JP2007220669A - Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display - Google Patents

Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display Download PDF

Info

Publication number
JP2007220669A
JP2007220669A JP2007011364A JP2007011364A JP2007220669A JP 2007220669 A JP2007220669 A JP 2007220669A JP 2007011364 A JP2007011364 A JP 2007011364A JP 2007011364 A JP2007011364 A JP 2007011364A JP 2007220669 A JP2007220669 A JP 2007220669A
Authority
JP
Japan
Prior art keywords
electrode
alloy
discharge tube
cathode discharge
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007011364A
Other languages
Japanese (ja)
Inventor
Shinji Yamamoto
晋司 山本
Hideo Murata
英夫 村田
Yasunobu Tawa
靖展 多和
Tsunenari Saito
恒成 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cathode Laboratory Co Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Tokyo Cathode Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Tokyo Cathode Laboratory Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007011364A priority Critical patent/JP2007220669A/en
Publication of JP2007220669A publication Critical patent/JP2007220669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy for an electrode capable of solving problems of plastic workability in a conventional Ni-Nb alloy for an electrode and surface oxidation occurring in processing glass sealing or the like, and of providing spatter resistance equivalent to that of the conventional Ni-Nb alloy for an electrode. <P>SOLUTION: This alloy for a cold-cathode discharge tube electrode comprises 1.0-10.0 mass% of V, 3.0-15.0 mass% of Mo, and Ni as substantially the whole of the residual. Its preferable chemical composition is 3.0-8.5 mass% of V, 5.0-13.0 mass% of Mo and not greater than 30.0 mass% of 2.9V+Mo. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば液晶表示装置のバックライト用光源として使用される冷陰極放電管電極用合金と、該冷陰極放電管電極用合金を用いてなる冷陰極放電管用電極及び該冷陰極放電管用電極を用いてなる液晶ディスプレイ用バックライト用冷陰極放電管に関するものである。   The present invention relates to an alloy for a cold cathode discharge tube electrode used as, for example, a light source for a backlight of a liquid crystal display device, an electrode for a cold cathode discharge tube using the alloy for a cold cathode discharge tube electrode, and an electrode for the cold cathode discharge tube The present invention relates to a cold cathode discharge tube for a backlight for a liquid crystal display.

従来、テレビやパーソナルコンピュータ(パソコン)に用いられる液晶表示装置(LCD)には、照明用のバックライトが組み込まれており、このバックライトの光源には、冷陰極放電管が使用されている。冷陰極放電管は、希ガス及び水銀蒸気が充填されたガラス管の内部に、一対の電極が対向して配置され、かつガラス管の内壁に蛍光膜を被覆した構造を有している。一対の電極にはリードの一端が接続され、リードの他端はガラス管の両端から外部に導出される。リードを介して一対の電極間に電圧を印加すると、一方の電極から電子が放出され、ガラス管内の水銀原子に電子が衝突して紫外線を発生する。この紫外線は、ガラス管の内壁に被覆した蛍光膜によって可視光線に変換され、照明としての役割を果たす。
図1に冷陰極放電管用電極部品(4)の一例の断面図を示す。冷陰極放電管用電極部品(4)の構成は、冷陰極放電管電極用合金を深絞りの塑性加工で成形された冷陰極放電管用電極(1)と、ガラス封着用金属部(2)と、リード部(3)とで構成される。
Conventionally, a backlight for illumination is incorporated in a liquid crystal display (LCD) used in a television or a personal computer (personal computer), and a cold cathode discharge tube is used as a light source of the backlight. The cold cathode discharge tube has a structure in which a pair of electrodes are arranged facing each other inside a glass tube filled with a rare gas and mercury vapor, and an inner wall of the glass tube is covered with a fluorescent film. One end of a lead is connected to the pair of electrodes, and the other end of the lead is led out from both ends of the glass tube. When a voltage is applied between the pair of electrodes via the lead, electrons are emitted from one electrode, and the electrons collide with mercury atoms in the glass tube to generate ultraviolet rays. This ultraviolet ray is converted into visible light by a fluorescent film coated on the inner wall of the glass tube, and plays a role as illumination.
FIG. 1 shows a cross-sectional view of an example of an electrode part (4) for a cold cathode discharge tube. The structure of the cold cathode discharge tube electrode component (4) includes: a cold cathode discharge tube electrode (1) formed by deep-drawing plastic alloy of a cold cathode discharge tube electrode, a glass sealing metal part (2), It is comprised with a lead part (3).

上記の冷陰極放電管用電極(1)(以下、電極と記す。)には、薄板形状の素材を深絞り加工等の冷間での塑性加工によってカップ形状に成形した部品を用いる場合が多いことから、従来、軟らかくて塑性加工性に優れた純Niの薄板が使用されている。しかしながら、純Niで構成される電極は、長時間使用するうちにスパッタによって消耗し、寿命に至るという問題がある。この電極の寿命は、電極を構成する材料の耐スパッタ性(スパッタによる消耗のし難さ)に依存することから、電極用材料の耐スパッタ性を改善する提案がなされている。   The cold cathode discharge tube electrode (1) (hereinafter referred to as an electrode) often uses a thin plate-shaped material formed into a cup shape by cold plastic working such as deep drawing. Therefore, conventionally, a pure Ni thin plate that is soft and has excellent plastic workability has been used. However, there is a problem that an electrode made of pure Ni is consumed by sputtering while being used for a long time, leading to a life. Since the life of this electrode depends on the sputtering resistance of the material constituting the electrode (difficult to be consumed by sputtering), proposals have been made to improve the sputtering resistance of the electrode material.

また、耐スパッタ性を向上させるために、高融点純金属であるMo、Nb材がカップ形状をなす電極の一部で採用されてきたが、これらの高融点純金属は価格が高く、またカップ形状に塑性加工する工程の生産性が低いという欠点があった。   In addition, in order to improve the spatter resistance, Mo and Nb materials, which are high melting point pure metals, have been used in some of the cup-shaped electrodes. However, these high melting point pure metals are expensive and have high cups. There was a drawback that the productivity of the process of plastic processing into a shape was low.

これらの欠点を解決するために、例えば、特開2005−93119号公報(特許文献1)には、質量%でNbを6%〜32%未満含有し、残部が実質的にNiで成るNi−Nb合金を電極として用いる提案がなされている。この提案は、Niよりスパッタによる消耗が起こり難いNbをNiと合金化させることにより、純Niで成る電極よりも耐スパッタ性に優れた電極を提供できるという点で優れたものである。
特開2005−93119号公報
In order to solve these drawbacks, for example, Japanese Patent Application Laid-Open No. 2005-93119 (Patent Document 1) describes Ni--containing Nb in an amount of 6% to less than 32% by mass and the balance being substantially Ni. Proposals have been made to use Nb alloys as electrodes. This proposal is superior in that an electrode superior in sputtering resistance to an electrode made of pure Ni can be provided by alloying Nb, which is less likely to be consumed by sputtering than Ni, with Ni.
JP 2005-93119 A

本発明者らの検討によると、上述した特許文献1に開示される電極用Ni−Nb合金は、耐スパッタ性に加えて、耐食性も純Niより優れるという利点を有している。数年以上もの長期間に渡って使用される冷陰極放電管の電極においては、耐食性も重要な特性の一つである。それ故、Nbは、Niと合金化させる元素として適している。   According to studies by the present inventors, the Ni—Nb alloy for electrodes disclosed in Patent Document 1 described above has an advantage that corrosion resistance is superior to pure Ni in addition to sputtering resistance. Corrosion resistance is one of the important characteristics of an electrode of a cold cathode discharge tube used for a long period of several years or more. Therefore, Nb is suitable as an element to be alloyed with Ni.

しかしながら、特許文献1に開示される電極用Ni−Nb合金では、Nb含有量が6質量%以上と多く、この範囲は脆性の金属間化合物(NiNb)が生成し、素材をカップ形状の電極に成形する過程である冷間での塑性加工性に悪影響を及ぼすという問題がある。従って、特許文献1に開示される電極用Ni−Nb合金では耐スパッタ性には優れているものの、素材をカップ形状に成形する過程での塑性加工性が悪く、電極自体の作製が困難となるという欠点がある。また、Ni−Nb合金では電極加工後のリード線の溶接やガラス封止等の加工工程にて表面酸化による変色が発生し易く、過度に着色を生じた場合、表面に形成された酸化層により放電特性が低下する場合がある。 However, in the Ni—Nb alloy for electrodes disclosed in Patent Document 1, the Nb content is as high as 6% by mass or more, and in this range, brittle intermetallic compound (Ni 3 Nb) is generated, and the material is cup-shaped. There is a problem of adversely affecting cold plastic workability, which is a process of forming an electrode. Therefore, although the Ni—Nb alloy for electrodes disclosed in Patent Document 1 is excellent in spatter resistance, the plastic workability in the process of forming the material into a cup shape is poor, and it is difficult to produce the electrode itself. There is a drawback. In addition, in Ni-Nb alloy, discoloration due to surface oxidation is likely to occur in processing steps such as welding of lead wires and glass sealing after electrode processing, and when excessive coloring occurs, an oxide layer formed on the surface Discharge characteristics may deteriorate.

本発明の目的は、上述した従来の電極用Ni−Nb合金における塑性加工性及び、ガラス封止等の加工時に起こる表面酸化の問題を解決し、さらに従来の電極用Ni−Nb合金と同等の耐スパッタ性が得られる電極用合金を提供することである。   The object of the present invention is to solve the problems of plastic workability in the above-described conventional Ni-Nb alloy for electrodes and surface oxidation that occurs during processing such as glass sealing, and is equivalent to the conventional Ni-Nb alloy for electrodes. It is an object to provide an alloy for an electrode capable of obtaining sputtering resistance.

本発明者らは、種々のNi合金を検討した結果、NiにMoとVを複合添加することで耐スパッタ性と表面酸化及び塑性加工性を満足できる電極材を見出し本発明に到達した。
すなわち、本発明は、質量%でV:1.0%〜10.0%、Mo:3.0%〜15.0%、残部は実質的にNiで成り、2.9V+Mo:35.0%以下を満足する冷陰極放電管電極用合金である。
好ましい組成は、質量%でV:3.0%〜8.5%、Mo:5.0%〜13.0%、2.9V+Mo:30.0%以下である冷陰極放電管電極用合金である。
また本発明は、上記の電極用合金材を用いてなる冷陰極放電管用電極である。
さらに本発明は、前記の冷陰極放電管用電極を用いてなる液晶ディスプレイ用バックライト用冷陰極放電管である。
As a result of studying various Ni alloys, the present inventors have found an electrode material that can satisfy sputtering resistance, surface oxidation, and plastic workability by adding Mo and V to Ni, and have reached the present invention.
That is, in the present invention, V: 1.0% to 10.0% by mass, Mo: 3.0% to 15.0%, and the balance is substantially made of Ni. 2.9V + Mo: 35.0% An alloy for cold cathode discharge tube electrodes satisfying the following.
The preferred composition is an alloy for cold cathode discharge tube electrodes in which V: 3.0% to 8.5%, Mo: 5.0% to 13.0%, 2.9V + Mo: 30.0% or less in mass%. is there.
Moreover, this invention is an electrode for cold cathode discharge tubes which uses said alloy material for electrodes.
Furthermore, the present invention is a cold cathode discharge tube for a backlight for a liquid crystal display comprising the cold cathode discharge tube electrode.

本発明の電極用合金は、高融点金属含有量を少量としているため、経済的に有利である。また、耐スパッタ性に優れた従来のNi−Nb合金と同等の耐スパッタ性を有することに加え、従来のNi−Nb合金より優れた塑性加工性を有していることから、カップ形状の電極への成形が容易であるという効果を有し、さらには冷陰極放電管を製造するプロセスにおいて、電極が酸化され易い雰囲気を通過する場合の表面酸化を抑制することで変色が起きづらく、放電特性の劣化を抑制する効果を有するものである。   The alloy for electrodes of the present invention is economically advantageous because the refractory metal content is small. In addition to having the same spatter resistance as that of a conventional Ni—Nb alloy having excellent sputter resistance, and having a plastic workability superior to that of a conventional Ni—Nb alloy, a cup-shaped electrode In the process of manufacturing a cold cathode discharge tube, discoloration is difficult to occur by suppressing surface oxidation when the electrode passes through an atmosphere where it is easily oxidized. It has the effect which suppresses deterioration of.

本発明の重要な特徴は、Niが有する優れた塑性加工性を維持しつつ、耐スパッタ性の向上に効果のあるVと、耐スパッタ性の向上効果に加えて、さらに表面酸化による過度の着色を防止して放電特性の劣化を抑制する効果があるMoとを複合添加した新規な化学組成にある。
以下に本発明の電極用合金における化学成分の規定理由を述べる。なお、特に記載のない限り質量%として記す。
An important feature of the present invention is that V is effective in improving the spatter resistance while maintaining the excellent plastic workability of Ni, and an excessive coloring due to surface oxidation in addition to the effect of improving the spatter resistance. It has a novel chemical composition in which Mo is added in combination with the effect of preventing discharge and suppressing the deterioration of discharge characteristics.
The reasons for defining chemical components in the electrode alloy of the present invention will be described below. Unless otherwise specified, the mass% is indicated.

V:1.0%〜10.0%
VはNiと合金化することによって耐スパッタ性を向上させる本発明の必須元素である。特に本発明においては、Vと共に耐スパッタ性を向上させるMoを必須添加するが、耐スパッタ性向上効果はVの方が大きく、Vが1〜10%の範囲で必須添加が必要となる。
しかしながら、V量が10%を超えると、脆性の金属間化合物が生成し易くなるのでV量の上限値を10.0%とした。また、V量が1%未満ではMoとの複合添加によっても耐スパッタ性を向上させる効果が小さいためV量の下限値を1.0%とした。Vの好ましい範囲はV:3.0%〜8.5%であり、より望ましい範囲は3.0%〜6.0%である。
V: 1.0% to 10.0%
V is an essential element of the present invention that improves sputtering resistance by alloying with Ni. In particular, in the present invention, Mo which improves the sputtering resistance together with V is essential, but the effect of improving the sputtering resistance is larger for V, and the essential addition is required when V is in the range of 1 to 10%.
However, if the amount of V exceeds 10%, brittle intermetallic compounds are likely to be formed, so the upper limit of the amount of V was set to 10.0%. In addition, when the V amount is less than 1%, the effect of improving the sputtering resistance is small even by the combined addition with Mo, so the lower limit value of the V amount was set to 1.0%. A preferable range of V is V: 3.0% to 8.5%, and a more desirable range is 3.0% to 6.0%.

Mo:3.0%〜15.0%
Moは、Vと同様にNiと合金化することによって耐スパッタ性を向上させる効果の他に、表面酸化による過度の着色を抑制して、例えばリード線の溶接やガラス封止時の加工工程での変色を防止し、放電特性の劣化を抑制する効果を得るのに必要な本発明の必須元素である。この耐スパッタ性と、表面酸化による過度の着色を抑制し、放電特性の劣化を抑制する効果の両立にはMoは3.0〜15.0%が必要となる。
しかしながら、Mo量が15.0%を越えると、加工硬化による硬度の上昇により塑性加工性が劣化するのでMo量の上限値を15.0%とした。また、Mo量の下限値を3.0%としたのは、3.0%未満では耐スパッタ性を向上させる効果が小さいからである。Moの好ましい範囲は5.0%〜13.0%であり、より望ましい範囲は5.5%〜10.0%である。
Mo: 3.0% to 15.0%
In addition to the effect of improving the spatter resistance by alloying with Ni in the same way as V, Mo suppresses excessive coloring due to surface oxidation, for example, in the processing step during welding of lead wires or glass sealing. Is an essential element of the present invention necessary for obtaining the effect of preventing the discoloration of the glass and suppressing the deterioration of the discharge characteristics. Mo needs to be 3.0 to 15.0% in order to achieve both the spatter resistance and the effect of suppressing excessive coloring due to surface oxidation and suppressing the deterioration of discharge characteristics.
However, if the Mo amount exceeds 15.0%, the plastic workability deteriorates due to an increase in hardness due to work hardening, so the upper limit of the Mo amount was set to 15.0%. Moreover, the lower limit of the amount of Mo is set to 3.0% because the effect of improving the sputtering resistance is small if it is less than 3.0%. A preferable range of Mo is 5.0% to 13.0%, and a more desirable range is 5.5% to 10.0%.

本発明においては、上述のV及びMoの成分範囲内において、VとMoとの含有量を調整する必要がある。これは、VとMoとを共に高めてしまうと、硬度が300Hvを超え易くなり、深絞り加工性を阻害するためである。
VとMoは、硬度を高める効果は同じではなく、Vの硬度を高める効果はMoの硬度を高める効果の2.9倍である。したがって、V、Moの硬度を高める効果は2.9V+Moで調整可能となる。
2.9V+Moの値が35.0%を超えると硬度が高くなりすぎ、靭性が低下するため、本発明では2.9V+Moの値を35.0%以下に制限する。好ましい範囲は30.0%以下である。
なお、下限については、表面酸化による着色を抑制する効果及び耐スパッタ性を向上させる効果を考慮すると、2.9V+Moの値で5.5%にすると良い。
In the present invention, it is necessary to adjust the contents of V and Mo within the above-described V and Mo component ranges. This is because if both V and Mo are increased, the hardness is likely to exceed 300 Hv, which hinders deep drawability.
The effect of increasing the hardness of V and Mo is not the same, and the effect of increasing the hardness of V is 2.9 times the effect of increasing the hardness of Mo. Therefore, the effect of increasing the hardness of V and Mo can be adjusted by 2.9V + Mo.
When the value of 2.9V + Mo exceeds 35.0%, the hardness becomes too high and the toughness is lowered. Therefore, in the present invention, the value of 2.9V + Mo is limited to 35.0% or less. A preferable range is 30.0% or less.
The lower limit is preferably set to 5.5% with a value of 2.9 V + Mo in consideration of the effect of suppressing coloring due to surface oxidation and the effect of improving the sputtering resistance.

残部は実質的にNi
残部は実質的にNiとしたが、C、Si、Mn、P、S等の不可避的不純物は当然ながら含まれる。これらの元素は、電極用合金の耐スパッタ性と塑性加工性に悪影響を与えない範囲として、それぞれ、以下に示す範囲で不可避的不純物として含有しても良い。
C≦0.10%、Si≦0.50%、Mn≦0.50%、P≦0.05%、S≦0.05%
The balance is essentially Ni
Although the balance is substantially Ni, inevitable impurities such as C, Si, Mn, P, and S are naturally included. These elements may be contained as unavoidable impurities within the ranges shown below as ranges that do not adversely affect the sputtering resistance and plastic workability of the electrode alloy.
C ≦ 0.10%, Si ≦ 0.50%, Mn ≦ 0.50%, P ≦ 0.05%, S ≦ 0.05%

また、本発明の電極用合金は特徴的な結晶粒径の挙動を示す。
方本発明の電極用合金を用いて、カップ形状の電極とする際に、1000℃×5min程度の水素還元熱処理が行われる。この水素還元熱処理前後において、本発明の電極用合金は結晶粒径の粗大化を抑制できる。
本発明電極用合金の水素還元焼鈍前の金属組織写真(倍率200倍)を図2に、1000℃×5minの水素還元焼鈍後の金属写真を図3に示す。
本発明電極用合金は水素還元焼鈍前後で結晶粒径の変化が殆ど見られず、且つ水素焼鈍処理後の結晶粒径が約30**μmと微細な金属組織であった。なお、図2及び図3の金属組織写真に示す本発明電極合金の組成は、後述の実施例で示すNo.3合金である。
The electrode alloy of the present invention exhibits a characteristic behavior of crystal grain size.
When the electrode alloy of the present invention is used to form a cup-shaped electrode, a hydrogen reduction heat treatment of about 1000 ° C. × 5 min is performed. Before and after this hydrogen reduction heat treatment, the electrode alloy of the present invention can suppress the coarsening of the crystal grain size.
A metal structure photograph (magnification 200 times) before hydrogen reduction annealing of the alloy for electrodes of the present invention is shown in FIG. 2, and a metal photograph after hydrogen reduction annealing at 1000 ° C. × 5 min is shown in FIG.
The electrode alloy of the present invention showed almost no change in crystal grain size before and after hydrogen reduction annealing, and had a fine metal structure with a crystal grain size of about 30 ** μm after hydrogen annealing. Note that the composition of the electrode alloy of the present invention shown in the metallographic photographs of FIGS. 3 alloys.

本発明の電極用合金では、上記の構成により、従来のNi−Nb合金と同等の耐スパッタ性を確保することができ、長寿命という効果が得られる。さらに、従来のNi−Nb合金の問題であった塑性加工性を改善することができるので、カップ形状の電極への塑性加工性が容易であるという効果を有し、表面酸化による過度の着色を抑制し、放電特性の劣化を抑制することが可能なため冷陰極放電管の電極用合金として好適である。   In the electrode alloy of the present invention, the above configuration can ensure the spatter resistance equivalent to that of the conventional Ni—Nb alloy, and the effect of a long life can be obtained. Furthermore, since the plastic workability which has been a problem of the conventional Ni-Nb alloy can be improved, it has the effect that the plastic workability to the cup-shaped electrode is easy, and excessive coloring due to surface oxidation can be achieved. Therefore, it is suitable as an electrode alloy for a cold cathode discharge tube.

この本発明の電極用合金はカップ形状の電極への塑性加工性に優れるため、容易にカップ形状に加工でき、図1に示すような冷陰極放電管用電極(1)とすることができる。
また、冷陰極放電管用電極(1)とガラス封着用金属部(2)と、リード部(3)とを組合わせることで冷陰極放電管用電極部品(4)とすることができる。そして、冷陰極放電管用電極部品(4)を用いて、液晶ディスプレイ用バックライト用冷陰極放電管とすれば、優れた耐スパッタ性を有することから、長寿命の液晶ディスプレイ用バックライト用冷陰極放電管とすることができる。
Since the electrode alloy of the present invention is excellent in plastic workability to a cup-shaped electrode, it can be easily processed into a cup shape, and a cold cathode discharge tube electrode (1) as shown in FIG. 1 can be obtained.
Moreover, it can be set as the electrode component for cold cathode discharge tubes (4) by combining the electrode (1) for cold cathode discharge tubes, the metal part (2) for glass sealing, and the lead part (3). And, if the cold cathode discharge tube for a liquid crystal display using the electrode component (4) for the cold cathode discharge tube has excellent spatter resistance, the cold cathode for the backlight for a liquid crystal display with a long life is obtained. It can be a discharge tube.

(実施例1)
真空溶解炉により、表1に示す化学成分を有する7種類の電極用合金を各10kgずつ作製した。表1のNo.1〜4(Ni−V−Mo合金)は本発明の電極用合金である。一方、No.5(Ni−V−Mo合金)は、本発明で規定する関係式を満足しない比較例合金、No.6(純Ni)及びNo.7(Ni−Nb合金)は比較例(従来例)である。なお、No.7は特許文献1に開示される電極用合金に相当する。
Example 1
Using a vacuum melting furnace, 10 kg each of seven types of electrode alloys having chemical components shown in Table 1 were prepared. No. in Table 1 1-4 (Ni-V-Mo alloy) are the alloys for electrodes of the present invention. On the other hand, no. No. 5 (Ni-V-Mo alloy) is a comparative alloy, No. 5, which does not satisfy the relational expression defined in the present invention. 6 (pure Ni) and no. 7 (Ni—Nb alloy) is a comparative example (conventional example). In addition, No. 7 corresponds to the electrode alloy disclosed in Patent Document 1.

各合金を1100℃に加熱して熱間鍛造と熱間圧延を行い、厚さ5mmの板材を得た。これらの板材より、耐スパッタ性評価用の試料として直径75mm、厚さ3mmのターゲットを作製した。
これらのターゲットをマグネトロンスパッタ装置の真空チャンバー内に設置し、Ar圧力0.8Pa、投入電力300Wの条件で12時間、連続スパッタした後、チャンバー内からターゲットを取り出し、スパッタによるターゲットの消耗量(重量変化)を測定した。
消耗量の比を表2に示す。なお、No.6の消耗量を100%としており、値が低いほどスパッタによる消耗が少なく、耐スパッタ性が優れていることを意味する。
Each alloy was heated to 1100 ° C. and subjected to hot forging and hot rolling to obtain a plate material having a thickness of 5 mm. From these plate materials, a target having a diameter of 75 mm and a thickness of 3 mm was prepared as a sample for evaluating the sputtering resistance.
These targets are installed in a vacuum chamber of a magnetron sputtering apparatus, and continuously sputtered for 12 hours under conditions of Ar pressure of 0.8 Pa and input power of 300 W. Then, the target is taken out from the chamber, and the amount of consumption of the target by sputtering (weight) Change).
Table 2 shows the ratio of consumption. In addition, No. The consumption amount of No. 6 is 100%. The lower the value, the less the consumption due to sputtering and the better the sputtering resistance.

表2から、No.6(純Ni)の消耗量を基準(100%)とした時の本発明の電極用合金の消耗量はいずれも優れていることが分かる。また、本発明の電極用合金のNo.3及びNo.4は比較例(従来例)のNo.7(Ni−Nb合金)とほぼ同等の耐スパッタ性が得られることが分かる。   From Table 2, no. It can be seen that the consumption amount of the electrode alloy of the present invention is excellent when the consumption amount of 6 (pure Ni) is the standard (100%). Also, the electrode alloy No. 1 of the present invention. 3 and no. No. 4 is the No. of the comparative example (conventional example). It can be seen that almost the same spatter resistance as 7 (Ni—Nb alloy) can be obtained.

次に作製した合金の硬度を測定し、深絞り加工が容易にできるか否かを判断した。
硬度測定用の試験片の作製は、以下の工程にて得られた焼鈍材を用いて測定した。
熱間圧延材の残部を再度1100℃に加熱して熱間圧延を行い、厚さ2.5mmの板材を得た。熱間圧延中に生じた酸化スケールを酸洗により除去した後、800℃に保持した真空炉内で1時間の焼鈍を行って軟化させた。これらの板材に冷間圧延と800℃での焼鈍を繰り返し、厚さ0.2mmの薄板材を得た。最終工程では圧下率80%の冷間圧延後、800℃に保持した真空炉内で30minの焼鈍を行った後、Nガスで急冷した。硬さの測定結果を表3に示す。
Next, the hardness of the produced alloy was measured and it was judged whether deep drawing could be performed easily.
The production of a test piece for hardness measurement was measured using an annealed material obtained in the following steps.
The remainder of the hot-rolled material was again heated to 1100 ° C. and hot-rolled to obtain a plate material having a thickness of 2.5 mm. After removing the oxide scale generated during hot rolling by pickling, it was softened by annealing in a vacuum furnace maintained at 800 ° C. for 1 hour. These plate materials were repeatedly subjected to cold rolling and annealing at 800 ° C. to obtain thin plate materials having a thickness of 0.2 mm. In the final step, after cold rolling at a reduction rate of 80%, annealing was performed in a vacuum furnace maintained at 800 ° C. for 30 minutes, and then quenched with N 2 gas. Table 3 shows the measurement results of the hardness.

表3から、本発明のNo.1〜No.4及び比較例のNo.6(純Ni)では、硬度が300Hv以下であるため、深絞り加工によりカップ形状に成形することが可能と判断した。一方、No.5では硬度が365Hvと高く、深絞り加工が非常に困難であると判断できた。
また、No.7(Ni−Nb合金)は硬度が285Hvであったが、400倍の金属組織観察により脆性の金属間化合物(NiNb)の生成が確認されたことから、深絞り加工時に亀裂が発生し、カップ形状への加工性が悪いと判断できた。
From Table 3, No. 1 of the present invention. 1-No. 4 and Comparative Example No. Since 6 (pure Ni) had a hardness of 300 Hv or less, it was determined that it could be formed into a cup shape by deep drawing. On the other hand, no. In No. 5, the hardness was as high as 365 Hv, and it was judged that deep drawing was very difficult.
No. 7 (Ni-Nb alloy) had a hardness of 285 Hv, but formation of a brittle intermetallic compound (Ni 3 Nb) was confirmed by observation of the metal structure 400 times, and cracks occurred during deep drawing. It was judged that the processability to cup shape was bad.

更に、熱間圧延材の残部をワイヤーカット加工した後、表面研磨(#500仕上げ)を行い、厚さ1mmの板材を得た。この板材を350℃に保持した電気炉内で1時間大気中加熱をして、表面状態を目視により観察した。
さらに試験片の加熱前後の反射率を測定した。反射率の測定には分光測色計(ミノルタ製、CM−2002)を使用し、可視光域(波長400〜700nm)の平均反射率を測定した。加熱前後の反射率の低下と表面状態を表4に示す。
Furthermore, after the remaining hot-rolled material was wire-cut, surface polishing (# 500 finishing) was performed to obtain a plate material having a thickness of 1 mm. The plate material was heated in the atmosphere for 1 hour in an electric furnace maintained at 350 ° C., and the surface state was visually observed.
Further, the reflectance of the test piece before and after heating was measured. For the measurement of reflectance, a spectrocolorimeter (manufactured by Minolta, CM-2002) was used, and the average reflectance in the visible light region (wavelength 400 to 700 nm) was measured. Table 4 shows the decrease in reflectance and the surface state before and after heating.

表4から、本発明の電極用合金は何れも反射率の低下が少ないことが分かる。また、本発明の電極用合金及びNo.6(純Ni)は着色は見られなかったが、No.7(Ni−Nb合金)には放電特性の劣化を促進する表面酸化による薄茶色の着色が確認された。   From Table 4, it can be seen that the electrode alloy of the present invention has little decrease in reflectance. The electrode alloy of the present invention and No. No coloring was observed for No. 6 (pure Ni). 7 (Ni—Nb alloy) was confirmed to be light brown due to surface oxidation that promotes deterioration of discharge characteristics.

以上の実施例から、本発明の電極用合金は、耐スパッタ性に優れた比較例(従来例)のNo.7(Ni−Nb合金)とほぼ同等の耐スパッタ性を確保することができ、カップ形状への成形(塑性加工)が容易であることが確認された。
さらに、表面酸化による過度の着色を抑制し、放電特性の劣化を抑制することが可能であることが分かり、冷陰極放電管の電極用合金として適していることが示された。
なお、本発明の電極用合金No.3とNo.6(純Ni)について、電子が電極から放出される際の仕事関数(値が小さい程、電子放出が起こり易いことを意味する。)を、大気中光電子分光法を用いて測定したところ、それぞれ4.10eV(電極用合金No.3)、4.17eV(No.6純Ni)であり、本発明の電極用合金はNo.6(純Ni)より優れていた。
それ故、本発明のNi−V−Mo合金で成る電極は、これまで主に使用されてきた純Niの電極と比較して、電子放出特性の点からも実用に供し得ることが確認された。
From the above examples, the electrode alloy of the present invention is No. of the comparative example (conventional example) excellent in sputtering resistance. It was confirmed that almost the same spatter resistance as 7 (Ni—Nb alloy) could be secured, and molding into a cup shape (plastic processing) was easy.
Further, it was found that excessive coloring due to surface oxidation can be suppressed and deterioration of discharge characteristics can be suppressed, and it was shown that the alloy is suitable as an electrode alloy for a cold cathode discharge tube.
It should be noted that the electrode alloy no. 3 and no. For 6 (pure Ni), the work function when electrons are emitted from the electrode (the smaller the value, the easier the electron emission occurs) was measured using atmospheric photoelectron spectroscopy. 4.10 eV (electrode alloy No. 3) and 4.17 eV (No. 6 pure Ni). It was superior to 6 (pure Ni).
Therefore, it was confirmed that the electrode made of the Ni-V-Mo alloy of the present invention can be practically used in terms of electron emission characteristics as compared with the pure Ni electrode which has been mainly used so far. .

(実施例2)
次に、実際の工程を模擬するために上記の本発明合金No.3(Ni−V−Mo合金)焼鈍材とNo.6(純Ni)焼鈍材を用いて、消耗量、放電特性を測定・観察した。用いた試験片はφ9mm×0.15(t)mmとした。
まず、消耗量を測定した。スパッタ条件は、DC3kV、10mA、Ar中とした。この条件の下で5時間のスパッタによる消耗量(体積)を測定した。測定結果は、上記同様、本発明のNi−V−Mo合金の消耗量が優れた結果となった。消耗量の測定結果を表5に示す。
(Example 2)
Next, in order to simulate an actual process, the above alloy No. 1 of the present invention is used. 3 (Ni-V-Mo alloy) annealed material and Using 6 (pure Ni) annealed material, consumption and discharge characteristics were measured and observed. The test piece used was 9 mm × 0.15 (t) mm.
First, consumption was measured. The sputtering conditions were DC 3 kV, 10 mA, and Ar. Under this condition, the consumption (volume) by sputtering for 5 hours was measured. As described above, the measurement results were excellent in consumption of the Ni-V-Mo alloy of the present invention. Table 5 shows the measurement results of the consumption amount.

次に放電特性を測定した。放電特性条件は、試験片φ9mm×0.15(t)mmを陰極として、ステンレス製の陽極に対して間隔100mmの位置に保持し、アルゴン1.33×10Paの雰囲気中で両極に直流電圧をかけて測定した。放電電流が10mAの時の放電電圧は、本発明の電極用合金No.3が380Vであり、No.6(純Ni)の放電電圧は350Vであった。この結果、電極用合金No.3の放電特性はNo.6(純Ni)の放電特性と同等であった。 Next, the discharge characteristics were measured. The discharge characteristics were as follows: test piece φ9 mm × 0.15 (t) mm as a cathode, held at a position of 100 mm distance from a stainless steel anode, and DC in both electrodes in an atmosphere of argon 1.33 × 10 4 Pa. Measured by applying voltage. The discharge voltage when the discharge current is 10 mA is the same as that of the electrode alloy No. 1 of the present invention. 3 is 380V, No. 3 The discharge voltage of 6 (pure Ni) was 350V. As a result, the electrode alloy no. The discharge characteristics of No. 3 are No. 3. It was equivalent to the discharge characteristic of 6 (pure Ni).

本発明の電極用合金は、耐スパッタ性と塑性加工性さらに表面酸化による過度の着色を抑制し、放電特性の劣化を抑制することが可能であるため、数年以上の長期間に渡って使用され、カップ形状への塑性加工が不可欠で、かつ電極加工後のリード線の溶接やガラス封止等の加工工程にて表面酸化が起こり難い冷陰極放電管の電極用合金として適用できる。例えば、液晶表示装置のバックライト用光源として使用される冷陰極放電管の電極用合金に好適である。   The electrode alloy of the present invention can be used over a long period of several years or more because it can suppress spatter resistance, plastic workability, and excessive coloration due to surface oxidation and suppress deterioration of discharge characteristics. Therefore, plastic processing to a cup shape is indispensable, and it can be applied as an electrode alloy for a cold cathode discharge tube in which surface oxidation hardly occurs in processing steps such as lead wire welding and glass sealing after electrode processing. For example, it is suitable for an electrode alloy of a cold cathode discharge tube used as a light source for a backlight of a liquid crystal display device.

冷陰極放電管用電極部品の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the electrode component for cold cathode discharge tubes. 本発明の冷陰極放電管の電極用合金の水素還元焼鈍前の金属組織写真である。It is a metal structure photograph before hydrogen reduction annealing of the electrode alloy of the cold cathode discharge tube of the present invention. 本発明の冷陰極放電管の電極用合金の1000℃×5minの水素還元焼鈍後の金属写真である。It is a metal photograph after 1000 degreeC x 5 min hydrogen reduction annealing of the electrode alloy of the cold cathode discharge tube of this invention.

符号の説明Explanation of symbols

1.冷陰極放電管用電極
2.ガラス封着用金属部
3.リード部
4.冷陰極放電管用電極部品
1. 1. Cold cathode discharge tube electrode 2. Metal part for glass sealing Lead part 4. Electrode parts for cold cathode discharge tubes

Claims (4)

質量%でV:1.0%〜10.0%、Mo:3.0%〜15.0%、残部は実質的にNiで成り、2.9V+Mo:35.0%以下を満足することを特徴とする冷陰極放電管電極用合金。 In mass%, V: 1.0% to 10.0%, Mo: 3.0% to 15.0%, the balance is substantially made of Ni, and satisfies 2.9V + Mo: 35.0% or less. Characteristic alloy for cold cathode discharge tube electrodes. 質量%でV:3.0%〜8.5%、Mo:5.0%〜13.0%、2.9V+Mo:30.0%以下であることを特徴とする請求項1に記載の冷陰極放電管電極用合金。 2. The cooling according to claim 1, wherein in mass%, V: 3.0% to 8.5%, Mo: 5.0% to 13.0%, 2.9 V + Mo: 30.0% or less. Alloy for cathode discharge tube electrode. 請求項1または請求項2記載の冷陰極放電管電極用合金材を用いてなることを特徴とする冷陰極放電管用電極。 A cold cathode discharge tube electrode comprising the alloy material for a cold cathode discharge tube electrode according to claim 1 or 2. 請求項3記載の冷陰極放電管用電極を用いてなることを特徴とする液晶ディスプレイ用バックライト用冷陰極放電管。 A cold cathode discharge tube for a backlight for a liquid crystal display, comprising the electrode for a cold cathode discharge tube according to claim 3.
JP2007011364A 2006-01-23 2007-01-22 Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display Pending JP2007220669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007011364A JP2007220669A (en) 2006-01-23 2007-01-22 Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006013995 2006-01-23
JP2007011364A JP2007220669A (en) 2006-01-23 2007-01-22 Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display

Publications (1)

Publication Number Publication Date
JP2007220669A true JP2007220669A (en) 2007-08-30

Family

ID=38497679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007011364A Pending JP2007220669A (en) 2006-01-23 2007-01-22 Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display

Country Status (1)

Country Link
JP (1) JP2007220669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277662A (en) * 2005-05-25 2009-11-26 Sumitomo Electric Ind Ltd Electrode material
WO2010119780A1 (en) * 2009-04-13 2010-10-21 住友電気工業株式会社 Lead wire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277662A (en) * 2005-05-25 2009-11-26 Sumitomo Electric Ind Ltd Electrode material
JP2010267633A (en) * 2005-05-25 2010-11-25 Sumitomo Electric Ind Ltd Electrode material
JP4612748B2 (en) * 2005-05-25 2011-01-12 住友電気工業株式会社 Electrode material
JP4612749B1 (en) * 2005-05-25 2011-01-12 住友電気工業株式会社 Electrode material
JP2011009237A (en) * 2005-05-25 2011-01-13 Sumitomo Electric Ind Ltd Electrode material
JP4634516B2 (en) * 2005-05-25 2011-02-16 住友電気工業株式会社 Electrode material
WO2010119780A1 (en) * 2009-04-13 2010-10-21 住友電気工業株式会社 Lead wire
JP2010251029A (en) * 2009-04-13 2010-11-04 Sumitomo Electric Ind Ltd Lead wire
JP4612727B2 (en) * 2009-04-13 2011-01-12 住友電気工業株式会社 Lead
CN102089850A (en) * 2009-04-13 2011-06-08 住友电气工业株式会社 Lead wire

Similar Documents

Publication Publication Date Title
JP4367954B2 (en) Electrode material
US20100013371A1 (en) Electrode member for cold cathode fluorescent lamp
JP4831481B2 (en) Alloys for cold cathode discharge tube electrodes
JP2007084928A (en) Backing plate made of copper alloy, and method for producing the copper alloy
JP2004235073A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and fluorescent discharge tube provided with the electrode
JP2007220669A (en) Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display
JP4394748B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP4994989B2 (en) Electrode alloy for cold cathode fluorescent discharge tube, electrode for cold cathode fluorescent discharge tube formed with the electrode alloy, and cold cathode fluorescent discharge tube provided with the electrode
JP2009197319A (en) Alloy for cold cathode discharge tube electrode
JP4902706B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP2004235072A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and the fluorescent discharge tube provided with the electrode
JP2009215646A (en) Alloy for cold cathode discharge tube electrode
WO2003035920A1 (en) Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL
US20090108731A1 (en) Electrode for cold-cathode fluorescent lamp
JP4934156B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP4531125B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP2009252382A (en) Electrode material, electrode, and cold cathode fluorescent lamp
JP4279314B2 (en) Fluorescent discharge tube electrode and fluorescent discharge tube equipped with the electrode
JP2009161852A (en) Alloy for electrode for cold cathode discharge tube
JP5629148B2 (en) Cold cathode discharge tube electrode and cold cathode discharge tube using the same
JP2008050690A (en) Alloy for cold cathode discharge tube electrode
JP2010013694A (en) Alloy for cold cathode discharge tube electrode
TWI451469B (en) A cold cathode fluorescent tube electrode, and a cold cathode fluorescent tube using the same
JP4634516B2 (en) Electrode material
JPH05339681A (en) Fe-ni electron gun electrode material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523