JP4831481B2 - Alloys for cold cathode discharge tube electrodes - Google Patents
Alloys for cold cathode discharge tube electrodesInfo
- Publication number
- JP4831481B2 JP4831481B2 JP2006171431A JP2006171431A JP4831481B2 JP 4831481 B2 JP4831481 B2 JP 4831481B2 JP 2006171431 A JP2006171431 A JP 2006171431A JP 2006171431 A JP2006171431 A JP 2006171431A JP 4831481 B2 JP4831481 B2 JP 4831481B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- electrode
- cold cathode
- discharge tube
- cathode discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Discharge Lamp (AREA)
Description
本発明は、例えば液晶表示装置のバックライト用光源等として使用される冷陰極放電管の電極用合金に関するものである。 The present invention relates to an electrode alloy for a cold cathode discharge tube used as a light source for a backlight of a liquid crystal display device, for example.
従来、テレビやパソコンに用いられる液晶表示装置(LCD)には、照明用のバックライトが組み込まれており、このバックライトの光源には、冷陰極放電管が使用されている。冷陰極放電管は、一般に希ガス及び水銀蒸気が充填されたガラス管の内部に、一対の電極が対向して配置され、かつガラス管の内壁に蛍光膜を被覆した構造を有している。一対の電極にはリードの一端が接続され、リードの他端はガラス管の両端から外部に導出される。リードを介して一対の電極間に電圧を印加すると、一方の電極から電子が放出され、ガラス管内の水銀原子に電子が衝突して紫外線を発生する。この紫外線は、ガラス管の内壁に被覆した蛍光膜によって可視光線に変換され、照明としての役割を果たす。 Conventionally, a backlight for illumination is incorporated in a liquid crystal display (LCD) used for a television or a personal computer, and a cold cathode discharge tube is used as a light source of the backlight. A cold cathode discharge tube generally has a structure in which a pair of electrodes are arranged opposite to each other inside a glass tube filled with a rare gas and mercury vapor, and an inner wall of the glass tube is covered with a fluorescent film. One end of a lead is connected to the pair of electrodes, and the other end of the lead is led out from both ends of the glass tube. When a voltage is applied between the pair of electrodes via the lead, electrons are emitted from one electrode, and the electrons collide with mercury atoms in the glass tube to generate ultraviolet rays. This ultraviolet ray is converted into visible light by a fluorescent film coated on the inner wall of the glass tube, and plays a role as illumination.
上記の冷陰極放電管の電極(以下、電極と記す。)には、薄板形状の素材を深絞り加工等の冷間での塑性加工によってカップ形状に成形した部品を用いる場合が多いことから、従来、軟らかくて塑性加工性に優れた純Niの薄板が使用されている。しかしながら、純Niで構成される電極は、長時間使用するうちにスパッタによって消耗し、寿命に到るという問題がある。この電極の寿命は、電極を構成する材料の耐スパッタ性(スパッタによる消耗のし難さ)に依存することから、電極用材料の耐スパッタ性を改善する提案がなされている。
例えば、特開2005−93119号公報(特許文献1)には、質量%でNbを6%〜32%未満含有し、残部が実質的にNiで成るNi−Nb合金を電極として用いる提案がなされている。この提案は、Niよりスパッタによる消耗が起こり難いNbをNiと合金化させることにより、純Niで成る電極よりも耐スパッタ性に優れた電極を提供できるという点で優れたものである。
For example, Japanese Patent Laying-Open No. 2005-93119 (Patent Document 1) proposes to use, as an electrode, a Ni—Nb alloy containing Nb in an amount of 6% to less than 32% by mass and the balance being substantially Ni. ing. This proposal is superior in that an electrode superior in sputtering resistance to an electrode made of pure Ni can be provided by alloying Nb, which is less likely to be consumed by sputtering than Ni, with Ni.
本発明者らの検討によると、上述した特許文献1に開示される電極用Ni−Nb合金は、耐スパッタ性に加えて、耐食性も純Niより優れるという利点を有している。数年以上もの長期間に渡って使用される冷陰極放電管の電極においては、耐食性も重要な特性の一つである。それ故、Nbは、Niと合金化させる元素として適している。
しかしながら、特許文献1に開示される電極用Ni−Nb合金では、Nb含有量が質量%で6%以上と多く、この範囲は脆性の金属間化合物(Ni3Nb)が生成し、素材をカップ形状の電極に成形する過程での冷間での塑性加工性に悪影響を及ぼすという問題がある領域である。従って、特許文献1に開示される電極用Ni−Nb合金では耐スパッタ性には優れているものの、素材をカップ形状に成形する過程での塑性加工性が悪く、電極自体の作製が困難となるという欠点がある。
本発明の目的は、上述した従来の電極用Ni−Nb合金における塑性加工性の問題を解決し、さらに従来の電極用Ni−Nb合金と同等以上の耐スパッタ性が得られる電極用合金を提供することである。
According to studies by the present inventors, the Ni—Nb alloy for electrodes disclosed in Patent Document 1 described above has an advantage that corrosion resistance is superior to pure Ni in addition to sputtering resistance. Corrosion resistance is one of the important characteristics of an electrode of a cold cathode discharge tube used for a long period of several years or more. Therefore, Nb is suitable as an element to be alloyed with Ni.
However, in the Ni—Nb alloy for electrodes disclosed in Patent Document 1, the Nb content is as high as 6% or more by mass%, and this range is where brittle intermetallic compound (Ni 3 Nb) is generated, and the material is cupped. This is a region that has a problem of adversely affecting cold plastic workability in the process of forming a shaped electrode. Therefore, although the Ni—Nb alloy for electrodes disclosed in Patent Document 1 is excellent in spatter resistance, the plastic workability in the process of forming the material into a cup shape is poor, and it is difficult to produce the electrode itself. There is a drawback.
The object of the present invention is to solve the above-mentioned problem of plastic workability in the conventional Ni-Nb alloy for electrodes, and further provide an electrode alloy that has a sputter resistance equal to or higher than that of the conventional Ni-Nb alloy for electrodes. It is to be.
本発明者らは、まず、Ni−Nb合金における塑性加工性の問題を検討した結果、脆性の金属間化合物であるNi3Nbが生成しない範囲の低Nb含有量(6.0%未満)とすることによって、塑性加工性を改善できることを見出した。
しかしながら、この低Nb含有量のNi−Nb合金では、Nbを6.0%以上含有する従来合金ほどの耐スパッタ性が得られない。そこで、高濃度域まで含有しても脆性の金属間化合物を生成することなく、かつ耐スパッタ性を高める効果のある第三元素としてMoを選択し、このMo含有量の適切な範囲を見出すことにより、本発明に到達した。
すなわち本発明は、質量%でNb:1.0%以上〜6.0%未満、Mo:3.0〜15.0%、残部は実質的にNi及び不可避的不純物からなる冷陰極放電管電極用合金である。好ましいNbとMoの含有量は、Nb:2.0〜5.5%、Mo:4.0〜12.0%である。
First, as a result of examining the problem of plastic workability in Ni—Nb alloys, the inventors of the present invention have a low Nb content (less than 6.0%) in a range in which Ni 3 Nb, which is a brittle intermetallic compound, is not generated. It has been found that the plastic workability can be improved.
However, this Ni-Nb alloy having a low Nb content cannot provide the spatter resistance as high as that of a conventional alloy containing 6.0% or more of Nb. Therefore, Mo is selected as a third element that does not generate a brittle intermetallic compound even when it is contained up to a high concentration range and has an effect of improving the sputtering resistance, and finds an appropriate range of this Mo content. Thus, the present invention has been achieved.
That is, the present invention provides a cold cathode discharge tube electrode consisting of Nb: 1.0% to less than 6.0% by mass, Mo: 3.0 to 15.0%, the balance being substantially Ni and inevitable impurities. Alloy. Preferable Nb and Mo contents are Nb: 2.0 to 5.5% and Mo: 4.0 to 12.0%.
本発明の電極用合金は、耐スパッタ性に優れた従来のNi−Nb合金と同等以上の耐スパッタ性を有することに加え、従来のNi−Nb合金より優れた塑性加工性を有している。それ故、本発明の電極用合金は、長寿命が得られるという効果に加え、カップ形状の電極への成形が容易であるという効果を奏するものである。 The electrode alloy of the present invention has a plastic workability superior to that of a conventional Ni-Nb alloy in addition to having a sputtering resistance equivalent to or better than that of a conventional Ni-Nb alloy having excellent sputtering resistance. . Therefore, the electrode alloy of the present invention has an effect that it can be easily formed into a cup-shaped electrode in addition to the effect that a long life is obtained.
上述したように、本発明の重要な特徴は、純Niの耐スパッタ性を向上させる目的でNiと合金化させるNbの含有量を、脆性の金属間化合物(Ni3Nb)が生成しない範囲の低Nb含有量としたうえで、高濃度(含有量)域までNiとの金属間化合物を生成することなく、かつ耐スパッタ性を高める効果のある第三元素としてMoを選択し、このMo含有量の適切な範囲を見出したことにある。
以下に本発明の電極用合金における化学成分の規定理由を述べる。なお、特に記載のない限り質量%として記す。
Nb:1.0%以上6.0%未満
Nbは、Niと合金化することによって耐スパッタ性を向上させ、かつ耐食性をも高める効果を持つ本発明の必須元素である。但し、1.0%未満ではいずれの効果も小さく、逆に6.0%以上の範囲では脆性の金属間化合物(Ni3Nb)の生成により塑性加工性が劣化するので上述の範囲に規定した。より望ましい上限は5.5%であり、更に望ましくは5.0%である。望ましい下限は2.0%であり、更に望ましくは3.0%である。
As described above, an important feature of the present invention is that the content of Nb alloyed with Ni for the purpose of improving the sputter resistance of pure Ni is within a range in which a brittle intermetallic compound (Ni 3 Nb) is not generated. Mo is selected as a third element that has an effect of improving the sputtering resistance without generating an intermetallic compound with Ni up to a high concentration (content) region after setting to a low Nb content. We have found an appropriate range of quantities.
The reasons for defining chemical components in the electrode alloy of the present invention will be described below. Unless otherwise specified, the mass% is indicated.
Nb: 1.0% or more and less than 6.0% Nb is an essential element of the present invention that has the effect of improving the sputter resistance and the corrosion resistance by alloying with Ni. However, if less than 1.0%, any effect is small, and conversely in the range of 6.0% or more, plastic workability deteriorates due to the formation of brittle intermetallic compound (Ni 3 Nb). . A more desirable upper limit is 5.5%, and even more desirably 5.0%. A desirable lower limit is 2.0%, and more desirably 3.0%.
Mo:3.0〜15.0%
Moは、Nbと同様にNiと合金化することによって電極用合金の耐スパッタ性を向上させる効果のある本発明の必須元素である。それ故、Nb量を1.0%以上6.0%未満とし、かつ適量のMoを含んだNi−Nb−Mo合金では、塑性加工性を劣化させることなく、Nbを6.0%以上含む従来のNi−Nb合金と同等の耐スパッタ性を得ることができる。
また、NiへのMoの固溶限は広く、理論的には25.0%の高濃度(含有量)域まで脆性の金属間化合物(Ni4Mo)を生成しないので、この25.0%以下の含有量では金属間化合物の生成による塑性加工性の著しい劣化の懸念がない。しかしながら、Mo量が15.0%を超えると、加工硬化による強度の上昇により塑性加工性が劣化するので、Mo量の上限値を15.0%とした。また、Mo量の下限値を3.0%としたのは、3.0%未満では耐スパッタ性を向上させる効果が小さいからである。Moのより望ましい上限は12.0%であり、さらに望ましくは11.5%、更に望ましくは10.0%である。Moのより望ましい下限は4.0%であり、更に好ましくは5.0%であると良い。
Mo: 3.0-15.0%
Mo is an essential element of the present invention that has the effect of improving the sputtering resistance of the electrode alloy by alloying with Ni similarly to Nb. Therefore, a Ni—Nb—Mo alloy containing Nb in an amount of 1.0% to less than 6.0% and containing an appropriate amount of Mo contains 6.0% or more of Nb without deteriorating plastic workability. Sputtering resistance equivalent to that of a conventional Ni—Nb alloy can be obtained.
Further, the solid solubility limit of Mo in Ni is wide and theoretically does not produce a brittle intermetallic compound (Ni 4 Mo) up to a high concentration (content) region of 25.0%, so this 25.0% With the following contents, there is no concern of significant deterioration in plastic workability due to the formation of intermetallic compounds. However, if the Mo amount exceeds 15.0%, the plastic workability deteriorates due to an increase in strength due to work hardening, so the upper limit of the Mo amount was set to 15.0%. Moreover, the lower limit of the amount of Mo is set to 3.0% because the effect of improving the sputtering resistance is small if it is less than 3.0%. The more desirable upper limit of Mo is 12.0%, more desirably 11.5%, and even more desirably 10.0%. A more desirable lower limit of Mo is 4.0%, and more preferably 5.0%.
残部はNi及び不可避的不純物
本発明の冷陰極放電管電極用合金において、Niは優れた加工性を確保するために必要な必須元素であるとともに上述したNb、Mo以外の残部を占めるベースとなる元素である。それ故、残部はできるだけ不可避的不純物含有量が少ないことが望まれるが、電極用合金の耐スパッタ性と塑性加工性に悪影響を与えない範囲として、それぞれ、以下に示す範囲であれば、不可避的に含有しても差し支えない。
C≦0.10%、Si≦0.50%、Mn≦0.50%、P≦0.05%、S≦0.05%
本発明の電極用合金では、上記の構成により、耐スパッタ性に優れた従来のNi−Nb合金と同等以上の耐スパッタ性を確保しつつ、従来のNi−Nb合金の問題であった塑性加工性を改善することができるので、優れた耐スパッタ性により長寿命が得られるという効果に加え、カップ形状の電極への塑性加工が容易であるという効果をも有し、冷陰極放電管の電極用合金として好適である。
The balance is Ni and unavoidable impurities. In the cold cathode discharge tube electrode alloy of the present invention, Ni is an essential element necessary for ensuring excellent workability and is the base that occupies the balance other than Nb and Mo described above. It is an element. Therefore, it is desirable that the balance has as little unavoidable impurity content as possible, but the following ranges are unavoidable as long as they do not adversely affect the sputtering resistance and plastic workability of the electrode alloy. It may be contained in.
C ≦ 0.10%, Si ≦ 0.50%, Mn ≦ 0.50%, P ≦ 0.05%, S ≦ 0.05%
In the electrode alloy of the present invention, the above-described structure ensures the spatter resistance equivalent to or better than that of the conventional Ni—Nb alloy having excellent spatter resistance, and the plastic working that has been a problem of the conventional Ni—Nb alloy. In addition to the effect that a long life can be obtained by excellent spatter resistance, it has the effect that plastic processing to a cup-shaped electrode is easy, and the electrode of the cold cathode discharge tube It is suitable as an alloy.
真空溶解炉により、表1に示す化学成分を有する9種類の電極用合金を各10kgずつ作製した。表1のNo.1〜No.6は本発明の電極用合金である。一方、No.7〜No.9は比較例である。No.9は特許文献1に開示される電極用合金に相当する。 Nine types of electrode alloys having chemical components shown in Table 1 were prepared in a vacuum melting furnace, 10 kg each. No. in Table 1 1-No. 6 is an alloy for electrodes of the present invention. On the other hand, no. 7-No. 9 is a comparative example. No. 9 corresponds to the electrode alloy disclosed in Patent Document 1.
各合金を1100℃に加熱して熱間鍛造と熱間圧延を行い、厚さ5mmの板材を得た。更に、熱間圧延材の残部を再度1100℃に加熱して熱間圧延を行い、厚さ2.5mmの板材を得た。熱間圧延中に生じた酸化スケールを酸洗により除去した後、800℃に保持した真空炉内で1時間の焼鈍を行って軟化させた。これらの板材に冷間圧延と800℃での焼鈍を繰り返し、厚さ0.2mmの薄板材を得た。最終工程では圧下率80%の冷間圧延後、800℃に保持した真空炉内で30分間の焼鈍を行った後、N2ガスで急冷した。
これらの焼鈍した薄板のビッカース硬さを測定した後、冷間での深絞り加工テストを行った。(冷間での深絞り加工テストは、10個の試験片にて行い、1つでも割れや亀裂が発生したものには「否」として示す。)No.1〜No.9のビッカース硬さと深絞り加工テストの結果を表2に示す。
Each alloy was heated to 1100 ° C. and subjected to hot forging and hot rolling to obtain a plate material having a thickness of 5 mm. Furthermore, the remainder of the hot rolled material was again heated to 1100 ° C. and hot rolled to obtain a plate material having a thickness of 2.5 mm. After removing the oxide scale generated during hot rolling by pickling, it was softened by annealing in a vacuum furnace maintained at 800 ° C. for 1 hour. These plate materials were repeatedly subjected to cold rolling and annealing at 800 ° C. to obtain thin plate materials having a thickness of 0.2 mm. In the final step, after cold rolling at a reduction rate of 80%, annealing was performed in a vacuum furnace maintained at 800 ° C. for 30 minutes, and then quenched with N 2 gas.
After measuring the Vickers hardness of these annealed thin plates, a cold deep drawing test was performed. (The cold deep drawing test is performed with 10 test pieces, and is indicated as “No” when even one crack or crack occurs.) 1-No. Table 2 shows the results of 9 Vickers hardness and deep drawing test.
表2から、No.1〜No.6では深絞り加工テストによりカップ形状に成形することができたが、Nb、Moが本発明の範囲より高めとなったNo.7、No.8では深絞り加工テストで亀裂が生じた。また、No.9では硬さは低いものの、脆性の金属間化合物(Ni3Nb)の生成により、深絞り加工テストにて亀裂を生じた試験片が確認された。 From Table 2, no. 1-No. No. 6 was able to be formed into a cup shape by a deep drawing test, but Nb and Mo were higher than the range of the present invention. 7, no. In No. 8, cracks occurred in the deep drawing test. No. In No. 9, although the hardness was low, a specimen having cracks in the deep drawing test was confirmed due to the formation of a brittle intermetallic compound (Ni 3 Nb).
深絞り加工が可能であったNo.3、No.4の合金に対して耐スパッタ性評価を行った。比較材料としてNo.9を使用した。
No.3、No.4、No.9の熱間圧延後の5mm厚さの板材より、耐スパッタ性評価用の試料として直径75mm、厚さ3mmのスパッタリング用ターゲットを作製した。これらのターゲットをマグネトロンスパッタ装置の真空チャンバー内に設置し、Ar圧力0.8Pa、投入電力300Wの条件で12時間、連続スパッタした後、チャンバー内からターゲットを取り出し、スパッタによるターゲットの消耗量(重量変化)を測定した。
No.3、No.4、No.9のスパッタ率(スパッタ率の値が小さい程、スパッタによる消耗が少なく、耐スパッタ性が優れていることを意味する。)の結果を表3に示す。
No. for which deep drawing was possible. 3, no. Sputtering resistance was evaluated for the alloy No. 4. No. as a comparative material. 9 was used.
No. 3, no. 4, no. A sputtering target having a diameter of 75 mm and a thickness of 3 mm was prepared from a 5 mm-thick plate material after hot rolling of No. 9 as a sample for evaluation of sputtering resistance. These targets are installed in a vacuum chamber of a magnetron sputtering apparatus, and continuously sputtered for 12 hours under conditions of Ar pressure of 0.8 Pa and input power of 300 W. Then, the target is taken out from the chamber, and the amount of consumption of the target by sputtering (weight) Change).
No. 3, no. 4, no. Table 3 shows the results of the sputtering rate of 9 (the smaller the value of the sputtering rate, the lower the consumption due to sputtering and the better the sputtering resistance).
No.9の消耗量を基準(100%)とした時のNo.3とNo.4の消耗量は99%であり、本発明のNo.3とNo.4では比較例(従来例)のNo.9とほぼ同等の耐スパッタ性が得られていることが分かる。
以上の実施例から、本発明のNo.3とNo.4は、耐スパッタ性に優れた比較例(従来例)のNo.9とほぼ同等の耐スパッタ性を確保しつつ、No.9よりカップ形状への成形(塑性加工)が容易であることが分かり、冷陰極放電管の電極用合金として適していることが示された。
なお、本発明のNo.4と純Niについて、電子が電極から放出される際の仕事関数(値が小さい程、電子放出が起こり易いことを意味する。)を、大気中光電子分光法を用いて測定したところ、それぞれ4.08eV(No.4)、4.17eV(純Ni)であり、純Niより優れていた。それ故、本発明のNo.4で成る電極は、これまで主に使用されてきた純Ni製の電極と比較して、電子放出特性の観点からも実用に供し得ることが確認された。
No. No. 9 when the consumption amount of 9 is used as a reference (100%). 3 and no. No. 4 consumption is 99%. 3 and no. In No. 4, No. of the comparative example (conventional example). It can be seen that the spatter resistance almost equivalent to 9 is obtained.
From the above examples, the No. of the present invention. 3 and no. No. 4 is a comparative example (conventional example) No. No. 9 while maintaining spatter resistance almost equivalent to that of No. 9. From Fig. 9, it was found that molding into a cup shape (plastic processing) was easy, and it was shown that it was suitable as an electrode alloy for cold cathode discharge tubes.
In addition, No. of this invention. For 4 and pure Ni, the work function when electrons are emitted from the electrode (the smaller the value, the easier the electron emission occurs) was measured using atmospheric photoelectron spectroscopy. 0.08 eV (No. 4), 4.17 eV (pure Ni), which was superior to pure Ni. Therefore, no. It has been confirmed that the electrode consisting of 4 can be put to practical use from the viewpoint of electron emission characteristics as compared with a pure Ni electrode which has been mainly used so far.
本発明の電極用合金は、耐スパッタ性と塑性加工性に優れているため、カップ形状への塑性加工が不可欠で、かつ数年以上の長期間に渡って使用される冷陰極放電管の電極用合金として適用できる。例えば、液晶表示装置のバックライト用光源として使用される冷陰極放電管の電極用合金に好適である。 Since the electrode alloy of the present invention is excellent in spatter resistance and plastic workability, plastic processing into a cup shape is indispensable, and an electrode of a cold cathode discharge tube used for a long period of several years or more It can be applied as an alloy. For example, it is suitable for an electrode alloy of a cold cathode discharge tube used as a light source for a backlight of a liquid crystal display device.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006171431A JP4831481B2 (en) | 2005-06-22 | 2006-06-21 | Alloys for cold cathode discharge tube electrodes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005181727 | 2005-06-22 | ||
JP2005181727 | 2005-06-22 | ||
JP2006171431A JP4831481B2 (en) | 2005-06-22 | 2006-06-21 | Alloys for cold cathode discharge tube electrodes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007031832A JP2007031832A (en) | 2007-02-08 |
JP4831481B2 true JP4831481B2 (en) | 2011-12-07 |
Family
ID=37791431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006171431A Expired - Fee Related JP4831481B2 (en) | 2005-06-22 | 2006-06-21 | Alloys for cold cathode discharge tube electrodes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4831481B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4464951B2 (en) * | 2006-11-24 | 2010-05-19 | 住友電気工業株式会社 | Electrode member for cold cathode fluorescent lamp |
JP4837591B2 (en) | 2007-02-13 | 2011-12-14 | オンセミコンダクター・トレーディング・リミテッド | FM receiver |
JP4934156B2 (en) * | 2009-02-03 | 2012-05-16 | スタンレー電気株式会社 | Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same |
WO2023003005A1 (en) * | 2021-07-21 | 2023-01-26 | 株式会社村田製作所 | Elastic wave device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02236250A (en) * | 1989-03-09 | 1990-09-19 | Nippon Kinzoku Kogyo Kk | Ni alloy having high hardness and low contact electric resistance |
JP4419037B2 (en) * | 2000-11-27 | 2010-02-24 | 三菱マテリアル株式会社 | Sputtering target for forming black matrix light-shielding film |
JP2003142026A (en) * | 2001-10-31 | 2003-05-16 | Sanken Electric Co Ltd | Electrode assembly for cold cathode tube and cold cathode tube |
-
2006
- 2006-06-21 JP JP2006171431A patent/JP4831481B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007031832A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367954B2 (en) | Electrode material | |
JP4831481B2 (en) | Alloys for cold cathode discharge tube electrodes | |
JP2007084928A (en) | Backing plate made of copper alloy, and method for producing the copper alloy | |
JP2004235073A (en) | Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and fluorescent discharge tube provided with the electrode | |
JP2007220669A (en) | Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display | |
JP2009197319A (en) | Alloy for cold cathode discharge tube electrode | |
JP4394748B1 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube | |
JP2009215646A (en) | Alloy for cold cathode discharge tube electrode | |
JP4902706B2 (en) | Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same | |
JP4994989B2 (en) | Electrode alloy for cold cathode fluorescent discharge tube, electrode for cold cathode fluorescent discharge tube formed with the electrode alloy, and cold cathode fluorescent discharge tube provided with the electrode | |
JP2009161852A (en) | Alloy for electrode for cold cathode discharge tube | |
JP4934156B2 (en) | Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same | |
JP5629148B2 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube using the same | |
JP4091508B2 (en) | Electrode for cold cathode discharge tube and electrode assembly for cold cathode discharge tube | |
JP4531125B1 (en) | Cold cathode discharge tube electrode and cold cathode discharge tube | |
JP2008050690A (en) | Alloy for cold cathode discharge tube electrode | |
JP4168983B2 (en) | Cold cathode discharge tube electrode material | |
JP2010013694A (en) | Alloy for cold cathode discharge tube electrode | |
JP2004235072A (en) | Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and the fluorescent discharge tube provided with the electrode | |
US20090108731A1 (en) | Electrode for cold-cathode fluorescent lamp | |
JPS6353840A (en) | Grid material of fluorescent character display tube | |
TWI451469B (en) | A cold cathode fluorescent tube electrode, and a cold cathode fluorescent tube using the same | |
JP2009252382A (en) | Electrode material, electrode, and cold cathode fluorescent lamp | |
JP4612748B2 (en) | Electrode material | |
JP5228933B2 (en) | Method for producing electrode material for cold cathode discharge tube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090515 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100629 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110623 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110826 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |