JP4934156B2 - Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same - Google Patents

Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same Download PDF

Info

Publication number
JP4934156B2
JP4934156B2 JP2009022840A JP2009022840A JP4934156B2 JP 4934156 B2 JP4934156 B2 JP 4934156B2 JP 2009022840 A JP2009022840 A JP 2009022840A JP 2009022840 A JP2009022840 A JP 2009022840A JP 4934156 B2 JP4934156 B2 JP 4934156B2
Authority
JP
Japan
Prior art keywords
cold cathode
cathode fluorescent
electrode
fluorescent tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009022840A
Other languages
Japanese (ja)
Other versions
JP2010182456A (en
Inventor
寛幸 佐野
晋司 山本
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Stanley Electric Co Ltd
Original Assignee
Hitachi Metals Ltd
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Stanley Electric Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009022840A priority Critical patent/JP4934156B2/en
Priority to TW098131100A priority patent/TWI451469B/en
Priority to KR1020090087395A priority patent/KR20100032336A/en
Priority to CN2009101762196A priority patent/CN101677054B/en
Publication of JP2010182456A publication Critical patent/JP2010182456A/en
Application granted granted Critical
Publication of JP4934156B2 publication Critical patent/JP4934156B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Discharge Lamp (AREA)

Description

本発明は、冷陰極蛍光管用電極及びそれを用いた冷陰極蛍光管に関する。   The present invention relates to an electrode for a cold cathode fluorescent tube and a cold cathode fluorescent tube using the same.

液晶ディスプレイのバックライト用光源等として、冷陰極蛍光管が広く用いられている。冷陰極蛍光管は、内部にHg蒸気とAr,Ne等の不活性ガスとが封入されるとともに内壁面に蛍光体が塗着された細径のガラス管と、該ガラス管内の両端に管軸方向に互いに対向させて取り付けられた1対の冷陰極蛍光管用電極とを備える。冷陰極蛍光管では、1対の冷陰極蛍光管用電極間に高電圧を印加することにより電界が発生し、非加熱状態の陰極(冷陰極)から電子が放出される。次いで、この電子がHg原子に衝突することによりHg原子が励起され、該Hg原子が励起状態から基底状態に遷移するときに放出された紫外線が蛍光体に照射することにより該蛍光体から可視光が放出される。   Cold cathode fluorescent tubes are widely used as light sources for backlights of liquid crystal displays. The cold cathode fluorescent tube includes a small-diameter glass tube in which Hg vapor and an inert gas such as Ar and Ne are enclosed and a fluorescent material is coated on the inner wall surface, and tube shafts at both ends of the glass tube. A pair of cold-cathode fluorescent tube electrodes that are mounted to face each other in the direction. In a cold cathode fluorescent tube, an electric field is generated by applying a high voltage between a pair of cold cathode fluorescent tube electrodes, and electrons are emitted from an unheated cathode (cold cathode). Next, when the electrons collide with the Hg atoms, the Hg atoms are excited, and the ultraviolet rays emitted when the Hg atoms transition from the excited state to the ground state irradiate the phosphor, whereby visible light is emitted from the phosphor. Is released.

一般に、前記冷陰極蛍光管用電極は、薄板形状の電極材料を深絞り加工等の塑性加工により一方が開口する有底筒状体に成形したものが使用されている。従来、前記冷陰極蛍光管用電極として、実質的にNiのみからなるものが広く使用されている。Niは、塑性加工性に優れ、冷陰極蛍光管用電極としての利点がある。   In general, the cold cathode fluorescent tube electrode is formed by forming a thin plate-shaped electrode material into a bottomed cylindrical body having one opening by plastic working such as deep drawing. Conventionally, as the electrode for the cold cathode fluorescent tube, an electrode substantially made only of Ni has been widely used. Ni is excellent in plastic workability and has an advantage as an electrode for a cold cathode fluorescent tube.

そこで、前記Niの特性に着目して、Ni基合金からなる冷陰極蛍光管用電極が種々提案されている。例えば本発明者らによりMoとNbとを含有するNi基合金からなる冷陰極蛍光管用電極が提案されている(特許文献1参照)。   Accordingly, various cold cathode fluorescent tube electrodes made of a Ni-based alloy have been proposed focusing on the characteristics of Ni. For example, the present inventors have proposed a cold cathode fluorescent tube electrode made of a Ni-based alloy containing Mo and Nb (see Patent Document 1).

しかし、実質的にNiからなる前記冷陰極蛍光管用電極及びNi基合金からなる前記冷陰極蛍光管用電極は、該電極を構成するNiがスパッタされやすく、スパッタされたNi原子がガラス管内に封入されたHg原子と反応して該Hg原子が消耗するため、冷陰極蛍光管の寿命が短くなるという不都合があり、かつ、環境対策としての冷陰極蛍光管内の低水銀化対応には不向きであるという不都合がある。   However, the cold cathode fluorescent tube electrode substantially made of Ni and the cold cathode fluorescent tube electrode made of a Ni-based alloy are easily sputtered with Ni constituting the electrode, and the sputtered Ni atoms are enclosed in a glass tube. The Hg atoms are consumed by the reaction with Hg atoms, so there is a disadvantage that the life of the cold cathode fluorescent tube is shortened, and it is not suitable for reducing mercury in the cold cathode fluorescent tube as an environmental measure. There is an inconvenience.

一方、一部の用途においては、実質的にMoのみからなる冷陰極蛍光管用電極が使用されている(例えば特許文献2参照)。実質的にMoのみからなる前記冷陰極蛍光管用電極は、管電圧が低くエネルギー効率が良好であるので放電特性に優れている。また、実質的にMoのみからなる前記冷陰極蛍光管用電極は、Ni基合金からなる前記冷陰極蛍光管用電極に比較して、耐スパッタ性に優れているため、冷陰極蛍光管の寿命を長くすることができる。   On the other hand, in some applications, an electrode for a cold cathode fluorescent tube substantially composed of Mo is used (for example, see Patent Document 2). The cold cathode fluorescent tube electrode consisting essentially of Mo has excellent discharge characteristics since the tube voltage is low and the energy efficiency is good. In addition, the cold cathode fluorescent tube electrode consisting essentially of Mo is superior in spatter resistance to the cold cathode fluorescent tube electrode consisting of a Ni-based alloy, so the life of the cold cathode fluorescent tube is extended. can do.

しかしながら、実質的にMoのみからなる前記冷陰極蛍光管用電極は、Moが極めて高価であり、硬度が大きく電極への加工が困難であるため、製造コストが高くなるという不都合がある。   However, the cold cathode fluorescent tube electrode consisting essentially of Mo is disadvantageous in that Mo is extremely expensive, has high hardness and is difficult to process into an electrode, and therefore the manufacturing cost increases.

特開2007−31832号公報JP 2007-31832 A 特開2000−133201号公報JP 2000-133201 A

本発明は、かかる不都合を解消して、優れた耐スパッタ性及び加工性を備え、管電圧を低くするとともに、水銀との反応を抑制して環境対策としての低水銀化を実現することができる冷陰極蛍光管用電極及びそれを用いた冷陰極蛍光管を提供することを目的とする。   The present invention eliminates such inconvenience, has excellent spatter resistance and workability, lowers the tube voltage, suppresses reaction with mercury, and can realize low mercury as an environmental measure. An object of the present invention is to provide an electrode for a cold cathode fluorescent tube and a cold cathode fluorescent tube using the same.

本発明者らは、前記目的を達成するために種々検討を重ね、Moよりも低コスト化が可能であり且つNiよりも耐スパッタ性に優れる金属元素として、Feに着目した。しかし、実質的にFeのみからなる冷陰極蛍光管用電極は、放電特性及び耐スパッタ性に課題が残るため、Feを主成分として種々の合金元素の添加を試みた。その結果、所定の範囲のMoとNbとを含有するFe基合金からなる冷陰極蛍光管用電極は、実質的にMoのみからなる前記冷陰極蛍光管用電極に匹敵する放電特性と耐スパッタ性との両立が可能であることを見出し、本発明に到達した。   The inventors of the present invention have made various studies in order to achieve the above object, and have focused on Fe as a metal element that can be manufactured at a lower cost than Mo and has better sputtering resistance than Ni. However, since the cold cathode fluorescent tube electrode consisting essentially of Fe still has problems in the discharge characteristics and the sputtering resistance, it has been attempted to add various alloy elements containing Fe as a main component. As a result, a cold cathode fluorescent tube electrode made of an Fe-based alloy containing Mo and Nb in a predetermined range has a discharge characteristic and sputter resistance comparable to the cold cathode fluorescent tube electrode substantially made only of Mo. The inventors have found that both are possible and have reached the present invention.

すなわち、本発明の冷陰極蛍光管用電極は、全量に対して、0.1〜30質量%の範囲のMoと、0.1〜6質量%の範囲のNbとを含有し、残部がFe及び不可避的不純物である合金からなることを特徴とする。   That is, the cold cathode fluorescent tube electrode of the present invention contains Mo in the range of 0.1 to 30% by mass and Nb in the range of 0.1 to 6% by mass with the balance being Fe and It consists of an alloy which is an inevitable impurity.

本発明の電極は、冷陰極蛍光管に用いることができる。   The electrode of the present invention can be used for a cold cathode fluorescent tube.

本実施形態の冷陰極蛍光管及び冷陰極蛍光管用電極を示す説明図。Explanatory drawing which shows the cold cathode fluorescent tube and electrode for cold cathode fluorescent tubes of this embodiment. 本実施形態の冷陰極蛍光管用電極の電流電圧特性を示すグラフ。The graph which shows the current-voltage characteristic of the electrode for cold cathode fluorescent tubes of this embodiment.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1に示す本実施形態の冷陰極蛍光管1は、液晶ディスプレイのバックライト用光源等に用いられるものであり、例えば直径3mmのガラス管2と、ガラス管2内の両端に取り付けられた1対の冷陰極蛍光管用電極3とを備える。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. A cold cathode fluorescent tube 1 according to this embodiment shown in FIG. 1 is used for a light source for a backlight of a liquid crystal display. For example, a glass tube 2 having a diameter of 3 mm and 1 attached to both ends of the glass tube 2 are used. And a pair of cold cathode fluorescent tube electrodes 3.

ガラス管2は、内壁面にそれ自体周知の蛍光体が塗着されていて、内部にHg蒸気とAr,Ne等の不活性ガスとが封入されている。   The glass tube 2 is coated with a well-known phosphor on the inner wall surface, and Hg vapor and an inert gas such as Ar or Ne are sealed inside.

冷陰極蛍光管用電極3は、一方が開口する有底筒状体であって、開口部の外径が2.1mm、肉厚が0.15mm、長さが7.0mmとなっている。冷陰極蛍光管用電極3は、薄板状としてもよいが、前記有底筒状体であることにより、該電極3から電子を放出させ易くすることができる。   The cold-cathode fluorescent tube electrode 3 is a bottomed cylindrical body having one opening, and the opening has an outer diameter of 2.1 mm, a wall thickness of 0.15 mm, and a length of 7.0 mm. The cold cathode fluorescent tube electrode 3 may have a thin plate shape, but the bottomed cylindrical body can facilitate the emission of electrons from the electrode 3.

1対の各冷陰極蛍光管用電極3は、前記開口部をガラス管2の軸方向に互いに対向させて、ガラス管2内に取り付けられている。冷陰極蛍光管用電極3の底部には、コバール線からなり、ガラス管2に封着されてガラス管2の外方に突出する封着ピン4が接続されている。封着ピン4の冷陰極蛍光管用電極3とは反対側の端部には、ジュメット線からなる外部リード線5が接続されている。また、封着ピン4には、ガラス管2との封着用ガラスビーズ(図示せず)が取り付けられている。   Each pair of cold cathode fluorescent tube electrodes 3 is mounted in the glass tube 2 with the openings facing each other in the axial direction of the glass tube 2. The bottom of the cold cathode fluorescent tube electrode 3 is connected to a sealing pin 4 made of a Kovar wire, sealed to the glass tube 2 and protruding outward from the glass tube 2. An external lead wire 5 made of a dumet wire is connected to the end of the sealing pin 4 opposite to the cold cathode fluorescent tube electrode 3. Further, glass beads (not shown) for sealing with the glass tube 2 are attached to the sealing pins 4.

冷陰極蛍光管用電極3は、全量に対して、0.1〜30質量%の範囲のMoと、0.1〜6質量%の範囲のNbとを含有し、残部がFe及び不可避的不純物である合金からなる。   The cold cathode fluorescent tube electrode 3 contains Mo in the range of 0.1 to 30% by mass and Nb in the range of 0.1 to 6% by mass with the balance being Fe and inevitable impurities with respect to the total amount. Made of an alloy.

本実施形態の冷陰極蛍光管用電極3(以下、単に電極3と略記することがある)は、該電極3を構成する前記合金において基となる元素をFeとしたことにより、低コスト化できる。また、前記電極3は、該電極3表面及び該電極3からのスパッタ粒子とガラス管2内のHg原子との反応を抑制してHgの消耗を抑制することにより、冷陰極蛍光管1の寿命を長くすることができる。また、前記電極3は、該電極3を構成する前記合金において基となる元素をFeとしたことにより、電極としての基本的な電気特性を得ることができ、且つ優れた加工性を得ることができる。   The cold cathode fluorescent tube electrode 3 of the present embodiment (hereinafter sometimes simply referred to as the electrode 3) can be reduced in cost by using Fe as the base element in the alloy constituting the electrode 3. Further, the electrode 3 suppresses the consumption of Hg by suppressing the reaction between the surface of the electrode 3 and the sputtered particles from the electrode 3 and Hg atoms in the glass tube 2, thereby reducing the lifetime of the cold cathode fluorescent tube 1. Can be lengthened. In addition, the electrode 3 can obtain basic electrical characteristics as an electrode and excellent workability by using Fe as an element as a base in the alloy constituting the electrode 3. it can.

しかし、上述したように、電極3を構成する前記合金が実質的にFeのみでは、放電特性及び耐スパッタ性に課題が残る。そこで、本実施形態の冷陰極蛍光管用電極3では、前記合金に前記範囲のMoと前記範囲のNbとを添加している。   However, as described above, when the alloy constituting the electrode 3 is substantially only Fe, problems remain in discharge characteristics and sputtering resistance. Therefore, in the cold cathode fluorescent tube electrode 3 of the present embodiment, the range of Mo and the range of Nb are added to the alloy.

本実施形態の冷陰極蛍光管用電極3は、前記合金が前記範囲のMoを含有することにより、放電時の管電圧を低下させて電子放出特性を向上させることができる。また、電極3は、前記合金が前記範囲のMoを含有することにより、Fe基合金の発錆を抑制して耐食性を向上させることができる。また、電極3は、前記合金が前記範囲のMoを含有することにより、Fe基合金とHgとの反応をさらに確実に抑制することができる。   In the cold cathode fluorescent tube electrode 3 of the present embodiment, when the alloy contains Mo in the above range, the tube voltage during discharge can be reduced and the electron emission characteristics can be improved. Moreover, the electrode 3 can suppress the rusting of a Fe-based alloy, and can improve corrosion resistance because the said alloy contains Mo of the said range. Moreover, the electrode 3 can suppress more reliably reaction of a Fe-based alloy and Hg because the said alloy contains Mo of the said range.

このとき、前記合金において、Moの含有量が全量に対して0.1質量%未満の場合には、前記効果を得ることができない。   At this time, in the alloy, when the Mo content is less than 0.1% by mass with respect to the total amount, the effect cannot be obtained.

一方、前記合金において、Moの含有量が全量に対して30質量%を超える場合には、冷陰極蛍光管用電極3の管電圧を低くすることできない上に、該合金中にFeMo、FeMo等の脆性を示す金属間化合物が形成され、あるいは、硬度が大きくなることにより加工性が低くなる。従って、前記合金において、Moの含有量が全量に対して30質量%を超える場合には、所望の形状を備える冷陰極蛍光管用電極3を形成することができない。 On the other hand, in the alloy, when the Mo content exceeds 30% by mass, the tube voltage of the cold cathode fluorescent tube electrode 3 cannot be lowered, and Fe 2 Mo, Fe is contained in the alloy. An intermetallic compound exhibiting brittleness such as 3 Mo 3 is formed, or the workability is lowered by increasing the hardness. Therefore, in the alloy, when the Mo content exceeds 30% by mass with respect to the total amount, the cold cathode fluorescent tube electrode 3 having a desired shape cannot be formed.

また、本実施形態の冷陰極蛍光管用電極3は、前記合金が前記範囲のNbを含有することにより、放電時の管電圧を低下させて電子放出特性を向上させることができる。また、電極3は、前記合金が前記範囲のNbを含有することにより、耐スパッタ性を向上させることができる。また、Fe基合金の発錆を抑制して耐食性を向上させることができる。   Moreover, the electrode 3 for cold cathode fluorescent tubes of this embodiment can reduce the tube voltage at the time of discharge, and can improve an electron emission characteristic, when the said alloy contains Nb of the said range. Moreover, the electrode 3 can improve sputtering resistance because the said alloy contains Nb of the said range. Moreover, corrosion resistance can be improved by suppressing rusting of the Fe-based alloy.

このとき、前記合金において、Nbの含有量が全量に対して0.1質量%未満の場合には、前記効果を得ることができない。   At this time, in the alloy, when the Nb content is less than 0.1% by mass with respect to the total amount, the effect cannot be obtained.

一方、前記合金において、Nbの含有量が全量に対して6質量%を超える場合には、該合金中にFeNb等の脆性を示す金属間化合物が形成され、あるいは、硬度が大きくなることにより加工性が低くなる。従って、前記合金において、Nbの含有量が全量に対して6質量%を超える場合には、所望の形状を備える冷陰極蛍光管用電極3を形成することができない。 On the other hand, when the Nb content exceeds 6% by mass in the alloy, intermetallic compounds exhibiting brittleness such as Fe 2 Nb are formed in the alloy, or the hardness is increased. As a result, workability is lowered. Therefore, in the alloy, when the Nb content exceeds 6% by mass, the cold cathode fluorescent tube electrode 3 having a desired shape cannot be formed.

次に、本実施形態の冷陰極蛍光管用電極3について、実施例と比較例とを示す。   Next, an Example and a comparative example are shown about the electrode 3 for cold cathode fluorescent tubes of this embodiment.

本実施例では、まず、FeとMoとNbとを真空溶解炉にて溶解して溶湯を調製し、鋳造することにより、約10kgのインゴットを製造した。前記インゴットは、全量に対して3.4質量%のMoと1.6質量%のNbとを含有し、残部がFe及び不可避的不純物である合金からなる。前記不可避的不純物は、前記合金の全量に対して、0.10質量%以下のCと、0.50質量%以下のSiと、0.80質量%以下のMnと、0.05質量%以下のPと、0.05質量%以下のSとを含有している。   In this example, first, Fe, Mo, and Nb were melted in a vacuum melting furnace to prepare a molten metal, and cast to produce about 10 kg of ingot. The ingot is composed of an alloy containing 3.4% by mass of Mo and 1.6% by mass of Nb with respect to the total amount, and the balance being Fe and inevitable impurities. The inevitable impurities are 0.10 mass% or less of C, 0.50 mass% or less of Si, 0.80 mass% or less of Mn, and 0.05 mass% or less of the total amount of the alloy. Of P and 0.05% by mass or less of S.

次に、前記インゴットを1100℃の温度で熱間鍛造を行い、厚さ20mmの板材を得た。次に、前記厚さ20mmの板材をワイヤーカットすることにより、厚さ1mmの板材を得た。次に、前記厚さ1mmの板材を研磨することにより、前記ワイヤーカットで生じた酸化スケールを除去した。   Next, the ingot was hot forged at a temperature of 1100 ° C. to obtain a plate material having a thickness of 20 mm. Next, the plate material having a thickness of 1 mm was obtained by wire-cutting the plate material having a thickness of 20 mm. Next, the oxide scale produced by the wire cut was removed by polishing the plate material having a thickness of 1 mm.

次に、前記酸化スケールが除去された厚さ1mmの板材に対し、常温での冷間圧延と、水素雰囲気下800℃の温度での焼鈍とをこの順で繰り返し行うことにより、厚さ0.2mmの薄板材を得た。次に、前記0.2mmの薄板材を、水素雰囲気下800℃での焼鈍を10分間行った後に、常温に冷却することにより、冷陰極蛍光管用電極3に用いられる電極材料を得た。   Next, cold rolling at normal temperature and annealing at a temperature of 800 ° C. in a hydrogen atmosphere are repeated in this order on the 1 mm-thick plate material from which the oxide scale has been removed. A 2 mm thin plate was obtained. Next, the 0.2 mm thin plate material was annealed at 800 ° C. for 10 minutes in a hydrogen atmosphere, and then cooled to room temperature to obtain an electrode material used for the cold cathode fluorescent tube electrode 3.

次に、本実施例で得られた電極材料から、縦20mm、横20mm、厚さ0.2mmの試験片を製造した。前記試験片を、スパッタ装置の真空チャンバー内に設置し、5.33×10−1PaのAr雰囲気下、投入電力150Wの条件で8時間連続スパッタを行った。次に、連続スパッタされた前記試験片の重量減を測定することにより、本実施例で得られた電極材料におけるスパッタによる消耗量を算出した。 Next, a test piece having a length of 20 mm, a width of 20 mm, and a thickness of 0.2 mm was produced from the electrode material obtained in this example. The test piece was placed in a vacuum chamber of a sputtering apparatus, and was continuously sputtered for 8 hours under an Ar atmosphere of 5.33 × 10 −1 Pa at a power input of 150 W. Next, by measuring the weight loss of the continuously sputtered test piece, the amount of wear due to sputtering in the electrode material obtained in this example was calculated.

次に、不可避的不純物を除き実質的にNiからなる電極材料(参考例1)について、本実施例と全く同一にして試験片を製造し、該電極材料におけるスパッタによる消耗量を算出した。次に、参考例1の電極材料におけるスパッタによる消耗量に対する本実施例で得られた電極材料のスパッタによる消耗量を求めたところ、本実施例で得られた電極材料の前記消耗量は、参考例1の電極材料の69.1%であった。結果をスパッタ率として表1に示す。表1において、スパッタ率は、その値が小さい程、スパッタによる消耗量が少なく、耐スパッタ性が優れることを意味している。   Next, a test piece was manufactured in the same manner as in this example for the electrode material (Reference Example 1) substantially made of Ni excluding inevitable impurities, and the amount of consumption due to sputtering in the electrode material was calculated. Next, when the consumption amount by sputtering of the electrode material obtained in this example with respect to the consumption amount by sputtering in the electrode material of Reference Example 1 was determined, the consumption amount of the electrode material obtained in this example was It was 69.1% of the electrode material of Example 1. The results are shown in Table 1 as the sputtering rate. In Table 1, the smaller the value of the sputtering rate, the smaller the amount of consumption due to sputtering, and the better the sputtering resistance.

次に、本実施例で得られた電極材料から、縦15mm、横1.5mm、厚さ0.2mmの薄板状の本実施例の冷陰極蛍光管用電極3を2対製造した。   Next, from the electrode material obtained in this example, two pairs of cold cathode fluorescent tube electrodes 3 of this example having a thin plate shape of 15 mm in length, 1.5 mm in width, and 0.2 mm in thickness were manufactured.

次に、本実施例で得られた冷陰極蛍光管用電極3の性能評価を行うために、内壁面に蛍光体が塗着されたガラス管2の内部に、1対の該電極3を備える冷陰極蛍光管1を製造した。   Next, in order to evaluate the performance of the cold cathode fluorescent tube electrode 3 obtained in the present example, a pair of cold electrodes 3 provided with a pair of the electrodes 3 is provided inside the glass tube 2 whose inner wall surface is coated with a phosphor. A cathode fluorescent tube 1 was manufactured.

まず、本実施例で得られた1対の冷陰極蛍光管用電極3の端部にコバール線からなる封着ピン4を接続し、該封着ピン4の該電極3とは反対側の端部にジュメット線からなる外部リード線5を接続した。封着ピン4には、ガラス管2との封着用ガラスビーズ(図示せず)が取り付けられている。   First, a sealing pin 4 made of a Kovar wire is connected to the end portion of the pair of cold cathode fluorescent tube electrodes 3 obtained in this embodiment, and the end portion of the sealing pin 4 opposite to the electrode 3 is connected. An external lead wire 5 made of a jumet wire was connected to Glass beads (not shown) for sealing with the glass tube 2 are attached to the sealing pins 4.

次に、内壁面に蛍光体が塗着された直径3mmのガラス管2内の両端に、封着ピン4が接続された冷陰極蛍光管用電極3を取り付けた。このとき、1対の冷陰極蛍光管用電極3は、封着ピン4が接続されていない側の端部が互いに対向するように、軸方向に取り付けられた。   Next, the cold cathode fluorescent tube electrodes 3 to which the sealing pins 4 were connected were attached to both ends of the glass tube 2 having a diameter of 3 mm, on which the phosphor was coated on the inner wall surface. At this time, the pair of cold cathode fluorescent tube electrodes 3 was attached in the axial direction so that the end portions on the side where the sealing pins 4 were not connected face each other.

次に、前記ガラス管2の内部にHg蒸気とArガスとNeガスとを封入した後に、封着ピン4と該ガラス管2とを封着した。このとき、封着ピン4をガラス管2の外方に突出させることにより、冷陰極蛍光管1を製造した。   Next, after sealing Hg vapor, Ar gas, and Ne gas inside the glass tube 2, the sealing pin 4 and the glass tube 2 were sealed. At this time, the cold cathode fluorescent tube 1 was manufactured by projecting the sealing pin 4 outward of the glass tube 2.

次に、得られた冷陰極蛍光管1について、1対の前記電極3の間に、5mA,6mA,7mA,8mAの管電流をそれぞれ印加し、それぞれの管電流に対して生じた管電圧を測定した。結果を図1に示す。   Next, with respect to the obtained cold cathode fluorescent tube 1, a tube current of 5 mA, 6 mA, 7 mA, and 8 mA was applied between the pair of electrodes 3, and the tube voltage generated for each tube current was applied. It was measured. The results are shown in FIG.

次に、参考例1の電極材料を用いた以外は、本実施例と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極蛍光管(参考例1)を製造した。得られた冷陰極蛍光管について、1対の前記電極の間に、5mA,6mA,7mA,8mAの管電流をそれぞれ印加し、それぞれの管電流に対して生じた管電圧を測定した。結果を図1に示す。   Next, a pair of cold cathode fluorescent tube electrodes was manufactured in exactly the same manner as in this example except that the electrode material of Reference Example 1 was used, and a cold cathode fluorescent tube (Reference Example 1) including the electrodes was manufactured. did. With respect to the obtained cold cathode fluorescent tube, tube currents of 5 mA, 6 mA, 7 mA and 8 mA were respectively applied between the pair of electrodes, and the tube voltage generated for each tube current was measured. The results are shown in FIG.

次に、本実施例で得られた冷陰極蛍光管用電極3の性能評価を行うために、内壁面に蛍光体が塗着されていないガラス管の内部に、1対の該電極3を備える冷陰極管Aを製造した。冷陰極管Aは、後で冷陰極蛍光管用電極3からスパッタされた原子の有無及びその影響を調べる際の便宜を考慮して、内壁面に蛍光体が塗着されていないガラス管を用いた。すなわち、冷陰極管Aは、内壁面に蛍光体が塗着された直径3mmのガラス管2に代えて、内壁面に蛍光体が塗着されていない直径3mmのガラス管を用いた点を除いて、冷陰極蛍光管1と全く同一にして製造された。   Next, in order to evaluate the performance of the cold cathode fluorescent tube electrode 3 obtained in this example, a pair of cold electrodes 3 provided with a pair of the electrodes 3 is provided inside a glass tube whose inner wall surface is not coated with a phosphor. Cathode tube A was manufactured. For the cold cathode tube A, a glass tube in which the inner wall surface is not coated with a phosphor is used in consideration of the presence / absence of atoms sputtered from the cold cathode fluorescent tube electrode 3 and the convenience when examining the influence thereof. . That is, the cold cathode tube A is replaced with a glass tube having a diameter of 3 mm that is not coated with a phosphor on the inner wall surface, instead of the glass tube 2 having a diameter of 3 mm that is coated with a phosphor on the inner wall surface. Thus, it was manufactured exactly the same as the cold cathode fluorescent tube 1.

次に、前記冷陰極管Aについて、管電流を6mA一定の条件で300時間放電させた後、該冷陰極管Aを開封して冷陰極蛍光管用電極3を取り出した。次に、冷陰極蛍光管用電極3からスパッタされた原子の有無及びその影響を調べるために、冷陰極蛍光管用電極3の表面の組成と、前記ガラス管の内壁面の組成とを、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)により測定した。結果を表2に示す。表2は、冷陰極蛍光管用電極3の表面及びガラス管の内壁における水銀原子の有無を示す。   Next, the cold cathode tube A was discharged for 300 hours under a constant 6 mA tube current, and then the cold cathode tube A was opened and the cold cathode fluorescent tube electrode 3 was taken out. Next, in order to examine the presence or absence of the sputtered atoms from the cold cathode fluorescent tube electrode 3 and the influence thereof, the composition of the surface of the cold cathode fluorescent tube electrode 3 and the composition of the inner wall surface of the glass tube were changed to It measured with the analyzer (EPMA: Electron Probe Micro Analyzer). The results are shown in Table 2. Table 2 shows the presence or absence of mercury atoms on the surface of the cold cathode fluorescent tube electrode 3 and the inner wall of the glass tube.

次に、参考例1の電極材料を用いた以外は、本実施例と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極管(参考例1)Bを製造した。得られた冷陰極管Bについて、実施例1と全く同一にして、冷陰極蛍光管用電極の表面の組成と、ガラス管の内壁面の組成とを、EPMAにより測定した。結果を表2に示す。   Next, a pair of cold cathode fluorescent tube electrodes was manufactured in exactly the same manner as in this example except that the electrode material of Reference Example 1 was used, and a cold cathode tube (Reference Example 1) B provided with the electrodes was manufactured. did. About the obtained cold cathode tube B, it carried out exactly the same as Example 1, and measured the composition of the surface of the electrode for cold cathode fluorescent tubes, and the composition of the inner wall surface of a glass tube by EPMA. The results are shown in Table 2.

次に、本実施例の電極材料の加工性評価を行うために、引張試験を行った。まず、本実施例で得られた前記インゴットに対して、1100℃の温度で熱間鍛造を行い、常温での冷間圧延と、水素雰囲気下800℃の温度での焼鈍とをこの順で繰り返し行い、水素雰囲気下800℃での焼鈍を10分間行った後に、常温に冷却することにより、丸棒試験片を作製した。丸棒試験片は、平行部としての小径部と、その両端に大径部とを有し、平行部は、長さが24mmであり、直径が8mmである。   Next, in order to evaluate the workability of the electrode material of this example, a tensile test was performed. First, hot forging is performed on the ingot obtained in this example at a temperature of 1100 ° C., and cold rolling at room temperature and annealing at a temperature of 800 ° C. in a hydrogen atmosphere are repeated in this order. After performing the annealing at 800 ° C. for 10 minutes in a hydrogen atmosphere, a round bar test piece was prepared by cooling to room temperature. The round bar test piece has a small-diameter portion as a parallel portion and large-diameter portions at both ends, and the parallel portion has a length of 24 mm and a diameter of 8 mm.

次に、前記丸棒試験片について、引張速度24mm/秒にて引張試験を行い、引張強さを測定したところ、502N/mmであった。さらに、引張試験後の丸棒試験片の平行部の長さ及び直径を測定し、引張試験による伸び及び絞りを算出したところ、伸び34.9%、絞り59.6%であった。結果を表3に示す。 Next, the round bar test piece was subjected to a tensile test at a tensile speed of 24 mm / second and measured for tensile strength, which was 502 N / mm 2 . Furthermore, when the length and diameter of the parallel part of the round bar test piece after the tensile test were measured and the elongation and the drawing by the tensile test were calculated, the elongation was 34.9% and the drawing was 59.6%. The results are shown in Table 3.

次に、参考例1の電極材料から丸棒試験片(参考例1)を作製し、本実施例と全く同一にして、引張試験を行い、引張強さを測定するとともに伸び及び絞りを算出したところ、引張強さ361N/mm、伸び18.8%、絞り6.4%であった。結果を表3に示す。
〔比較例1〕
次に、不可避的不純物を除き実質的にMoからなる電極材料について、実施例1と全く同一にして試験片を製造し、該電極材料におけるスパッタによる消耗量を算出した。本比較例で得られた電極材料の前記消耗量は、参考例1の電極材料の83.4%であった。結果をスパッタ率として表1に示す。
Next, a round bar test piece (Reference Example 1) was prepared from the electrode material of Reference Example 1, and was subjected to a tensile test in exactly the same manner as in this example to measure the tensile strength and calculate elongation and drawing. However, the tensile strength was 361 N / mm 2 , the elongation was 18.8%, and the aperture was 6.4%. The results are shown in Table 3.
[Comparative Example 1]
Next, a test piece was manufactured in the same manner as in Example 1 for the electrode material substantially made of Mo except for inevitable impurities, and the amount of consumption by sputtering in the electrode material was calculated. The consumption amount of the electrode material obtained in this comparative example was 83.4% of the electrode material of Reference Example 1. The results are shown in Table 1 as the sputtering rate.

次に、本比較例の電極材料を用いた以外は、実施例1と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極蛍光管を製造した。得られた冷陰極蛍光管について、1対の前記電極の間に、5mA,6mA,7mA,8mAの管電流をそれぞれ印加し、それぞれの管電流に対して生じた管電圧を測定した。結果を図1に示す。   Next, a pair of cold cathode fluorescent tube electrodes was manufactured in the same manner as in Example 1 except that the electrode material of this comparative example was used, and a cold cathode fluorescent tube including the electrodes was manufactured. With respect to the obtained cold cathode fluorescent tube, tube currents of 5 mA, 6 mA, 7 mA and 8 mA were respectively applied between the pair of electrodes, and the tube voltage generated for each tube current was measured. The results are shown in FIG.

次に、本比較例の電極材料を用いた以外は、実施例1と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極管Cを製造した。得られた冷陰極管Cについて、実施例1と全く同一にして、冷陰極蛍光管用電極の表面の組成と、ガラス管の内壁面の組成とを、EPMAにより測定した。結果を表2に示す。   Next, a pair of cold cathode fluorescent tube electrodes was manufactured in the same manner as in Example 1 except that the electrode material of this comparative example was used, and a cold cathode tube C including the electrodes was manufactured. About the obtained cold cathode tube C, it carried out exactly the same as Example 1, and measured the composition of the surface of the electrode for cold cathode fluorescent tubes, and the composition of the inner wall surface of a glass tube by EPMA. The results are shown in Table 2.

次に、本比較例の電極材料から丸棒試験片を作製し、実施例1と全く同一にして、引張試験を行い、引張強さを測定するとともに伸び及び絞りを算出したところ、引張強さ335N/mm、伸び2.4%、絞り1.6%であった。結果を表3に示す。
〔比較例2〕
次に、不可避的不純物を除き実質的にFeからなる電極材料について、実施例1と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極蛍光管を製造した。得られた冷陰極蛍光管について、1対の前記電極の間に、5mA,6mA,7mA,8mAの管電流をそれぞれ印加し、それぞれの管電流に対して生じた管電圧を測定した。結果を図1に示す。
Next, a round bar test piece was prepared from the electrode material of this comparative example, the tensile test was performed in exactly the same manner as in Example 1, the tensile strength was measured, and the elongation and the drawing were calculated. 335 N / mm 2 , elongation 2.4%, aperture 1.6%. The results are shown in Table 3.
[Comparative Example 2]
Next, a pair of cold cathode fluorescent tube electrodes was manufactured in the same manner as in Example 1 except that the inevitable impurities were substantially composed of Fe, and a cold cathode fluorescent tube including the electrodes was manufactured. With respect to the obtained cold cathode fluorescent tube, tube currents of 5 mA, 6 mA, 7 mA and 8 mA were respectively applied between the pair of electrodes, and the tube voltage generated for each tube current was measured. The results are shown in FIG.

次に、本比較例の電極材料を用いた以外は、実施例1と全く同一にして、冷陰極蛍光管用電極を1対製造し、該電極を備える冷陰極管Dを製造した。得られた冷陰極管Dについて、実施例1と全く同一にして、冷陰極蛍光管用電極の表面の組成と、ガラス管の内壁面の組成とを、EPMAにより測定した。結果を表2に示す。   Next, a pair of cold cathode fluorescent tube electrodes was manufactured in the same manner as in Example 1 except that the electrode material of this comparative example was used, and a cold cathode tube D including the electrodes was manufactured. About the obtained cold cathode tube D, it carried out exactly the same as Example 1, and measured the composition of the surface of the electrode for cold cathode fluorescent tubes, and the composition of the inner wall surface of a glass tube by EPMA. The results are shown in Table 2.

表1から、全量に対してMoの含有量が3.4質量%であり、Nbの含有量が1.6質量%であり、残部が実質的にFeである実施例1の電極材料のスパッタによる消耗量は、実質的にMoからなる比較例1の電極材料よりも小さいことが明らかである。したがって、実施例1の電極材料は、スパッタ率が小さく、優れた耐スパッタ性を備えることが明らかである。   From Table 1, the sputtering of the electrode material of Example 1 in which the Mo content is 3.4% by mass, the Nb content is 1.6% by mass, and the balance is substantially Fe. It is clear that the amount of wear due to is smaller than that of the electrode material of Comparative Example 1 substantially made of Mo. Therefore, it is clear that the electrode material of Example 1 has a low sputtering rate and has excellent sputtering resistance.

表2から、実施例1の冷陰極蛍光管用電極3を備える前記冷陰極管Aにおいては、該電極3の表面及びガラス管の内壁面にHg原子が存在していないことが明らかである。したがって、前記冷陰極管Aにおいては、冷陰極蛍光管用電極3を構成するFe原子が僅かにスパッタされるものの、該電極3の表面とガラス管の内壁面との両方に、FeとHgとからなる合金(アマルガム)が形成されていないことが明らかである。これにより、前記冷陰極管Aは、アマルガム形成によりガラス管内のHg蒸気を消耗することがなく、該冷陰極管Aの寿命を長くすることができることが明らかである。   From Table 2, it is clear that in the cold cathode fluorescent lamp A provided with the cold cathode fluorescent tube electrode 3 of Example 1, Hg atoms are not present on the surface of the electrode 3 and the inner wall surface of the glass tube. Accordingly, in the cold cathode tube A, Fe atoms constituting the cold cathode fluorescent tube electrode 3 are slightly sputtered, but Fe and Hg are formed on both the surface of the electrode 3 and the inner wall surface of the glass tube. It is clear that an alloy (amalgam) is not formed. Thus, it is clear that the cold cathode tube A can extend the life of the cold cathode tube A without depleting Hg vapor in the glass tube due to amalgam formation.

一方、参考例1の冷陰極蛍光管用電極を備える前記冷陰極管Bにおいては、該電極の表面にHg原子が87質量%存在し、ガラス管の内壁面にHg原子が21質量%存在していることが明らかである。したがって、前記冷陰極管Bにおいては、前記冷陰極蛍光管用電極を構成するNi原子がスパッタされ、該電極の表面にNiとHgとからなるアマルガムが形成されていることが明らかである。これにより、前記冷陰極管Bは、アマルガム形成によりガラス管内のHg蒸気を消耗し、該冷陰極管Bの寿命が短くなることが明らかである。   On the other hand, in the cold cathode fluorescent lamp B provided with the cold cathode fluorescent tube electrode of Reference Example 1, 87% by mass of Hg atoms are present on the surface of the electrode, and 21% by mass of Hg atoms are present on the inner wall surface of the glass tube. It is clear that Therefore, it is clear that in the cold cathode tube B, Ni atoms constituting the cold cathode fluorescent tube electrode are sputtered, and an amalgam composed of Ni and Hg is formed on the surface of the electrode. Accordingly, it is apparent that the cold cathode tube B consumes Hg vapor in the glass tube due to amalgam formation, and the life of the cold cathode tube B is shortened.

また、比較例2の冷陰極蛍光管用電極を備える前記冷陰極管Dにおいては、ガラス管の内壁面にHg原子が存在していないものの、該電極の表面にHg原子が2.5質量%存在していることが明らかである。したがって、前記冷陰極管Dにおいては、前記冷陰極蛍光管用電極を構成するFe原子がスパッタされ、該電極の表面にFeとHgとからなるアマルガムが僅かに形成されていることが明らかである。これにより、前記冷陰極管Dは、アマルガム形成によりガラス管内のHg蒸気を消耗し、冷陰極管Aと比較して該冷陰極管Dの寿命が短くなることが明らかである。   Further, in the cold cathode tube D provided with the cold cathode fluorescent tube electrode of Comparative Example 2, Hg atoms are present on the surface of the electrode, although Hg atoms are not present on the inner wall surface of the glass tube. Obviously. Therefore, it is apparent that in the cold cathode tube D, Fe atoms constituting the cold cathode fluorescent tube electrode are sputtered, and an amalgam composed of Fe and Hg is slightly formed on the surface of the electrode. Accordingly, it is apparent that the cold cathode tube D consumes the Hg vapor in the glass tube due to amalgam formation, and the life of the cold cathode tube D is shortened compared to the cold cathode tube A.

また、表3から、実施例1の電極材料の引張強さは、比較例1よりも大きいことが明らかである。したがって、実施例1の電極材料は、優れた強度を備えることが明らかである。また、表3から、実施例1の電極材料の伸び及び絞りは、比較例1よりも格段に大きいことが明らかである。したがって、実施例1の電極材料は、優れた加工性を備えることが明らかである。   From Table 3, it is clear that the tensile strength of the electrode material of Example 1 is larger than that of Comparative Example 1. Therefore, it is clear that the electrode material of Example 1 has excellent strength. Further, from Table 3, it is clear that the elongation and restriction of the electrode material of Example 1 are much larger than those of Comparative Example 1. Therefore, it is clear that the electrode material of Example 1 has excellent workability.

また、図1から、実施例1の冷陰極蛍光管用電極3は、Moの含有量が全量に対して3.4質量%と少ないにも拘わらず、実質的にNiからなる参考例1の冷陰極蛍光管用電極と比較して、管電圧が小さく、実質的にMoからなる比較例1の冷陰極蛍光管用電極に近い管電圧となっていることが明らかである。したがって、実施例1の冷陰極蛍光管用電極3は、管電圧が小さくエネルギー効率が良好であることが明らかである。   Further, from FIG. 1, the cold cathode fluorescent tube electrode 3 of Example 1 is substantially the same as that of Reference Example 1 made of Ni although the Mo content is as small as 3.4% by mass with respect to the total amount. It is clear that the tube voltage is smaller than that of the cathode fluorescent tube electrode, and the tube voltage is substantially similar to the cold cathode fluorescent tube electrode of Comparative Example 1 made of Mo. Therefore, it is clear that the cold cathode fluorescent tube electrode 3 of Example 1 has a small tube voltage and good energy efficiency.

1…冷陰極蛍光管、 3…冷陰極蛍光管用電極。   1 ... Cold cathode fluorescent tube, 3 ... Cold cathode fluorescent tube electrode.

Claims (2)

全量に対して、0.1〜30質量%の範囲のMoと、0.1〜6質量%の範囲のNbとを含有し、残部がFe及び不可避的不純物である合金からなることを特徴とする冷陰極蛍光管用電極。   It is characterized by comprising Mo in the range of 0.1 to 30% by mass and Nb in the range of 0.1 to 6% by mass with the balance being Fe and an unavoidable impurity with respect to the total amount. An electrode for a cold cathode fluorescent tube. 全量に対して、0.1〜30質量%の範囲のMoと、0.1〜6質量%の範囲のNbとを含有し、残部がFe及び不可避的不純物である合金からなる冷陰極蛍光管用電極を備えることを特徴とする冷陰極蛍光管。   For cold cathode fluorescent tubes comprising Mo in the range of 0.1 to 30% by mass and Nb in the range of 0.1 to 6% by mass with the balance being Fe and an unavoidable impurity with respect to the total amount A cold cathode fluorescent tube comprising an electrode.
JP2009022840A 2008-09-16 2009-02-03 Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same Expired - Fee Related JP4934156B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009022840A JP4934156B2 (en) 2009-02-03 2009-02-03 Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
TW098131100A TWI451469B (en) 2008-09-16 2009-09-15 A cold cathode fluorescent tube electrode, and a cold cathode fluorescent tube using the same
KR1020090087395A KR20100032336A (en) 2008-09-16 2009-09-16 Electrode for cold cathod fluorescent tube and cold cathod fluorescent tube using the same
CN2009101762196A CN101677054B (en) 2008-09-16 2009-09-16 Electrode of cold cathode fluorescent tube and cold cathode fluorescent tube employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022840A JP4934156B2 (en) 2009-02-03 2009-02-03 Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same

Publications (2)

Publication Number Publication Date
JP2010182456A JP2010182456A (en) 2010-08-19
JP4934156B2 true JP4934156B2 (en) 2012-05-16

Family

ID=42763894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022840A Expired - Fee Related JP4934156B2 (en) 2008-09-16 2009-02-03 Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same

Country Status (1)

Country Link
JP (1) JP4934156B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073307A (en) * 2004-09-01 2006-03-16 Erebamu:Kk Cold-cathode fluorescent lamp
JP4831481B2 (en) * 2005-06-22 2011-12-07 日立金属株式会社 Alloys for cold cathode discharge tube electrodes
GB0523474D0 (en) * 2005-11-18 2005-12-28 Lg Philips Displays B V Improvements in and relating to electrodes
JP2008060057A (en) * 2006-08-04 2008-03-13 Sumitomo Electric Ind Ltd Electrode for cold-cathode fluorescent lamp
JP2008060056A (en) * 2006-08-04 2008-03-13 Sumitomo Electric Ind Ltd Electrode for cold-cathode fluorescent lamp
JP2009215646A (en) * 2008-02-12 2009-09-24 Hitachi Metals Ltd Alloy for cold cathode discharge tube electrode

Also Published As

Publication number Publication date
JP2010182456A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP4367954B2 (en) Electrode material
US20100013371A1 (en) Electrode member for cold cathode fluorescent lamp
JP4831481B2 (en) Alloys for cold cathode discharge tube electrodes
JP4934156B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP2004235073A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and fluorescent discharge tube provided with the electrode
JP5451688B2 (en) Cold cathode fluorescent tube electrode alloy, cold cathode fluorescent tube electrode and cold cathode fluorescent tube
JP5629148B2 (en) Cold cathode discharge tube electrode and cold cathode discharge tube using the same
JP4394748B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
TWI451469B (en) A cold cathode fluorescent tube electrode, and a cold cathode fluorescent tube using the same
JP2007220669A (en) Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display
JP4994989B2 (en) Electrode alloy for cold cathode fluorescent discharge tube, electrode for cold cathode fluorescent discharge tube formed with the electrode alloy, and cold cathode fluorescent discharge tube provided with the electrode
JP4531125B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP2009215646A (en) Alloy for cold cathode discharge tube electrode
JP2011181275A (en) Electrode for cold cathode ultraviolet tube, and cold cathode ultraviolet tube using the same
KR20100032336A (en) Electrode for cold cathod fluorescent tube and cold cathod fluorescent tube using the same
US20090108731A1 (en) Electrode for cold-cathode fluorescent lamp
JP2008050690A (en) Alloy for cold cathode discharge tube electrode
JP2009197319A (en) Alloy for cold cathode discharge tube electrode
JP2004235072A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and the fluorescent discharge tube provided with the electrode
JP2010013694A (en) Alloy for cold cathode discharge tube electrode
JP4091508B2 (en) Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube
JP2010040437A (en) Cold-cathode fluorescent lamp and manufacturing method therefor
CN101266910A (en) Cold cathode fluorescent lamp
JP4612748B2 (en) Electrode material
JP2009161852A (en) Alloy for electrode for cold cathode discharge tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees