JP2000096188A - Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture - Google Patents

Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture

Info

Publication number
JP2000096188A
JP2000096188A JP26598598A JP26598598A JP2000096188A JP 2000096188 A JP2000096188 A JP 2000096188A JP 26598598 A JP26598598 A JP 26598598A JP 26598598 A JP26598598 A JP 26598598A JP 2000096188 A JP2000096188 A JP 2000096188A
Authority
JP
Japan
Prior art keywords
thermal expansion
weight
less
alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26598598A
Other languages
Japanese (ja)
Inventor
Takahiro Fujii
孝浩 藤井
Hiroshi Morikawa
広 森川
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP26598598A priority Critical patent/JP2000096188A/en
Publication of JP2000096188A publication Critical patent/JP2000096188A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Fe-Ni alloy in which hot workability is improved and thermal expansion coefficient is small as to have <=1×10-6/ deg.C thermal expansion coefficient at the service temperature of a shadow mask. SOLUTION: The alloy has a composition containing 34-37% Ni, <=0.01% C, <=0.0040% N, <=0.05% Si, <=0.1% Mn, <=0.003% Al, <=0.005% S, 0.0005-0.0040% B, and 10(C+N) to 0.2% Ti and shows <=1.0×10-6/ deg.C thermal expansion coefficient at 30 to 100 deg.C. This alloy can be manufactured by an ingoting process or a continuous casting process. In the case of an ingoting process, an ingot after component regulation is heated to 1,280 to 1,350 deg.C in >=3 hr total heating time and worked into a slab by a single or plural-time slabbing or forging, and the slab is heated to 1,100 to 1,350 deg.C for 1 to 6 hr and then hot rolled. In the case of a continuous casting process, the resultant cast slab is heated to 1,280 to 1,350 deg.C for 1 to 6 hr and then hot rolled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、使用温度で小さな熱膨
張係数を示すシャドウマスクとして好適なFe−Ni系
合金及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe--Ni alloy suitable as a shadow mask exhibiting a small coefficient of thermal expansion at a use temperature and a method for producing the same.

【0002】[0002]

【従来の技術】アンバー合金に代表されるFe−Ni合
金は、30〜100℃で1.2〜2.0×10-6/℃と
熱膨張係数が小さく、メートル標準器,バイメタルその
他の低熱膨張の調整用器具,LNGタンカーの内張り等
に使用されている。最近では、熱膨張係数が低いことを
活用し、高精細化の要求が高まってきているカラー受像
管のシャドウマスクとしても使用され始めている。シャ
ドウマスクは、カラー受像管蛍光面の直前に配置され、
電子銃から出射された電子ビームの衝撃を受けて発熱
し、昇温する。昇温に伴ってシャドウマスクが熱膨張
し、電子ビーム通過孔の形状や寸法に変化が生じると、
所定の電子ビームが所定の蛍光面に当たらなくなり、色
ズレを生じ、画像が不鮮明化するドーミング現象が発生
する。
2. Description of the Related Art Fe--Ni alloys represented by invar alloys have a small coefficient of thermal expansion of 1.2 to 2.0.times.10.sup.- 6 / .degree. C. at 30 to 100.degree. It is used for expansion adjustment equipment, LNG tanker lining, etc. Recently, it has begun to be used as a shadow mask for a color picture tube, for which the demand for higher definition has been increasing by utilizing the low thermal expansion coefficient. The shadow mask is placed just before the color picture tube fluorescent screen,
Heat is generated by the impact of the electron beam emitted from the electron gun, and the temperature rises. When the shadow mask thermally expands with the rise in temperature, and the shape and dimensions of the electron beam passage holes change,
The predetermined electron beam does not hit the predetermined phosphor screen, causing a color shift and a doming phenomenon in which an image becomes unclear.

【0003】熱膨張係数の低いFe−Ni系合金は、温
度による影響を受け難いことから、シャドウマスク用素
材として好適な材料である。しかし、テレビの大画面
化,高精細化に加えて静止画像が増える傾向にある現
在、強い電子ビームがシャドウマスクの局部に長時間当
たることも多くなってきている。そのため、局部的な熱
膨張に起因した色ズレも問題化され、従来のFe−Ni
系合金よりも更に熱膨張係数の小さいFe−Ni系合金
が望まれて来ている。
[0003] Fe-Ni alloys having a low coefficient of thermal expansion are less likely to be affected by temperature, and are therefore suitable as materials for shadow masks. However, as the number of still images tends to increase in addition to an increase in the screen size and definition of a television, a strong electron beam often hits a local portion of a shadow mask for a long time. For this reason, color misregistration caused by local thermal expansion is also problematic, and the conventional Fe-Ni
An Fe-Ni-based alloy having a smaller thermal expansion coefficient than that of a system-based alloy has been desired.

【0004】Fe−Ni系合金の熱膨張係数を低減する
ため、従来から種々の合金設計が提案されている。たと
えば、特開昭62−290846号公報は、Ni:34
〜37重量%,Mn:0.4重量%以下,Si:0.1
重量%以下とし、Al,Mg,Ti,Ca,C,Zrを
合計で0.05重量%以下にしたFe−Ni系合金が紹
介されている。このFe−Ni系合金は、30〜70℃
の温度域における熱膨張係数が1.0〜1.2×10-6
/℃であり、通常のFe−Ni系合金の熱膨張係数1.
2〜2.0×10-6/℃に比較して小さくなっている。
また、特開平7−3401号公報では、C:0.009
重量%以下,Mn:0.1重量%以下,Ni:34重量
%以上とし、Fe/Ni比率を1.75〜1.83の範
囲に調節することにより、20〜100℃の範囲の熱膨
張係数を1×10-6/℃未満と小さくしている。
[0004] In order to reduce the thermal expansion coefficient of an Fe-Ni-based alloy, various alloy designs have been conventionally proposed. For example, Japanese Patent Application Laid-Open No. 62-290846 discloses a Ni: 34
To 37% by weight, Mn: 0.4% by weight or less, Si: 0.1%
A Fe-Ni-based alloy containing less than 0.05% by weight of Al, Mg, Ti, Ca, C, and Zr in total is introduced. This Fe—Ni alloy is 30 to 70 ° C.
Coefficient of thermal expansion in the temperature range of 1.0 to 1.2 × 10 -6
/ ° C, and the thermal expansion coefficient of an ordinary Fe-Ni alloy is 1.
It is smaller than 2 to 2.0 × 10 −6 / ° C.
Also, in JP-A-7-3401, C: 0.009
% By weight, Mn: 0.1% by weight or less, Ni: 34% by weight or more, and by adjusting the Fe / Ni ratio in the range of 1.75 to 1.83, the thermal expansion in the range of 20 to 100 ° C. The coefficient is reduced to less than 1 × 10 −6 / ° C.

【0005】[0005]

【発明が解決しようとする課題】シャドウマスクとして
の用途では、多量の介在物が存在するとエッチング後に
所定の孔形状が得られないため、清浄度の高い素材が要
求される。高清浄化のためにはFe−Ni合金中のOを
極力除去する必要があり、C,Mn,Si,Al等の脱
酸剤を添加している。その結果、脱酸剤由来のC,M
n,Si,Al等が多量に含まれる素材が溶製される。
シャドウマスクとしての要求特性からは、熱膨張係数を
下げる必要がある。しかし、C,Si,Mn,Al等
は、特表平8−512363号公報にも紹介されている
ように含有量の増加に応じて熱膨張係数を大きくする傾
向を示す。
In the use as a shadow mask, if a large amount of inclusions are present, a predetermined hole shape cannot be obtained after etching, so that a material having high cleanliness is required. For high cleaning, it is necessary to remove O in the Fe—Ni alloy as much as possible, and a deoxidizing agent such as C, Mn, Si, or Al is added. As a result, C, M derived from the deoxidizing agent
A material containing a large amount of n, Si, Al or the like is melted.
It is necessary to lower the coefficient of thermal expansion from the required characteristics as a shadow mask. However, C, Si, Mn, Al, and the like tend to increase the coefficient of thermal expansion as the content increases, as introduced in Japanese Patent Publication No. Hei 8-512363.

【0006】低熱膨張化のためには脱酸剤由来の成分を
極力低減することが重要であるが、脱酸を含む精錬技術
上の限界からC,Si,Mn,Al等の含有量をある程
度以下にすることは困難である。C,Si,Mn,Al
等の低減は、鋼材に要求される他の特性から好ましくな
い場合もある。たとえば、SをMnSとして固定し、S
の粒界偏析に起因した熱間加工性の低下を防止する作用
のあるMnについてみると、製造性の観点からはMn含
有量の低減は好ましくない。
To reduce the thermal expansion, it is important to reduce the components derived from the deoxidizing agent as much as possible. However, due to limitations in the refining technology including deoxidizing, the contents of C, Si, Mn, Al and the like are reduced to some extent. It is difficult to: C, Si, Mn, Al
Such reduction may not be desirable due to other characteristics required for steel materials. For example, if S is fixed as MnS, S
In view of Mn, which has an effect of preventing a decrease in hot workability caused by grain boundary segregation, it is not preferable to reduce the Mn content from the viewpoint of manufacturability.

【0007】[0007]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、脱酸剤として混
入するC及び製造上混入するNをTi添加で無害化する
ことにより、従来のFe−Ni系合金よりも熱膨張係数
が低く、良好な熱間加工性を有するシャドウマスク用と
して好適なFe−Ni系合金を提供することを目的とす
る。本発明のFe−Ni系合金は、その目的を達成する
ため、Ni:34〜37重量%,C:0.01重量%以
下,N:0.0040重量%以下,Si:0.05重量
%未満,Mn:0.1重量%以下,Al:0.003重
量%以下,S:0.005重量%以下,B:0.000
5〜0.0040重量%,Ti:10(C+N)〜0.
2重量%を含み、残部が実質的にFeの組成をもち、3
0〜100℃の温度域で1.0×10-6/℃以下の熱膨
張係数を示すことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been devised in order to solve such a problem, and it is intended to detoxify C mixed as a deoxidizing agent and N mixed in manufacturing by adding Ti. Accordingly, an object of the present invention is to provide an Fe-Ni-based alloy having a lower coefficient of thermal expansion than a conventional Fe-Ni-based alloy and having good hot workability and suitable for a shadow mask. In order to achieve the object, the Fe—Ni-based alloy of the present invention contains 34 to 37% by weight of Ni, 0.01% by weight or less of C, 0.0040% by weight or less of N, and 0.05% by weight of Si. , Mn: 0.1 wt% or less, Al: 0.003 wt% or less, S: 0.005 wt% or less, B: 0.000
5 to 0.0040% by weight, Ti: 10 (C + N) to 0.
2% by weight, with the balance having a substantially Fe composition,
It exhibits a thermal expansion coefficient of 1.0 × 10 −6 / ° C. or less in a temperature range of 0 to 100 ° C.

【0008】このFe−Ni系合金は、造塊法,連続鋳
造法の何れでも製造可能である。造塊法では、成分調整
された鋼塊を3時間以上の合計加熱時間で1280〜1
350℃に加熱し、1回又は複数回の分塊圧延又は鍛造
によりスラブに加工し、1100〜1350℃に1〜6
時間加熱した後、熱間圧延する。連続鋳造法では、得ら
れたスラブを1280〜1350℃に1〜6時間加熱し
た後、熱間圧延する。
This Fe—Ni alloy can be produced by any of the ingot casting method and the continuous casting method. In the ingot-making method, the steel ingot with the adjusted composition is heated to 1280 to 1 for a total heating time of 3 hours or more.
Heated to 350 ° C, processed into slabs by one or more slab rolling or forging, and heated to 1100-1350 ° C for 1-6
After heating for an hour, hot rolling is performed. In the continuous casting method, the obtained slab is heated to 1280 to 1350 ° C. for 1 to 6 hours and then hot-rolled.

【0009】[0009]

【作用】前述したように、脱酸剤としてのC,Si,M
n,Alの含有量を低減することは、脱酸を含む製造上
から限界がある。また、Mn,B等の熱間加工性を改善
する効果をもつ元素の低減は、工業的に好ましくない。
更には、P,S,N等の不可避的に混入する元素の低減
にも技術的に限界がある。従来のFe―Ni系合金材料
は、このような制約下で製造されており、熱膨張係数の
低減を阻害する要因になっている。これに対し、本発明
では、Ti添加によりC,Nを固定することにより固溶
C,Nを更に低減すると共に低熱膨張化に無害なTi
(C,N)とすることにより、安定して1.0×10-6
/℃以下の低い熱膨張係数を示すFe−Ni系合金を得
ている。しかも、Ti添加によりCが無害化されるた
め、脱酸に必要なC量の確保も可能になる。
As described above, C, Si, M as deoxidizing agents
There is a limit in reducing the content of n and Al from the viewpoint of production including deoxidation. Further, reduction of elements having an effect of improving hot workability such as Mn and B is not industrially preferable.
Furthermore, there is a technical limit in reducing the inevitable elements such as P, S, and N. Conventional Fe—Ni-based alloy materials are manufactured under such restrictions, and are a factor that hinders a reduction in the coefficient of thermal expansion. On the other hand, in the present invention, solid solution C and N are further reduced by fixing C and N by adding Ti, and Ti which is harmless to low thermal expansion is added.
By setting (C, N), 1.0 × 10 −6 can be stably obtained.
An Fe-Ni-based alloy having a low thermal expansion coefficient of not more than / ° C is obtained. Moreover, since C is made harmless by the addition of Ti, it is possible to secure the amount of C necessary for deoxidation.

【0010】以下、本発明のFe−Ni系合金に含まれ
る合金成分,含有量等を説明する。Ni:34〜37重量% Niは、Fe−Ni系合金の熱膨張係数を下げる上で必
須の合金成分であり、34〜37重量%の範囲で低い熱
膨張係数を示す。Ni含有量が34〜37重量%の範囲
を外れると、熱膨張係数が大きくなる傾向がみられる。C:0.01重量%以下 脱酸効果を呈する成分であるが、熱膨張率を大きくする
だけでなく、合金中に多量に含まれるとエッチング性に
有害な炭化物を形成する。そこで、本発明においては、
C含有量の上限を0.01重量%に設定した。
Hereinafter, alloy components, contents, and the like included in the Fe—Ni alloy of the present invention will be described. Ni: 34 to 37% by weight Ni is an essential alloy component for lowering the coefficient of thermal expansion of the Fe-Ni alloy, and shows a low coefficient of thermal expansion in the range of 34 to 37% by weight. If the Ni content is outside the range of 34 to 37% by weight, the coefficient of thermal expansion tends to increase. C: 0.01% by weight or less A component that exhibits a deoxidizing effect, but not only increases the coefficient of thermal expansion, but also forms carbides that are harmful to etching properties when contained in a large amount in the alloy. Therefore, in the present invention,
The upper limit of the C content was set to 0.01% by weight.

【0011】N:0.0040重量%以下 不可避的に混入する元素であり、N含有量の増加に伴っ
て熱膨張係数が大きくなるばかりでなく、欠陥発生原因
となる気泡が鋼塊中に発生しやすくなる。そのため、本
発明では、N含有量の上限を0.0040重量%に設定
した。Si:0.05重量%未満 脱酸剤として添加される成分であるが、合金中に多量の
Siが含まれると光輝焼鈍後に表面層のSi濃度が上昇
し、シャドウマスク表面に形成される黒化膜の黒化度が
低下する。そこで、本発明においてはSi含有量を0.
05重量%未満に設定した。Mn:0.1重量%以下 粒界に偏析する傾向の強いSをMnSとして固定し、熱
間加工性を改善する作用を呈する。しかし、添加量の増
加に応じて熱膨張係数が大きくなるので、本発明ではM
n含有量の上限を0.1 重量%に設定した。
N: 0.0040% by weight or less is an element inevitably mixed, and not only the coefficient of thermal expansion increases with an increase in the N content, but also bubbles that cause defects are generated in the steel ingot. Easier to do. Therefore, in the present invention, the upper limit of the N content is set to 0.0040% by weight. Si: a component added as a deoxidizing agent in an amount of less than 0.05% by weight , but if a large amount of Si is contained in the alloy, the Si concentration in the surface layer increases after bright annealing, and black formed on the shadow mask surface The degree of blackening of the oxide film decreases. Therefore, in the present invention, the Si content is set to 0.1.
It was set to less than 05% by weight. Mn: 0.1% by weight or less S which has a strong tendency to segregate at the grain boundary is fixed as MnS, and has an effect of improving hot workability. However, since the coefficient of thermal expansion increases as the amount of addition increases, the present invention
The upper limit of the n content was set to 0.1% by weight.

【0012】Al:0.003重量%以下 強力な脱酸作用を呈する成分であるが、脱酸された鋼材
に硬質のAl23 系介在物となって残留しやすい。A
23 系介在物は、製品に表面疵を発生させる原因と
なり、表面品質を低下させる。そこで、本発明において
はAl含有量の上限を0.003重量%に設定した。S:0.005重量%以下 熱間加工性を著しく低下させる有害元素であり、精錬段
階でSを極力除去する必要がある。熱延等の熱間加工で
の著しい割れを防ぐため、S含有量を0.005%以下
(好ましくは、0.003重量%以下)に制限する。
Al: 0.003% by weight or less Al is a component exhibiting a strong deoxidizing effect, but tends to remain as hard Al 2 O 3 -based inclusions in the deoxidized steel material. A
l 2 O 3 based inclusions becomes a cause of surface defects in the product, reducing the surface quality. Therefore, in the present invention, the upper limit of the Al content is set to 0.003% by weight. S: 0.005% by weight or less S is a harmful element that significantly reduces hot workability, and it is necessary to remove S as much as possible in the refining stage. In order to prevent remarkable cracking during hot working such as hot rolling, the S content is limited to 0.005% or less (preferably 0.003% by weight or less).

【0013】B:0.0005〜0.0040重量% B添加により、熱間加工性が改善され、シャドウマスク
の剛性が高められる。S:0.0040重量%以下で
0.0005重量%以上のBを添加すると、熱間加工時
に発生しがちなスラグの表面割れが著しく軽微になり、
鋼塊の鍛造又は分塊圧延又は連続鋳造で得られたスラブ
を熱間圧延する際に生じる割れが軽減される。しかし、
0.0040重量%を超える過剰なB添加は、熱膨張率
を大きくすると共に、軟化焼鈍時にシャドウマスクの表
面にBが濃化し、その後の黒化処理において不均一な黒
化膜を形成させる原因となる。
B: 0.0005 to 0.0040% by weight Addition of B improves hot workability and increases the rigidity of the shadow mask. S: When 0.0040% by weight or less and 0.0005% by weight or more of B is added, the surface cracks of the slag which tend to occur during hot working become extremely small,
Cracking that occurs when hot rolling a slab obtained by forging or slab rolling or continuous casting of a steel ingot is reduced. But,
Excessive addition of B exceeding 0.0040% by weight increases the coefficient of thermal expansion and causes B to concentrate on the surface of the shadow mask during softening annealing, thereby forming an uneven blackening film in the subsequent blackening treatment. Becomes

【0014】Ti:10(C+N)〜0.2重量% 本発明のFe−Ni系合金において、最も重要な合金成
分である。本発明者等の調査・研究によると、10(C
+N)〜0.2重量%の範囲にTi含有量を設定する
と、従来のFe−Ni系合金に比較して熱膨張係数が低
下することが判った。熱膨張係数に及ぼすTiの影響は
次のように推察される。すなわち、Tiは、一般に知ら
れていることであるが、鋼中のC,Nと結合してTi
(C,N)を生成し、C,Nの固溶量を減少させる。
C,Nは、固溶状態では結晶格子の熱振動を促進させて
熱膨張係数を上昇させる方向に作用するが、Ti(C,
N)として固定された状態では熱膨張に及ぼす影響がな
くなる。熱膨張係数に及ぼすC,Nの悪影響は、Ti添
加量を10(C+N)以上にすると顕著に抑制される。
(C+N)の十倍量以上のTiを添加し、固溶C,固溶
Nを大幅に低減する。しかし、0.2重量%を超える多
量のTiを添加すると、却って熱膨張係数が上昇する傾
向がみられる。
Ti: 10 (C + N) to 0.2% by weight In the Fe—Ni alloy of the present invention, Ti is the most important alloy component. According to research and research by the present inventors, 10 (C
It has been found that when the Ti content is set in the range of + N) to 0.2% by weight, the coefficient of thermal expansion is lower than that of a conventional Fe-Ni alloy. The effect of Ti on the coefficient of thermal expansion is presumed as follows. That is, although Ti is generally known, it combines with C and N in steel to form Ti.
(C, N) is generated, and the amount of solid solution of C and N is reduced.
C and N act in the direction of increasing the thermal expansion coefficient by promoting the thermal vibration of the crystal lattice in the solid solution state.
In the state fixed as N), there is no influence on the thermal expansion. The adverse effects of C and N on the coefficient of thermal expansion are significantly suppressed when the amount of Ti added is 10 (C + N) or more.
By adding Ti at least ten times the amount of (C + N), the amount of solid solution C and the amount of solid solution N are greatly reduced. However, when a large amount of Ti exceeding 0.2% by weight is added, the thermal expansion coefficient tends to be rather increased.

【0015】以上のように成分調整されたFe−Ni系
合金は、造塊法及び連続鋳造法の何れによっても製造で
きる。造塊法では、1280〜1350℃に加熱された
鋼塊を分塊圧延又は熱間鍛造する。本発明が対象とする
Fe−Ni系では、凝固時にオーステナイト粒界にSが
偏析又は濃縮し、低融点の酸化物,硫化物等の析出物が
生じ易い。低融点析出物は、分塊圧延,熱間鍛造時に割
れを多発させる原因となる。そこで、鋼塊を1280℃
以上の温度で合計3時間以上加熱することにより、Sが
濃縮した析出物を分解し、マトリックスへのSの固溶を
促進させる。その結果、B添加と相俟って粒界が強化さ
れ、熱間加工時に生じる割れが大幅に低減される。他
方、1350℃を超える加熱温度は、鋼塊の酸化を促進
させ、歩留を低下させる。
[0015] The Fe-Ni-based alloy whose components have been adjusted as described above can be produced by any of the ingot casting method and the continuous casting method. In the ingot making method, a steel ingot heated to 1280 to 1350 ° C is subjected to slab rolling or hot forging. In the Fe—Ni system targeted by the present invention, S segregates or concentrates at the austenite grain boundary during solidification, and precipitates such as oxides and sulfides having a low melting point are easily generated. The low melting point precipitate causes a large number of cracks during slab rolling and hot forging. Therefore, the steel ingot was heated to 1280 ° C.
By heating at the above temperature for a total of 3 hours or more, the precipitate in which S is concentrated is decomposed, and the solid solution of S in the matrix is promoted. As a result, the grain boundaries are strengthened in combination with the addition of B, and cracks generated during hot working are greatly reduced. On the other hand, a heating temperature exceeding 1350 ° C. promotes oxidation of the steel ingot and lowers the yield.

【0016】鋼塊の加熱は、シャドウマスク製造工程の
最終段階でエッチングしたときに発生する筋ムラにも影
響を及ぼす。この点、1280℃以上の温度に加熱して
析出物を分解しマトリックスに拡散させた鋼塊を熱間加
工すると、偏析起因の筋ムラがないシャドウマスク用F
e−Ni系合金が得られる。筋ムラ低減のためには、長
時間加熱ほど有効である。しかし、長すぎる加熱時間
は、鋼塊の酸化を促進させ、歩留を低下させる。そこ
で、本発明においては、分塊圧延又は鍛造を繰り返して
スラブを製造する場合でも、加熱時間の合計を96時間
以下(好ましくは、24時間以下)に設定する。
[0016] The heating of the steel ingot also affects the stripe unevenness that occurs when etching is performed in the final stage of the shadow mask manufacturing process. In this regard, when the steel ingot which has been heated to a temperature of 1280 ° C. or more to decompose precipitates and diffused into the matrix is hot-worked, the F for shadow mask which has no stripe unevenness due to segregation.
An e-Ni-based alloy is obtained. The longer the heating, the more effective it is to reduce streak unevenness. However, an excessively long heating time promotes oxidation of the steel ingot and reduces the yield. Therefore, in the present invention, the total heating time is set to 96 hours or less (preferably 24 hours or less) even when a slab is manufactured by repeating slab rolling or forging.

【0017】分塊圧延スラブを熱間圧延する場合には、
熱間圧延に先立って1100〜1350℃に1〜6時間
加熱する。1100℃以上の加熱温度で変形抵抗が十分
に低下し、熱間圧延が容易になる。しかし、1350℃
を超える加熱温度では、酸化による歩留の低下が著しく
なる。連鋳スラブを熱間圧延する場合には、鋼塊に対す
る加熱条件と同様な理由から1280〜1350℃に1
〜6時間加熱する。比較的軽い元素であるSは拡散が速
いため、低融点析出物の分解温度以上であれば比較的短
時間の加熱処理で熱間加工性が改善される。このように
加熱処理された分塊スラブ又は連鋳スラブを熱間圧延す
ると、マトリックスへのS拡散及びB添加により結晶粒
界が強化されているため、割れの発生が抑えられ、高い
歩留でFe−Ni系合金熱延板が製造される。
When hot-rolling a slab,
Heat to 1100-1350 ° C for 1-6 hours prior to hot rolling. At a heating temperature of 1100 ° C. or more, the deformation resistance is sufficiently reduced, and hot rolling becomes easy. However, 1350 ° C
If the heating temperature exceeds, the yield is significantly reduced due to oxidation. When hot rolling a continuously cast slab, the temperature is set to 1280 to 1350 ° C. for the same reason as the heating condition for the steel ingot.
Heat for ~ 6 hours. Since S, which is a relatively light element, diffuses quickly, hot workability can be improved by heat treatment for a relatively short time at a temperature equal to or higher than the decomposition temperature of the low melting point precipitate. When the bulk slab or the continuously cast slab thus heat-treated is hot-rolled, since the crystal grain boundaries are strengthened by S diffusion and B addition to the matrix, generation of cracks is suppressed, and a high yield is obtained. A hot rolled Fe-Ni alloy sheet is manufactured.

【0018】[0018]

【実施例】電気炉で溶解した溶鋼を転炉で粗脱炭した
後、真空脱ガス装置で精製すると共に、表1に示す成分
・組成に調整した。
EXAMPLE The molten steel melted in an electric furnace was roughly decarburized in a converter, purified by a vacuum degasser, and adjusted to the components and compositions shown in Table 1.

【0019】 [0019]

【0020】試験番号1〜9では、造塊法で製造したイ
ンゴットを1280℃以上又は1280℃未満の温度に
加熱した後、分塊圧延によりスラブとした。試験番号1
1〜17では、同じく造塊法で製造したインゴットを1
280℃未満の比較的低温に加熱した後、分塊圧延によ
りスラブとした。試験番号10,18では、連続鋳造法
によりスラブを直接製造した。各スラブから熱間圧延,
焼鈍酸洗,冷間圧延の工程を経て冷延板を製造した。
In Test Nos. 1 to 9, ingots manufactured by the ingot-making method were heated to a temperature of 1280 ° C. or higher or lower than 1280 ° C., and then slabs were formed by slab rolling. Test number 1
In Nos. 1-17, one ingot also produced by the ingot-making method
After heating to a relatively low temperature of less than 280 ° C., the slab was formed by slab rolling. In Test Nos. 10 and 18, slabs were directly manufactured by a continuous casting method. Hot rolling from each slab,
A cold rolled sheet was manufactured through the steps of annealing and pickling and cold rolling.

【0021】試験番号1〜9のFe−Ni系合金は、何
れも0.0005重量%以上のBを含んでいることか
ら、分塊スラブ表面に発生しがちな著しい割れが抑制さ
れており、その後の表面手入れ工程で除去可能な軽微な
割れの発生に止めることができた。更に、鋼塊を128
0℃以上の高温に合計加熱時間3時間以上加熱した試験
番号8,9にみられるように、加熱処理で低融点析出物
を分解拡散させたものでは、分塊圧延による表面割れの
発生がほとんど観察できない程度に抑えられていた。ま
た、連鋳スラブを加熱処理して熱間圧延した試験番号1
0にみられるように、熱延に先立ってスラブを1280
℃以上に加熱するとき、表面疵のほとんど生じていない
熱延板が得られた。
Since the Fe-Ni alloys of Test Nos. 1 to 9 all contain 0.0005% by weight or more of B, remarkable cracking that tends to occur on the surface of the slab is suppressed. It was possible to stop the generation of small cracks that could be removed in the subsequent surface care step. In addition, 128
As can be seen in Test Nos. 8 and 9, which were heated to a high temperature of 0 ° C. or more for a total heating time of 3 hours or more, in the case where the low-melting-point precipitates were decomposed and diffused by heat treatment, the occurrence of surface cracks due to slab rolling was almost infrequent It was suppressed so that it could not be observed. Test No. 1 in which a continuous casting slab was heat-treated and hot-rolled
As shown in FIG.
When heated to at least ℃, a hot-rolled sheet with almost no surface flaws was obtained.

【0022】得られた冷延板の熱膨張係数を測定したと
ころ、表2に示すようにTi含有量を10(C+N)〜
0.02重量%の範囲に維持した試験番号1〜10で
は、何れも30〜100℃の温度域における平均熱膨張
係数が1.0×10-6/℃以下の低い値を示した。これ
に対し、Ti含有量が0.2重量%を超える試験番号1
1〜13は、必要量以上の固溶Tiが含まれていること
から1.0×10-6/℃を超える高い平均熱膨張係数で
あった。逆に、Ti含有量が10(C+N)に達しない
試験番号14〜17では、C,Nの固定が十分でなく、
固溶C,Nに起因して1.0×10-6/℃を超える大き
な熱膨張係数を示した。また、S量が多い試験番号1
2,B量が不足する試験番号14では、分塊圧延時に著
しい表面割れが発生した。更に、連鋳スラブを1200
℃で加熱した後熱間圧延した試験番号18では、Sが偏
析したままで熱間圧延したことから、著しく深い傷が熱
延板表面に多発していた。
When the coefficient of thermal expansion of the obtained cold-rolled sheet was measured, as shown in Table 2, the Ti content was changed from 10 (C + N) to
In Test Nos. 1 to 10 maintained in the range of 0.02% by weight, the average coefficient of thermal expansion in the temperature range of 30 to 100 ° C. showed a low value of 1.0 × 10 −6 / ° C. or less. In contrast, Test No. 1 in which the Ti content exceeded 0.2% by weight
Nos. 1 to 13 had a high average thermal expansion coefficient exceeding 1.0 × 10 −6 / ° C. because the required amount of solute Ti was contained in the alloy. Conversely, in Test Nos. 14 to 17 in which the Ti content does not reach 10 (C + N), the fixation of C and N is not sufficient,
It exhibited a large thermal expansion coefficient exceeding 1.0 × 10 −6 / ° C. due to solid solution C and N. Test number 1 with a large amount of S
In Test No. 14, where the amount of 2, B was insufficient, remarkable surface cracks occurred during slab rolling. Furthermore, the continuous casting slab is 1200
In Test No. 18, in which S was segregated and hot rolled after heating at ℃ and then hot rolling, extremely deep scratches occurred frequently on the hot rolled sheet surface.

【0023】 [0023]

【0024】[0024]

【発明の効果】以上に説明したように、本発明のFe−
Ni系合金は、脱酸剤として使用されるC,Si,M
n,Alの含有量を規制し、不純物として含まれるSを
低減すると共にB添加することにより結晶粒界を強化
し、固溶C,NをTiで固定している。そのため、熱間
加工時の割れが抑えられ、1×10-6/℃以下の低い熱
膨張係数を示す高品質のシャドウマスク用材料として好
適なFe−Ni系合金が得られる。
As described above, as described above, the Fe-
Ni-based alloys include C, Si, M used as a deoxidizing agent.
The contents of n and Al are regulated, S contained as impurities is reduced, and B is added to strengthen the crystal grain boundaries, and solid solution C and N are fixed by Ti. Therefore, cracking during hot working is suppressed, and a Fe—Ni-based alloy suitable as a high-quality shadow mask material having a low thermal expansion coefficient of 1 × 10 −6 / ° C. or less can be obtained.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 29/07 H01J 29/07 Z (72)発明者 山内 隆 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA16 AA21 AA25 AA29 AA31 AA35 BA01 CA02 CA03 5C027 HH02 HH30 5C031 EE05 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01J 29/07 H01J 29/07 Z (72) Inventor Takashi Yamauchi 4976 Nomuraminamicho, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd. F term in the company technology laboratory (reference) 4K032 AA01 AA02 AA04 AA16 AA21 AA25 AA29 AA31 AA35 BA01 CA02 CA03 5C027 HH02 HH30 5C031 EE05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ni:34〜37重量%,C:0.01
重量%以下,N:0.0040重量%以下,Si:0.
05重量%未満,Mn:0.1重量%以下,Al:0.
003重量%以下,S:0.005重量%以下,B:
0.0005〜0.0040重量%,Ti:10(C+
N)〜0.2重量%を含み、残部が実質的にFeの組成
をもち、30〜100℃の温度域で1.0×10-6/℃
以下の熱膨張係数を示す熱間加工性に優れたFe−Ni
系合金。
1. Ni: 34 to 37% by weight, C: 0.01
Wt% or less, N: 0.0040 wt% or less, Si: 0.
Less than 05% by weight, Mn: 0.1% by weight or less, Al: 0.
003% by weight or less, S: 0.005% by weight or less, B:
0.0005 to 0.0040% by weight, Ti: 10 (C +
N) to 0.2% by weight, with the balance having substantially the composition of Fe, and 1.0 × 10 −6 / ° C. in a temperature range of 30 to 100 ° C.
Fe-Ni excellent in hot workability showing the following thermal expansion coefficient
System alloy.
【請求項2】 請求項1記載の組成をもつ鋼塊を3時間
以上の合計加熱時間で1280〜1350℃に加熱し、
1回又は複数回の分塊圧延又は鍛造によりスラブに加工
し、1100〜1350℃に1〜6時間加熱した後、熱
間圧延することを特徴とする熱膨張係数が小さく熱間加
工性に優れたFe−Ni系合金の製造方法。
2. A steel ingot having the composition of claim 1 is heated to 1280-1350 ° C. for a total heating time of 3 hours or more,
Processed into slabs by one or more times of slab rolling or forging, heated to 1100 to 1350 ° C for 1 to 6 hours, and then hot-rolled, characterized by a small coefficient of thermal expansion and excellent hot workability And a method for producing an Fe-Ni alloy.
【請求項3】 請求項1記載の組成をもつスラブを連続
鋳造方法で製造し、1280〜1350℃に1〜6時間
加熱した後、熱間圧延することを特徴とする熱膨張係数
が小さく熱間加工性に優れたFe−Ni系合金の製造方
法。
3. A slab having the composition according to claim 1 manufactured by a continuous casting method, heated to 1280 to 1350 ° C. for 1 to 6 hours, and then hot-rolled. A method for producing an Fe-Ni-based alloy having excellent workability.
JP26598598A 1998-09-21 1998-09-21 Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture Withdrawn JP2000096188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26598598A JP2000096188A (en) 1998-09-21 1998-09-21 Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26598598A JP2000096188A (en) 1998-09-21 1998-09-21 Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000096188A true JP2000096188A (en) 2000-04-04

Family

ID=17424775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26598598A Withdrawn JP2000096188A (en) 1998-09-21 1998-09-21 Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000096188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445341A1 (en) * 2001-10-22 2004-08-11 Nippon Yakin kogyo Co., Ltd. Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445341A1 (en) * 2001-10-22 2004-08-11 Nippon Yakin kogyo Co., Ltd. Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
EP1445341A4 (en) * 2001-10-22 2004-12-15 Nippon Yakin Kogyo Co Ltd Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL

Similar Documents

Publication Publication Date Title
JP2596210B2 (en) Method of preventing adhesion seizure during annealing, Fe-Ni alloy for shadow mask excellent in gas emission, and method for producing the same
JP2590657B2 (en) Fe-Ni alloy excellent in adhesion seizure prevention and gas emission during annealing, and method for producing the same
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JP2567159B2 (en) Fe-Ni shadow mask material with excellent blackening processability
JP2000096188A (en) Iron - nickel alloy with low coefficient of thermal expansion and excellent hot workability, and its manufacture
JP3398050B2 (en) Method for producing hot rolled sheet of high Ni alloy
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
US6645317B1 (en) Metal components for picture tubes
JP3968964B2 (en) Steel plate for heat shrink band
KR100603446B1 (en) Fe-Ni Alloy material for shadow mask and method for manufacturing thereof
JP3854121B2 (en) Fe-Ni alloy for shadow mask material with excellent corrosion resistance and shadow mask material
KR100388285B1 (en) LOW-EXPANSION Fe-Ni ALLOY FOR SEMI-TENSION MASK, SEMI-TENSION MASK OF THE ALLOY, AND COLOR PICTURE TUBE USING THE MASK
JP3080301B2 (en) Fe-Ni alloy thin plate with excellent surface properties and etching properties
JP3410873B2 (en) Manufacturing method of shadow mask master by continuous annealing
JP3363607B2 (en) Shadow mask material with reduced streaking and method of manufacturing the same
JP2000096189A (en) Iron - nickel alloy for shadow mask
JP3501004B2 (en) Fe-Ni alloy plate and shadow mask excellent in etching piercing property
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JP3298281B2 (en) Fe-Ni alloy cold rolled sheet for shadow mask with excellent blackening property
JP3615300B2 (en) Method for producing shadow mask material without uneven stripes
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JPH09241743A (en) Production of iron-nickel alloy sheet for shadow mask
JP3430123B2 (en) Fe-Ni alloy shadow mask material with excellent etching piercing properties
JP2003129186A (en) Low thermal-expansion alloy thin-sheet superior in manufacturing property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110