JP2009252382A - Electrode material, electrode, and cold cathode fluorescent lamp - Google Patents

Electrode material, electrode, and cold cathode fluorescent lamp Download PDF

Info

Publication number
JP2009252382A
JP2009252382A JP2008095428A JP2008095428A JP2009252382A JP 2009252382 A JP2009252382 A JP 2009252382A JP 2008095428 A JP2008095428 A JP 2008095428A JP 2008095428 A JP2008095428 A JP 2008095428A JP 2009252382 A JP2009252382 A JP 2009252382A
Authority
JP
Japan
Prior art keywords
electrode
electrode material
fluorescent lamp
cold cathode
cathode fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095428A
Other languages
Japanese (ja)
Inventor
Akira Tanji
亮 丹治
Taichiro Nishikawa
太一郎 西川
Yoshihiro Nakai
由弘 中井
Takeyuki Tokuda
健之 徳田
Kazuo Yamazaki
和郎 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumiden Fine Conductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumiden Fine Conductors Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008095428A priority Critical patent/JP2009252382A/en
Priority to DE200910014615 priority patent/DE102009014615A1/en
Priority to TW98110560A priority patent/TW200943369A/en
Priority to CN2009101337149A priority patent/CN101552176B/en
Publication of JP2009252382A publication Critical patent/JP2009252382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material and an electrode which improve luminance of a cold cathode fluorescent lamp and to provide a cold cathode fluorescent lamp having a high luminance. <P>SOLUTION: The electrode material is used for an electrode of a cold cathode fluorescent lamp and is made of nickel or nickel alloy having an excellent plasticity processability, and a mean crystal particle diameter is 50 μm or less and a surface roughness Sm is 50 μm or less. The electrode material of which the surface has a fine concavo-convex shape and is made of fine structures has a work function less than 4.7 eV and an etching rate less than 22 nm/min. The electrode made of the above electrode material has an improved discharge property and a spattering resistance and improves luminance of the cold cathode fluorescent lamp. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷陰極蛍光ランプの電極用素材に適した電極材料、この電極材料からなる電極、及びこの電極を具える冷陰極蛍光ランプに関するものである。特に、冷陰極蛍光ランプの輝度の向上に寄与することができる電極材料に関する。   The present invention relates to an electrode material suitable for an electrode material for a cold cathode fluorescent lamp, an electrode made of the electrode material, and a cold cathode fluorescent lamp including the electrode. In particular, the present invention relates to an electrode material that can contribute to improving the luminance of a cold cathode fluorescent lamp.

液晶表示装置のバックライト用光源といった種々の電気機器の光源として、冷陰極蛍光ランプが利用されている。このランプは、代表的には、内壁面に蛍光体層を有する円筒状のガラス管と、この管の両端に配置される一対のカップ状の電極とを具え、管内に希ガス及び水銀が封入されている。電極の材質は、ニッケルが代表的であり、特許文献1には、特定の元素を添加したニッケル合金、特許文献2には、モリブデンといった高融点金属が開示されている。   A cold cathode fluorescent lamp is used as a light source of various electric devices such as a backlight light source of a liquid crystal display device. This lamp typically includes a cylindrical glass tube having a phosphor layer on the inner wall surface and a pair of cup-shaped electrodes disposed at both ends of the tube, and a rare gas and mercury are enclosed in the tube. Has been. Nickel is a typical material of the electrode. Patent Document 1 discloses a nickel alloy to which a specific element is added, and Patent Document 2 discloses a refractory metal such as molybdenum.

特開2007-173197号公報JP 2007-173197 A 特開2007-250343号公報JP 2007-250343 A

昨今、冷陰極蛍光ランプの更なる高輝度化が望まれている。輝度は、電極の放電のし易さやスパッタリング速度(エッチングレートに同義)に依存する。電極から電子が取り出し易い、即ち、仕事関数が小さいと、放電し易い。一方、ニッケル電極は、点灯中、電極構成物質が飛散してガラス管内に堆積するスパッタリング現象が生じる。この堆積層が水銀を取り込むと、発光に必要な紫外線が蛍光体層から十分に放射されなくなり、ランプの輝度が低下する。従って、スパッタリングされ難い(エッチングレートが小さい)と、輝度の低下を抑制でき、高輝度な状態を維持し易い。そのため、放電性及び耐スパッタリング性に優れる電極の開発が望まれる。   Nowadays, it is desired to further increase the brightness of the cold cathode fluorescent lamp. The luminance depends on the ease of discharge of the electrode and the sputtering rate (synonymous with the etching rate). Electrons are easily taken out from the electrodes, that is, when the work function is small, discharge is easy. On the other hand, during the lighting of the nickel electrode, a sputtering phenomenon occurs in which the electrode constituent material is scattered and deposited in the glass tube. When the deposited layer takes in mercury, the ultraviolet rays necessary for light emission are not sufficiently emitted from the phosphor layer, and the brightness of the lamp is lowered. Therefore, if sputtering is difficult (the etching rate is low), a decrease in luminance can be suppressed, and a high luminance state can be easily maintained. Therefore, it is desired to develop an electrode having excellent discharge characteristics and sputtering resistance.

特許文献2に記載されるモリブデンは、ニッケルよりも耐スパッタリング性に優れるものの、ニッケルよりも塑性加工性が悪く、カップ状の電極をプレス加工といった塑性加工で製造し難い上、非常に融点が高いことから、モリブデン電極は、給電用のリード線を溶接接合し難い。また、特許文献2に記載されるように電極を焼結体で構成すると、密度が低く、強度の低下を招く。   Although molybdenum described in Patent Document 2 is superior in sputtering resistance to nickel, it has poor plastic workability than nickel, and it is difficult to manufacture cup-shaped electrodes by plastic working such as press working, and has a very high melting point. Therefore, it is difficult for the molybdenum electrode to weld and join the lead wire for power supply. Further, as described in Patent Document 2, when the electrode is formed of a sintered body, the density is low and the strength is reduced.

本発明は、上記事情を鑑みてなされたものであり、その目的は、冷陰極蛍光ランプの輝度の向上に寄与することができる電極材料及び電極を提供することにある。また、本発明の別の目的は、高輝度な冷陰極蛍光ランプを提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the electrode material and electrode which can contribute to the improvement of the brightness | luminance of a cold cathode fluorescent lamp. Another object of the present invention is to provide a cold cathode fluorescent lamp with high brightness.

本発明者らは、電極材料として、塑性加工性に優れるニッケル又はニッケル合金について検討したところ、電極材料の表面粗さと結晶粒径との双方を制御することで、冷陰極蛍光ランプの輝度を向上できる、との知見を得た。本発明は、この知見に基づくものである。具体的には、本発明電極材料は、冷陰極蛍光ランプの電極に用いられるものであり、ニッケル又はニッケル合金からなり、平均結晶粒径が50μm以下、表面粗さSmが50μm以下であることを特徴とする。   The present inventors examined nickel or nickel alloy having excellent plastic workability as an electrode material. By controlling both the surface roughness and the crystal grain size of the electrode material, the brightness of the cold cathode fluorescent lamp was improved. The knowledge that it was possible was acquired. The present invention is based on this finding. Specifically, the electrode material of the present invention is used for an electrode of a cold cathode fluorescent lamp, is made of nickel or a nickel alloy, has an average crystal grain size of 50 μm or less, and a surface roughness Sm of 50 μm or less. Features.

上記本発明電極材料に塑性加工を施すことで、本発明電極が得られる。具体的には、本発明電極は、冷陰極蛍光ランプに用いられるカップ状の電極であり、ニッケル又はニッケル合金からなり、平均結晶粒径が50μm以下であり、内側の底面の表面粗さSmが50μm以下であることを特徴とする。   The electrode of the present invention is obtained by subjecting the electrode material of the present invention to plastic working. Specifically, the electrode of the present invention is a cup-shaped electrode used for a cold cathode fluorescent lamp, is made of nickel or a nickel alloy, has an average crystal grain size of 50 μm or less, and has an inner bottom surface roughness Sm. It is characterized by being 50 μm or less.

更に、本発明冷陰極蛍光ランプは、上記本発明電極を具えることを特徴とする。   Furthermore, the cold cathode fluorescent lamp of the present invention comprises the above-mentioned electrode of the present invention.

表面粗さSmが小さい本発明電極材料により電極を形成することで、この電極の表面粗さSmも小さくすることができる。表面粗さSmが小さい電極は、その表面に微細な凹凸が存在して表面積が大きくなるため、電極表面から電子が放出され易くなり、放電性を高められることから、冷陰極蛍光ランプの輝度を向上することができる。しかし、表面に上記微細な凹凸が存在していても、粗大組織からなる電極では、ランプの点灯初期に放電性に優れていても、放電に伴う電極の消耗により経時的に電極表面が均されることで、点灯初期の放電性を維持できなくなる。そこで、本発明電極材料は、微細組織とする。そして、この材料からなる電極も微細組織となるようにすることで、放電により電極が消費されても、電極表面は、微細な凹凸が存在する状態とすることができ、放電性に優れた状態を維持できる。このように本発明電極材料により、表面に微細な凹凸が存在すると共に微細組織からなる本発明電極を構成することで、この電極を具える本発明ランプは、点灯初期の輝度を向上できるだけでなく、長期に亘り、高輝度を維持することができる。また、本発明電極材料は、塑性加工性に優れるニッケル又はニッケル合金で構成されることから、カップ状の本発明電極を塑性加工により容易に製造でき、本発明電極の生産性の向上にも寄与することができる。更に、ニッケルやニッケル合金は、モリブデンといった金属と比較して融点が低いため、本発明電極は、リード線の接合も容易に行え、本発明冷陰極蛍光ランプの生産性の向上にも寄与することができる。以下、本発明をより詳細に説明する。   By forming an electrode with the electrode material of the present invention having a small surface roughness Sm, the surface roughness Sm of this electrode can also be reduced. An electrode with a small surface roughness Sm has fine irregularities on its surface and a large surface area, so that electrons are easily emitted from the electrode surface and the discharge performance is improved. Can be improved. However, even if the above-mentioned fine irregularities exist on the surface, even if the electrode has a coarse structure, even if the discharge performance is excellent at the beginning of the lamp operation, the electrode surface is leveled over time due to the consumption of the electrode due to discharge. As a result, it becomes impossible to maintain the discharge performance at the beginning of lighting. Therefore, the electrode material of the present invention has a fine structure. And by making the electrode made of this material also have a fine structure, even if the electrode is consumed by discharge, the electrode surface can be in a state where fine irregularities exist, and has excellent discharge characteristics Can be maintained. As described above, the electrode material of the present invention comprises the electrode of the present invention having a fine unevenness on the surface and having a fine structure, so that the lamp of the present invention including this electrode can not only improve the luminance at the initial lighting stage. High luminance can be maintained over a long period of time. In addition, since the electrode material of the present invention is composed of nickel or a nickel alloy having excellent plastic workability, the cup-shaped electrode of the present invention can be easily manufactured by plastic working, contributing to the improvement of the productivity of the electrode of the present invention. can do. Furthermore, since the melting point of nickel and nickel alloys is lower than that of metals such as molybdenum, the electrode of the present invention can easily join lead wires and contribute to the improvement of productivity of the cold cathode fluorescent lamp of the present invention. Can do. Hereinafter, the present invention will be described in more detail.

[電極材料]
(組成)
本発明電極材料は、Ni及び不純物からなるニッケル(純ニッケル)、又は添加元素と残部がNi及び不純物からなるニッケル合金からなるものとする。これらニッケルやニッケル合金は、モリブデンといった金属よりも塑性加工性に優れ、融点も低く、本発明電極材料で電極を作製した際、コバールなどからなるリード線を溶接により容易に接合できる。また、ニッケル合金は、ニッケルよりも結晶粒が微細になり易い。
[Electrode material]
(composition)
The electrode material of the present invention is made of nickel (pure nickel) composed of Ni and impurities, or a nickel alloy composed of additive elements and the balance Ni and impurities. These nickel and nickel alloys are superior in plastic workability and have a lower melting point than metals such as molybdenum, and when an electrode is produced using the electrode material of the present invention, a lead wire made of Kovar or the like can be easily joined by welding. In addition, the nickel alloy tends to have finer crystal grains than nickel.

ニッケル合金は、Ti,Hf,Zr,V,Fe,Nb,Mo,Mn,W,Sr,Ba,B,Th,Be,Si,Al,Y,Mg,In,及び希土類元素(Yを除く)から選ばれる1種以上の元素を合計で0.001質量%以上5.0質量%以下含有し、残部がNi及び不純物からなるものが好ましい。このニッケル合金は、1.ニッケルよりも仕事関数が小さいため放電し易い、2.スパッタリングし難い(エッチングレートが小さい)、3.アマルガムを形成し難い、4.酸化膜を形成し難いため、放電が阻害され難い、といった様々な利点を有する。特に、Yを含有したニッケル合金は、耐スパッタリング性を高め易い。Yの好ましい含有量は、0.01〜2.0質量%である。Y,Si,及びMgを含有するニッケル合金は、耐スパッタリング性を更に向上でき、好ましい含有量は、質量%でY及びSiの合計で0.01〜2.0%、Mg:0.01〜1.0%である。これらの添加元素は、Niとの金属間化合物をつくり、電極材料又は電極中に存在する。   Nickel alloys include Ti, Hf, Zr, V, Fe, Nb, Mo, Mn, W, Sr, Ba, B, Th, Be, Si, Al, Y, Mg, In, and rare earth elements (excluding Y) One or more elements selected from the group consisting of 0.001% by mass to 5.0% by mass in total and the balance consisting of Ni and impurities are preferable. This nickel alloy has a smaller work function than nickel, so it is easy to discharge, 2. It is difficult to sputter (low etching rate), 3. It is difficult to form an amalgam, 4. It is difficult to form an oxide film. Has various advantages such as being difficult to inhibit. In particular, a nickel alloy containing Y tends to improve the sputtering resistance. A preferable content of Y is 0.01 to 2.0% by mass. The nickel alloy containing Y, Si, and Mg can further improve the sputtering resistance, and the preferable content is 0.01 to 2.0% in total by mass and Y and Si, and Mg: 0.01 to 1.0%. These additive elements form an intermetallic compound with Ni and exist in the electrode material or electrode.

(製造方法)
本発明電極材料の形態は、板状材や線状材が挙げられ、代表的には、溶解→鋳造→熱間圧延→冷間塑性加工(板状材:冷間圧延、線材:冷間伸線)及び熱処理により得られる。このような溶製法により製造することで、電極材料は、高密度(相対密度が98%超、概ね100%)であり、このような高密度の電極材料により製造した電極も高密度になり、強度が高い。
(Production method)
Examples of the form of the electrode material of the present invention include plate-like materials and wire-like materials.Typically, melting → casting → hot rolling → cold plastic working (plate-like material: cold rolling, wire material: cold drawing) Line) and heat treatment. By manufacturing by such a melting method, the electrode material has a high density (relative density exceeds 98%, approximately 100%), and the electrode manufactured by such a high-density electrode material also has a high density, High strength.

(表面性状)
本発明電極材料は、その表面が微細な凹凸からなることを特徴の一つとする。具体的には、表面粗さSm(JIS B 0601(1994))が50μm以下である。表面粗さSmが小さいほど、電極の表面粗さSmも小さくなり易く、輝度を向上できるため、特に下限を設けない。より好ましくは、20μm以下である。
(Surface properties)
One feature of the electrode material of the present invention is that its surface is composed of fine irregularities. Specifically, the surface roughness Sm (JIS B 0601 (1994)) is 50 μm or less. As the surface roughness Sm is smaller, the surface roughness Sm of the electrode tends to be smaller and the luminance can be improved. More preferably, it is 20 μm or less.

電極材料の表面粗さSmを50μm以下にするには、冷間塑性加工後の加工材、或いは最終熱処理後の処理材にショットブラストやバレル研磨といった機械的な処理を行うことが挙げられる。機械的な処理に加えて、電極材料の製造条件を調整することで、表面粗さSmを50μm以下にし易い。具体的な条件としては、例えば、最終熱処理(軟化処理)時の加熱温度を700〜1000℃、移動速度(線速)を50℃/sec以上とすることが挙げられる。   In order to reduce the surface roughness Sm of the electrode material to 50 μm or less, mechanical processing such as shot blasting or barrel polishing is performed on the processed material after the cold plastic processing or the processed material after the final heat treatment. In addition to mechanical treatment, the surface roughness Sm can be easily reduced to 50 μm or less by adjusting the manufacturing conditions of the electrode material. As specific conditions, for example, the heating temperature at the final heat treatment (softening treatment) is set to 700 to 1000 ° C., and the moving speed (linear velocity) is set to 50 ° C./sec or more.

(組織)
本発明電極材料は、微細組織を有することを特徴の一つとする。具体的には、平均結晶粒径が50μm以下である。電極材料の平均結晶粒径が小さいほど、電極の平均結晶粒径も小さくなり易く、輝度を向上できるため、特に下限を設けない。より好ましくは、20μm以下である。
(Organization)
One feature of the electrode material of the present invention is that it has a fine structure. Specifically, the average crystal grain size is 50 μm or less. As the average crystal grain size of the electrode material is smaller, the average crystal grain size of the electrode tends to be smaller and the luminance can be improved. More preferably, it is 20 μm or less.

電極材料の平均結晶粒径を50μm以下にするには、例えば、製造条件を制御することが挙げられる。具体的には、最終熱処理(軟化処理)において加熱温度を比較的高温とすると共に、加熱時間を短くして、粒成長を促進しないようにする。具体的な条件は、加熱温度を700〜1000℃、特に、800〜900℃程度とし、移動速度(線速)を50℃/sec以上、特に80℃/sec以上とすることが挙げられる。電極材料をニッケル合金で構成する場合、添加元素の種類や含有量を調整することでも、平均結晶粒径を調整することができる。   In order to reduce the average crystal grain size of the electrode material to 50 μm or less, for example, the production conditions can be controlled. Specifically, in the final heat treatment (softening treatment), the heating temperature is set to a relatively high temperature, and the heating time is shortened so as not to promote grain growth. Specific conditions include a heating temperature of 700 to 1000 ° C., particularly about 800 to 900 ° C., and a moving speed (linear velocity) of 50 ° C./sec or more, particularly 80 ° C./sec or more. When the electrode material is composed of a nickel alloy, the average crystal grain size can also be adjusted by adjusting the type and content of the additive element.

(仕事関数)
表面が微細な凹凸形状であり、かつ微細組織からなる本発明電極材料は、放電性に優れ、仕事関数が小さい。具体的には、4.7eV未満である。このような電極材料からなる本発明電極も仕事関数が小さくなり、仕事関数が小さいほど、電極から電子が放出され易く、冷陰極蛍光ランプがこの電子を利用することで発光し易くなり、輝度を向上できるため、特に下限を設けない。より好ましくは、4.3eV以下である。
(Work function)
The electrode material of the present invention having a fine uneven surface and a fine structure is excellent in dischargeability and has a small work function. Specifically, it is less than 4.7 eV. The electrode of the present invention made of such an electrode material also has a smaller work function. The smaller the work function, the easier the electrons are emitted from the electrode, and the cold cathode fluorescent lamp makes it easier to emit light by using these electrons. There is no particular lower limit because it can be improved. More preferably, it is 4.3 eV or less.

(エッチングレート)
表面が微細な凹凸形状であり、かつ微細組織からなる本発明電極材料は、更に、耐スパッタリング性にも優れ、エッチングレートが小さい。具体的には、22nm/min未満である。特に下限を設けない。エッチングレートが小さいほど、スパッタリング層が生成され難くなってこの層に取り込まれる水銀量を低減して、水銀を発光に十分に利用できることからランプの輝度を向上できる。より好ましくは、20nm/min以下である。このような電極材料からなる本発明電極もエッチングレートが小さい。
(Etching rate)
The electrode material of the present invention having a fine uneven surface and a fine structure is further excellent in sputtering resistance and has a low etching rate. Specifically, it is less than 22 nm / min. There is no particular lower limit. The smaller the etching rate, the more difficult it is to produce a sputtering layer, the amount of mercury taken into this layer is reduced, and mercury can be fully utilized for light emission, so that the brightness of the lamp can be improved. More preferably, it is 20 nm / min or less. The electrode of the present invention made of such an electrode material also has a low etching rate.

上記仕事関数やエッチングレートは、表面粗さSmや平均結晶粒径をより小さくすることで、小さくなる傾向にある。また、仕事関数やエッチングレートは、本発明電極材料をニッケル合金で構成する場合、添加元素の種類や含有量を調整することで変化させられ、添加元素の含有量を多くすると、小さくなる傾向にある。仕事関数及びエッチングレートの測定方法は、後述する。   The work function and etching rate tend to be reduced by reducing the surface roughness Sm and the average crystal grain size. In addition, when the electrode material of the present invention is made of a nickel alloy, the work function and the etching rate can be changed by adjusting the type and content of the additive element, and tend to decrease when the content of the additive element is increased. is there. A method for measuring the work function and the etching rate will be described later.

[電極]
上記本発明電極材料に、プレス加工(板状材の場合)や鍛造加工(線状材の場合)といった塑性加工を施すことで、中空の有底筒からなるカップ状の本発明電極が得られる。カップ状の電極は、ホローカソード効果により、スパッタリング現象をある程度抑制できる。本発明電極材料は、上述のように塑性加工性に優れるニッケルやニッケル合金から構成されるため、上記塑性加工を冷間で行える。また、冷間加工とすることで、電極材料の微細組織を維持し易い。カップ状に形成した加工材に、別途、上述した機械的な処理を行うと、確実に、表面粗さSmを50μm以下にすることができる。カップ状の電極では、通常、その内側、特に底面を中心に放電が起こる。そのため、カップ状の電極の少なくとも内側の底面の表面粗さSmが小さければ、放電性や耐スパッタリング性を高めて高輝度にし易い。そこで、本発明電極は、少なくとも内側の底面の表面粗さSmを50μm以下とする。内側の全面に亘って表面粗さSmが50μm以下でもよいし、外側の面は、表面粗さSmが50μm以下でも50μm超でもよい。
[electrode]
By subjecting the electrode material of the present invention to plastic working such as pressing (in the case of a plate-like material) or forging (in the case of a wire-like material), a cup-shaped electrode of the present invention comprising a hollow bottomed tube is obtained. . The cup-like electrode can suppress the sputtering phenomenon to some extent due to the hollow cathode effect. Since the electrode material of the present invention is composed of nickel or a nickel alloy having excellent plastic workability as described above, the plastic work can be performed in a cold state. Moreover, it is easy to maintain the microstructure of the electrode material by performing cold working. If the above-described mechanical treatment is separately performed on the cup-shaped workpiece, the surface roughness Sm can be reliably reduced to 50 μm or less. In a cup-shaped electrode, discharge generally occurs mainly on the inside, particularly the bottom surface. Therefore, if the surface roughness Sm of at least the inner bottom surface of the cup-shaped electrode is small, it is easy to increase the discharge property and the sputtering resistance and to increase the brightness. Therefore, in the electrode of the present invention, the surface roughness Sm of at least the inner bottom surface is set to 50 μm or less. The surface roughness Sm may be 50 μm or less over the entire inner surface, and the outer surface may have a surface roughness Sm of 50 μm or less or more than 50 μm.

なお、表面粗さSm及び平均結晶粒径が共に50μm以下の電極材料を用いて電極や冷陰極蛍光ランプを製造する際、プレス加工や鍛造加工、リード線の溶接などにより、電極の表面粗さや結晶粒径が、電極材料の表面粗さや結晶粒径から若干変化することがある。しかし、電極の表面粗さや結晶粒径は、上記電極材料の表面粗さや結晶粒径に基本的に依存し、電極材料の表面粗さSm及び平均結晶粒径が50μm以下であれば、概ね50μm以下にすることができる。   When manufacturing an electrode or a cold cathode fluorescent lamp using an electrode material having a surface roughness Sm and an average crystal grain size of 50 μm or less, the surface roughness of the electrode may be increased by pressing, forging, welding a lead wire, etc. The crystal grain size may vary slightly from the surface roughness or crystal grain size of the electrode material. However, the surface roughness and crystal grain size of the electrode basically depend on the surface roughness and crystal grain size of the above electrode material, and if the surface roughness Sm and average crystal grain size of the electrode material are 50 μm or less, it is approximately 50 μm. It can be:

本発明電極材料及び本発明電極は、冷陰極蛍光ランプの輝度の向上に貢献することができる。本発明冷陰極蛍光ランプは、高輝度である。   The electrode material of the present invention and the electrode of the present invention can contribute to the improvement of the luminance of the cold cathode fluorescent lamp. The cold cathode fluorescent lamp of the present invention has high brightness.

以下、本発明の実施の形態を説明する。
表1に示す組成からなる電極材料(板状材、線状材)を作製して、その特性を調べた。また、この電極材料からカップ状の電極を作製し、更に、この電極を用いた冷陰極蛍光ランプを作製して、その性能を評価した。
Embodiments of the present invention will be described below.
Electrode materials (plate-like materials and wire-like materials) having the compositions shown in Table 1 were produced, and their characteristics were examined. Moreover, a cup-shaped electrode was produced from this electrode material, and a cold cathode fluorescent lamp using this electrode was further produced, and its performance was evaluated.

(試料No.1,2,101,102)
板状の電極材料を以下のように作製した。通常の真空溶解炉を用いて表1に示す成分組成を有する金属の溶湯を作製し、溶湯温度を適宜調整して、真空鋳造により鋳塊を得た。得られた鋳塊に熱間圧延を施し、厚さ4.2mmの圧延板材を得た。この圧延板材に熱処理を施した後、表面を切削し、厚さ4.0mmの処理板材を得た。この処理板材に冷間圧延及び熱処理を繰り返し行い、得られた板材に最終熱処理(軟化処理)を施して、厚さ0.2mmの板状の軟材を得た。軟化処理は、温度を800℃とし、移動速度を10〜150℃/secの範囲で適宜選択し、水素雰囲気で行った。移動速度を上記範囲で異ならせることで、同じ成分組成でも平均粒径の異なる板状材が得られた。
(Sample No.1,2,101,102)
A plate-like electrode material was produced as follows. A metal melt having the composition shown in Table 1 was prepared using a normal vacuum melting furnace, the melt temperature was appropriately adjusted, and an ingot was obtained by vacuum casting. The obtained ingot was hot-rolled to obtain a rolled plate material having a thickness of 4.2 mm. After heat-treating this rolled plate, the surface was cut to obtain a treated plate having a thickness of 4.0 mm. This treated plate was repeatedly subjected to cold rolling and heat treatment, and the obtained plate was subjected to final heat treatment (softening treatment) to obtain a plate-like soft material having a thickness of 0.2 mm. The softening treatment was performed in a hydrogen atmosphere at a temperature of 800 ° C. and a moving speed of 10 to 150 ° C./sec as appropriate. By varying the moving speed within the above range, plate-like materials having different average particle diameters even with the same component composition were obtained.

(試料No.3〜5,103)
線状の電極材料を以下のように作製した。通常の真空溶解炉を用いて表1に示す成分組成を有する金属の溶湯を作製し、溶湯温度を適宜調整して、真空鋳造により鋳塊を得た。得られた鋳塊を熱間圧延により線径5.5mmφまで加工して圧延線材を得た。この圧延線材に冷間伸線及び熱処理を組み合わせて施し、得られた線材に最終熱処理(軟化処理)を施して、線径1.6mmφの線状の軟材を得た。軟化処理は、温度を800℃、移動速度(線速)を10〜150℃/secの範囲で適宜選択し、水素雰囲気で行った。移動速度を上記範囲で異ならせることで、平均粒径を変化させた。
(Sample Nos. 3-5, 103)
A linear electrode material was produced as follows. A metal melt having the composition shown in Table 1 was prepared using a normal vacuum melting furnace, the melt temperature was appropriately adjusted, and an ingot was obtained by vacuum casting. The obtained ingot was processed to a wire diameter of 5.5 mmφ by hot rolling to obtain a rolled wire. This rolled wire was subjected to a combination of cold drawing and heat treatment, and the obtained wire was subjected to final heat treatment (softening treatment) to obtain a linear soft material having a wire diameter of 1.6 mmφ. The softening treatment was performed in a hydrogen atmosphere by appropriately selecting a temperature of 800 ° C. and a moving speed (linear velocity) in the range of 10 to 150 ° C./sec. The average particle size was changed by varying the moving speed within the above range.

表1に示す「Ni」は、市販の純ニッケル(99.0質量%以上Ni)であり、精錬により、C及びSの合計含有量を低減させたものを用いた。溶解は、大気溶解炉で行ってもよく、この場合、精錬などにより不純物や介在物を除去又は低減したり、温度調整を行って溶湯を調整する。熱処理は、水素雰囲気下又は窒素雰囲気下で行う。圧延板材や軟材の厚さ、圧延線材や軟材の線径は、適宜選択することができる。軟材の厚さは、0.1〜0.3mmが好ましく、軟材の線径は、0.5〜5mmφが好ましい。軟化処理は、熱伝導率が高い水素の含有量が高い雰囲気(特に、水素雰囲気)で行うと、効率よく加熱できることから移動速度(線速)を速められるため、生産性を向上することができる。一方、軟化処理を水素の含有量が少ない、或いは窒素雰囲気などの水素を含まない雰囲気で行うと、電極の水素含有量を低減して、リード線の溶接時などで電極が酸化変色することを防止できる。   “Ni” shown in Table 1 is commercially available pure nickel (Ni of 99.0% by mass or more), and used by reducing the total content of C and S by refining. Melting may be performed in an atmospheric melting furnace. In this case, impurities or inclusions are removed or reduced by refining or the like, or the temperature is adjusted to adjust the molten metal. The heat treatment is performed in a hydrogen atmosphere or a nitrogen atmosphere. The thickness of the rolled plate material or soft material, and the wire diameter of the rolled wire material or soft material can be selected as appropriate. The thickness of the soft material is preferably 0.1 to 0.3 mm, and the wire diameter of the soft material is preferably 0.5 to 5 mmφ. When the softening treatment is performed in an atmosphere with a high hydrogen content (especially a hydrogen atmosphere) with a high thermal conductivity, the heating speed can be increased because the heating can be efficiently performed, so that productivity can be improved. . On the other hand, if the softening treatment is performed in an atmosphere that contains little hydrogen or does not contain hydrogen, such as a nitrogen atmosphere, the hydrogen content of the electrode is reduced, and the electrode is oxidized and discolored during welding of the lead wire. Can be prevented.

得られた軟材について、平均結晶粒径を調べた。その結果を表1に示す。平均結晶粒径は、JIS G 0551(2005)に示す方法に準じ、軟材の断面を顕微鏡により組織観察することで行った。   About the obtained soft material, the average crystal grain diameter was investigated. The results are shown in Table 1. The average crystal grain size was determined by observing the cross section of the soft material with a microscope in accordance with the method shown in JIS G 0551 (2005).

得られた軟材に表面処理を施して電極材料とし、この電極材料の表面粗さSmを測定した。その結果を表1に示す。表面処理は、バレル研磨(市販の研磨機を使用)で行い、所望の表面粗さSmが得られるように適宜バレル用研磨材を選択した。なお、試料No.101は、表面処理を行っていない。表面粗さSmは、JIS B 0601(1994)に準じ、光学式表面形状計測器で測定した。   The obtained soft material was subjected to a surface treatment to obtain an electrode material, and the surface roughness Sm of the electrode material was measured. The results are shown in Table 1. The surface treatment was performed by barrel polishing (using a commercially available polishing machine), and a barrel abrasive was appropriately selected so as to obtain a desired surface roughness Sm. Sample No. 101 was not subjected to surface treatment. The surface roughness Sm was measured with an optical surface shape measuring instrument in accordance with JIS B 0601 (1994).

得られた電極材料について、仕事関数及びエッチングレートを調べた。その結果を表1に示す。仕事関数は、前処理としてArイオンエッチングを数分間実施した後、紫外線光電子分光分析法により測定した。上記前処理のエッチングは、イオン照射時間が短いため、表面粗さへの影響は無視できると考えられる。測定は、複合電子分光分析装置(PHI製ESCA-5800 付属 UV-150HI)を用い、紫外線源:He
I (21.22eV)/8W,測定時の真空度:3×10-9〜6×10-9torr(0.4×10-9〜0.8×10-9kPa),測定前のベース真空度:4×10-10torr(5.3×10-11kPa),印加バイアス:約-10V,エネルギー分解能:0.13eV,分析エリア:φ800μm 楕円形,分析深さ:約1nmとした。その他、仕事関数は、大気走査型ケルビンプローブ(英国KP Technology社製)を用いて測定することもできる(使用プローブのチップサイズ:直径2mm)。この場合、各試料に対し、測定位置をずらしながら複数点(例えば、N=5)測定し、その平均値を利用する。エッチングレートは、以下のようにして求めた。前処理として電極材料に部分的にマスキングを行い、マスキングされていない露出部分にイオン照射を所定時間行った後、イオン照射により露出部分により生じた窪みの平均深さを測定し、平均深さ/照射時間をエッチングレートとした。イオン照射は、X線光電子分光分析装置(PHI製 Quantum-2000)を用い、加速電圧:4kV,イオン種:Ar+,照射時間:120min,真空度:2×10-8〜4×10-8torr(2.7×10-9〜5.3×10-9kPa),アルゴン圧:約15mPa,入射角度:試料面に対して約45度として行い、窪みの深さは、触針式表面形状測定器(Vecco社製
Dektak-3030)を用い、触針:ダイヤモンド 半径=5μm,針圧:20mg,走査距離:2mm,走査速度:Mediumとして測定した。
About the obtained electrode material, the work function and the etching rate were investigated. The results are shown in Table 1. The work function was measured by ultraviolet photoelectron spectroscopy after Ar ion etching was performed for several minutes as a pretreatment. In the above pretreatment etching, the ion irradiation time is short, so the influence on the surface roughness is considered negligible. Measurement is performed using a composite electron spectrometer (UV-150HI attached to ESCA-5800 manufactured by PHI).
I (21.22eV) / 8W, vacuum during measurement: 3 × 10 -9 to 6 × 10 -9 torr (0.4 × 10 -9 to 0.8 × 10 -9 kPa), base vacuum before measurement: 4 × 10 −10 torr (5.3 × 10 −11 kPa), applied bias: about −10 V, energy resolution: 0.13 eV, analysis area: φ800 μm oval, analysis depth: about 1 nm. In addition, the work function can also be measured using an air scanning Kelvin probe (manufactured by KP Technology, UK) (tip size of probe used: 2 mm in diameter). In this case, a plurality of points (for example, N = 5) are measured for each sample while shifting the measurement position, and the average value is used. The etching rate was determined as follows. As a pre-treatment, the electrode material is partially masked, and after the ion irradiation is performed for a predetermined time on the unmasked exposed portion, the average depth of the dent caused by the exposed portion is measured by the ion irradiation, and the average depth / The irradiation time was taken as the etching rate. Ion irradiation uses an X-ray photoelectron spectrometer (Quantum-2000 manufactured by PHI), acceleration voltage: 4 kV, ion species: Ar + , irradiation time: 120 min, degree of vacuum: 2 × 10 −8 to 4 × 10 −8 torr (2.7 x 10 -9 to 5.3 x 10 -9 kPa), argon pressure: about 15 mPa, incident angle: about 45 degrees with respect to the sample surface, the depth of the dent is a stylus type surface shape measuring instrument ( Made by Vecco
Dektak-3030) was used, and measurement was carried out using a stylus: diamond radius = 5 μm, needle pressure: 20 mg, scanning distance: 2 mm, and scanning speed: Medium.

Figure 2009252382
Figure 2009252382

表1に示すように、電極材料は、表面粗さSm及び平均結晶粒径が50μm以下であると、仕事関数及びエッチングレートが小さいことが分かる。また、表面粗さSmや平均結晶粒径が小さいほど仕事関数やエッチングレートが小さくなる傾向にあることが分かる。 As shown in Table 1, when the electrode material has a surface roughness Sm and an average crystal grain size of 50 μm or less, the work function and the etching rate are small. It can also be seen that the work function and the etching rate tend to decrease as the surface roughness Sm and the average crystal grain size decrease.

得られた板状の電極材料を所定の大きさ(10mm角)に切断し、得られた板状片に冷間プレス加工を施して、カップ状の電極(外径1.6mmφ、長さ3.0mm、開口部の直径1.4mmφ、開口部の深さ2.8mm、底部分の厚さ0.2m)を作製した。なお、電極の大きさは、適宜変更することができる。   The obtained plate-shaped electrode material was cut into a predetermined size (10 mm square), and the obtained plate-shaped piece was subjected to cold pressing, and a cup-shaped electrode (outer diameter 1.6 mmφ, length 3.0 mm) The diameter of the opening is 1.4 mmφ, the depth of the opening is 2.8 mm, and the thickness of the bottom is 0.2 m. The size of the electrode can be changed as appropriate.

得られた線状の電極材料を所定長(1.0mm)に切断し、得られた短尺材に冷間鍛造加工を施して、カップ状の電極を作製した。その結果、いずれの組成を有する軟材もカップ状の電極(外径1.6mmφ、長さ3.0mm、開口部の直径1.4mmφ、開口部の深さ2.6mm、底部の厚さ0.4mm)を得ることができた。   The obtained linear electrode material was cut into a predetermined length (1.0 mm), and the obtained short material was subjected to cold forging to produce a cup-shaped electrode. As a result, a soft material having any composition obtains a cup-shaped electrode (outer diameter 1.6 mmφ, length 3.0 mm, opening diameter 1.4 mmφ, opening depth 2.6 mm, bottom thickness 0.4 mm). I was able to.

得られた電極のうち、試料No.1〜5,102,103の電極は、ブラスト処理を施して表面粗さを調整した。ブラスト処理は、市販のブラスト装置を用い、所望の表面粗さSmが得られるように適宜ブラスト用研磨材を選択した。この処理後に、電極の内側の底面の表面粗さSmを電極材料の場合と同様にして調べたところ、電極材料のときの表面粗さと同等であった。また、電極の平均結晶粒径を電極材料の場合と同様にして調べたところ、電極材料のときの平均結晶粒径と同等であった。   Among the obtained electrodes, the electrodes of Sample Nos. 1 to 5, 102, and 103 were subjected to blast treatment to adjust the surface roughness. For the blasting treatment, a commercially available blasting apparatus was used, and an abrasive for blasting was appropriately selected so that a desired surface roughness Sm was obtained. After this treatment, the surface roughness Sm of the bottom surface inside the electrode was examined in the same manner as in the case of the electrode material, which was equivalent to the surface roughness for the electrode material. Further, when the average crystal grain size of the electrode was examined in the same manner as in the case of the electrode material, it was equal to the average crystal grain size in the case of the electrode material.

得られた電極を用いて冷陰極蛍光ランプを作製し、初期輝度と500時間経過後の輝度を調べた。その結果を表2に示す。試料No.101の冷陰極蛍光ランプの初期の中央輝度(43000cd/m2)を100とし、その他の試料の初期輝度及び500時間経過後の輝度を相対的に表わした。 A cold cathode fluorescent lamp was prepared using the obtained electrode, and the initial luminance and the luminance after 500 hours were examined. The results are shown in Table 2. The initial central luminance (43000 cd / m 2 ) of the cold cathode fluorescent lamp of sample No. 101 was set to 100, and the initial luminance of the other samples and the luminance after 500 hours were relatively expressed.

冷陰極蛍光ランプは、以下のように作製した。コバールからなるインナーリード線と銅被覆Ni合金線からなるアウターリード線とを溶接し、更に、上記電極の外側の底面にインナーリード線を溶接する。ニッケルやニッケル合金とコバールとは融点が同程度或いは比較的近いため、電極とインナーリード線とを簡単に接合できた。上記インナーリード線の外周にガラスビーズを溶着させて、リード線、電極、及びガラスビーズが一体化した電極部材を一対作製する。次に、内壁面に蛍光体層(ここではハロリン酸塩蛍光体層)を有し、両端が開口した円筒状のガラス管の一端に一方の電極部材を挿入し、ガラスビーズと管の一端とを溶着して、管の一端を封止すると共に、電極を管内に固定する。次に、ガラス管の他端から真空引きして希ガス(ここではArガス)及び水銀を導入し、他方の電極部材を挿入して電極を固定すると共にガラス管を封止する。この手順により、一対のカップ状の電極の開口部が対向配置された冷陰極蛍光ランプが得られる。   The cold cathode fluorescent lamp was produced as follows. An inner lead wire made of Kovar and an outer lead wire made of a copper-coated Ni alloy wire are welded, and further, an inner lead wire is welded to the bottom surface outside the electrode. Since nickel or nickel alloy and Kovar have the same or relatively close melting points, the electrode and the inner lead wire could be easily joined. Glass beads are welded to the outer circumference of the inner lead wire to produce a pair of electrode members in which the lead wire, the electrode, and the glass bead are integrated. Next, a phosphor layer (here, a halophosphate phosphor layer) is provided on the inner wall surface, one electrode member is inserted into one end of a cylindrical glass tube having both ends opened, and glass beads and one end of the tube Is welded to seal one end of the tube and fix the electrode in the tube. Next, a vacuum is drawn from the other end of the glass tube to introduce a rare gas (Ar gas here) and mercury, and the other electrode member is inserted to fix the electrode and seal the glass tube. By this procedure, a cold cathode fluorescent lamp in which the openings of a pair of cup-shaped electrodes are arranged to face each other is obtained.

Figure 2009252382
Figure 2009252382

表2に示すように、平均結晶粒径及び表面粗さSmが50μm以下である電極材料により作製した電極を具える冷陰極蛍光ランプは、初期輝度が高いだけでなく、長時間経過後も高輝度を維持できることが分かる。特に、平均結晶粒径及び表面粗さが小さいほど、初期輝度を向上できると共に、高輝度を長期に亘り維持できる傾向にあることが分かる。このことから、電極材料の平均結晶粒径及び表面粗さSmを制御することで、高輝度な冷陰極蛍光ランプが得られると言える。   As shown in Table 2, a cold cathode fluorescent lamp comprising an electrode made of an electrode material having an average crystal grain size and a surface roughness Sm of 50 μm or less has not only high initial luminance but also high after a long period of time. It can be seen that the luminance can be maintained. In particular, it can be seen that as the average crystal grain size and the surface roughness are smaller, the initial luminance can be improved and high luminance can be maintained over a long period of time. From this, it can be said that a high-brightness cold cathode fluorescent lamp can be obtained by controlling the average crystal grain size and the surface roughness Sm of the electrode material.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、電極材料や電極の組成、平均結晶粒径、表面粗さSmを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the electrode material, the electrode composition, the average crystal grain size, and the surface roughness Sm can be appropriately changed.

本発明電極材料は、冷陰極蛍光ランプの電極用素材に好適に利用できる。本発明電極は、冷陰極蛍光ランプの電極に好適に利用できる。本発明冷陰極蛍光ランプは、例えば、パソコンの液晶モニタや液晶テレビなどの液晶表示装置のバックライト用光源、小型ディスプレイのフロントライト用光源、複写機やスキャナなどの原稿照射用光源、複写機のイレイサー用光源といった種々の電気機器の光源に好適に利用できる。   The electrode material of the present invention can be suitably used as an electrode material for a cold cathode fluorescent lamp. The electrode of the present invention can be suitably used as an electrode for a cold cathode fluorescent lamp. The cold cathode fluorescent lamp of the present invention is, for example, a backlight light source for a liquid crystal display device such as a liquid crystal monitor of a personal computer or a liquid crystal television, a light source for a front light of a small display, a light source for document irradiation such as a copying machine or a scanner, It can be suitably used as a light source for various electrical devices such as a light source for an eraser.

Claims (6)

冷陰極蛍光ランプの電極に用いられる電極材料であって、
ニッケル又はニッケル合金からなり、
平均結晶粒径が50μm以下、表面粗さSmが50μm以下であることを特徴とする電極材料。
An electrode material used for an electrode of a cold cathode fluorescent lamp,
Made of nickel or nickel alloy,
An electrode material having an average crystal grain size of 50 μm or less and a surface roughness Sm of 50 μm or less.
前記ニッケル合金は、Ti,Hf,Zr,V,Fe,Nb,Mo,Mn,W,Sr,Ba,B,Th,Be,Si,Al,Y,Mg,In,及び希土類元素(Yを除く)から選ばれた少なくとも1種の元素を合計で0.001質量%以上5.0質量%以下含有し、残部がNi及び不純物からなることを特徴とする請求項1に記載の電極材料。   The nickel alloy includes Ti, Hf, Zr, V, Fe, Nb, Mo, Mn, W, Sr, Ba, B, Th, Be, Si, Al, Y, Mg, In, and rare earth elements (excluding Y 2. The electrode material according to claim 1, wherein at least one element selected from (1) is contained in a total amount of 0.001% by mass to 5.0% by mass, with the balance being Ni and impurities. 前記電極材料の仕事関数が4.7eV未満であることを特徴とする請求項1又は2に記載の電極材料。   3. The electrode material according to claim 1, wherein a work function of the electrode material is less than 4.7 eV. 前記電極材料のエッチングレートが22nm/min未満であることを特徴とする請求項1〜3のいずれか1項に記載の電極材料。   The electrode material according to any one of claims 1 to 3, wherein an etching rate of the electrode material is less than 22 nm / min. 冷陰極蛍光ランプに用いられるカップ状の電極であって、
ニッケル又はニッケル合金からなり、
平均結晶粒径が50μm以下であり、
この電極の内側の底面の表面粗さSmが50μm以下であることを特徴とする電極。
A cup-shaped electrode used in a cold cathode fluorescent lamp,
Made of nickel or nickel alloy,
The average crystal grain size is 50 μm or less,
An electrode characterized in that the surface roughness Sm of the bottom surface inside the electrode is 50 μm or less.
請求項5に記載の電極を具えることを特徴とする冷陰極蛍光ランプ。   6. A cold cathode fluorescent lamp comprising the electrode according to claim 5.
JP2008095428A 2008-04-01 2008-04-01 Electrode material, electrode, and cold cathode fluorescent lamp Pending JP2009252382A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008095428A JP2009252382A (en) 2008-04-01 2008-04-01 Electrode material, electrode, and cold cathode fluorescent lamp
DE200910014615 DE102009014615A1 (en) 2008-04-01 2009-03-24 Electrode material, electrode and cold cathode fluorescent lamp
TW98110560A TW200943369A (en) 2008-04-01 2009-03-31 Electrode material, electrode, and cold cathode fluorescent lamp
CN2009101337149A CN101552176B (en) 2008-04-01 2009-04-01 Electrode material, electrode and cold-cathode fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095428A JP2009252382A (en) 2008-04-01 2008-04-01 Electrode material, electrode, and cold cathode fluorescent lamp

Publications (1)

Publication Number Publication Date
JP2009252382A true JP2009252382A (en) 2009-10-29

Family

ID=41078844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095428A Pending JP2009252382A (en) 2008-04-01 2008-04-01 Electrode material, electrode, and cold cathode fluorescent lamp

Country Status (4)

Country Link
JP (1) JP2009252382A (en)
CN (1) CN101552176B (en)
DE (1) DE102009014615A1 (en)
TW (1) TW200943369A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952611B2 (en) 2010-03-05 2015-02-10 Panasonic Corporation Electrode used for discharge lamp, high pressure discharge lamp, lamp unit, and projection image display apparatus
CN104532064A (en) * 2014-12-25 2015-04-22 春焱电子科技(苏州)有限公司 Alloy for electronic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109469A1 (en) * 2004-05-10 2005-11-17 Kabushiki Kaisha Toshiba Cold-cathode tube-use sintered electrode, cold-cathode tube provided with this cold-cathode tube-use sintered electrode and liquid crystal display unit
JP2007173197A (en) * 2005-05-25 2007-07-05 Sumitomo Electric Ind Ltd Electrode material
JP2007250343A (en) * 2006-03-16 2007-09-27 Toshiba Corp Manufacturing method of sintered electrode for cold-cathode tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005109469A1 (en) * 2004-05-10 2005-11-17 Kabushiki Kaisha Toshiba Cold-cathode tube-use sintered electrode, cold-cathode tube provided with this cold-cathode tube-use sintered electrode and liquid crystal display unit
JP2007173197A (en) * 2005-05-25 2007-07-05 Sumitomo Electric Ind Ltd Electrode material
JP2007250343A (en) * 2006-03-16 2007-09-27 Toshiba Corp Manufacturing method of sintered electrode for cold-cathode tube

Also Published As

Publication number Publication date
DE102009014615A1 (en) 2009-10-22
TW200943369A (en) 2009-10-16
CN101552176A (en) 2009-10-07
CN101552176B (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP4367954B2 (en) Electrode material
TWI430324B (en) Electrode member for cold cathode fluorescent lamp and method for manufacturing the same
JP2009252382A (en) Electrode material, electrode, and cold cathode fluorescent lamp
JP2004235073A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and fluorescent discharge tube provided with the electrode
JP4831481B2 (en) Alloys for cold cathode discharge tube electrodes
JP2008123722A (en) Electrode material for cold-cathode fluorescent lamp
KR20090105808A (en) Electrode material, electrode, and cold cathode fluorescent lamp
US20090108731A1 (en) Electrode for cold-cathode fluorescent lamp
JP2007220669A (en) Alloy for cold-cathode discharge tube electrode, electrode for cold-cathode discharge tube, and cold-cathode discharge tube for backlight for liquid crystal display
JP2009289556A (en) Electrode and its manufacturing method
JP4612748B2 (en) Electrode material
JP2004235072A (en) Electrode alloy for fluorescent discharge tube, electrode for the fluorescent discharge tube and the fluorescent discharge tube provided with the electrode
KR101204605B1 (en) Electrode material
KR101108765B1 (en) Fluorescent discharge lamp electrode, and fluorescent discharge lamp having the electrode
JP2008204837A (en) Electrode for cold-cathode fluorescent lamp
JP5629148B2 (en) Cold cathode discharge tube electrode and cold cathode discharge tube using the same
JP4934156B2 (en) Cold cathode fluorescent tube electrode and cold cathode fluorescent tube using the same
JP2009215646A (en) Alloy for cold cathode discharge tube electrode
JP2009197319A (en) Alloy for cold cathode discharge tube electrode
JP2010013694A (en) Alloy for cold cathode discharge tube electrode
JP2009161852A (en) Alloy for electrode for cold cathode discharge tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121026

Free format text: JAPANESE INTERMEDIATE CODE: A02