WO2003035920A1 - Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL - Google Patents

Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL Download PDF

Info

Publication number
WO2003035920A1
WO2003035920A1 PCT/JP2002/010718 JP0210718W WO03035920A1 WO 2003035920 A1 WO2003035920 A1 WO 2003035920A1 JP 0210718 W JP0210718 W JP 0210718W WO 03035920 A1 WO03035920 A1 WO 03035920A1
Authority
WO
WIPO (PCT)
Prior art keywords
shadow mask
alloy
corrosion resistance
mask material
thermal expansion
Prior art date
Application number
PCT/JP2002/010718
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Nishi
Tsutomu Omori
Yutaka Kobayashi
Original Assignee
Nippon Yakin Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co., Ltd. filed Critical Nippon Yakin Kogyo Co., Ltd.
Priority to EP02777848A priority Critical patent/EP1445341A4/en
Priority to KR1020047005785A priority patent/KR100595393B1/en
Priority to US10/488,257 priority patent/US20040238076A1/en
Publication of WO2003035920A1 publication Critical patent/WO2003035920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/0733Aperture plate characterised by the material

Definitions

  • the present invention relates to an Fe—Ni-based alloy and a shadow mask material for a shadow mask material having excellent corrosion resistance used for a color television cathode ray tube and the like, and in particular, is exposed to the air after light-volatilizing annealing in the material manufacturing process.
  • This steel sheet is, for example, a process in which the steel sheet after the intermediate cold rolling is strained in a continuous annealing furnace or a batch annealing furnace and subjected to intermediate annealing, followed by finish cold rolling and temper rolling (including dull rolling). It has been manufactured through.
  • the material for high-definition color television CRT display is, for example, in the case of a color television picture tube, the electron beam passing through the shadow mask is less than 1/3 of the total, and the remaining The electron beam strikes the shadow mask, which heats it up to as much as 80 ° C.
  • the shadow mask material undergoes thermal expansion and distortion, leading to a reduction in color purity.
  • an Fe-36Ni-based invar alloy which is less affected by thermal expansion, has been used in place of the above-mentioned aluminum-killed steel sheet.
  • An object of the present invention is to provide a high-rigidity, low-thermal-expansion shadow that generates little mackerel even when exposed to the air for a long period of time for distribution or transportation after light-volatilization annealing, which is an intermediate step in the production of a material.
  • the inventors have set forth the conditions for Fe-Ni-based alloys that are unlikely to produce blue even when exposed to the atmosphere after light-volatilization annealing, which is an intermediate step in the production of materials.
  • the following findings were obtained. It is said that the ⁇ that occurs in the material (Fe-Ni-based alloy) is more likely to occur after light-volatilization annealing, and that the low thermal expansion Fe-36Ni alloy with reduced Mn is more likely to occur than ordinary Fe-36Ni alloy. I understand.
  • the inventors have decided to suppress the concentration of S in the surface layer of the alloy sheet.
  • the concentration of S in the surface layer of the Fe-36Ni alloy It is absent in high-Fe-Ni alloys with high content, and is remarkable in low-thermal expansion Fe-36Ni alloys with low Mn content.
  • Mn-based inclusions in Fe-Ni alloys with high Mn content It was found that S was incorporated in the low thermal expansion Fe-36 ⁇ alloy with a low Mn content, but the S enrichment decreased in inverse proportion to the Mn content.
  • the present inventors have obtained the knowledge that it is necessary to control the ratio of Mn to S of the Mn-based inclusion forming element in order to prevent the occurrence of ⁇ , and to further study. Recommended. As a result, we found that when the relationship between Mn and S satisfies MnZS ⁇ SS, ⁇ hardly occurred. In addition, it was also found that mackerel formation was particularly difficult when the S concentration in the region (surface layer) up to 150 A from the surface of the alloy was about 20 times or less that of the bulk part (inside).
  • the corrosion resistance of the Fe—Ni alloy also greatly depends on the crystal grain size.
  • the corrosion resistance after light-volatilization annealing greatly depends on the crystal grain size of the material.
  • the corrosion resistance of the material improves. I also understood. This is considered to be because the area of the crystal grain boundary increases as the crystal grain size decreases, and the diffusion distance of S increases.
  • controlling non-metallic inclusions in addition to the above countermeasures was also effective in suppressing the occurrence of mackerel.
  • the present invention has been completed based on these findings, and the gist configuration thereof is as described below.
  • the alloy of the present invention further comprises, in addition to the above component composition, one or more selected from Ti, V, Zr, Ta, Hf and REM in a total amount of 0.005 to 1.0. %.
  • the alloy according to the present invention is preferably an alloy in which the relationship between Mn and S is Mn / S ⁇ 25.
  • the maximum value of the S concentration in the region from the surface of the alloy to 150 A is not more than 20 times the bulk.
  • the alloy of the present invention preferably has a crystal grain size as large as No. 9 or more of the ASTM particle size number.
  • the alloy of the present invention MnO- FeO- Si0 2 - Nb20 5 - MgO- A1 2 0 3 - other CaO-based composite oxide, further silica (Si0 2) spinel (MgO ⁇ ⁇ 1 2 0 3) Contact preferably contains a good beauty niobium oxide (Nb 2 0 5) any one or non-metallic inclusions consisting of those containing two or more of.
  • the present invention also provides the above Fe—Ni-based alloy, wherein the alloy has a 0.2% proof stress of 300 N / mm 2 or more and a thermal expansion coefficient of 30 to: L00 ° C. of 1.0 ⁇ 10 6 / ° C. or less.
  • L00 ° C. 1.0 ⁇ 10 6 / ° C. or less.
  • C is an element that contributes to the solid solution and the strengthening of the material by the work hardening action. If its content exceeds 0.01 wt%, a large amount of carbides will precipitate, deteriorating the etching properties, press formability, blackening properties and low thermal expansion properties. Therefore, the content of C is limited to 0.01 wt% or less. Preferably it is 0.005 ⁇ % or less.
  • Si needs to be added as a deoxidizer in an amount of 0.01% or more as a deoxidizing agent when the alloy is refined. However, adding more than 0.1% by weight increases the thermal expansion.] Determined. Preferably it is 0.02-0.05 wt%.
  • Mn is useful as a solid solution strengthening element, and it is necessary to add 0.01% or more as a deoxidizing material when refining the alloy. However, if its content exceeds 0.1 ⁇ ⁇ %, the thermal expansion will increase, so it was set to the range of 0.01-0.1 wt%. Preferably, it is 0.01 to 0.05 wt%.
  • Mn generates Mn-based inclusions, which fix the S that diffuses during photovoltaic annealing, so that a certain amount of Mn-based inclusions is required. Therefore, it is necessary to control this Mn so as to satisfy Mn / S25 in terms of corrosion resistance in relation to S.
  • Ni is an element that has a significant effect on the thermal expansion characteristics of the Fe—Ni alloy. When this content is 36 wt%, thermal expansion is minimized, so Ni should be limited to 35-37 wt%.
  • Cr is an element that significantly improves corrosion resistance, but if it exceeds 0.1 wt%, the thermal expansion coefficient And the blackening property is also poor, so the content is limited to 0.1 wt% or less.
  • the proof stress increases by 0.2%.
  • it has the effect of remarkably reducing the crystal grain size, increasing the area of the crystal grain boundaries, and increasing the diffusion distance of S during light-volatilization annealing, thereby suppressing S concentration on the surface.
  • it improves toughness, etching property, and pressurizing property, and also improves blackening property.
  • Nb needs to be added in an amount of at least 0.01 wt% or more in order to obtain the above-mentioned effects, particularly to provide corrosion resistance and 0.2% proof stress.
  • 0.10 wt% or more is added.
  • the toughness, press formability, and low thermal expansion properties are rather reduced, so the content is limited to 0.01 to 1.0 wt%.
  • S content is 0.0020 wt. /. If it exceeds, S diffuses into the vicinity of the material surface after light-volatilization annealing, and the S concentration at a depth of up to 150A from the material surface (surface layer) increases significantly with respect to the bulk, lowering the corrosion resistance. Therefore, the content of S is set to 0.0020 wt% or less, preferably 0.0010 wt% or less.
  • A1 is a relatively active element, if it is contained in a large amount, it causes preferential oxidation on the surface of the cooked rice, and inhibits black-and-white properties. Further, it increases the amount of A1 type oxidized product and inhibits the etching property. In particular, if the content exceeds 0.005 wt%, the low thermal expansion characteristics are reduced, so the content was limited to 0.005 wt%.
  • i, V, Zr, Ta, Hf and REM are elements that combine with C and N to form carbides and nitrides and contribute to grain refinement. It forms and contributes to corrosion resistance.
  • Mn and S are represented by the following formula
  • the S concentration in the region from the plate surface to 150 A is set to be about 20 times or less that of the bulk. This is because if the concentration of S in the surface layer exceeds 20 times the S concentration in the bulk (base), the dissolution of metal ions is promoted and the mackerel is induced. This S concentration is more preferably 18 times or less.
  • it is effective to set the crystal grain size to a size of No. 9 or more in terms of an ASTM particle size number.
  • the corrosion resistance of a Fe—Ni alloy after light volatilization annealing largely depends on the crystal grain size of the material, and especially as the crystal grain size becomes smaller (the grain size number becomes larger), It was found that the corrosion resistance of the material was improved. In addition, since the 0.2% resistance greatly depends on the crystal grain size, it is desirable that the crystal grain size be AST M No. 9 or more in order to obtain excellent corrosion resistance and rigidity.
  • the present invention further controls nonmetallic inclusions.
  • non-metallic inclusions contained in the alloy of the present invention MnO- FeO- Si 0 2 - Nb2_rei 5 - MgO- A1 2 0 3 - CaO -based composite oxide in addition to further, Si0 2, MgO ⁇ A1 2 0 3, it is necessary to Nb 2 0
  • Non-metallic inclusions consisting of those containing one kind or two or more kinds of the five According to the inventors' research, it has been found that the generation of acid-soluble inclusions of MgO and CaO alone deteriorates the corrosion resistance when dew is formed in the atmosphere.
  • MnO -FeO- Si0 2 generates upon suppressing generate alumina-based inclusions - in CaO-based composite oxide, - Nb 2 0 5 - MgO- A1 2 0 3 It was also found that corrosion resistance deteriorated when both MgO and CaO inclusions were included. On the other hand, inclusions containing no MgO single inclusions or CaO single inclusions did not cause a problem in corrosion resistance.
  • the test material was manufactured by adjusting the components of the alloy so as to have the component composition shown in Table 1 below, and the test material was melted in an air induction furnace to produce an ingot.
  • the ingot is hot forged at a temperature of 1000 to 1150 ° C, hot rolled at a rolling ratio of 80% or more, and 900 ° C-60 seconds, 30% H 2 + N 2 , dew point-40 °
  • the solid solution heat treatment was performed in the C atmosphere. Then, it was gradually cooled to obtain a 0.12 mm thick Fe-Ni alloy plate.
  • the coefficient of thermal expansion in the table is from room temperature to 300. Measured in the range up to C, the average coefficient of thermal expansion at 30 to 100 ° C was determined, and the 0.2% proof stress was measured by a tensile test.
  • the maximum value of the amount of S enrichment in the region at 150 A from the plate surface was determined by using an Auger electron spectrometer at 50 A intervals from the surface, performing elemental analysis each time, and determining the atomic concentration of S. It was calculated and expressed as a ratio to parc (bulk is a value obtained by chemically analyzing the entire material in this case).
  • the corrosion resistance was evaluated by the outdoor air exposure test, and the corrosion status after exposure was evaluated based on the area ratio of occurrence. In addition, those with an emission area ratio of 0.5% or more generate ⁇ when exposed to the atmosphere for a long time after bright annealing, which is an intermediate process of material production. It was unsuitable as a material. Table 2 shows the results.
  • the alloy conforming to the present invention has sufficient properties in terms of corrosion resistance, rigidity and low thermal expansion properties. That is, the test material according to the present invention has a 0.2% proof stress of 300 NZmm2 or more, has high rigidity, and has a low thermal expansion coefficient of 1.0 ⁇ 10 ⁇ 6 / ° ⁇ or less. In addition, the mackerel area ratio after the air exposure test is 0.5% or less, and it has excellent corrosion resistance.
  • the comparative materials 19 and 20 are inferior in corrosion resistance due to the large amount of S in the bulk.
  • the comparative materials 21 and 22 are inferior in corrosion resistance because the inclusion form includes MgO alone and CaO alone.
  • Comparative material 23 is inferior in corrosion resistance and rigidity due to the large crystal grain size.
  • Comparative Example 24 is inferior in corrosion resistance because the maximum value of the S concentration in the region at 150 A from the plate surface is 20 or more.
  • the above-mentioned Fe—Ni-based alloy of the present invention produced as a shadow mask material could be produced without occurrence of ⁇ after light-volatilization annealing.
  • the 0.2% proof stress before mask molded as quality material is not less 300 NZmm 2 or more, the thermal expansion coefficient to produce a shadow mask material of high rigidity is and low thermal expansion below 1.0 X 10- 6 / ° C Was completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A Fe-Ni base alloy for a shadow mask raw material excellent in the resistance to corrosion having a chemical composition, in wt %: C ≤ 0.01 %, Si: 0.01 to 0.1 %, Mn: 0.01 to 0.1 %, Ni: 35 to 37 %, Cr ≤ 0.1 %, Nb: 0.01 to 1.0 %, S ≤ 0.0020 %, Al ≤ 0.005 % and balance: Fe and inevitable impurities; and a shadow mask material which comprises the Fe-Ni base alloy, wherein the alloy exhibits a 0.2 % yield strength of 300 N/mm2 or more, a thermal expansion coefficient in the range of 30 to 100˚C of 1.0 X 10-6/˚C or less. The Fe-Ni base alloy for a shadow mask raw material and the shadow mask material are free from the formation of rust even when exposed to the atmosphere for a long time due to transportation or the like after a bright annealing step as an intermediate step of the production of the material.

Description

明 細 耐食性に優れるシャドウマスク素材用 Fe— Ni系合金およびシャドウマスク材料 技術分野  Description Fe-Ni alloys for shadow mask materials with excellent corrosion resistance and shadow mask materials
本発明は、 カラーテレビブラウン管などに用いられる耐食性に優れるシャドウ マスク素材用 Fe— Ni系合金およびシャドウマスク材料に関するものであり、 と くに、 素材製造工程における光揮焼鈍後に、 大気中にさらされた時でも、 鲭の発 生が少ない耐食性に優れる高剛性低熱膨張の Fe— Ni系合金と、 この合金を用い てなるシャドウマスク材料について提案する。 背景技術  The present invention relates to an Fe—Ni-based alloy and a shadow mask material for a shadow mask material having excellent corrosion resistance used for a color television cathode ray tube and the like, and in particular, is exposed to the air after light-volatilizing annealing in the material manufacturing process. We propose a high-rigidity, low-thermal-expansion Fe-Ni-based alloy with low corrosion and excellent corrosion resistance, and a shadow mask material using this alloy. Background art
従来、 シャドウマスク材料としては、 低炭素アルミキルド鋼板が用いられてい る。 この鋼板は、 たとえば、 中間冷間圧延後の鋼板を、 連続焼鈍炉またはバッチ 焼鈍炉にて歪とり中間焼鈍し、 その後、 仕上冷間圧延および調質圧延 (ダル圧延 を含む) を行うという工程を経て製造されている。  Conventionally, low carbon aluminum killed steel sheets have been used as shadow mask materials. This steel sheet is, for example, a process in which the steel sheet after the intermediate cold rolling is strained in a continuous annealing furnace or a batch annealing furnace and subjected to intermediate annealing, followed by finish cold rolling and temper rolling (including dull rolling). It has been manufactured through.
一般に、 高品位カラ一テレビブラウン管ゃディスプレー用の材料というのは、 たとえばカラーテレビ受像管の場合であれば、 シャドウマスクの閧孔を通過する 電子ビームは全体の 1 / 3以下であり、 残りの電子ビームはシャドウマスクに衝 突し、 そのために、 シャドウマスクは、 時として 80 °Cにも達する程度に加熱さ れる。 その結果、 シャドウマスク材料は、 熱膨張を起こして歪み、 色純度の低下 を招くこととなる。 このため、 シャドウマスク材料の材質としては、 熱膨張係数 の小さい素材を使用することが有利である。 この意味において近年では、 前記ァ ルミキルド鋼鈑の代わりに熱膨張の影響が少ない Fe— 36Ni系インバー合金が使 用されるようになっている。  In general, the material for high-definition color television CRT display is, for example, in the case of a color television picture tube, the electron beam passing through the shadow mask is less than 1/3 of the total, and the remaining The electron beam strikes the shadow mask, which heats it up to as much as 80 ° C. As a result, the shadow mask material undergoes thermal expansion and distortion, leading to a reduction in color purity. For this reason, it is advantageous to use a material having a small coefficient of thermal expansion as the material of the shadow mask material. In this sense, in recent years, an Fe-36Ni-based invar alloy, which is less affected by thermal expansion, has been used in place of the above-mentioned aluminum-killed steel sheet.
この Fe— Ni 系合金板のなかでも、 近年では、 画面のフラット化、 大型化にと もない、 合金元素である Mnを低減した低熱膨張 Fe-36Ni系合金板 (特開平 5 - 1 8 6 8 5 3号公報) や Nb を添加し高強度化をはかった合金板 (特許第 3 1 5 0 8 3 1号) などが使われている。 Among these Fe—Ni-based alloy sheets, in recent years, as the screen becomes flatter and larger, a low-thermal-expansion Fe-36Ni-based alloy sheet with reduced alloying element Mn (Japanese Patent Laid-open No. -Patent No. 1868653) and alloy plates with high strength by adding Nb (Patent No. 3150831) are used.
しかしながら、 低 Mnの低熱膨張 Fe-36Ni系^^や Nb添加の高強度 Fe— 36Ni系合金は、 ブラゥン管中では、 その雰囲気が真空であり腐食環境にさらされ ないが、 素材製造の中間工程である光揮焼鈍後の流通、 運搬の過程において、 大 気中に長時間さらされるために 鯖が発生して製品とならないケースがあり、 防 鯖の面で課題を残していた。  However, low-thermal expansion Fe-36Ni-based alloys with low Mn and high-strength Fe-36Ni-based alloys with the addition of Nb are not exposed to a corrosive environment in a bran tube in a vacuum atmosphere. In the process of distribution and transportation after light-volume annealing, there were cases where mackerel was generated due to long-term exposure to the air and did not become a product, leaving a problem in terms of server protection.
本発明の目的は、 素材を製造する際の中間工程である光揮焼鈍後に、 流通や運 搬のために大気中に長時間さらされたときでも、 鯖の発生が少ない、 高剛性低熱 膨張シャドウマスク素材用 Fe-Ni 系合金とシャドウマスク材料とを提供するこ d める 発明の開示  An object of the present invention is to provide a high-rigidity, low-thermal-expansion shadow that generates little mackerel even when exposed to the air for a long period of time for distribution or transportation after light-volatilization annealing, which is an intermediate step in the production of a material. Providing Fe-Ni alloy for mask material and shadow mask material
上掲の目的に対し、 発明者らは、 素材を製造する際の中間工程である光揮焼鈍 後に大気中にさらされた時でも、 ま青を発生しにくい Fe-Ni系合金の条件につい て鋭意研究を重ねた結果、 次のような知見を得た。 それは、 素材 (Fe— Ni系合金) に発生する鲭は、 光揮焼鈍後に発生しやすく、 通常の Fe— 36Ni合金よりも、 Mn を低減した低熱膨張 Fe— 36Ni合金の方が発生しやすいということがわかった。 この知見についてさらに検討したところ、 低 Mnの Fe— Ni系合金板については、 その表面から 150Aの深さ (表層部) までの領域における合金中 S濃度が、 ノ レ ク部 (内部) よりも著しく高くなつていることを発見した。 一般的に知られてい るように、 このように表層部に Sが濃化すると、 Sは金属イオンの溶解を促進し、 鯖を誘発する。 なお、 こうした現象は、 この合金板の表層部を機械的、 化学的に 除去すれば解決が可能になるが、 この処理を商業的規模で行うことには困難があ る。  In view of the above-mentioned objectives, the inventors have set forth the conditions for Fe-Ni-based alloys that are unlikely to produce blue even when exposed to the atmosphere after light-volatilization annealing, which is an intermediate step in the production of materials. As a result of intensive research, the following findings were obtained. It is said that the 鲭 that occurs in the material (Fe-Ni-based alloy) is more likely to occur after light-volatilization annealing, and that the low thermal expansion Fe-36Ni alloy with reduced Mn is more likely to occur than ordinary Fe-36Ni alloy. I understand. Further investigation of this finding shows that the S concentration in the alloy from the surface to the depth of 150A (surface layer) of the low-Mn Fe-Ni-based alloy sheet is higher than that of the metal part (inner part). It was found to be significantly higher. As is generally known, when S is concentrated in the surface layer, S promotes dissolution of metal ions and induces mackerel. These phenomena can be solved by mechanically and chemically removing the surface layer of the alloy sheet, but it is difficult to perform this treatment on a commercial scale.
そこで、 発明者らは、 合金板の表層に Sが濃化するのを抑制することにした。 発明者らの研究によれば、 Fe-36Ni合金板の表層部への Sの濃化は、 Mn含有 量の高い Fe— Ni系合金では皆無であり、 Mn含有量の低い低熱膨張形の Fe— 36Ni合金において顕著であること、 そして、 Mn含有量の高い Fe— Ni系合金中 の Mn系介在物には Sが取り込まれているが、 Mn含有量の低い低熱膨張形 Fe- 36ΝΪ合金には、 Mn含有量に反比例して Sの濃化量が減少していることがわかつ た。 すなわち、 Mn含有量の低い低熱膨張 Fe-36Ni合金中には、 Mn系介在物に 取り込まれない Sが多く存在し、 この Sが光輝焼鈍時に表層近くに拡散し濃化す るということがわかった。 Therefore, the inventors have decided to suppress the concentration of S in the surface layer of the alloy sheet. According to the inventors' research, the concentration of S in the surface layer of the Fe-36Ni alloy It is absent in high-Fe-Ni alloys with high content, and is remarkable in low-thermal expansion Fe-36Ni alloys with low Mn content. Mn-based inclusions in Fe-Ni alloys with high Mn content It was found that S was incorporated in the low thermal expansion Fe-36ΝΪ alloy with a low Mn content, but the S enrichment decreased in inverse proportion to the Mn content. In other words, it was found that in the low thermal expansion Fe-36Ni alloy with a low Mn content, there was a lot of S that was not taken into the Mn-based inclusions, and this S diffused near the surface layer during bright annealing and became concentrated. .
一方で、 発明者らは、 このような鑌の発生を防止するためには、 Mn系介在物 生成元素の Mn と Sの成分比を制御することが必要になるとの知見を得てさらに 研究をすすめた。 その結果、 Mn と Sとの関係が、 MnZS ^SS を満足するとき に鲭が発生しにくいことを見い出した。 しかも、 合金の表面から 150Aまでの領 域 (表層部) における S濃度が、 バルク部分 (内部) の 20倍程度以下のときに、 とくに鯖が発生しにくいこともわかった。  On the other hand, the present inventors have obtained the knowledge that it is necessary to control the ratio of Mn to S of the Mn-based inclusion forming element in order to prevent the occurrence of 鑌, and to further study. Recommended. As a result, we found that when the relationship between Mn and S satisfies MnZS ^ SS, 鲭 hardly occurred. In addition, it was also found that mackerel formation was particularly difficult when the S concentration in the region (surface layer) up to 150 A from the surface of the alloy was about 20 times or less that of the bulk part (inside).
さらに、 Fe— Ni合金の耐食性は、 結晶粒径にも大きく依存していることがわか つた。 つまり、 光揮焼鈍後の耐食性は、 その素材の結晶粒径に大きく依存し、 と くに結晶粒径が小さく (結晶粒度番号 (A S T M) が大きい) なるにつれて、 そ の材料の耐食性が向上することもわかった。 これは、 結晶粒径が小さくなると結 晶粒界の面積が増加し、 Sの拡散距離が長くなることによるものと考えられる。 さらに、 鯖の発生を抑えるには、 上記の対処方法に加えて、 非金属介在物を制 御することもまた有効であることもわかった。 それは酸可溶性の MgO単体介在 物、 CaO単体介在物が生成すると、 大気中で結露した場合の耐食性が劣化し、 さ らに Nb含有 Fe— 36Ni合金では、 アルミナ系介在物の生成を抑制した場合に生 成する MnO -FeO— Si02— Nb205-MgO— A1203— CaO系複合酸ィ匕物中に、 MgO単体介在物あるいは CaO単体介在物をともに含有する場合に、 やはり耐食 性が劣化することがわかった。 In addition, it was found that the corrosion resistance of the Fe—Ni alloy also greatly depends on the crystal grain size. In other words, the corrosion resistance after light-volatilization annealing greatly depends on the crystal grain size of the material. In particular, as the crystal grain size becomes smaller (the grain size number (ASTM) becomes larger), the corrosion resistance of the material improves. I also understood. This is considered to be because the area of the crystal grain boundary increases as the crystal grain size decreases, and the diffusion distance of S increases. Furthermore, it was found that controlling non-metallic inclusions in addition to the above countermeasures was also effective in suppressing the occurrence of mackerel. This is because the formation of acid-soluble MgO simple inclusions and CaO simple inclusions degrades the corrosion resistance when dew condensation occurs in the atmosphere, and the Nb-containing Fe-36Ni alloy suppresses the formation of alumina-based inclusions. generate for MnO -FeO- Si0 2 in - Nb 2 0 5 -MgO- A1 2 0 3 - in CaO-based composite Sani匕物, when containing both the MgO simple substance inclusions or CaO alone inclusions, also It was found that the corrosion resistance deteriorated.
一方、 これら MgO単体介在物や CaO単体介在物を含まない介在物糸誠の合金 板では、 耐食性に問題がないことから、 耐食性向上のためには、 MnO—FeO— Si02-Nb205— MgO— A1203— CaO系複合酸ィ匕物の他には、 シリカ (Si02)、 スピネル (MgO · Α1203)、 およびニオブ酸化物 (Nb205) のうちから選ばれる いずれか 1種または 2種以上を含むものからなる非金属介在物であることが有効 であることがわかった。 On the other hand, with these inclusions containing no MgO or CaO inclusions, there is no problem with the corrosion resistance. Therefore, in order to improve the corrosion resistance, MnO—FeO— Si0 2 -Nb 2 0 5 - MgO- A1 2 0 3 - Besides the CaO-based composite Sani匕物, silica (Si0 2), spinel (MgO · Α1 2 0 3) , and niobium oxide (Nb 2 It was found that it was effective to use nonmetallic inclusions composed of one or more selected from the groups described in ( 5 ).
本発明は、 これらの知見に基づいて完成したものであって、 その要旨構成は下 記のとおりである。  The present invention has been completed based on these findings, and the gist configuration thereof is as described below.
すなわち、 本発明は、 C≤0.01 wt%、 Si: 0·01〜0.1 wt°/o、 Mn: 0.01〜0.1 wt%, Ni: 35〜37 wt%、 Cr≤0.1 wt%、 Nb: 0.01〜: 1.0 wt%、 S≤0.0020 wt%、 Al≤0.005 wt%, 残部が Feおよび不可避的不純物からなる耐食性に優れるシャド ゥマスク素材用 Fe— Ni系合金である。  That is, in the present invention, C≤0.01 wt%, Si: 0.01-0.1 wt ° / o, Mn: 0.01-0.1 wt%, Ni: 35-37 wt%, Cr≤0.1 wt%, Nb: 0.01- : 1.0 wt%, S≤0.0020 wt%, Al≤0.005 wt%, the balance is Fe and Ni-based alloy for mask material with excellent corrosion resistance consisting of Fe and unavoidable impurities.
なお、 本発明の合金はまた、 上記成分組成に加えて、 さらに、 Ti、 V、 Zr、 Ta、 Hf および R E Mのうちから選ばれるいずれか 1種または 2種以上を、 合計量で 0.005〜1.0 %を含有することが好ましい。  In addition, the alloy of the present invention further comprises, in addition to the above component composition, one or more selected from Ti, V, Zr, Ta, Hf and REM in a total amount of 0.005 to 1.0. %.
本発明にかかる上記合金はまた、 Mn と Sとの関係を、 Mn/S≥25 にした合 金であることが好ましい。  The alloy according to the present invention is preferably an alloy in which the relationship between Mn and S is Mn / S≥25.
本発明はまた、 この合金の表面から 150Aまでの領域は、 S濃度の最大値がバ ルクの 20倍以下であることが好ましい。  In the present invention, it is preferable that the maximum value of the S concentration in the region from the surface of the alloy to 150 A is not more than 20 times the bulk.
さらにまた、 本発明の合金は、 結晶粒度が A S T M粒度番号の No. 9以上の大 きさのものであることが好ましい。  Still further, the alloy of the present invention preferably has a crystal grain size as large as No. 9 or more of the ASTM particle size number.
さらにまた、 本発明の合金は、 MnO— FeO— Si02— Nb205— MgO— A1203— CaO系複合酸化物の他、 さらにシリカ (Si02) スピネル (MgO · Α1203) およ びニオブ酸化物 (Nb205) のうちのいずれか 1種または 2種以上を含むものから なる非金属介在物を含有することが好ましい。 Furthermore, the alloy of the present invention, MnO- FeO- Si0 2 - Nb20 5 - MgO- A1 2 0 3 - other CaO-based composite oxide, further silica (Si0 2) spinel (MgO · Α1 2 0 3) Contact preferably contains a good beauty niobium oxide (Nb 2 0 5) any one or non-metallic inclusions consisting of those containing two or more of.
本発明はまた、 上記 Fe— Ni系合金からなり、 この合金の 0.2 %耐力が 300N/ mm2以上でかつ 30〜: L00 °Cの熱膨張係数が 1.0 X 10_6/°C以下の特性を有する 高耐食高剛性低熱膨張のシャドウマスク材料を提案する。 発明を実施するための最良の形態 The present invention also provides the above Fe—Ni-based alloy, wherein the alloy has a 0.2% proof stress of 300 N / mm 2 or more and a thermal expansion coefficient of 30 to: L00 ° C. of 1.0 × 10 6 / ° C. or less. We propose a shadow mask material with high corrosion resistance, high rigidity and low thermal expansion. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る Fe— Ni 系合金の組成を上記のように規定した理由につい て説明する。  Hereinafter, the reasons for defining the composition of the Fe—Ni-based alloy according to the present invention as described above will be described.
C≤0.01 wt% C≤0.01 wt%
Cは、 固溶および加工硬ィ匕作用による材質の強化に寄与する元素である。 その 含有量が、 0.01wt%を超えると炭化物が多く析出してエッチング性、 プレス成形 性、 黒化性および低熱膨張特性を悪くする。 そのため、 Cの含有量は、 0.01 wt% 以下に限定する。 好ましくは 0.005 ^%以下とする。  C is an element that contributes to the solid solution and the strengthening of the material by the work hardening action. If its content exceeds 0.01 wt%, a large amount of carbides will precipitate, deteriorating the etching properties, press formability, blackening properties and low thermal expansion properties. Therefore, the content of C is limited to 0.01 wt% or less. Preferably it is 0.005 ^% or less.
Si: 0.01— 0.1 wt% Si: 0.01—0.1 wt%
Siは、 合金の精鰊に際して、 脱酸材として 0.01 ^%以上の添加が必要となる が、 0.1wt%を超えて添力!]すると熱膨張を増大させるので、 0.01〜0.1 wt%の範囲 に定めた。 好ましくは 0.02〜0.05 wt%である。  Si needs to be added as a deoxidizer in an amount of 0.01% or more as a deoxidizing agent when the alloy is refined. However, adding more than 0.1% by weight increases the thermal expansion.] Determined. Preferably it is 0.02-0.05 wt%.
Mn: 0.01〜0.1 wt%  Mn: 0.01-0.1 wt%
Mnは、 固溶強化元素として有用であり、 さらに合金の精鍊に際して、 脱酸材 として 0.01^%以上の添加が必要である。 しかし、 その含有量が 0.1 \^%を超え て添加されると熱膨張を増大させるので、 0.01〜0.1 wt%の範囲に定めた。 好ま しくは 0.01〜0.05 wt%である。  Mn is useful as a solid solution strengthening element, and it is necessary to add 0.01% or more as a deoxidizing material when refining the alloy. However, if its content exceeds 0.1 \ ^%, the thermal expansion will increase, so it was set to the range of 0.01-0.1 wt%. Preferably, it is 0.01 to 0.05 wt%.
また、 この Mn を添加することにより、 Mn系介在物が生成し、 これが光揮焼 鈍時に拡散してくる Sを固着するので、 一定量の Mn系介在物が必要である。 よ つて、 この Mnは Sとの関係において、 耐食性の面で Mn/ S 25を満足するよ うに制御することが必要である。  In addition, the addition of Mn generates Mn-based inclusions, which fix the S that diffuses during photovoltaic annealing, so that a certain amount of Mn-based inclusions is required. Therefore, it is necessary to control this Mn so as to satisfy Mn / S25 in terms of corrosion resistance in relation to S.
Ni: 35〜37 wt%  Ni: 35-37 wt%
Niは、 Fe—Ni合金の熱膨張特性に大きな影響を及ぼす元素である。 この の 含有量が 36 wt%のとき、 熱膨張が最小となるため、 Niは 35〜37 wt%に限定し †こ。  Ni is an element that has a significant effect on the thermal expansion characteristics of the Fe—Ni alloy. When this content is 36 wt%, thermal expansion is minimized, so Ni should be limited to 35-37 wt%.
Cr≤0.1 wt%  Cr≤0.1 wt%
Crは、 耐食性を著しく向上させる元素であるが 0.1 wt%を超えると熱膨張係数 が高くなり、 また、 黒化性も劣ィ匕するため、 0.1 wt% 下に限定する。 Cr is an element that significantly improves corrosion resistance, but if it exceeds 0.1 wt%, the thermal expansion coefficient And the blackening property is also poor, so the content is limited to 0.1 wt% or less.
Nb: 0.01〜: LO wt% Nb: 0.01 ~: LO wt%
Nbは、 これを合金中に添カ卩すると、 0.2 %耐力が増大する。 また、 結晶粒度を 著しく微細化し、 結晶粒界の面積を増加させ、 光揮焼鈍時に、 Sの拡散距離を長 くして表面の Sの濃ィ匕を抑制する効果がある。 また、 靭性、 エッチング性、 プレ ス«性をともに向上させるとともに黒化性をも向上させる。  When Nb is added to an alloy, the proof stress increases by 0.2%. In addition, it has the effect of remarkably reducing the crystal grain size, increasing the area of the crystal grain boundaries, and increasing the diffusion distance of S during light-volatilization annealing, thereby suppressing S concentration on the surface. In addition, it improves toughness, etching property, and pressurizing property, and also improves blackening property.
従って、 Nbは、 上記の効果を得るために、 とくに耐食性、 0.2 %耐力を付与す るために、 少なくとも 0.01 wt%以上の添加を必要とする。 好ましくは 0.10 wt% 以上を添加した方がよい。 しかし、 1.0 wt%を超えて添加すると、 靭性、 プレス 成形性、 低熱膨張特性を却って低下させるため、 0.01〜: 1.0 wt%に限定する。  Therefore, Nb needs to be added in an amount of at least 0.01 wt% or more in order to obtain the above-mentioned effects, particularly to provide corrosion resistance and 0.2% proof stress. Preferably, 0.10 wt% or more is added. However, if added in excess of 1.0 wt%, the toughness, press formability, and low thermal expansion properties are rather reduced, so the content is limited to 0.01 to 1.0 wt%.
S≤ 0.0020 wt% S≤ 0.0020 wt%
sは、 本発明に係る合金を特徴づける元素であり、 耐食性に大きな影響を及ぼ す元素である。 この Sの含有量が 0.0020 wt。/。を超えると、 光揮焼鈍後に Sが素 材表面近傍にまで拡散し、 素材表面から 150Aまでの深さ (表層部) の S濃度が バルクに対し著しく上昇し、 耐食性を低下させる。 そのため Sの含有量は 0.0020 wt%以下とし、 好ましくは 0.0010 wt%以下とした。  s is an element that characterizes the alloy according to the present invention, and has a significant effect on corrosion resistance. This S content is 0.0020 wt. /. If it exceeds, S diffuses into the vicinity of the material surface after light-volatilization annealing, and the S concentration at a depth of up to 150A from the material surface (surface layer) increases significantly with respect to the bulk, lowering the corrosion resistance. Therefore, the content of S is set to 0.0020 wt% or less, preferably 0.0010 wt% or less.
ただし、 この Sは、 Mn との関係において、 Mn/S≥25 を満足させることが 必要である。  However, S needs to satisfy Mn / S≥25 in relation to Mn.
A1≤ 0.005 wt% A1≤ 0.005 wt%
A1は、 比較的活性な元素であるから、 多量に含まれると、 鋼飯表面での優先酸 化しを生じて黒ィ匕性を阻害する。 さらに A1系酸ィ匕物を増加してエッチング性を阻 害する。 とくに、 0.005 wt%を超えると低熱膨張特性を低下させるので、 0.005 wt%に限定した。  Since A1 is a relatively active element, if it is contained in a large amount, it causes preferential oxidation on the surface of the cooked rice, and inhibits black-and-white properties. Further, it increases the amount of A1 type oxidized product and inhibits the etching property. In particular, if the content exceeds 0.005 wt%, the low thermal expansion characteristics are reduced, so the content was limited to 0.005 wt%.
Ti、 V、 Zr、 Ta、 Hfおよび R E M Ti, V, Zr, Ta, Hf and R E M
i、 V、 Zr、 Ta、 Hf および R E Mは、 Cおよび Nと結合して炭ィ匕物、 窒化物を 形成し結晶粒微細化に寄与する元素であり、 Sと結合し硫ィ匕物を形成し耐食性に も寄与する。 Ti、 V、 Zr、 Ta、 Hf 及び R E M (希土類元素) の中から選ばれるい ずれか 1種または 2種以上が、 単独または合計で 0.005 wt%未満では、 上記効果 が不十分になる。 一方、 1.0 wt%より多いと、 これら元素の固溶量が多くなりす ぎて、 低熱膨張特性を低下させるため、 0.005〜: 1.0 wt%に限定した。 i, V, Zr, Ta, Hf and REM are elements that combine with C and N to form carbides and nitrides and contribute to grain refinement. It forms and contributes to corrosion resistance. Choose from Ti, V, Zr, Ta, Hf and REM (rare earth element) If at least one or more of them is used alone or in a total of less than 0.005 wt%, the above effects will be insufficient. On the other hand, if the content is more than 1.0 wt%, the solid solution amount of these elements becomes so large that the low thermal expansion characteristic is reduced.
Mn/S≥25 Mn / S≥25
本発明に係る Fe— Ni合金おいては、 Mnと Sとは、 次式;  In the Fe—Ni alloy according to the present invention, Mn and S are represented by the following formula;
Mn/S≥25  Mn / S≥25
の関係を満足する範囲内に収まるように調整する必要がある。 すなわち、 Sの含 有量に応じて Mnの含有量を調整し、 耐食性に悪影響を及ぼす S含有量を Mnで 制御することが肝要である。 つまり、 Mn/Sの比が 25未満では、 Mn系介在物 中に取り込まれる S量が少なく、 光輝焼鈍時に Sが表層近くまで拡散、 濃ィ匕し、 鯖が発生しやすくなる。 好ましい上限は 70程度である。 It is necessary to make adjustments so as to fall within a range that satisfies the relationship of In other words, it is important to adjust the Mn content according to the S content, and control the S content, which adversely affects corrosion resistance, with Mn. In other words, when the ratio of Mn / S is less than 25, the amount of S incorporated into the Mn-based inclusions is small, and S diffuses and condenses to near the surface layer during bright annealing, so that a mackerel is easily generated. A preferred upper limit is about 70.
次に、 本発明に係る Fe— Ni合金においては、 ^^板表面から 150Aまでの領 域における S濃度をバルクの 20倍程度以下とする。 この理由は、 表層中におけ る Sの濃化の程度が、 バルク (基地) の S濃度の 20倍を超えると、 金属イオン の溶解を促進し、 鯖を誘発させるからである。 なお、 この S濃度は、 より好まし くは 18倍以下である。 本発明は、 上記成分設計に加えて、 結晶粒度を A S T M 粒度番号で No. 9以上 の大きさとすることが有効である。 本発明者らの研究によると、 Fe—Ni系合金の 光揮焼鈍後の耐食性は、 素材の結晶粒径に大きく依存し、 とくに結晶粒径が小さ く (結晶粒度番号が大きい) なるにつれて、 その材料の耐食性が向上することが わかった。 また、 0.2%耐カも結晶粒径に大きく依存することから優れた耐食性、 剛性を得るには結晶粒度が A S T M No.9以上とすることが望ましい。  Next, in the Fe—Ni alloy according to the present invention, the S concentration in the region from the plate surface to 150 A is set to be about 20 times or less that of the bulk. This is because if the concentration of S in the surface layer exceeds 20 times the S concentration in the bulk (base), the dissolution of metal ions is promoted and the mackerel is induced. This S concentration is more preferably 18 times or less. In the present invention, in addition to the above-mentioned component design, it is effective to set the crystal grain size to a size of No. 9 or more in terms of an ASTM particle size number. According to the study of the present inventors, the corrosion resistance of a Fe—Ni alloy after light volatilization annealing largely depends on the crystal grain size of the material, and especially as the crystal grain size becomes smaller (the grain size number becomes larger), It was found that the corrosion resistance of the material was improved. In addition, since the 0.2% resistance greatly depends on the crystal grain size, it is desirable that the crystal grain size be AST M No. 9 or more in order to obtain excellent corrosion resistance and rigidity.
非 Φ属介 物 Non-Φ
上記成分設計と結晶粒度調整に加えて本発明では、 さらに非金属介在物の制御 を行う。 すなわち、 本発明合金中に含まれる非金属介在物は、 MnO— FeO— Si 02— Nb2〇5— MgO— A1203— CaO系複合酸化物の他にさらに、 Si02、 MgO · A1203、 Nb205のうちのいずれか 1種または 2種以上を含有するものからなる非 金属介在物とする必要がある。 発明者らの研究によると、 酸可溶性の MgO単体 介在物、 CaO単体介在物が生成すると、 大気中で結露した場合の耐食性が劣化す ることがわかった。 さらに Nb含有 Fe— 36Ni合金では、 アルミナ系介在物の生 成を抑制した際に生成する MnO -FeO— Si02— Nb205— MgO— A1203— CaO 系複合酸化物中に、 MgO単体介在物あるいは CaO単体介在物をともに含有する 場合、 やはり耐食性が劣化することがわかった。 一方、 これら MgO単体介在物、 CaO単体介在物を含まない介在物組成のものは耐食性に問題を起こさなかったこ とから、 上記介在物の糸誠にすることとした。 実施例 In addition to the above component design and crystal grain size adjustment, the present invention further controls nonmetallic inclusions. In other words, non-metallic inclusions contained in the alloy of the present invention, MnO- FeO- Si 0 2 - Nb2_rei 5 - MgO- A1 2 0 3 - CaO -based composite oxide in addition to further, Si0 2, MgO · A1 2 0 3, it is necessary to Nb 2 0 Non-metallic inclusions consisting of those containing one kind or two or more kinds of the five. According to the inventors' research, it has been found that the generation of acid-soluble inclusions of MgO and CaO alone deteriorates the corrosion resistance when dew is formed in the atmosphere. In yet Nb-containing Fe- 36 Ni alloy, MnO -FeO- Si0 2 generates upon suppressing generate alumina-based inclusions - in CaO-based composite oxide, - Nb 2 0 5 - MgO- A1 2 0 3 It was also found that corrosion resistance deteriorated when both MgO and CaO inclusions were included. On the other hand, inclusions containing no MgO single inclusions or CaO single inclusions did not cause a problem in corrosion resistance. Example
以下、 実施例をもって本発明に係る合金の作用効果について具体的に説明する が、 本発明は以下に述べる実施例にのみ限定されるものではない。  Hereinafter, the working effects of the alloy according to the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples described below.
供試材は、 後述する表 1に示す成分組成となるように 合金の各成分を調整し て試験材を製造し、 その試験材を大気誘導炉で溶解してインゴットを製作し、 次 いでこのインゴッ トを 1000~ 1150 °Cの温度で熱間鍛造加工を施し、 圧延率 80 %以上で熱間圧延を行い、 そして 900 °C— 60秒、 30 %H2+N2、 露点— 40 °C の雰囲気で固溶ィ匕熱処理を行った。 その後、 徐冷して厚さ 0.12 mmの Fe-Ni合 金板を得た。 The test material was manufactured by adjusting the components of the alloy so as to have the component composition shown in Table 1 below, and the test material was melted in an air induction furnace to produce an ingot. The ingot is hot forged at a temperature of 1000 to 1150 ° C, hot rolled at a rolling ratio of 80% or more, and 900 ° C-60 seconds, 30% H 2 + N 2 , dew point-40 ° The solid solution heat treatment was performed in the C atmosphere. Then, it was gradually cooled to obtain a 0.12 mm thick Fe-Ni alloy plate.
表中の熱膨張係数は、 常温から 300。Cまでの範囲で測定し、 30〜: 100 °Cの平 均熱膨張係数を求め、 0.2 %耐力は引張試験により測定した。 また、 板表面から 150 Aにおける領域の S濃化量の最大値は、 ォージェ電子分光分析装置を用い、 表面から 50 A間隔でスパッタリングを行い、 元素分析をその都度実施し、 Sの 原子濃度を算出し、 パルク (バルクとは本件では、 素材全体を化学的に分析した 値である。) との比で表わした。 耐食性は、 屋外大気暴露試験にて、 暴露後の腐食 状況を発鲭面積率にて評価した。 なお、 発鲭面積率が 0.5 %以上のものは素材製 造の中間工程である光輝焼鈍後、 大気に長時間さらされると鲭を発生するので、 素材としては不適当であった。 これらの結果を表 2に示す。 The coefficient of thermal expansion in the table is from room temperature to 300. Measured in the range up to C, the average coefficient of thermal expansion at 30 to 100 ° C was determined, and the 0.2% proof stress was measured by a tensile test. The maximum value of the amount of S enrichment in the region at 150 A from the plate surface was determined by using an Auger electron spectrometer at 50 A intervals from the surface, performing elemental analysis each time, and determining the atomic concentration of S. It was calculated and expressed as a ratio to parc (bulk is a value obtained by chemically analyzing the entire material in this case). The corrosion resistance was evaluated by the outdoor air exposure test, and the corrosion status after exposure was evaluated based on the area ratio of occurrence. In addition, those with an emission area ratio of 0.5% or more generate 鲭 when exposed to the atmosphere for a long time after bright annealing, which is an intermediate process of material production. It was unsuitable as a material. Table 2 shows the results.
表 2から明らかなように、 本発明に適合する合金は、 耐食性、 剛性および低熱 膨張特性の面において十分な特性を有しているといえる。 すなわち、 本発明に係 る試験材は、 0.2 %耐力が 300 NZmm2以上であり、 高剛性を有し、 熱膨張係数 が 1.0 Χ 10·6/°〇以下で低熱膨張である。 また、 大気暴露試験後の発鯖面積率が 0.5%以下であり、 優れた耐食性を有する。 これに対して、 比較材 1 9、 2 0は、 バルクの S量が多いため耐食性に劣る。 また、 比較材 2 1、 2 2は介在物形態が MgO単体、 CaO単体を含むため耐食性に劣っている。 比較材 2 3は、 結晶粒径 が大きいために耐食性、 剛性に劣っている。 比較例 2 4は、 板表面から 150Aに おける領域の S濃化量の最大値が 20以上であるため、 耐食性に劣っている。 な お、 本発明の上記 Fe— Ni系合金を、 シャドウマスク材料として製造したものは、 光揮焼鈍後に鲭の発生なく製造することができた。 とくに、 素材の品質としてマ スク成形前の 0.2 %耐力が 300 NZmm2以上であり、 熱膨張係数が 1.0 X 10— 6 /°C以下で高剛性でかつ低熱膨張のシャドウマスク素材を製造することができた。 As is evident from Table 2, it can be said that the alloy conforming to the present invention has sufficient properties in terms of corrosion resistance, rigidity and low thermal expansion properties. That is, the test material according to the present invention has a 0.2% proof stress of 300 NZmm2 or more, has high rigidity, and has a low thermal expansion coefficient of 1.0Χ10 · 6 / ° 〇 or less. In addition, the mackerel area ratio after the air exposure test is 0.5% or less, and it has excellent corrosion resistance. On the other hand, the comparative materials 19 and 20 are inferior in corrosion resistance due to the large amount of S in the bulk. In addition, the comparative materials 21 and 22 are inferior in corrosion resistance because the inclusion form includes MgO alone and CaO alone. Comparative material 23 is inferior in corrosion resistance and rigidity due to the large crystal grain size. Comparative Example 24 is inferior in corrosion resistance because the maximum value of the S concentration in the region at 150 A from the plate surface is 20 or more. Incidentally, the above-mentioned Fe—Ni-based alloy of the present invention produced as a shadow mask material could be produced without occurrence of Δ after light-volatilization annealing. In particular, the 0.2% proof stress before mask molded as quality material is not less 300 NZmm 2 or more, the thermal expansion coefficient to produce a shadow mask material of high rigidity is and low thermal expansion below 1.0 X 10- 6 / ° C Was completed.
Figure imgf000012_0001
Figure imgf000012_0001
合金番号 0.2%耐カ 熱膨張係数 結晶粒度 ルクの S量 表層から 150Aまでの 相対比 大気暴露試験後の Alloy number 0.2% Power resistance coefficient of thermal expansion Grain size S content of lux Relative ratio from surface layer to 150A After air exposure test
(N/mm2) No. (A) s; gas大値 (B) (Β/Α) 発 i青面 85率 (!0 (N / mm 2 ) No. (A) s; gas large value (B) (Β / Α) Departure i blue surface 85 rate (! 0
1 315 0.81 1 1 0.0003 0.0050 16.8 0.26  1 315 0.81 1 1 0.0003 0.0050 16.8 0.26
2 316 0.84 10 0.0008 0.0013 16.1 0.24  2 316 0.84 10 0.0008 0.0013 16.1 0.24
発 3 320 0.88 1 1 0.0010 0.0152 15.2 0.25 Dep. 3 320 0.88 1 1 0.0010 0.0152 15.2 0.25
明 4 318 0.89 10 0.0012 0.0218 18.2 0.30 Akira 4 318 0.89 10 0.0012 0.0218 18.2 0.30
5 319 0.88 11 0.0012 0.0160 13.3 0.24  5 319 0.88 11 0.0012 0.0160 13.3 0.24
6 305 0.83 9 0.0015 0.0260 17.3 0.26  6 305 0.83 9 0.0015 0.0260 17.3 0.26
7 340 0.92 10 0.0010 0.0170 17.0 0.27  7 340 0.92 10 0.0010 0.0170 17.0 0.27
8 351 0.95 10 0.0013 0.0224 17.2 0.29  8 351 0.95 10 0.0013 0.0224 17.2 0.29
y 321 0.88 11 0.0012 0.0223 18.6 0.31  y 321 0.88 11 0.0012 0.0223 18.6 0.31
ι υ 318 0.85 10 0.0018 0.0311 17.3 0.32  ι υ 318 0.85 10 0.0018 0.0311 17.3 0.32
1 1 316 0.87 11 0.0008 0.0146 18.3 0.31  1 1 316 0.87 11 0.0008 0.0146 18.3 0.31
322 0.85 11 0.001 1 0.0193 17.5 0.30 322 0.85 11 0.001 1 0.0193 17.5 0.30
319 0.89 1 1 0.0015 0.0252 16.8 0.30319 0.89 1 1 0.0015 0.0252 16.8 0.30
14 31 7 0.87 11 0.0010 0.0153 15.3 0.27 14 31 7 0.87 11 0.0010 0.0153 15.3 0.27
15 335 0.93 1 1 0.0008 0.0145 18.1 0.30  15 335 0.93 1 1 0.0008 0.0145 18.1 0.30
16 309 0.86 1 1 0.0012 0.0226 18.8 0.32  16 309 0.86 1 1 0.0012 0.0226 18.8 0.32
17 31 2 0.88 1 1 0.0012 0.0223 18.6 0.33  17 31 2 0.88 1 1 0.0012 0.0223 18.6 0.33
18 319 0.89 1 1 0.001 1 0.0187 17.0 0.30  18 319 0.89 1 1 0.001 1 0.0187 17.0 0.30
19 319 0.85 10 0.0022 0.1 1 18 50.8 0.97  19 319 0.85 10 0.0022 0.1 1 18 50.8 0.97
比 20 315 0.88 1 1 0.0030 0.1458 48.6 0.92  Ratio 20 315 0.88 1 1 0.0030 0.1458 48.6 0.92
較 21 316 0.83 10 0.0025 0.0770 30.8 0.60  Comparison 21 316 0.83 10 0.0025 0.0770 30.8 0.60
22 319 0.85 11 0.0035 0.0990 25.7 0.52  22 319 0.85 11 0.0035 0.0990 25.7 0.52
金 23 290 0.80 7 0.0015 0.0260 17.3 0.51  Fri 23 290 0.80 7 0.0015 0.0260 17.3 0.51
24 320 0.88 11 0.0020 0.0430 21.5 0.50  24 320 0.88 11 0.0020 0.0430 21.5 0.50
S】2 産業上の利用可能性 S】 2 Industrial applicability
以上説明したように本発明によれば、 素材製造の中間工程である光揮焼鈍後の 流通や運搬の過程において大気中にさらされたときでも、 鯖が発生しづらぃ高耐 食高剛性低熱膨張のシャドウマスク用 Fe— Ni系合金を提供することができる。 従って、 映像のきれいなカラーブラウン管やディスプレー用のシャドウマスク材 料を確実にかつ高レ、収率で提供することができる。  As described above, according to the present invention, even when exposed to the atmosphere in the course of distribution and transportation after light-volatilization annealing, which is an intermediate step of material production, mackerel is less likely to occur.High corrosion resistance, high rigidity and low heat An Fe—Ni-based alloy for an expanded shadow mask can be provided. Therefore, it is possible to reliably provide a high-quality, high-yield shadow mask material for color CRTs and displays with beautiful images.

Claims

請求の範囲 The scope of the claims
( 1 ) C≤0.01wt%、 Si: 0.01〜0.1wt%、 Mn: 0.01〜0.1wt%、 Ni: 35〜 37wt%s Cr≤0.1wt% Nb : 0.01〜: l.0wt%、 S≤0.0020wt°/0 Al≤0.005wt% 残部が Feおよび不可避的不純物からなる耐食性に優れるシャドウマスク素材用 Fe— Ni系^^。 (1) C≤0.01wt%, Si: 0.01 ~ 0.1wt%, Mn: 0.01 ~ 0.1wt%, Ni: 35 ~ 37wt% s Cr≤0.1wt% Nb: 0.01 ~: 1.0wt%, S≤0.0020 wt ° / 0 Al ≤ 0.005wt% Fe-Ni-based ^^ for shadow mask materials, with the balance being Fe and unavoidable impurities, and having excellent corrosion resistance.
( 2 ) 請求項 1に記載の合金において、 Mn と Sとの関係を、 Mn/S 25に したことを特徴とするシャドウマスク素材用 Fe— Ni系合金。  (2) The alloy according to claim 1, wherein the relationship between Mn and S is Mn / S25.
(3) 上記成分糸誠に加えて、 さらに、 Ίϊ、 V、 Zr、 Ta、 Hf および REMのう ちから選ばれるいずれか 1種または 2種以上を、 合計量で 0.005〜: 1.0%を含有す ることを特徴とする請求項 1または 2に記載のシャドウマスク素材用 Fe— Ni系 口 ¾o  (3) In addition to the above components, further contains one or more selected from Ίϊ, V, Zr, Ta, Hf and REM in a total amount of 0.005 to: 1.0%. The Fe—Ni-based opening 用 o for a shadow mask material according to claim 1 or 2, wherein
(4) 請求項 1〜3のいずれか 1項に記載の成分組成を有する合金は、 その表 面から 150Aまでの領域は、 S濃度の最大値がバルクの 20倍以下に制御されてい ることを特徴とする請求項 1〜3のいずれか 1項に記載のシャドウマスク素材用 Fe-Ni系合金。  (4) In the alloy having the component composition according to any one of claims 1 to 3, the maximum value of the S concentration in the region from the surface to 150A is controlled to be 20 times or less that of the bulk. The Fe-Ni alloy for a shadow mask material according to any one of claims 1 to 3, characterized in that:
(5) 結晶粒度が、 ASTMの No.9以上の大きさである請求項 1〜4のいず れか 1項に記載のシャドウマスク素材用 Fe— Ni系^^。  (5) The Fe—Ni-based ^^ for a shadow mask material according to any one of claims 1 to 4, wherein the crystal grain size is a size of ASTM No. 9 or more.
(6) MnO— FeO— Si〇2— Nb205— MgO— A1203— CaO系複合酸化物の他、 さらにシリカ (Si02) スピネル (MgO ·Α1203) およびニオブ酸化物 (Nb20(6) MnO- FeO- Si_rei_2- Nb 2 0 5 - MgO- A1 2 0 3 - other CaO-based composite oxide, further silica (Si0 2) spinel (MgO · Α1 2 0 3) and niobium oxide (Nb 20
5) のうちのいずれか 1種または 2種以上を含有するものからなる非金属介在物を 含有することを特徴とする請求項 1〜 5のいずれか 1項に記載の耐食性に優れる シャドゥマスク素材用 Fe-Ni系合金。 The shadow mask material having excellent corrosion resistance according to any one of claims 1 to 5, characterized by containing a non-metallic inclusion comprising one or more of any one of the above (5). For Fe-Ni alloy.
(7) 請求項 1~6のいずれか 1項に記載の Fe— Ni系合金からなり、 この合 金の 0.2%耐力が 300N/mm2以上でかつ 30〜: 100。Cの熱膨張係数が 1.0X10一6 (7) The Fe—Ni alloy according to any one of claims 1 to 6, wherein the alloy has a 0.2% proof stress of 300 N / mm 2 or more and 30 to: 100. First heat expansion coefficient of the C is 1.0 × 10 6
/°C以下の特性を有することを特徴とする高耐食高剛性低熱膨張のシャドウマス ク材料。 A high-corrosion-resistant, high-rigidity, low-thermal-expansion shadow mask material having characteristics of / ° C or less.
PCT/JP2002/010718 2001-10-22 2002-10-16 Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL WO2003035920A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02777848A EP1445341A4 (en) 2001-10-22 2002-10-16 Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
KR1020047005785A KR100595393B1 (en) 2001-10-22 2002-10-16 Fe­Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL
US10/488,257 US20040238076A1 (en) 2001-10-22 2002-10-16 Fe-ni based alloy for shadow mask raw material excellent in corrosion resistance and shadow mask material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-323145 2001-10-22
JP2001323145A JP3854121B2 (en) 2001-10-22 2001-10-22 Fe-Ni alloy for shadow mask material with excellent corrosion resistance and shadow mask material

Publications (1)

Publication Number Publication Date
WO2003035920A1 true WO2003035920A1 (en) 2003-05-01

Family

ID=19140077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010718 WO2003035920A1 (en) 2001-10-22 2002-10-16 Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL

Country Status (6)

Country Link
US (1) US20040238076A1 (en)
EP (1) EP1445341A4 (en)
JP (1) JP3854121B2 (en)
KR (1) KR100595393B1 (en)
CN (1) CN100343405C (en)
WO (1) WO2003035920A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668529B1 (en) 2014-12-23 2016-10-31 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
KR101677352B1 (en) 2014-12-26 2016-11-18 주식회사 포스코 Encapsulant for packaging an organic electric device for display with low thermal expansion coefficient
CA3159934A1 (en) * 2019-12-27 2021-07-01 Nippon Steel Corporation Alloy
CN115976395A (en) * 2022-12-28 2023-04-18 北冶功能材料(江苏)有限公司 Preparation method of invar alloy for metal mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186853A (en) * 1992-01-09 1993-07-27 Nippon Yakin Kogyo Co Ltd Invar alloy for shadow mask
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion
US5916380A (en) * 1995-09-28 1999-06-29 Nippon Mining & Metals Co., Ltd. Fe-Ni alloy for parts of electron-gun and blanked parts for electron-gun
JP2001040454A (en) * 1999-07-28 2001-02-13 Nippon Yakin Kogyo Co Ltd Fe-Ni BASED MATERIAL FOR SHADOW MASK
JP2001181796A (en) * 1999-12-28 2001-07-03 Hitachi Metals Ltd Fe-Ni-Co ALLOY EXCELLENT IN ETCHING CHARACTERISTIC AND LOW THERMAL EXPANSION CHARACTERISTIC, AND SHADOW MASK EXCELLENT IN ETCHING PIT SHAPE CHARACTERISTIC

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US205296A (en) * 1878-06-25 Improvement in cutting instruments or tools
US5207844A (en) * 1990-03-22 1993-05-04 Nkk Corporation Method for manufacturing an Fe-Ni cold-rolled sheet excellent in cleanliness and etching pierceability
JP3151100B2 (en) * 1994-01-14 2001-04-03 日鉱金属株式会社 Fe-Ni alloy shadow mask material
FR2728724B1 (en) * 1994-12-27 1997-01-24 Imphy Sa METHOD FOR MANUFACTURING AN IRON-NICKEL ALLOY SHADOW MASK
US5946380A (en) * 1997-11-06 1999-08-31 At&T Corp. Communications system and method with call expenditure control
JP3450711B2 (en) * 1998-07-02 2003-09-29 日本冶金工業株式会社 Fe-Ni lead frame alloy with excellent punching characteristics
JP2000096188A (en) * 1998-09-21 2000-04-04 Nisshin Steel Co Ltd Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture
EP1134300A3 (en) * 2000-03-17 2002-05-22 Hitachi Metals, Ltd. Fe-Ni alloy
JP3802326B2 (en) * 2000-08-30 2006-07-26 日鉱金属株式会社 Manufacturing method for preventing hot rolling crack of Fe-Ni alloy material having resistance to drop impact deformation and low thermal expansion
JP4240823B2 (en) * 2000-09-29 2009-03-18 日本冶金工業株式会社 Method for producing Fe-Ni permalloy alloy
DE60143908D1 (en) * 2000-11-21 2011-03-03 Nippon Yakin Kogyo Co Ltd IRON NICKEL ALLOY FOR SHADOW MASKS WITH EXCELLENT FITNESS FOR CORNING
KR100519615B1 (en) * 2001-07-05 2005-10-07 제이에프이 스틸 가부시키가이샤 Thin Alloy Sheet of Low Thermal Expansion and Shadow Mask Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186853A (en) * 1992-01-09 1993-07-27 Nippon Yakin Kogyo Co Ltd Invar alloy for shadow mask
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion
US5916380A (en) * 1995-09-28 1999-06-29 Nippon Mining & Metals Co., Ltd. Fe-Ni alloy for parts of electron-gun and blanked parts for electron-gun
JP2001040454A (en) * 1999-07-28 2001-02-13 Nippon Yakin Kogyo Co Ltd Fe-Ni BASED MATERIAL FOR SHADOW MASK
JP2001181796A (en) * 1999-12-28 2001-07-03 Hitachi Metals Ltd Fe-Ni-Co ALLOY EXCELLENT IN ETCHING CHARACTERISTIC AND LOW THERMAL EXPANSION CHARACTERISTIC, AND SHADOW MASK EXCELLENT IN ETCHING PIT SHAPE CHARACTERISTIC

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1445341A4 *

Also Published As

Publication number Publication date
JP2003129185A (en) 2003-05-08
CN100343405C (en) 2007-10-17
KR20040045877A (en) 2004-06-02
CN1571857A (en) 2005-01-26
US20040238076A1 (en) 2004-12-02
EP1445341A1 (en) 2004-08-11
JP3854121B2 (en) 2006-12-06
EP1445341A4 (en) 2004-12-15
KR100595393B1 (en) 2006-06-30

Similar Documents

Publication Publication Date Title
JP3150831B2 (en) High Young's modulus low thermal expansion Fe-Ni alloy
WO2003035920A1 (en) Fe-Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL
EP1335034B1 (en) Low-carbon steel sheet for mask of tension type cathode ray tube with bridge and mask and cathode ray tube
KR100484481B1 (en) Fe-Ni-Co ALLOY FOR COMPLETELY FLAT MASK OF PRESS-FORMED TYPE, AND COMPLETELY FLAT MASK AND COLOR CATHODE-RAY TUBE USING THE SAME
JP3557395B2 (en) Method for producing Fe-Ni alloy material for press-molded flat mask
JPH09227998A (en) Cold rolled steel sheet for color picture tube color separating electrode structural body and its production
JP3892312B2 (en) Method for manufacturing high-strength steel sheet for CRT frame
KR100479778B1 (en) MANUFACTURING METHOD FOR PREVENTING Fe-Ni-BASED ALLOY MATERIAL HAVING DROPPING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSIBILITY FROM HOT ROLLING CRACK
JP3566489B2 (en) Fe-Ni alloy for electron gun parts and electron gun press stamping parts
JP3467020B2 (en) Fe-Ni alloy for press-molded flat mask, flat mask and color cathode ray tube using the same
JP3469559B2 (en) Fe-Ni-Co alloy for flat masks with excellent low thermal expansion after blackening
JP3828838B2 (en) Steel plate for TV CRT frame and manufacturing method thereof
JP3602752B2 (en) Fe-Cr-Ni alloy strip for electron gun electrode with good pressability
JP2001152292A (en) Fe-Ni ALLOY FOR SEMI-TENSION MASK EXCELLENT IN MAGNETIC PROPERTY, SEMI-TENSION MASK USING THE SAME, AND COLOR CATHODE RAY TUBE
JP2004331997A (en) HIGH-STRENGTH Fe-Ni-Co ALLOY FOR SHADOW MASK
JPH10219409A (en) Inner shielding material for magnetic shielding, and its production
JP3469882B2 (en) High strength alloy strips for flat masks with excellent etching piercing properties
JP3765222B2 (en) Steel sheet for magnetic shield and manufacturing method thereof
JPH07268557A (en) Fe-ni alloy for shadow mask excellent in blackening treatability and its production
JP2003073780A (en) Fe-Ni-Co ALLOY RIBBON FOR PRESS-FORMED FLAT MASK
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
TW403930B (en) A steel sheet for shadow mask, a shadow mask, a producing method of shadow mask, and a color picture tube
EP1154029B1 (en) Color picture tube shadow mask material
JP4345461B2 (en) Steel plate for shadow mask excellent in press formability and drop strength after press forming and method for producing the same
WO2000070108A1 (en) Material for shadow mask, shadow mask and color image receiving tube having the shadow mask incorporated therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10488257

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028207742

Country of ref document: CN

Ref document number: 1020047005785

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002777848

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002777848

Country of ref document: EP