23の直列回路には、半導体スイッチング素子SW31,SW32の直列回路が並列に接続され、インダクターL32の一端が蓄電素子C22,C23の接続点に接続されるとともに、インダクターL32の他端が半導体スイッチング素子SW31,SW32の接続点に接続されている。   In FIG. 16, four power storage elements C21 to C24 having the same capacity are connected in series, and a series circuit of semiconductor switching elements SW21 to SW24 is connected in parallel with the series circuit. One end of the inductor L21 is connected to a connection point between the storage elements C21 and C22, and the other end of the inductor L21 is connected to a connection point between the semiconductor switching elements SW21 and SW22. Similarly, one end of the inductor L22 is connected to a connection point between the storage elements C23 and C24, and the other end of the inductor L22 is connected to a connection point between the semiconductor switching elements SW23 and SW24. Furthermore, the series circuit of the storage elements C22 and C23 is connected in parallel with the series circuit of the semiconductor switching elements SW31 and SW32, one end of the inductor L32 is connected to the connection point of the storage elements C22 and C23, and the inductor L32 The other end is connected to the connection point of the semiconductor switching elements SW31 and SW32.

このような構成において、2個ずつの蓄電素子C21とC22、C22とC23、C23とC24により構成される3組の直列回路に着目し、これら各組ごとに2個の蓄電素子の電圧を比較して電圧が高い蓄電素子に対応する半導体スイッチング素子をオン/オフ制御することにより、各組ごとに蓄電素子の電圧を均等化する。
例えば、蓄電素子C21と蓄電素子C22との組において、蓄電素子C21の電圧が蓄電素子C22と比較して高電位であるとすると、半導体スイッチング素子SW21をオンさせる。半導体スイッチング素子SW21がオンすると、蓄電素子C21→半導体スイッチング素子SW21→インダクターL21→蓄電素子C21の閉ループを形成し、蓄電素子C21からインダクターL21にエネルギーを移行する。その後、半導体スイッチング素子SW21がオフすると、インダクターL21に蓄積されたエネルギーはダイオードD22を通して蓄電素子C22に移行される。このように動作することにより、高電位の蓄電素子C21から蓄電素子C22に電荷が移動して蓄電素子C21の電圧と蓄電素子C22の電圧とが均等化する。
In such a configuration, attention is paid to three sets of series circuits each including two storage elements C21 and C22, C22 and C23, and C23 and C24, and the voltages of the two storage elements are compared for each set. Thus, the semiconductor switching elements corresponding to the high-voltage storage elements are turned on / off to equalize the voltage of the storage elements for each set.
For example, if the voltage of the storage element C21 is higher than that of the storage element C22 in the combination of the storage element C21 and the storage element C22, the semiconductor switching element SW21 is turned on. When semiconductor switching element SW21 is turned on, a closed loop of power storage element C21 → semiconductor switching element SW21 → inductor L21 → power storage element C21 is formed, and energy is transferred from power storage element C21 to inductor L21. Thereafter, when the semiconductor switching element SW21 is turned off, the energy stored in the inductor L21 is transferred to the power storage element C22 through the diode D22. By operating in this way, the charge moves from the high-potential storage element C21 to the storage element C22, and the voltage of the storage element C21 and the voltage of the storage element C22 are equalized.

逆に、蓄電素子C21と蓄電素子C22との組において、蓄電素子C22の電圧が高く、蓄電素子C21の電圧が低い場合には、半導体スイッチング素子SW22をオン/オフさせて、蓄電素子C22から蓄電素子C21に電荷が移動して蓄電素子C21の電圧と蓄電素子C22の電圧とが均等化する。また、蓄電素子C22と蓄電素子C23との組、蓄電素子C23と蓄電素子C24との組においても、それぞれ上記と同様に動作して各組ごとに2個の蓄電素子の電圧が均等化するようになる。   On the other hand, in the set of the storage element C21 and the storage element C22, when the voltage of the storage element C22 is high and the voltage of the storage element C21 is low, the semiconductor switching element SW22 is turned on / off to store power from the storage element C22. The charge moves to the element C21, and the voltage of the energy storage element C21 and the voltage of the energy storage element C22 are equalized. In addition, the combination of the storage element C22 and the storage element C23 and the combination of the storage element C23 and the storage element C24 operate in the same manner as described above so that the voltages of the two storage elements are equalized for each set. become.

特開平7−322516号公報JP 7-322516 A

上記従来技術によれば、複数個の蓄電素子の電圧を低損失で均等化させることが可能ではあるが、4個の蓄電素子C21,C22,C23,C24の電圧を均等化させるためには、6個の半導体スイッチング素子SW21,SW22,SW23,SW24,SW31,SW32および6個のダイオードD21,D22,D23,D24,D31,D32が必要になる。このような従来技術では、蓄電素子の個数以上の半導体スイッチング素子およびダイオードが必要になるため、回路構成が複雑かつ大型化するという問題があった。   According to the above prior art, it is possible to equalize the voltages of the plurality of power storage elements with low loss, but in order to equalize the voltages of the four power storage elements C21, C22, C23, C24, Six semiconductor switching elements SW21, SW22, SW23, SW24, SW31, SW32 and six diodes D21, D22, D23, D24, D31, D32 are required. Such a conventional technique has a problem that the circuit configuration is complicated and large because semiconductor switching elements and diodes more than the number of power storage elements are required.

この発明は、直列接続された複数個の蓄電素子の電圧を低損失で均等化させる際に、半導体スイッチング素子およびダイオードの個数を削減してバランス回路の小型化を図ることができる蓄電素子のバランス回路を提供することを目的とする。   The present invention provides a balance of power storage elements that can reduce the number of semiconductor switching elements and diodes and reduce the size of the balance circuit when equalizing the voltages of a plurality of power storage elements connected in series with low loss. An object is to provide a circuit.

上記目的を達成するために、この発明は、直列接続された複数個の蓄電素子の電圧を均等化させる蓄電素子のバランス回路において、前記直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された前記蓄電素子全体の平均電圧あるいは予め定めた固定電圧と各蓄電素子の電圧とを比較して前記半導体スイッチング素子を制御する。   In order to achieve the above object, the present invention provides a balance circuit for power storage elements that equalizes voltages of a plurality of power storage elements connected in series, and the same number of power storage elements as the plurality of power storage elements connected in series. A series connection circuit of semiconductor switching elements in which a number of diodes are connected in reverse parallel is connected in parallel, and an inductor is connected between the connection point of the storage element and the connection point of the semiconductor switching element, and the series connection is performed. The semiconductor switching element is controlled by comparing an average voltage of the entire storage element or a predetermined fixed voltage with a voltage of each storage element.

また、直列接続された複数個の蓄電素子の電圧を均等化させる蓄電素子のバランス回路において、前記直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された複数個の前記蓄電素子の最上段の前記蓄電素子の正極と半導体スイッチング素子の正極との間にインダクターを設けるとともに、該インダクターを短絡するジャンパーピンを設け、直列接続された複数個の前記蓄電素子の最下段の前記蓄電素子の負極と半導体スイッチング素子の負極との間にジャンパーピンを設けて蓄電モジュールを構成する。   Further, in a storage element balance circuit for equalizing the voltages of a plurality of power storage elements connected in series, semiconductor switching in which the plurality of power storage elements connected in series and the same number of diodes as the power storage elements are connected in reverse parallel A series connection circuit of elements is connected in parallel, an inductor is connected between a connection point of the power storage element and a connection point of the semiconductor switching element, and the uppermost stage of the plurality of power storage elements connected in series An inductor is provided between the positive electrode of the power storage element and the positive electrode of the semiconductor switching element, and a jumper pin for short-circuiting the inductor is provided, and the negative electrode and the semiconductor of the lowermost power storage element of the plurality of power storage elements connected in series A jumper pin is provided between the negative electrode of the switching element to constitute a power storage module.

この発明によれば、直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された前記蓄電素子全体の平均電圧あるいは予め定めた固定電圧と各蓄電素子の電圧とを比較して前記半導体スイッチング素子を制御することにより、バランス回路の発生損失を低減できるとともに、バランス回路の小型化を図ることができる。   According to this invention, a plurality of power storage elements connected in series and a series connection circuit of semiconductor switching elements in which the same number of diodes as the power storage elements are connected in reverse parallel are connected in parallel, and the connection point of the power storage elements An inductor is connected between each connection point of the semiconductor switching elements, and the semiconductor switching element is controlled by comparing an average voltage of the whole power storage elements connected in series or a predetermined fixed voltage with a voltage of each power storage element. As a result, the loss generated in the balance circuit can be reduced, and the balance circuit can be reduced in size.

このように各蓄電素子の電圧を均等化して蓄電素子の電圧バラツキを抑制することにより、各蓄電素子はほぼ同一の減少率で残容量が減少し、全ての蓄電池がほぼ同時に放電終止電圧に達することになるので、各蓄電素子に蓄積された放電可能なエネルギーを有効利用することができ、蓄電素子の放電持続時間の低下を抑制できる。
また、直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された複数個の前記蓄電素子の最上段の前記蓄電素子の正極と半導体スイッチング素子の正極との間にインダクターを設けるとともに、該インダクターを短絡するジャンパーピンを設け、直列接続された複数個の前記蓄電素子の最下段の前記蓄電素子の負極と半導体スイッチング素子の負極との間にジャンパーピンを設けて蓄電モジュールを構成することにより、複数個の蓄電素子を直列接続して使用する場合に、所望する容量の電源を容易に構成することができる。
In this way, by equalizing the voltage of each power storage element and suppressing the voltage variation of the power storage element, the remaining capacity of each power storage element decreases at substantially the same rate of decrease, and all the storage batteries reach the discharge end voltage almost simultaneously. Therefore, the dischargeable energy stored in each power storage element can be used effectively, and the decrease in the discharge duration of the power storage element can be suppressed.
Further, a plurality of power storage elements connected in series and a series connection circuit of semiconductor switching elements in which the same number of diodes as the power storage elements are connected in reverse parallel are connected in parallel, and the connection points of the power storage elements and the semiconductor switching elements An inductor is connected between each of the connection points, and an inductor is provided between the positive electrode of the uppermost storage element of the plurality of storage elements connected in series and the positive electrode of the semiconductor switching element, and the inductor is short-circuited. A plurality of power storage modules configured by providing a jumper pin between the negative electrode of the lowermost power storage element of the plurality of power storage elements connected in series and the negative electrode of the semiconductor switching element. When the power storage elements are connected in series, a power source having a desired capacity can be easily configured.

この発明の実施の形態を示す回路図Circuit diagram showing an embodiment of the present invention この発明の第1の動作を示す動作説明図Operation explanatory diagram showing the first operation of the present invention 図2の動作における各部の波形を示すタイミング図FIG. 2 is a timing chart showing waveforms at various parts in the operation of FIG. この発明の第2の動作を示す動作説明図Operation explanatory diagram showing the second operation of the present invention 図4の動作における各部の波形を示すタイミング図FIG. 4 is a timing chart showing waveforms at various parts in the operation of FIG. この発明の第3の動作を示す動作説明図Operation explanatory diagram showing the third operation of the present invention 図6の動作における各部の波形を示すタイミング図FIG. 6 is a timing chart showing waveforms at various parts in the operation of FIG. この発明の第4の動作を示す動作説明図Operation explanatory diagram showing the fourth operation of the present invention 図8の動作における各部の波形を示すタイミング図FIG. 8 is a timing chart showing waveforms at various parts in the operation of FIG. この発明の第5の動作を示す動作説明図Operation explanatory diagram showing the fifth operation of the present invention 図10の動作における各部の波形を示すタイミング図FIG. 10 is a timing chart showing waveforms at various parts in the operation of FIG. この発明の制御の具体例を示すブロック図Block diagram showing a specific example of the control of the present invention この発明の別の実施の形態を示す回路図Circuit diagram showing another embodiment of the present invention 図13を直列接続して使用する場合の回路図Circuit diagram when using Fig. 13 in series connection 図14の制御の具体例を示すブロック図Block diagram showing a specific example of the control of FIG. 従来のバランス回路を示す回路図Circuit diagram showing a conventional balance circuit

図1はこの発明の実施の形態を示す回路図である。図1において、C1,C2,C3,C4はキャパシタ,電池等の蓄電素子、L1,L2,L3はインダクター、SW1,SW2,SW3,SW4は半導体スイッチング素子、D1,D2,D3,D4はそれぞれ半導体スイッチング素子SW1,SW2,SW3,SW4に逆並列に接続されたダイオードである。   FIG. 1 is a circuit diagram showing an embodiment of the present invention. In FIG. 1, C1, C2, C3, and C4 are storage elements such as capacitors and batteries, L1, L2, and L3 are inductors, SW1, SW2, SW3, and SW4 are semiconductor switching elements, and D1, D2, D3, and D4 are semiconductors, respectively. It is a diode connected in antiparallel to the switching elements SW1, SW2, SW3, SW4.

この図において、4個の同一容量の蓄電素子C1〜C4を直列に接続し、この蓄電素子C1〜C4の直列接続回路と、蓄電素子と同数個の半導体スイッチング素子SW1〜SW4の直列接続回路とが並列接続されている。そして、インダクターL1の一端が蓄電素子C1,C2の接続点に接続されるとともに、インダクターL1の他端が半導体スイッチング素子SW1,SW2の接続点に接続されている。同様に、インダクターL2の一端が蓄電素子C2,C3の接続点に接続されるとともに、インダクターL2の他端が半導体スイッチング素子SW2,SW3の接続点に接続され、インダクターL3の一端が蓄電素子C3,C4の接続点に接続されるとともに、インダクターL3の他端が半導体スイッチング素子SW3,SW4の接続点に接続されている。   In this figure, four storage elements C1 to C4 having the same capacity are connected in series, a series connection circuit of the storage elements C1 to C4, and a series connection circuit of the same number of semiconductor switching elements SW1 to SW4 as the storage elements, Are connected in parallel. One end of the inductor L1 is connected to the connection point between the power storage elements C1 and C2, and the other end of the inductor L1 is connected to the connection point between the semiconductor switching elements SW1 and SW2. Similarly, one end of the inductor L2 is connected to the connection point of the storage elements C2 and C3, the other end of the inductor L2 is connected to the connection point of the semiconductor switching elements SW2 and SW3, and one end of the inductor L3 is connected to the storage element C3. While being connected to the connection point of C4, the other end of the inductor L3 is connected to the connection point of the semiconductor switching elements SW3 and SW4.

この発明は、上記構成において、直列接続された蓄電素子の全体の電圧より1つの蓄電素子当たりの平均電圧Vaveを演算し、その平均電圧Vaveよりも高い電圧の蓄電素子にインダクターを介して並列に接続された半導体スイッチング素子をスイッチングさせることにより、直列接続された各蓄電素子の電圧を均等化するものである。以下、図2〜11に従ってこの発明の実施の形態を説明する。なお、この実施の形態では、蓄電素子が4直列の場合を示しているが、直列数に制約があるわけではなく、3直列以上であればよい。 This invention having the above structure, calculates the average voltage V ave per one storage element than the total voltage of the series-connected storage element, through the inductor in the capacitor of a voltage higher than the average voltage V ave By switching semiconductor switching elements connected in parallel, the voltages of the storage elements connected in series are equalized. Embodiments of the present invention will be described below with reference to FIGS. In this embodiment, the case where four power storage elements are in series is shown. However, the number of series is not limited, and may be three or more in series.

図2は第1の動作を示す動作説明図であり、蓄電素子C1の電圧が他の蓄電素子C2〜4に比較して高い場合を示すものである。また、図3はこのときの各部の波形を示すタイミング図であり、(a)(b)(c)(d)はそれぞれ半導体スイッチング素子SW1,SW2,SW3,SW4のゲート信号を示すものであり、(e)(f)(g)(h)はそれぞれ半導体スイッチング素子SW1,SW2,SW3,SW4またはダイオードD1,D2,D3,D4に流れる電流i(SW1),i(SW2),i(SW3),i(SW4)を示すものであ
り、(i)(j)(k)はそれぞれインダクターL1,L2,L3に流れる電流i(L1),i(L2),i(L3)を示すものである。
FIG. 2 is an operation explanatory diagram showing the first operation, and shows a case where the voltage of the power storage element C1 is higher than that of the other power storage elements C2-4. FIG. 3 is a timing chart showing the waveforms of the respective parts at this time. (A), (b), (c) and (d) show gate signals of the semiconductor switching elements SW1, SW2, SW3 and SW4, respectively. , (E), (f), (g), and (h) are currents i (SW1) , i (SW2) , i (SW3 ) flowing through the semiconductor switching elements SW1, SW2, SW3, SW4 or diodes D1, D2, D3, D4, respectively. ) , I (SW4) , and (i), (j), and (k) indicate currents i (L1) , i (L2) , and i (L3) flowing through the inductors L1, L2, and L3, respectively. is there.

図2および3において、t1時点で蓄電素子C1に並列に接続された半導体スイッチング素子SW1をオンすると、図2(a)の矢印で示すように、蓄電素子C1→半導体スイッチング素子SW1→インダクターL1→蓄電素子C1の閉ループを形成し、蓄電素子C1からインダクターL1にエネルギーを移行する。その後、t2時点で半導体スイッチング素子SW1がオフすると、図2(b)の矢印で示すように、インダクターL1に蓄積されたエネルギーはダイオードD2,D3,D4を通して蓄電素子C2,C3,C4に移行される。このように動作することにより、高電位の蓄電素子C1から蓄電素子C2,C3,C4に電荷が移動して蓄電素子C1,C2,C3,C4の電圧が均等化する。   2 and 3, when the semiconductor switching element SW1 connected in parallel to the power storage element C1 is turned on at time t1, the power storage element C1 → the semiconductor switching element SW1 → the inductor L1 → A closed loop of the storage element C1 is formed, and energy is transferred from the storage element C1 to the inductor L1. Thereafter, when the semiconductor switching element SW1 is turned off at time t2, the energy stored in the inductor L1 is transferred to the storage elements C2, C3, C4 through the diodes D2, D3, D4 as shown by the arrows in FIG. The By operating in this way, the charge moves from the high-potential storage element C1 to the storage elements C2, C3, C4, and the voltages of the storage elements C1, C2, C3, C4 are equalized.

図4は第2の動作を示す動作説明図であり、蓄電素子C2の電圧が他の蓄電素子C1,C3,C4に比較して高い場合を示すものである。また、図5はこのときの各部の波形を示すタイミング図である。
図4および5において、t1時点で蓄電素子C2に並列に接続された半導体スイッチング素子SW2をオンすると、図4(a)の矢印で示すように、蓄電素子C2→インダクターL1→半導体スイッチング素子SW2→インダクターL2→蓄電素子C2の閉ループを形成し、蓄電素子C2からインダクターL1,L2にエネルギーを移行する。その後、t2時点で半導体スイッチング素子SW2がオフすると、図4(b)の矢印で示すように、インダクターL1に蓄積されたエネルギーはダイオードD1を通して蓄電素子C1に移行されるとともに、インダクターL2に蓄積されたエネルギーはダイオードD3,D4を通して蓄電素子C3,C4に移行される。このように動作することにより、高電位の蓄電素子C2から蓄電素子C1,C3,C4に電荷が移動して蓄電素子C1,C2,C3,C4の電圧が均等化する。
FIG. 4 is an operation explanatory diagram showing the second operation, and shows a case where the voltage of the power storage element C2 is higher than those of the other power storage elements C1, C3, and C4. FIG. 5 is a timing chart showing waveforms of the respective parts at this time.
4 and 5, when the semiconductor switching element SW2 connected in parallel to the power storage element C2 is turned on at time t1, as shown by the arrow in FIG. 4A, the power storage element C2 → the inductor L1 → the semiconductor switching element SW2 → A closed loop of inductor L2 → power storage element C2 is formed, and energy is transferred from power storage element C2 to inductors L1 and L2. Thereafter, when the semiconductor switching element SW2 is turned off at time t2, as shown by the arrow in FIG. 4B, the energy stored in the inductor L1 is transferred to the power storage element C1 through the diode D1 and is also stored in the inductor L2. The energy is transferred to the storage elements C3 and C4 through the diodes D3 and D4. By operating in this way, the charge moves from the high-potential storage element C2 to the storage elements C1, C3, C4, and the voltages of the storage elements C1, C2, C3, C4 are equalized.

図6は第3の動作を示す動作説明図であり、蓄電素子C1,C3の電圧が他の蓄電素子C2,C4に比較して高い場合を示すものである。また、図7はこのときの各部の波形を示すタイミング図である。
図6および7において、t1時点で蓄電素子C1に並列に接続された半導体スイッチング素子SW1および蓄電素子C3に並列に接続された半導体スイッチング素子SW3をそれぞれオンすると、図4(a)の矢印で示すように、蓄電素子C1→半導体スイッチング素子SW1→インダクターL1→蓄電素子C1の閉ループ、および蓄電素子C3→インダクターL2→半導体スイッチング素子SW3→インダクターL3→蓄電素子C3の閉ループを形成し、蓄電素子C1からインダクターL1にエネルギーを移行するとともに、蓄電素子C3からインダクターL2,L3にエネルギーを移行する。その後、t2時点で半導体スイッチング素子SW1,SW3がオフすると、図6(b)の矢印で示すように、インダクターL1,L2に蓄積されたエネルギーはダイオードD2を通して蓄電素子C2に移行されるとともに、インダクターL3に蓄積されたエネルギーはダイオードD4を通して蓄電素子C4に移行される。このように動作することにより、高電位の蓄電素子C1,C3から蓄電素子C2,C4に電荷が移動して蓄電素子C1,C2,C3,C4の電圧が均等化する。
FIG. 6 is an operation explanatory diagram showing the third operation, and shows a case where the voltages of the power storage elements C1 and C3 are higher than those of the other power storage elements C2 and C4. FIG. 7 is a timing chart showing waveforms of the respective parts at this time.
6 and 7, when the semiconductor switching element SW1 connected in parallel to the power storage element C1 and the semiconductor switching element SW3 connected in parallel to the power storage element C3 are turned on at time t1, they are indicated by arrows in FIG. 4 (a). Thus, the closed loop of the storage element C1 → the semiconductor switching element SW1 → the inductor L1 → the storage element C1 and the closed storage loop of the storage element C3 → the inductor L2 → the semiconductor switching element SW3 → the inductor L3 → the storage element C3 are formed. The energy is transferred to the inductor L1, and the energy is transferred from the power storage element C3 to the inductors L2 and L3. Thereafter, when the semiconductor switching elements SW1 and SW3 are turned off at time t2, as shown by arrows in FIG. 6B, energy stored in the inductors L1 and L2 is transferred to the power storage element C2 through the diode D2, and the inductor The energy stored in L3 is transferred to the storage element C4 through the diode D4. By operating in this manner, charges move from the high potential power storage elements C1, C3 to the power storage elements C2, C4, and the voltages of the power storage elements C1, C2, C3, C4 are equalized.

図8は第4の動作を示す動作説明図であり、蓄電素子C1,C2の電圧が他の蓄電素子C3,C4に比較して高い場合を示すものである。また、図9はこのときの各部の波形を示すタイミング図である。
図8および9において、t1時点で蓄電素子C1に並列に接続された半導体スイッチング素子SW1および蓄電素子C2に並列に接続された半導体スイッチング素子SW2をそれぞれオンすると、図8(a)の矢印で示すように、蓄電素子C1,C2からインダクターL1,L2にエネルギーを移行する。その後、t2時点で半導体スイッチング素子SW1,SW2がオフすると、図8(b)の矢印で示すように、インダクターL1,L2に蓄積されたエネルギーはダイオードD2,D3,D4を通して蓄電素子C3,C4に移行される。このように動作することにより、高電位の蓄電素子C1,C2から蓄電素子C3,C4に電荷が移動して蓄電素子C1,C2,C3,C4の電圧が均等化する。
FIG. 8 is an operation explanatory diagram showing the fourth operation, and shows a case where the voltages of the power storage elements C1 and C2 are higher than those of the other power storage elements C3 and C4. FIG. 9 is a timing chart showing the waveforms of the respective parts at this time.
8 and 9, when the semiconductor switching element SW1 connected in parallel to the power storage element C1 and the semiconductor switching element SW2 connected in parallel to the power storage element C2 are turned on at time t1, they are indicated by arrows in FIG. 8 (a). As described above, energy is transferred from the power storage elements C1 and C2 to the inductors L1 and L2. Thereafter, when the semiconductor switching elements SW1 and SW2 are turned off at time t2, as shown by arrows in FIG. 8B, the energy accumulated in the inductors L1 and L2 is transferred to the power storage elements C3 and C4 through the diodes D2, D3, and D4. To be migrated. By operating in this way, charges move from the high potential power storage elements C1, C2 to the power storage elements C3, C4, and the voltages of the power storage elements C1, C2, C3, C4 are equalized.

図10は第5の動作を示す動作説明図であり、蓄電素子C1,C2,C3の電圧が蓄電素子C4に比較して高い場合を示すものである。また、図11はこのときの各部の波形を示すタイミング図である。
図10および11において、t1時点で蓄電素子C1に並列に接続された半導体スイッチング素子SW1、蓄電素子C2に並列に接続された半導体スイッチング素子SW2、および蓄電素子C3に並列に接続された半導体スイッチング素子SW3をそれぞれオンすると、図10(a)の矢印で示すように、蓄電素子C1,C2,C3からインダクターL1,L2,L3にエネルギーを移行する。その後、t2時点で半導体スイッチング素子SW1,SW2,SW3がオフすると、図10(b)の矢印で示すように、インダクターL1,L2,L3に蓄積されたエネルギーはダイオードD2,D3,D4を通して蓄電素子C4に移行される。このように動作することにより、高電位の蓄電素子C1,C2,C3から蓄電素子C4に電荷が移動して蓄電素子C1,C2,C3,C4の電圧が均等化する。
FIG. 10 is an operation explanatory diagram showing the fifth operation, and shows a case where the voltages of the power storage elements C1, C2, and C3 are higher than those of the power storage element C4. FIG. 11 is a timing chart showing the waveforms of the respective parts at this time.
10 and 11, semiconductor switching element SW1 connected in parallel to power storage element C1 at time t1, semiconductor switching element SW2 connected in parallel to power storage element C2, and semiconductor switching element connected in parallel to power storage element C3 When SW3 is turned on, energy is transferred from the power storage elements C1, C2, and C3 to the inductors L1, L2, and L3 as indicated by arrows in FIG. Thereafter, when the semiconductor switching elements SW1, SW2, and SW3 are turned off at time t2, as shown by arrows in FIG. 10B, the energy stored in the inductors L1, L2, and L3 passes through the diodes D2, D3, and D4, and the storage element. Transition to C4. By operating in this way, charges move from the high potential power storage elements C1, C2, C3 to the power storage element C4, and the voltages of the power storage elements C1, C2, C3, C4 are equalized.

次に、図12はこの発明の制御回路の具体例を示すブロック図であり、11,21,31,41は各半導体スイッチング素子SW1,SW2,SW3,SW4をそれぞれ制御する制御回路であり、21,22,32,42は乗算器、31,32,33,43は比較器、41,42,43,44はパルス発生器、51,52,53,54はアンド回路である。また、図12において、図1と同一部材については同一の符号を付してその説明を省略する。   Next, FIG. 12 is a block diagram showing a specific example of the control circuit of the present invention. 11, 21, 31, 41 are control circuits for controlling the semiconductor switching elements SW1, SW2, SW3, SW4, respectively. 22, 32, 42 are multipliers, 31, 32, 33, 43 are comparators, 41, 42, 43, 44 are pulse generators, and 51, 52, 53, 54 are AND circuits. In FIG. 12, the same members as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

半導体スイッチング素子SW1を制御する制御回路11において、直列接続された蓄電素子C1〜C4全体の電圧の検出値VC1-4を乗算器21で1/4倍し、蓄電素子全体の電圧の検出値VC1-4から1つの蓄電素子当たりの平均電圧Vaveを演算し、この平均電圧Vaveと蓄電素子C1の端子電圧の検出値VC1とを比較器31により比較し、蓄電素子C1の電圧VC1が平均電圧Vaveよりも高い場合にアクティブ信号(この例ではVC1>1/4×VC1-4のときH)を出力する。比較器31の出力信号とパルス発生器41の出力信号とがアンド回路51に入力され、アンド回路51が半導体スイッチング素子SW1のゲート信号G1を出力する。 In the control circuit 11 that controls the semiconductor switching element SW1, the voltage detection value V C1-4 of the entire storage elements C1 to C4 connected in series is multiplied by ¼ by the multiplier 21 to detect the detection value of the voltage of the entire storage element. It calculates the average voltage V ave per one storage element from V C1-4, compared by the comparator 31 and the detection value V C1 of the terminal voltage of the average voltage V ave and the power storage device C1, the voltage of the storage element C1 When V C1 is higher than the average voltage V ave , an active signal (H in this example when V C1 > ¼ × V C1-4 ) is output. The output signal of the comparator 31 and the output signal of the pulse generator 41 are input to the AND circuit 51, and the AND circuit 51 outputs the gate signal G1 of the semiconductor switching element SW1.

ここで、半導体スイッチング素子SW1のオンパルス幅が長いとインダクターL1が飽和するので、パルス発生器41のパルス信号は高周波パルス信号PulseAとし、この高周波パルス信号PulseAと比較器31の出力信号とのアンド条件により半導体スイッチング素子SW1のゲート信号G1を形成している。
制御回路12,13,14も制御回路11と同様の構成であるが、全ての半導体スイッチング素子SW1〜SW4が同時にオンすると、蓄電素子C1〜C4を半導体スイッチング素子SW1〜SW4で短絡することになるので、高周波パルス信号は全ての半導体スイッチング素子SW1〜SW4が同時にオンしないように、各半導体スイッチング素子SW1〜SW4がスイッチングするタイミングを少なくとも2つ以上に分配する。このとき、直列接続された蓄電素子C1〜C4のうち、隣り合う複数個の蓄電素子の電圧が平均電圧Vaveよりも高い場合は、この蓄電素子に対応する半導体スイッチング素子を同時にオンさせるほうが効率がよいので、パルス分配は最小になるように構成することが望ましい。図12の場合には制御回路14のパルス発生器44の高周波パルス信号PulseBのみを分配している。
Here, since the inductor L1 is saturated when the on-pulse width of the semiconductor switching element SW1 is long, the pulse signal of the pulse generator 41 is a high-frequency pulse signal PulseA, and an AND condition between the high-frequency pulse signal PulseA and the output signal of the comparator 31 Thus, the gate signal G1 of the semiconductor switching element SW1 is formed.
The control circuits 12, 13, and 14 have the same configuration as the control circuit 11, but when all the semiconductor switching elements SW1 to SW4 are simultaneously turned on, the power storage elements C1 to C4 are short-circuited by the semiconductor switching elements SW1 to SW4. Therefore, the high-frequency pulse signal distributes at least two switching timings of the semiconductor switching elements SW1 to SW4 so that all the semiconductor switching elements SW1 to SW4 are not turned on simultaneously. At this time, when the voltages of a plurality of adjacent storage elements among the storage elements C1 to C4 connected in series are higher than the average voltage Vave , it is more efficient to simultaneously turn on the semiconductor switching elements corresponding to the storage elements. Therefore, it is desirable to configure the pulse distribution to be minimized. In the case of FIG. 12, only the high frequency pulse signal PulseB of the pulse generator 44 of the control circuit 14 is distributed.

なお、上記では、全ての蓄電素子C1〜C4の電圧を均等化させるために、蓄電素子の端子電圧と比較する指令値に平均電圧Vaveを用いているが、蓄電素子の過充電保護のみを目的とする場合には、蓄電素子の電圧が過電圧にならないように、一定電圧を超えた場合に、蓄電素子とインダクターを介して並列接続される半導体スイッチング素子をオンし、蓄電素子の電圧を低下させることになる。この場合は、蓄電素子の端子電圧と比較する指令値として、蓄電素子全体の平均電圧Vaveに代えて予め定めた過電圧レベル(固定電圧)を用いる。 In the above, in order to equalize the voltages of all the storage elements C1 to C4, the average voltage V ave is used as the command value to be compared with the terminal voltage of the storage element, but only the overcharge protection of the storage element is performed. In order to prevent the voltage of the storage element from becoming an overvoltage, the semiconductor switching element connected in parallel via the storage element and the inductor is turned on and the voltage of the storage element is lowered so that the storage element voltage does not become an overvoltage. I will let you. In this case, a predetermined overvoltage level (fixed voltage) is used as a command value to be compared with the terminal voltage of the storage element, instead of the average voltage V ave of the entire storage element.

図13はこの発明の別の実施の形態を示す回路図であり、図1と同一部材については同一の符号を付してその説明を省略する。図13において、61は直列に接続された複数個の蓄電素子C1〜C4をモジュール化した蓄電モジュールであり、最上段の蓄電素子C1の正極と半導体スイッチング素子SW1の正極との間にインダクターL0を設けるとともに、このインダクターL0を短絡するジャンパーピンJP1を設け、最下段の蓄電素子C4の負極と半導体スイッチング素子SW4の負極との間にジャンパーピンJP2を設けている。なお、この実施の形態では、蓄電素子が4直列の蓄電モジュール61を示しているが、蓄電素子の直列数に制約があるわけではない。   FIG. 13 is a circuit diagram showing another embodiment of the present invention, and the same members as those in FIG. In FIG. 13, reference numeral 61 denotes a power storage module obtained by modularizing a plurality of power storage elements C1 to C4 connected in series. An inductor L0 is connected between the positive electrode of the uppermost power storage element C1 and the positive electrode of the semiconductor switching element SW1. A jumper pin JP1 for short-circuiting the inductor L0 is provided, and a jumper pin JP2 is provided between the negative electrode of the lowermost power storage element C4 and the negative electrode of the semiconductor switching element SW4. In this embodiment, the power storage elements are shown as four power storage modules 61 in series, but the number of power storage elements in series is not limited.

図13は、蓄電モジュール61を単体で使用する例であり、ジャンパーピンJP1,JP2をともに短絡させることにより、図1と同等の回路となる。また、図14は複数個の蓄電モジュール61を直列に接続して使用する具体例を示すものであり、最上段の蓄電モジュール61はジャンパーピンJP1を短絡させるとともに、ジャンパーピンJP2を開放させる。また、最下段の蓄電モジュール61はジャンパーピンJP1を開放させるとともに、ジャンパーピンJP2を短絡させる。なお、図示していないが、中段の蓄電モジュール61はジャンパーピンJP1,JP2をともに開放させる。このように、直列に接続された複数個の蓄電素子をモジュール化することにより、複数個の蓄電素子を直列接続して使用する場合に、所望する容量の電源を容易に構成することができる。   FIG. 13 shows an example in which the power storage module 61 is used alone, and a circuit equivalent to FIG. 1 is obtained by short-circuiting the jumper pins JP1 and JP2. FIG. 14 shows a specific example in which a plurality of power storage modules 61 are connected in series. The uppermost power storage module 61 shorts the jumper pin JP1 and opens the jumper pin JP2. The lowermost power storage module 61 opens the jumper pin JP1 and shorts the jumper pin JP2. Although not shown, the middle storage module 61 opens both jumper pins JP1 and JP2. Thus, by modularizing a plurality of power storage elements connected in series, when a plurality of power storage elements are connected in series, a power source having a desired capacity can be easily configured.

次に、図15は図14の制御の具体例を示すブロック図であり、絶縁アンプ71,72を設けるとともに、抵抗R1〜R4を設けている。なお、同一の符号を付した部材についてはその説明を省略する。また、図15では蓄電モジュール61を4直列した場合を示しているが、蓄電モジュールの直列数に制約があるわけではない。
直列に接続された蓄電モジュール61において、各蓄電モジュール61の全体電圧を絶縁アンプ71で送出し、各蓄電モジュール61の絶縁アンプ71の出力を抵抗R1〜R4で分圧することにより、各蓄電モジュール61の全体電圧の平均電圧Vaveを求める。求めた平均電圧Vaveを絶縁アンプ72で各蓄電モジュール61に返送することにより、直列に接続された蓄電モジュール61全体の電圧から求めた各蓄電素子の平均電圧Vaveを蓄電モジュール61内の各蓄電素子の端子電圧と比較する指令値にすることにより、各蓄電モジュール61内のバランス制御回路が得ることを可能となる。このときのバランス制御は図12で説明した制御と同様であるので、ここではその説明を省略する。
Next, FIG. 15 is a block diagram showing a specific example of the control of FIG. 14, in which insulation amplifiers 71 and 72 are provided, and resistors R1 to R4 are provided. In addition, the description about the member which attached | subjected the same code | symbol is abbreviate | omitted. Further, FIG. 15 shows a case where four power storage modules 61 are connected in series, but the number of power storage modules in series is not limited.
In the power storage modules 61 connected in series, the total voltage of each power storage module 61 is sent out by the insulation amplifier 71, and the output of the insulation amplifier 71 of each power storage module 61 is divided by resistors R1 to R4. The average voltage V ave of the whole voltage is obtained. The obtained average voltage V ave is returned to each power storage module 61 by the insulation amplifier 72, so that the average voltage V ave of each power storage element obtained from the voltage across the power storage modules 61 connected in series is By setting the command value to be compared with the terminal voltage of the power storage element, the balance control circuit in each power storage module 61 can be obtained. Since the balance control at this time is the same as the control described in FIG. 12, the description thereof is omitted here.

このように、蓄電モジュール61全体の電圧から求めた各蓄電素子の平均電圧Vaveを指令としてバランス制御を行うことにより、充電モジュール61の直列数に関係なく蓄電素子の電圧バラツキを直列に接続された蓄電素子の全てで抑制することが可能となる。 In this way, by performing balance control using the average voltage Vave of each storage element obtained from the voltage of the entire storage module 61 as a command, the voltage variation of the storage elements is connected in series regardless of the number of charging modules 61 in series. It is possible to suppress all of the storage elements.

C1,C2,C3,C4・・・蓄電素子
L0,L1,L2,L3・・・インダクター
SW1,SW2,SW3,SW4・・・半導体スイッチング素子
D1,D2,D3,D4・・・ダイオード
11,21,31,41・・・制御回路
21,22,32,42・・・乗算器
31,32,33,43・・・比較器
41,42,43,44・・・パルス発生器
51,52,53,54・・・アンド回路
JP1,JP2・・・ジャンパーピン
61・・・蓄電モジュール
71,72・・・絶縁アンプ
C1, C2, C3, C4 ... Power storage elements L0, L1, L2, L3 ... Inductors SW1, SW2, SW3, SW4 ... Semiconductor switching elements D1, D2, D3, D4 ... Diodes 11, 21 , 31, 41... Control circuit 21, 22, 32, 42... Multiplier 31, 32, 33, 43 ... comparator 41, 42, 43, 44 ... pulse generator 51, 52, 53, 54 ... AND circuit JP1, JP2 ... Jumper pin 61 ... Power storage module 71, 72 ... Insulation amplifier

Claims (9)

直列接続された複数個の蓄電素子の電圧を均等化させる蓄電素子のバランス回路において、前記直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された前記蓄電素子全体の平均電圧と各蓄電素子の電圧とを比較して前記半導体スイッチング素子を制御することを特徴とする蓄電素子のバランス回路。   In a storage element balance circuit for equalizing voltages of a plurality of power storage elements connected in series, a plurality of power storage elements connected in series and a semiconductor switching element in which the same number of diodes as the power storage elements are connected in reverse parallel A series connection circuit is connected in parallel, an inductor is connected between the connection point of the storage element and the connection point of the semiconductor switching element, and the average voltage of the whole storage element connected in series and the voltage of each storage element And the semiconductor switching element is controlled to balance the storage element. 請求項1に記載の蓄電素子のバランス回路において、前記平均電圧よりも高い電圧の蓄電素子にインダクターを介して並列接続された半導体スイッチング素子をオンすることを特徴とする蓄電素子のバランス回路。   2. The balance circuit for a storage element according to claim 1, wherein a semiconductor switching element connected in parallel to the storage element having a voltage higher than the average voltage via an inductor is turned on. 直列接続された複数個の蓄電素子の電圧を均等化させる蓄電素子のバランス回路において、前記直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、予め定めた固定電圧と各蓄電素子の電圧とを比較して前記半導体スイッチング素子を制御することを特徴とする蓄電素子のバランス回路。   In a storage element balance circuit for equalizing voltages of a plurality of power storage elements connected in series, a plurality of power storage elements connected in series and a semiconductor switching element in which the same number of diodes as the power storage elements are connected in reverse parallel A series connection circuit is connected in parallel, an inductor is connected between a connection point of the power storage element and a connection point of the semiconductor switching element, and a predetermined fixed voltage is compared with a voltage of each power storage element. A balance circuit for an electric storage element, characterized by controlling a semiconductor switching element. 請求項3に記載の蓄電素子のバランス回路において、前記固定電圧よりも高い電圧の蓄電素子にインダクターを介して並列接続された半導体スイッチング素子をオンすることを特徴とする蓄電素子のバランス回路。   4. The balance circuit for a storage element according to claim 3, wherein a semiconductor switching element connected in parallel to the storage element having a voltage higher than the fixed voltage via an inductor is turned on. 直列接続された複数個の蓄電素子の電圧を均等化させる蓄電素子のバランス回路において、前記直列接続された複数個の蓄電素子と前記蓄電素子と同数個のダイオードを逆並列接続した半導体スイッチング素子の直列接続回路とを並列接続し、前記蓄電素子の接続点と前記半導体スイッチング素子の接続点との間に各々インダクターを接続し、直列接続された複数個の前記蓄電素子の最上段の前記蓄電素子の正極と半導体スイッチング素子の正極との間にインダクターを設けるとともに、該最上段の前記蓄電素子の正極と半導体スイッチング素子の正極との間に設けたインダクターを短絡するジャンパーピンを設け、直列接続された複数個の前記蓄電素子の最下段の前記蓄電素子の負極と半導体スイッチング素子の負極との間にジャンパーピンを設けて蓄電モジュールを構成することを特徴とする蓄電素子のバランス回路。   In a storage element balance circuit for equalizing voltages of a plurality of power storage elements connected in series, a plurality of power storage elements connected in series and a semiconductor switching element in which the same number of diodes as the power storage elements are connected in reverse parallel A series connection circuit is connected in parallel, an inductor is connected between a connection point of the storage element and a connection point of the semiconductor switching element, and the storage element at the uppermost stage of the plurality of storage elements connected in series An inductor is provided between the positive electrode of the semiconductor switching element and the positive electrode of the semiconductor switching element, and a jumper pin for short-circuiting the inductor provided between the positive electrode of the uppermost storage element and the positive electrode of the semiconductor switching element is provided, and is connected in series. A jumper pin between the negative electrode of the lowermost storage element and the negative electrode of the semiconductor switching element. Balance circuit of the power storage device characterized by constituting the power storage modules provided. 請求項5に記載の蓄電素子のバランス回路において、複数個の前記蓄電モジュールを直列に接続し、前記各蓄電モジュールの全体電圧を第1の絶縁アンプを介して送出し、前記各蓄電モジュールの絶縁アンプの出力を抵抗で分圧して前記各蓄電モジュールの全体電圧の平均電圧を求め、該平均電圧を第2の絶縁アンプを介して前記各蓄電モジュールに返送することを特徴とする蓄電素子のバランス回路。   6. The balance circuit for a power storage element according to claim 5, wherein a plurality of the power storage modules are connected in series, and an overall voltage of each power storage module is sent through a first insulation amplifier, so that each power storage module is insulated. An output of an amplifier is divided by a resistor to obtain an average voltage of the entire voltage of each power storage module, and the average voltage is returned to each power storage module via a second insulation amplifier. circuit. 請求項6に記載の蓄電素子のバランス回路において、前記平均電圧よりも高い電圧の蓄電モジュール内の蓄電素子にインダクターを介して並列に接続された半導体スイッチング素子をオンすることを特徴とする蓄電素子のバランス回路。   7. The storage element balance circuit according to claim 6, wherein a semiconductor switching element connected in parallel via an inductor to the storage element in the storage module having a voltage higher than the average voltage is turned on. Balance circuit. 請求項1から7のいずれかに記載の蓄電素子のバランス回路において、高周波パルス信号により前記半導体スイッチング素子を制御することを特徴とする蓄電素子のバランス回路。   8. The storage element balance circuit according to claim 1, wherein the semiconductor switching element is controlled by a high-frequency pulse signal. 請求項1から8のいずれかに記載の蓄電素子のバランス回路において、前記半導体スイッチング素子がオンするタイミングを少なくとも2つ以上に分配することを特徴とする蓄電素子のバランス回路。

9. The balance circuit for a storage element according to claim 1, wherein the timing at which the semiconductor switching element is turned on is distributed to at least two.

JP2009063727A 2009-03-17 2009-03-17 Balancing circuit of energy storage element Pending JP2010220373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063727A JP2010220373A (en) 2009-03-17 2009-03-17 Balancing circuit of energy storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063727A JP2010220373A (en) 2009-03-17 2009-03-17 Balancing circuit of energy storage element

Publications (1)

Publication Number Publication Date
JP2010220373A true JP2010220373A (en) 2010-09-30

Family

ID=42978600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063727A Pending JP2010220373A (en) 2009-03-17 2009-03-17 Balancing circuit of energy storage element

Country Status (1)

Country Link
JP (1) JP2010220373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030569A1 (en) 2012-08-20 2014-02-27 株式会社豊田自動織機 Cell balancing device and cell balancing method
CN104201731A (en) * 2014-08-12 2014-12-10 华南理工大学 Series connection battery pack two-way charging and discharging equalization circuit based on inductor energy storage
CN104967352A (en) * 2015-07-09 2015-10-07 国家电网公司 Energy storage converter and balanced control method
CN105490329A (en) * 2015-12-10 2016-04-13 安徽锐能科技有限公司 Series-wound battery pack equalization circuit based on inductor charge/discharge energy transfer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
US20050077879A1 (en) * 2003-10-14 2005-04-14 Near Timothy Paul Energy transfer device for series connected energy source and storage devices
WO2008097033A1 (en) * 2007-02-09 2008-08-14 Sk Energy Co., Ltd. Charge equalization apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (en) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk Apparatus and method for control of charging of battery
US20050077879A1 (en) * 2003-10-14 2005-04-14 Near Timothy Paul Energy transfer device for series connected energy source and storage devices
WO2008097033A1 (en) * 2007-02-09 2008-08-14 Sk Energy Co., Ltd. Charge equalization apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030569A1 (en) 2012-08-20 2014-02-27 株式会社豊田自動織機 Cell balancing device and cell balancing method
US20150171643A1 (en) * 2012-08-20 2015-06-18 Kabushiki Kaisha Toyota Jidoshokki Cell balance apparatus and cell balance method
CN104201731A (en) * 2014-08-12 2014-12-10 华南理工大学 Series connection battery pack two-way charging and discharging equalization circuit based on inductor energy storage
CN104967352A (en) * 2015-07-09 2015-10-07 国家电网公司 Energy storage converter and balanced control method
CN105490329A (en) * 2015-12-10 2016-04-13 安徽锐能科技有限公司 Series-wound battery pack equalization circuit based on inductor charge/discharge energy transfer

Similar Documents

Publication Publication Date Title
US9318779B2 (en) Electric energy storage units connected in series and selectively charged/discharged via a balancing circuit or directly from a charger or to a load
JP5624120B2 (en) Battery system and operation method
US20120086390A1 (en) Charge Equalization Apparatus And Method For Series-Connected Battery String
US20120286733A1 (en) Battery system and battery equalizer
JP2013520947A (en) Battery cell converter management system
US20150002099A1 (en) Battery management converter system
JP5807283B2 (en) Power conversion device using a combination of intermediate taps of battery cells connected in series, a balance circuit, and a DC-DC converter
JP2007221933A (en) Charger for capacitor storage power supply
JP5692723B2 (en) One-stone voltage equalization circuit for series-connected storage cells
JP5656154B2 (en) Power system
JP2009247145A (en) Power system
JP2015154606A (en) Power storage state regulating circuit, power storage state regulating system, and battery pack
JP2010220373A (en) Balancing circuit of energy storage element
JP4696212B2 (en) Capacitor power system
US9166431B2 (en) Battery charge circuit
JP2017022953A (en) Step-down circuit and step-down charging circuit using the same
JP2011050209A (en) Electric double-layer capacitor power supply using intermediate tap in switched capacitor system
JP5424337B2 (en) Uniform charger for series-connected energy storage cells with time ratio control
JP2016046836A (en) Non-insulated cell balance circuit
JP2009100532A (en) Charger for capacitor storage power supplies
JP3871220B1 (en) Charging device for capacitor storage power supply
JP2011050208A (en) Output voltage adjusting device utilizing intermediate tap of switched capacitor system
JP3892752B2 (en) Electric double layer capacitor charger
US20230053745A1 (en) Cell balancing
US20230059155A1 (en) Cell balancing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128