JP2007213886A - Transparent conductive laminate - Google Patents

Transparent conductive laminate Download PDF

Info

Publication number
JP2007213886A
JP2007213886A JP2006030656A JP2006030656A JP2007213886A JP 2007213886 A JP2007213886 A JP 2007213886A JP 2006030656 A JP2006030656 A JP 2006030656A JP 2006030656 A JP2006030656 A JP 2006030656A JP 2007213886 A JP2007213886 A JP 2007213886A
Authority
JP
Japan
Prior art keywords
layer
transparent conductive
thin film
transparent
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006030656A
Other languages
Japanese (ja)
Other versions
JP4894279B2 (en
Inventor
Ryoji Ishii
良治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006030656A priority Critical patent/JP4894279B2/en
Publication of JP2007213886A publication Critical patent/JP2007213886A/en
Application granted granted Critical
Publication of JP4894279B2 publication Critical patent/JP4894279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive laminate which achieves both transparency of high transmissivity and electrical conductivity of low resistance. <P>SOLUTION: The transparent conductive laminate is formed by laminating a first layer (12) comprising a transparent electroconductive thin film, a second layer (13) comprising a low refractive thin film layer lower than those of the first layer (12) and a third layer (14), and the third layer (14) comprising a transparent conductive thin film on a transparent base (11) in this order from the side of the transparent base (11). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、透明導電性薄膜に係わり、特に、透明導電性薄膜を積層した高透過率で低抵抗な積層体に関する。   The present invention relates to a transparent conductive thin film, and more particularly to a laminate having a high transmittance and a low resistance in which transparent conductive thin films are stacked.

近年、タッチパネルやフラットパネルディスプレイの開発が進み、透明で導電性のある薄膜(透明導電性薄膜)の需要が高まっている。また、表示画像の高画質化や高輝度化によって透明導電性薄膜の品質要求も高くなっている。具体的には、鮮明な画像のため高透過率が求められ、電流を多く流すため低抵抗化が要求されている。   In recent years, the development of touch panels and flat panel displays has advanced, and the demand for transparent and conductive thin films (transparent conductive thin films) has increased. Moreover, the quality requirement of a transparent conductive thin film is also increasing by the improvement in the image quality and brightness of a display image. Specifically, a high transmittance is required for a clear image, and a low resistance is required to allow a large amount of current to flow.

高透過率を達成するものとしては、透明基板上に、透明基板の屈折率より高い屈折率を持つ透明誘電体の第1薄膜層と、透明基板の屈折率より低い屈折率を持つ透明誘電体の第2薄膜層と、最外層に導電性を有する透明誘電体の第3薄膜層とを積層することで、反射率を低減し高い透過率を得る、導電性を有する多層反射防止膜付透明基板がある(例えば特許文献1参照)。しかしながら、この導電性を有する多層反射防止膜付透明基板は、低い抵抗値を実現するものではない。
特公2000−863924号公報
For achieving high transmittance, a transparent thin film having a refractive index higher than the refractive index of the transparent substrate on the transparent substrate, and a transparent dielectric having a refractive index lower than the refractive index of the transparent substrate. The second thin film layer and the third thin film layer of a transparent dielectric material having conductivity are laminated on the outermost layer, thereby reducing the reflectance and obtaining a high transmittance. Transparent with a conductive multilayer antireflection film There is a substrate (see, for example, Patent Document 1). However, this conductive transparent substrate with a multilayer antireflection film does not realize a low resistance value.
Japanese Patent Publication No. 2000-863924

本発明は斯かる背景技術に鑑みてなされたもので、高透過率の透明性と、低抵抗の導電性とを同時に実現する透明導電性積層体を提供することを課題とする。   This invention is made | formed in view of such a background art, and makes it a subject to provide the transparent electroconductivity laminated body which implement | achieves transparency with high transmittance | permeability, and low resistance electroconductivity simultaneously.

本発明において上記課題を達成するために、まず請求項1の発明では、透明基材上に、透明基材側より透明導電性薄膜からなる第1層、第1層および第3層よりも屈折率が低い低屈折率薄膜層からなる第2層、透明導電性薄膜からなる第3層を積層してなることを特徴とする透明導電性積層体としたものである。   In order to achieve the above object in the present invention, first, in the invention of claim 1, the first layer, the first layer, and the third layer made of a transparent conductive thin film are refracted on the transparent substrate from the transparent substrate side. A transparent conductive laminate is formed by laminating a second layer made of a low refractive index thin film layer having a low refractive index and a third layer made of a transparent conductive thin film.

また請求項2の発明では、第3層の透明導電性薄膜の光学膜厚が、第1層の透明導電性薄膜の光学膜厚よりも大きいことを特徴とする請求項1に記載の透明導電性積層体としたものである。   In the invention of claim 2, the transparent conductive film according to claim 1, wherein the optical film thickness of the transparent conductive thin film of the third layer is larger than the optical film thickness of the transparent conductive thin film of the first layer. It is made into a conductive laminate.

また請求項3の発明では、透明導電性膜がインジウムと錫の酸化物混合材料からなることを特徴とする請求項1又は2に記載の透明導電性積層体としたものである。   According to a third aspect of the present invention, the transparent conductive film is made of an oxide mixed material of indium and tin.

また請求項4の発明では、透明基材が高分子樹脂による透明プラスチック基材であることを特徴とする請求項1〜3の何れか1項に記載の透明導電性積層体としたものである。   In the invention of claim 4, the transparent substrate is a transparent plastic substrate made of a polymer resin. The transparent conductive laminate according to any one of claims 1 to 3, .

また請求項5の発明では、透明基材がホウケイ酸ガラスであることを特徴とする請求項1〜3の何れか1項に記載の透明導電性積層体としたものである。   Moreover, in invention of Claim 5, a transparent base material is borosilicate glass, It is set as the transparent conductive laminated body of any one of Claims 1-3 characterized by the above-mentioned.

本発明では、第1〜3の各層の光学膜厚(屈折率×膜厚)を調整して、透明基材の透過率の100%として、積層膜自身の全光線透過率を90%以上にすると同時に、最表面である第3層の透明導電性薄膜の表面抵抗値を、第3層の透明導電性薄膜のみを透明基板に
積層した場合よりも小さくすることができる。
In the present invention, the optical film thickness (refractive index × film thickness) of each of the first to third layers is adjusted to be 100% of the transmittance of the transparent substrate, and the total light transmittance of the laminated film itself is 90% or more. At the same time, the surface resistance value of the third layer transparent conductive thin film, which is the outermost surface, can be made smaller than when only the third layer transparent conductive thin film is laminated on the transparent substrate.

従って、本発明は、高透過率の透明性と、低抵抗の導電性とを同時に実現する透明導電性積層体を提供できるという効果がある。   Therefore, the present invention has an effect that it is possible to provide a transparent conductive laminate that simultaneously achieves high transmittance transparency and low resistance conductivity.

一般に透明導電性薄膜と言われるものは、透過率の高い可視光領域があり、電気伝導度が高いという2つの性質をもつ薄膜である。具体的には、導電性の透明薄膜としては、インジウム、亜鉛、錫、チタン等の金属を含む酸化物、窒化物、酸窒化物、複合化合物が挙げられる。具体的には、酸化亜鉛、錫含有インジウム酸化物(ITO)、窒化チタンなどが挙げられる。特に、錫含有インジウム酸化物は可視光透過率が高く抵抗値も低いため、好ましい。   What is generally called a transparent conductive thin film is a thin film having two properties of having a visible light region with high transmittance and high electrical conductivity. Specifically, examples of the conductive transparent thin film include oxides, nitrides, oxynitrides, and composite compounds containing metals such as indium, zinc, tin, and titanium. Specific examples include zinc oxide, tin-containing indium oxide (ITO), and titanium nitride. In particular, tin-containing indium oxide is preferable because it has high visible light transmittance and low resistance.

反射率を減少させることで透過率を向上させることができる。そのためには、光の干渉を利用し、反射光が位相差π/4(ラジアン)となるように光学膜厚(屈折率×膜厚)を調整し、低反射の条件を決めることが出来る。最も基本となる構成は基材よりも低屈折率の膜を付けることである。これにより、基材単独より反射が抑えられ透過率が高くなる。さらに、基材側から高屈折率層と低屈折率層と順に重ねる方式や、基材側から高屈折率層、低屈折率層、高屈折率層、低屈折率層と4層つける事でさらに低反射な条件を得られる。   The transmittance can be improved by reducing the reflectance. For this purpose, it is possible to determine the conditions for low reflection by utilizing optical interference and adjusting the optical film thickness (refractive index × film thickness) so that the reflected light has a phase difference of π / 4 (radian). The most basic configuration is to attach a film having a lower refractive index than the base material. Thereby, reflection is suppressed and the transmittance is higher than that of the base material alone. In addition, the high refractive index layer and the low refractive index layer are stacked in order from the base material side, and the high refractive index layer, the low refractive index layer, the high refractive index layer, and the low refractive index layer are attached in four layers from the base material side. Furthermore, low reflection conditions can be obtained.

透明導電性薄膜は一般的に高屈折率な膜であるため、前記の低反射を得る条件のなかでは高屈折率層として利用することが出来る。また、基材よりも屈折率が高いため見方を変えれば基材を低屈折率層とみなせば、基材(低屈折率層)、透明導電性薄膜(高屈折率層)、低屈折率層、透明導電性薄膜(高屈折率層)といった構成になり、低反射による高透過率の条件を適応することができる。   Since the transparent conductive thin film is generally a film having a high refractive index, it can be used as a high refractive index layer under the above conditions for obtaining low reflection. Also, since the refractive index is higher than the base material, if the view is changed, the base material (low refractive index layer), transparent conductive thin film (high refractive index layer), low refractive index layer can be regarded as a low refractive index layer. In addition, the transparent conductive thin film (high refractive index layer) is configured, and the high transmittance condition by low reflection can be applied.

そこで、本発明の透明導電性積層体では、透明基板材上に、基材側より透明導電性薄膜からなる第1層、第1層および第3層よりも屈折率が低い低屈折率層からなる第2層、透明導電性薄膜からなる第3層を積層することにより、低反射による高透過率を実現した。   Therefore, in the transparent conductive laminate of the present invention, on the transparent substrate material, the first layer made of the transparent conductive thin film from the base material side, the low refractive index layer having a lower refractive index than the first layer and the third layer. A high transmittance due to low reflection was realized by laminating a second layer and a third layer made of a transparent conductive thin film.

以下に、本発明の透明導電性積層体の製造方法を説明する。   Below, the manufacturing method of the transparent conductive laminated body of this invention is demonstrated.

まず、透明基材の上に、第1層目の透明導電性薄膜を成膜する。形成方法としては、真空蒸着法、スパッタリング法、化学気相蒸着法(CVD法)、イオンプレーティング法等が挙げられるが、これに限るものではない。   First, a first transparent conductive thin film is formed on a transparent substrate. Examples of the forming method include, but are not limited to, a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD method), an ion plating method, and the like.

次に、第1層目の透明導電性薄膜の上に、第2層目の低屈折率薄膜層を成膜する。第1層および第3層よりも屈折率が低い薄膜であれば良く、屈折率の低い薄膜の例をあげるとMgF2、LaF2などのフッ化化合物、SiO2、SiO、Al23などの金属酸化物が挙げられる。特に、金属酸化物は安定しているため好ましい。低屈折率薄膜層の成膜方法は、真空蒸着法、スパッタリング法、化学気相蒸着法(CVD法)、イオンプレーティング法、ゾルゲル法が挙げられるがこれに限るものではない。 Next, a second low refractive index thin film layer is formed on the first transparent conductive thin film. A thin film having a lower refractive index than the first layer and the third layer may be used. Examples of the thin film having a low refractive index include fluoride compounds such as MgF 2 and LaF 2 , SiO 2 , SiO, Al 2 O 3 and the like. These metal oxides can be mentioned. In particular, a metal oxide is preferable because it is stable. Examples of the method for forming the low refractive index thin film layer include, but are not limited to, vacuum deposition, sputtering, chemical vapor deposition (CVD), ion plating, and sol-gel.

最後に、第2層目の低屈折率薄膜層の上に、最表面となる、第3層目の透明導電性薄膜を成膜する。第3層目の透明導電性薄膜層は、第1層目と同様に、透過率と抵抗値の関係から錫含有インジウム酸化物が好ましく、形成方法としては、真空蒸着法、スパッタリング法、化学気相蒸着法(CVD法)、イオンプレーティング法等が挙げられるが、これに限るものではない。   Finally, a third transparent conductive thin film, which is the outermost surface, is formed on the second low refractive index thin film layer. As in the first layer, the third transparent conductive thin film layer is preferably a tin-containing indium oxide from the relationship between the transmittance and the resistance value. Examples include, but are not limited to, a phase deposition method (CVD method), an ion plating method, and the like.

このように、本発明の透明導電性積層体は、薄膜形成の従来技術を用いることで製造できる。   Thus, the transparent conductive laminate of the present invention can be produced by using a conventional technique for forming a thin film.

透明導電性薄膜は、可視光範囲の透過率は高いがバンド間遷移による吸収のため紫外領域の透過率は下がる。反射率が最低となる波長が紫外領域では意味がないため、可視光領域で反射光が低くなるように設定する必要がある。具体的には、透明基材の屈折率を1.49としたなら、各層の光学膜厚(屈折率×膜厚)について第1層を70nm程度、第2層を20nm程度、第3層を100nm程度にすることで波長420nmで反射率が最低となり、全光線透過率が向上する。   The transparent conductive thin film has a high transmittance in the visible light range, but the transmittance in the ultraviolet region decreases due to absorption due to interband transition. Since the wavelength with the lowest reflectance is meaningless in the ultraviolet region, it is necessary to set the reflected light to be low in the visible light region. Specifically, if the refractive index of the transparent substrate is 1.49, the optical thickness (refractive index × film thickness) of each layer is about 70 nm for the first layer, about 20 nm for the second layer, and about the third layer. By setting the thickness to about 100 nm, the reflectance becomes the lowest at a wavelength of 420 nm, and the total light transmittance is improved.

第2層の低屈折率薄膜は10nm程度の膜厚で完全な絶縁体ではないため、最表面の表面抵抗値は第3層が単独のときよりも低下する。これはリーク電流が流れるためであると考えられる。   Since the low refractive index thin film of the second layer is about 10 nm thick and is not a perfect insulator, the surface resistance value of the outermost surface is lower than when the third layer is single. This is presumably because a leak current flows.

透明基材として用いる高分子樹脂による透明プラスチック基材は、特に限定されるものではなく公知のものを使用することができる。例えばポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロン−6、ナイロン−66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などが挙げられるが特に限定しない。また、透明プラスチック基材を用いた場合、ロール・トゥ・ロールによって大量生産に適するため、好ましい。   The transparent plastic substrate made of a polymer resin used as the transparent substrate is not particularly limited, and a known one can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, Polycarbonate, polyethersulfone, acrylic, cellulose-based (triacetylcellulose, diacetylcellulose, etc.) and the like are exemplified, but not particularly limited. In addition, the use of a transparent plastic substrate is preferable because it is suitable for mass production by roll-to-roll.

また、透明基材としてホウケイ酸ガラスを用いることができる。ホウケイ酸ガラスは、線膨張係数が低く、硬度が高く、化学的耐久性に優れている面から工業的に多く使用されている。   Further, borosilicate glass can be used as the transparent substrate. Borosilicate glass is industrially used because it has a low coefficient of linear expansion, high hardness, and excellent chemical durability.

以下に、本発明の実施例とその比較例とを具体的に説明する。   Examples of the present invention and comparative examples thereof will be specifically described below.

<実施例1>
透明基材としてホウケイ酸ガラス(schott製D263 サイズ100mm×100mm 厚さ1.1mm)を用いて、インライン式スパッタリング装置(キヤノンアネルバ製ILC−803)によって第1層目のITOを成膜した。アルゴンガス100sccm、酸素ガス3sccmを導入し圧力を0.27Paとし、ITOターゲット(Sn含有量10%)には電力密度0.97W/cm2の直流電力を印加し、スパッタリングを行った。光学膜厚がおおよそ70nmとなるように搬送速度を設定し、第1層目の透明導電性薄膜層ITOを得た。その上に、真空蒸着装置(シンクロン製BMC−750)を用いて、ペレット状のSiO2材料(キヤノンオプトロン製SiO2)を電子ビーム加熱式真空蒸着法によってSiO2を成膜した。光学膜厚が20nmとなるように電子ビーム電流値と成膜時間を設定し、第2層目の低屈折率薄膜層SiO2を得た。その上に、先ほどの第1層目と同様にITOを成膜し、光学膜厚が100nmとなるように搬送速度を設定し、最表面となる第3層目の透明導電性薄膜層ITOを得た。このように透明基材上に成膜された3層の積層体を図1に示す。この透明導電性積層体の最表面を4探針法(JIS−K−7194準拠:1994)によって表面抵抗値を測定し、ヘイズメーター(日本電色工業製NDH2000)によって全光線透過率測定した。なお、全光線透過率は使用する基材の透過率を100%として、測定を行った。
<Example 1>
Using a borosilicate glass (Schott D263 size 100 mm × 100 mm thickness 1.1 mm) as a transparent base material, a first layer of ITO was formed by an in-line sputtering apparatus (Canon Anelva ILC-803). Argon gas 100 sccm and oxygen gas 3 sccm were introduced, the pressure was set to 0.27 Pa, and direct current power with a power density of 0.97 W / cm 2 was applied to the ITO target (Sn content 10%) to perform sputtering. The conveyance speed was set so that the optical film thickness was approximately 70 nm, and a first transparent conductive thin film ITO was obtained. On top of that, a SiO 2 film was formed from a pellet-like SiO 2 material (SiO 2 manufactured by Canon Optron) by an electron beam heating vacuum deposition method using a vacuum deposition apparatus (BMC-750 manufactured by SYNCHRON). The electron beam current value and the film formation time were set so that the optical film thickness was 20 nm, and a second low refractive index thin film layer SiO 2 was obtained. On top of that, ITO is formed in the same manner as the first layer, the transport speed is set so that the optical film thickness is 100 nm, and the third transparent conductive thin-film layer ITO which is the outermost surface is formed. Obtained. A three-layer laminate formed on a transparent substrate in this way is shown in FIG. The surface resistance value of the outermost surface of the transparent conductive laminate was measured by a four-probe method (JIS-K-7194 compliant: 1994), and the total light transmittance was measured by a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.). The total light transmittance was measured with the transmittance of the substrate used as 100%.

<比較例1>
実施例1と同様に、透明基材としてホウケイ酸ガラス(schott製D263 サイ
ズ100mm×100mm 厚さ1.1mm)を用いて、インライン式スパッタリング装置(キヤノンアネルバ製ILC−803)によってITOを成膜した。そのときの光学膜厚は100nmに設定し、そのITOを1層だけ成膜したものを、実施例1と同様の測定を行った。
<Comparative Example 1>
In the same manner as in Example 1, borosilicate glass (Schott D263 size 100 mm × 100 mm thickness 1.1 mm) was used as a transparent substrate, and an ITO film was formed by an inline sputtering apparatus (Canon Anelva ILC-803). . The optical film thickness at that time was set to 100 nm, and the same measurement as in Example 1 was carried out for a single ITO film.

<実施例2>
透明基材にポリエチレンテレフタレートフィルム(東レ製T60、幅200mm、厚100μm)に対して、図2に示すような巻取式成膜装置によって、ITOはDCスパッタリング法で、SiO2は電子ビーム加熱式蒸着法によって実施例1と同様の条件と光学膜厚で3層を成膜した。得られた3層の積層体は実施例1と同様の測定を行った。
<Example 2>
A polyethylene terephthalate film (T60 manufactured by Toray, width 200 mm, thickness 100 μm) on a transparent substrate is wound by a winding film forming apparatus as shown in FIG. 2, ITO is a DC sputtering method, and SiO 2 is an electron beam heating type. Three layers were formed under the same conditions and optical film thickness as in Example 1 by vapor deposition. The obtained three-layer laminate was measured in the same manner as in Example 1.

<比較例2>
実施例2と同様に透明基材にポリエチレンテレフタレートフィルム(東レ製T60、幅200mm、厚100μm)に対して、巻取式成膜装置によって、ITOを成膜した。そのときの光学膜厚は100nmに設定し、そのITOを1層だけ成膜したものを、実施例1と同様の測定を行った。
<Comparative example 2>
In the same manner as in Example 2, ITO was deposited on a transparent base material on a polyethylene terephthalate film (T60 manufactured by Toray, width 200 mm, thickness 100 μm) using a roll-up film deposition apparatus. The optical film thickness at that time was set to 100 nm, and the same measurement as in Example 1 was carried out for a single ITO film.

以上の測定結果を、以下の表1に示す。   The above measurement results are shown in Table 1 below.

Figure 2007213886
これらの結果から、実施例のいずれも比較例より表面抵抗値が低下し、全光線透過率が上昇している。よって、実施例1及び2の透明導電性積層体は、高透過率を維持しながら低抵抗化も実現したと言える。
Figure 2007213886
From these results, in all of the examples, the surface resistance value is lower than that of the comparative example, and the total light transmittance is increased. Therefore, it can be said that the transparent conductive laminates of Examples 1 and 2 also achieved low resistance while maintaining high transmittance.

本発明の透明導電性積層体の層構成を示す模式図である。It is a schematic diagram which shows the layer structure of the transparent conductive laminated body of this invention. 実施例2及び比較例2で使用した巻取成膜装置の概略図である。It is the schematic of the winding film-forming apparatus used in Example 2 and Comparative Example 2. FIG.

符号の説明Explanation of symbols

11…透明基材
12…透明導電性薄膜層
13…低屈折率薄膜層
14…透明導電性薄膜層
15…真空容器
16…巻取巻出ロール
17…透明プラスチック基材
18…成膜ロール
19…スパッタリングターゲット
20…蒸発源
DESCRIPTION OF SYMBOLS 11 ... Transparent base material 12 ... Transparent conductive thin film layer 13 ... Low refractive index thin film layer 14 ... Transparent conductive thin film layer 15 ... Vacuum container 16 ... Winding unwinding roll 17 ... Transparent plastic base material 18 ... Film-forming roll 19 ... Sputtering target 20 ... evaporation source

Claims (5)

透明基材上に、透明基材側より透明導電性薄膜からなる第1層、第1層および第3層よりも屈折率が低い低屈折率薄膜層からなる第2層、透明導電性薄膜からなる第3層を積層してなることを特徴とする透明導電性積層体。   From the transparent conductive thin film on the transparent base material, the first layer made of the transparent conductive thin film from the transparent base material side, the second layer made of the low refractive index thin film layer having a lower refractive index than the first layer and the third layer, A transparent conductive laminate comprising a third layer which is laminated. 第3層の透明導電性薄膜の光学膜厚が、第1層の透明導電性薄膜の光学膜厚よりも大きいことを特徴とする請求項1に記載の透明導電性積層体。   2. The transparent conductive laminate according to claim 1, wherein an optical film thickness of the transparent conductive thin film of the third layer is larger than an optical film thickness of the transparent conductive thin film of the first layer. 透明導電性膜がインジウムと錫の酸化物混合材料からなることを特徴とする請求項1又は2に記載の透明導電性積層体。    The transparent conductive layered product according to claim 1 or 2, wherein the transparent conductive film is made of an oxide mixed material of indium and tin. 透明基材が高分子樹脂による透明プラスチック基材であることを特徴とする請求項1〜3の何れか1項に記載の透明導電性積層体。   The transparent conductive laminate according to any one of claims 1 to 3, wherein the transparent substrate is a transparent plastic substrate made of a polymer resin. 透明基材がホウケイ酸ガラスであることを特徴とする請求項1〜3の何れか1項に記載の透明導電性積層体。   The transparent conductive laminate according to any one of claims 1 to 3, wherein the transparent substrate is borosilicate glass.
JP2006030656A 2006-02-08 2006-02-08 Transparent conductive laminate Expired - Fee Related JP4894279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006030656A JP4894279B2 (en) 2006-02-08 2006-02-08 Transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006030656A JP4894279B2 (en) 2006-02-08 2006-02-08 Transparent conductive laminate

Publications (2)

Publication Number Publication Date
JP2007213886A true JP2007213886A (en) 2007-08-23
JP4894279B2 JP4894279B2 (en) 2012-03-14

Family

ID=38492137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006030656A Expired - Fee Related JP4894279B2 (en) 2006-02-08 2006-02-08 Transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP4894279B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020766B1 (en) 2010-08-13 2011-03-09 (주)유시스텍 Making method for transparency electrically conductive film
KR101020767B1 (en) 2010-08-13 2011-03-09 (주)유시스텍 Making method for transparency electrically conductive film
JP4775728B2 (en) * 2009-10-16 2011-09-21 東洋紡績株式会社 Production apparatus and production method for transparent conductive film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286066A (en) * 1998-03-31 1999-10-19 Oike Ind Co Ltd Transparent conductive film
JP2001306258A (en) * 2000-02-18 2001-11-02 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film for touch panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286066A (en) * 1998-03-31 1999-10-19 Oike Ind Co Ltd Transparent conductive film
JP2001306258A (en) * 2000-02-18 2001-11-02 Nippon Sheet Glass Co Ltd Substrate with transparent conductive film for touch panel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775728B2 (en) * 2009-10-16 2011-09-21 東洋紡績株式会社 Production apparatus and production method for transparent conductive film
KR101020766B1 (en) 2010-08-13 2011-03-09 (주)유시스텍 Making method for transparency electrically conductive film
KR101020767B1 (en) 2010-08-13 2011-03-09 (주)유시스텍 Making method for transparency electrically conductive film
CN102373418A (en) * 2010-08-13 2012-03-14 昱西斯科技有限公司 Method for manufacturing transparent conductive thin film

Also Published As

Publication number Publication date
JP4894279B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP6314463B2 (en) Transparent conductor
CN1474949A (en) Low reflection, high transmission, touch-panel membrane
TW201351237A (en) Transparent body for use in a touch screen panel manufacturing method and system for manufacturing a transparent body for use in a touch screen panel
JP2011194679A (en) Transparent and conductive laminate, method for manufacturing same, and touch panel
KR20070114890A (en) Pdp filter having multi-layer thin film and method for manufacturing the same
JP2008181838A (en) Transparent conductive laminated body
JP2010069675A (en) Functional film, method of manufacturing the same, laminate, and electronic device
JP6319302B2 (en) Transparent conductor and method for producing the same
JP4894279B2 (en) Transparent conductive laminate
JP4967529B2 (en) Transparent conductive laminate
JP4807503B2 (en) Transparent conductive laminate
KR101165260B1 (en) Apparatus and manufacture device for anti reflective film
KR102020990B1 (en) Transparent electrode film for smart window, Manufacturing method thereof and PDLC smart window containing the same
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2015087895A1 (en) Transparent conductive body
JP2005294084A (en) Transparent conductive film
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2005266665A (en) Anti-reflection material and display device using the same
JP5192792B2 (en) Transparent conductive film and manufacturing method thereof
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2023054420A1 (en) Optical laminate and anti-reflection film
WO2022181371A1 (en) Transparent substrate with multilayer film and image display device
JPH11248904A (en) Manufacture of reflection preventive film
JP2004175074A (en) Transparent substrate with multilayer film having electroconductivity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees