JP2007212994A - 液晶表示装置およびその駆動方法 - Google Patents

液晶表示装置およびその駆動方法 Download PDF

Info

Publication number
JP2007212994A
JP2007212994A JP2006202866A JP2006202866A JP2007212994A JP 2007212994 A JP2007212994 A JP 2007212994A JP 2006202866 A JP2006202866 A JP 2006202866A JP 2006202866 A JP2006202866 A JP 2006202866A JP 2007212994 A JP2007212994 A JP 2007212994A
Authority
JP
Japan
Prior art keywords
gradation
liquid crystal
sequence
display device
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006202866A
Other languages
English (en)
Inventor
Hideyuki Kitayama
秀幸 北山
Norimitsu Sako
則光 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2006202866A priority Critical patent/JP2007212994A/ja
Publication of JP2007212994A publication Critical patent/JP2007212994A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】消費電力を増大させることなく、フリッカやブリンキング動作時の画質劣化を抑制し、高画質画像を表示することができる液晶表示装置およびその駆動方法を提供する。
【解決手段】本発明は、単純マトリクス型の液晶パネルを用いる液晶表示装置において、MLS駆動方式により、直交行列を用いて液晶パネルの複数行のコモン電極を同時駆動する駆動制御を行い、FRC階調方式により、1画面の画像を構成する複数のフィールドにわたって階調制御を行う。ONおよびOFFシーケンスの配置が異なる複数のFRC階調パレットを用意し、各々のピクセルに複数のFRC階調パレットを所定のパターンで割り当てて、1フレーム毎に、各々のピクセルのONおよびOFFの位置を空間的かつ時間的に分散させる。また、各々のピクセルに割り当てられたFRC階調パレットを、1画面の画像を構成する複数のフィールドにわたって使用し、各々のピクセルの階調制御を行う。
【選択図】図3

Description

本発明は、単純マトリクス型の液晶パネルを用いる液晶表示装置において、マルチラインアドレッシング駆動方式により、直交行列を用いて液晶パネルの複数の行電極を同時駆動し、かつ、フレームレート制御階調方式により、1画面の画像を構成する複数のフレームないしはフィールドにわたって階調制御を行う液晶表示装置およびその駆動方法に関するものである。
単純マトリクス型の液晶パネルを用いた液晶表示装置では、高コントラスト化、駆動電圧の低電圧化、高速動画表示等を実現する駆動方式の1つとして、直交行列を用いて複数行のコモン(行)電極を同時に選択するマルチラインアドレッシング駆動方式(MLA駆動方式)もしくはマルチラインセレクション駆動方式(MLS駆動方式)と呼ばれる従来技術が知られている。以下、この駆動方式を代表的にMLS駆動方式と呼ぶ。
MLS駆動方式では、L行を同時に選択する場合、L行×L列の直交行列を用いて所定のMLS演算が行われ、コモン電極およびセグメント(列)電極の駆動制御が行われる。
また、MLS駆動方式では、1画面の表示画像は1フレーム(1画面の画像の表示サイクル)で構成される。ここで、1フレームは、1画面の画像を表示(構成)するために必要とする時間(期間)を表し、直交行列の列ベクトル数と同数のLフィールド(=サブフレーム)で構成される。また、1フィールドは、液晶パネルの全てのコモン電極を上から下まで1回ずつ選択するために必要とする時間(期間)を表す。
各々のフィールドにおいて、液晶パネルの全コモン電極数Nは、同時に選択されるL行のコモン電極からなるM個(M=N/L)のコモンブロックに分割される。そして、各々のコモンブロックにおいて、L行のコモン電極に各々所定のコモン電圧を与えてこれらを同時に選択し、かつセグメント電極に各々表示データに対応するセグメント電圧を与えることによって、両者の交点に位置するピクセル(画素)の液晶のオン/オフを制御する。
より具体的には、各々のコモンブロックにおいて、同時に選択されるL行のコモン電極の各々は、各々のフィールド毎に直交行列の対応する列ベクトル(選択パターン)により選択される。この時、同時に選択されるL行のコモン電極には、例えば非選択時間にグランド電圧が与えられ、選択時間には、直交行列の列ベクトルのビットの1および−1に対応して各々+Vrおよび−Vrのコモン電圧が与えられる。
一方、各々のセグメント電極には、通常、電圧の異なる(L+1)種類のセグメント電圧の中から、表示データに対応するセグメント電圧が与えられる。この時、コモン電圧を決定する時に用いられる直交行列の列ベクトルの各々のビットと、これに対応する表示データの各々のビットとの排他的論理和の総和の値に対応するセグメント電圧が、各々のセグメント電極に与えられる。
上記動作は、1フィールドに含まれる全てのコモンブロックの各々について順次行われる。また、選択パターンとして、1フレームを構成するi番目(iは1〜L)のフィールドに対して、直交行列のi番目の列ベクトルが順次割り当てられ、各々のコモンブロックが、1フレーム内で全ての列ベクトルを1回ずつ使用するように制御される。以上の動作を繰り返し行うことによって、表示画面が順次更新される。
また、MLS駆動方式では、階調表示のための制御方式として、パルス幅変調階調方式(PWM階調方式)やフレームレート制御階調方式(FRC階調方式)、もしくはこれら2つの方式を組み合わせた階調方式などがよく用いられる。
ここで、PWM階調方式は、1フレーム内において、各々のピクセルのオン時間とオフ時間を制御することにより表示画像の階調を表現する方式である。また、FRC階調方式は、複数のフレームにわたって1つの表示画像を階調表示するものであり、各々のピクセルについて、複数のフレームにわたってオンないしはオフとする回数を制御することにより表示画像の階調を表現する方式である。
ところで、FRC階調方式では、複数のフレーム(FRCシーケンス)を用いて階調表現を行うため、1画面の表示が完了するまでに長時間を必要とする。そのため、時系列での周期的なON(オン)シーケンス、OFF(オフ)シーケンスの繰り返しによる階調制御により、フリッカが発生しやすいという問題がある。特に、一定階調部分、例えばグレー中間調のべた塗り領域が多くを占める画像などでは、フリッカが発生しやすい傾向にある。
さらに、従来のFRC階調方式における中間調制御用の時系列でのONないしOFFを出力するシーケンスは固定であるため、上記の通り、ある一定階調部分が表示内に多くを占める画像では、フリッカがさらに顕著になる。フリッカの回避策としては、フレームレートを上げて表示を行うことが一般的であるが、それでは消費電力増加の原因となる。従って、携帯電話等の低消費電力が要求されるモバイル製品では非常に不利である。
また、所定の一定周期で所定領域内の画像の白黒反転表示を行う(正転表示と反転表示を交互に入れ替えて表示する)ブリンキング動作時に、表示画像を反転表示した瞬間に、中間調表示領域で斜めの縦縞模様が視認され、画質が劣化するという問題がある。その回避策の1つは、フレームレートを上げて表示を行うことである。しかし、それでは、前述の通り、消費電力が著しく増大してしまうため、携帯機器等、低消費電力が要求される分野に適用することは難しい。
ここで、本発明の先行技術文献としては、例えば本出願人に関わる特許文献1などがある。特許文献1は、単純マトリクス液晶の駆動方法であって、表示データに対応する階調データの上位ビットをPWM階調方式、下位ビットをFRC階調方式で表現し、FRC階調方式で表現したものをPWM階調方式における最小分割時間に割り当てて、PWM階調方式に付け加えるものである。
特開2003−279930号公報
本発明の目的は、前記従来技術に基づく問題点を解消し、消費電力を増大させることなく、フリッカやブリンキング動作時の画質劣化を抑制し、高画質画像を表示することができる液晶表示装置およびその駆動方法を提供することにある。
上記目的を達成するために、本発明は、単純マトリクス型の液晶パネルを用いる液晶表示装置において、マルチラインアドレッシング駆動方式により、直交行列を用いて前記液晶パネルの複数行のコモン電極を同時駆動する駆動制御を行い、かつ、フレームレート制御階調方式により、1画面の画像を構成する複数のフィールドにわたって階調制御を行う液晶表示装置の駆動方法であって、
中間調のONシーケンスおよびOFFシーケンスの配置が異なる複数のフレームレート制御階調パレットを用意しておき、
前記液晶パネルの各々のピクセルに複数の前記フレームレート制御階調パレットを所定のパターンで割り当てることによって、1フレーム毎に、前記液晶パネルの各々のピクセルのONおよびOFFの位置を空間的かつ時間的に分散させ、
前記液晶パネルの各々のピクセルに割り当てられたフレームレート制御階調パレットを、前記1画面の画像を構成する複数のフィールドにわたって使用し、前記液晶パネルの各々のピクセルの階調制御を行うことを特徴とする液晶表示装置の駆動方法を提供するものである。
ここで、3行×4列の直交行列を用いて3行のコモン電極を同時駆動し、前記1画面の画像を構成する12フィールドにわたって4階調を表示する階調制御を行うことが好ましい。
また、前記パターンは、前記液晶パネルの各々のピクセルの行方向および列方向の各々について、複数の前記フレームレート制御階調パレットをローテーションさせるパターンであることが好ましい。
また、前記同時駆動されるコモン電極の本数に応じて、前記フレームレート制御階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを制御することが好ましい。
また、フレームレート制御階調方式で1ピクセル当たりn階調の表示を行う場合、ブリンキング動作時の正転表示と反転表示とが交互に入れ替わりながら連続するシーケンスにおいて、(n−1)フレームにわたって前記OFFシーケンスもしくは前記ONシーケンスが連続しないように、前記反転表示の時のONシーケンスとOFFシーケンスの配置の組合せを変更することが好ましい。
また、前記ブリンキング動作時の場合、反転表示の時に、前記フレームレート制御階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを、前記正転表示の時の中間調のONシーケンスおよびOFFシーケンスを逆にし、かつ、前記フレームレート制御階調方式のシーケンスの順序を逆にした配置の組合せとすることが好ましい。
また、本発明は、上記のいずれかに記載の液晶表示装置の駆動方法により、前記液晶パネルの駆動制御および階調制御が行われることを特徴とする液晶表示装置を提供する。
本発明によれば、液晶パネルの各々のピクセルのONおよびOFFの位置が、空間的かつ時間的に分散されるので、同じフレームレートであっても、従来方式よりも見かけ上の周波数を高くできる。このため、消費電力を増大させることなく、フリッカによる画質劣化を抑制することができる。また、画像の種類に関わらず、より劣化の少ない高画質な表示画像を得ることができる。
また、本発明では、ブリンキング動作時にも、通常表示動作時と同様のON/OFFシーケンスが得られる。従って、バイアス集中、大きな実効電圧変動を回避することができ、斜めの縦縞模様が視認されない高画質な表示画像を得ることができる。
以下に、添付の図面に示す好適実施形態に基づいて、本発明の液晶表示装置およびその駆動方法を詳細に説明する。
図1は、本発明の液晶表示装置の駆動方法を適用する液晶パネルの駆動回路の構成を表す一実施形態のブロック概略図である。同図に示す液晶パネルの駆動回路10は、コモン電極数120行×セグメント電極数160列の液晶パネルにおいて、MLS駆動方式により、3行×4列の直交行列を用いて3行のコモン電極を同時に選択(駆動)し、FRC階調方式により、表示画像の各々のピクセル毎に4階調の表示を行う。
図1に示す液晶パネルの駆動回路10は、コモンブロックの制御回路12と、セグメントブロックの制御回路14と、タイミング信号発生回路16と、階調制御回路18と、セグメント電極の駆動回路20とによって構成されている。
本実施形態では、液晶パネルの120行を3行ずつの40個のコモンブロック0〜39に分割し、かつ160列を8列ずつの20個のセグメントブロック0〜19に分割して駆動制御および階調制御を行う。図1に示す液晶パネルの駆動回路10は、その説明を容易化するために、コモン電極の駆動回路の図示を省略し、セグメント電極の駆動回路の1つのセグメントブロック(SB)0についてのみ示してある。
上記の通り、本実施形態では、MLS駆動方式により、3行のコモン電極を同時に選択して液晶パネルの駆動制御を行う。この場合、1画面の画像を構成する1フレームは、同時に選択されるコモン電極数+1=4フィールドとなる。また、FRC階調方式により、1ピクセル当たり4階調の表示を行う場合、図2に示すように、1画面の画像の階調を表示するためには、階調数−1の3フレーム(3FRCシーケンス)が必要となる。
従って、本実施形態のように、MLS駆動方式で3行のコモン電極を同時に選択して液晶パネルの駆動制御を行い、かつFRC階調方式で1ピクセル当たり4階調の表示を行う場合、1画面の表示画像が完了するまでに、MLS駆動方式で1画面の画像を表示するために必要とする1フレーム(=4フィールド)×FRC階調方式で1画面の画像の階調を表示するために必要とする3フレーム=12フィールドが必要となる。
まず、コモンブロックの制御回路12は、ブロックカウンタ22と、エンドブロック検出回路24とによって構成されている。
ブロックカウンタ22は、後述する信号DLYCLの立ち上がり(↑)に同期して、0〜39まで順次カウントアップし、その値をコモンカウント信号として出力する。コモンカウント信号は、エンドブロック検出回路24、後述する階調デコーダ36およびRAMデコーダ38に入力される。
エンドブロック検出回路24は、後述する信号CLの立ち下がり(↓)に同期して動作し、コモンカウント信号の値が、各フィールドの最後のコモンブロックを表す39になったかどうかを検出する。エンドブロック検出回路24は、コモンカウント信号の値が39になったことを検出すると、アクティブ状態の検出信号FIELDを出力する。すなわち、検出信号FIELDは、各フィールドの最後のコモンブロック39を表す信号であり、前述のブロックカウンタ22に入力される。
ブロックカウンタ22では、検出信号FIELDがアクティブ状態(例えば、ハイレベル)になると、信号DLYCLの立ち上がりに同期して、コモンカウント信号の値が0にリセットされる。一方、検出信号FIELDが非アクティブ状態(例えば、ローレベル)の間は、信号DLYCLの立ち上がりに同期して1つずつカウントアップする。その結果、ブロックカウンタ22は、コモンカウント信号の値が0〜39までの範囲で繰り返しカウントを行う。
同様に、セグメントブロックの制御回路14は、SBカウンタ26と、エンドSB検出回路28と、SEG(セグメント)デコーダ29とによって構成されている。
SBカウンタ26は、後述する信号CKの立ち上がりに同期して、0〜19まで順次カウントアップし、その値をセグメントカウント信号として出力する。セグメントカウント信号は、エンドSB検出回路28、SEGデコーダ29および後述するRAMデコーダ38に入力される。
エンドSB検出回路28は、セグメントカウント信号の値が、各行の最後のセグメントブロックを表す19になったかどうかを検出する。エンドSB検出回路28は、セグメントカウント信号の値が19になったことを検出すると、アクティブ状態の検出信号SEGを出力する。すなわち、検出信号SEGは、各行の最後のセグメントブロック19を表す信号であり、SBカウンタ26および後述するフリップフロップ(F/F)30に入力される。
すなわち、SBカウンタ26では、検出信号SEGがアクティブ状態(例えば、ハイレベル)になると、信号CKの立ち上がりに同期して、セグメントカウント信号の値が0にリセットされる。一方、検出信号SEGが非アクティブ状態(例えば、ローレベル)の間は、信号CKの立ち上がりに同期してカウントアップする。その結果、SBカウンタ26は、セグメントカウント信号の値が0〜19までの範囲で繰り返しカウントを行う。
SEGデコーダ29は、セグメントカウント信号の値をデコードして、SEGブロック信号0〜19を出力する。SEGブロック信号0〜19は、各々対応するセグメントブロック0〜19をアクティブ状態とする信号であり、セグメントカウント信号の値がそれぞれ0〜19の時にアクティブ状態(例えば、ハイレベル)となる。これらのSEGブロック信号0〜19は、各々セグメントブロック0〜19(セグメントブロック1〜19は図示省略)のSBラッチ48に入力される。
続いて、タイミング信号発生回路16は、2つのフリップフロップ(F/F)30,32によって構成されている。
フリップフロップ30は、信号CKの立ち上がりに同期して、検出信号SEGを保持し、これを信号CLとして出力する。信号CLは、エンドブロック検出回路24およびフリップフロップ32に入力される。
また、フリップフロップ32は、信号CKの立ち下がりに同期して、信号CLを保持し、これを信号DLYCLとして出力する。信号DLYCLは、ブロックカウンタ22、後述する3進フレームカウンタ34およびラッチ&SEGセレクタ50に入力される。
すなわち、検出信号SEGを、信号CKの立ち上がりで保持してタイミング調整したものが信号CLであり、さらに、信号CLを、信号CKの立ち下がりで保持してタイミング調整したものが信号DLYCLである。前述の信号CKは、セグメントブロック0〜19の各々の処理に要する時間の周期で出力される。また、信号CLおよび信号DLYCLは、コモンブロック0〜39の各々の処理に要する時間の周期で出力される。
続いて、階調制御回路18は、3進フレームカウンタ34と、階調デコーダ36とによって構成されている。
ここで、3進フレームカウンタ34に入力される信号BLINK_CKは、ブリンキング動作時に、所定の一定周期でトグルする(ハイレベルとローレベルが交互に入れ替わる)信号である。信号BLINK_CKは、何ら限定されるわけではないが、本実施形態の場合、FRC階調方式で4階調を表示する時間(期間)である3フレーム毎にトグルし、ローレベルの時は正転表示、ハイレベルの時は反転表示を意味する。
3進フレームカウンタ34は、正転表示の時には、信号SYNCがアクティブ状態の時に、信号DLYCLの立ち上がりに同期して、0〜2まで順次カウントアップし、その値をフレームカウント信号として出力する。3進フレームカウンタ34は、フレームカウント信号の値が2になると、信号SYNCが次にアクティブ状態となった時に、信号DLYCLの立ち上がりに同期して、その値が0にリセットされる。
ここで、前述の信号SYNCは、MLS演算(MLS駆動方式によって1画面の画像を表示するために行われる演算)の1フレーム、すなわち、本実施形態の場合には4フィールド毎に1回アクティブ状態(例えば、ハイレベル)となる信号である。その結果、3進フレームカウンタ34は、1フレーム毎にカウントアップし、フレームカウント信号の値が0〜2までの範囲で繰り返しカウントを行う。
一方、3進フレームカウンタ34は、ブリンキング動作下における反転表示の時には、FRCシーケンスの順序が逆転され、フレームカウント信号は2〜0まで順次カウントダウンする。この場合、正転表示の場合とは逆に、3進フレームカウンタ34は、1フレーム毎にカウントダウンし、フレームカウント信号の値が2〜0の範囲で繰り返しカウントを行う。フレームカウント信号は階調デコーダ36に入力される。
続いて、階調デコーダ36は、図示省略しているが、図2に示す3種類のFRC階調パレットA,B,Cに対応する階調1/2デコーダA,B,Cと、図3に示すFRC階調パレットの割り当てテーブル(図1では省略)とを備えている。3種類のFRC階調パレットA,B,Cは、それぞれONシーケンスおよびOFFシーケンスの配置が異なっている。これらのFRC階調パレットA,B,Cは、階調1,2のONシーケンス,OFFシーケンスの配置の全ての組合せの中から、任意の3種類を選んで例示したものである。
なお、本実施形態は3行同時駆動の場合であるが、同時駆動されるコモン電極の本数(行数)に応じて、FRC階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを任意に制御できるようにすることが望ましい。
階調デコーダ36は、コモンカウント信号の値により指定されるコモンブロックの24ピクセルについて、FRC階調パレットの割り当てテーブルにより割り当てられているFRC階調パレットに従って、フレームカウント信号の値により指定されるフレーム(=FRCシーケンス)毎に、後述する階調データの値が表す階調1,2に対応する階調パターン信号を出力する。階調パターン信号は後述するスクランブラ42に入力される。
ここで、通常動作時の場合、例えばフレームカウント信号の値が0〜2の時に、1ピクセル当たり4階調の表示を行うために必要とする1〜3フレーム(FRCシーケンス0〜2)目がそれぞれ指定されるとする。
例えば、コモンブロック0が指定された場合、階調デコーダ36からは、1〜3ライン(1〜3Line)×1〜8セグメント(SEG1〜8)の24ピクセル分の階調パターン信号が出力される。図3に示すFRC階調パレットの割り当てテーブルから、コモンブロック0の1セグメント目(SEG1)の1〜3ライン(1〜3Line)の3ピクセルは、各々FRC階調パレットA,B,Cを使用するように割り当てられている。
従って、階調1/2デコーダAから、1フレーム目(FRCシーケンスのA0)は、階調1の階調パターン信号として1(ON状態)が出力され、階調2の階調パターン信号として0(OFF状態)が出力される。また、2フレーム目(FRCシーケンスのA1)および3フレーム目(FRCシーケンスのA2)では、階調1の階調パターン信号として0が出力され、階調2の階調パターン信号として、1が出力される。
同様に、階調1/2デコーダBからは、1フレーム目(FRCシーケンスのB0)および3フレーム目(FRCシーケンスのB2)は、階調1の階調パターン信号として0が出力され、階調2の階調パターン信号として1が出力される。また、2フレーム目(FRCシーケンスのB1)では、階調1の階調パターン信号として1が出力され、階調2の階調パターン信号として、0が出力される。
また、階調1/2デコーダCからは、1フレーム目(FRCシーケンスのC0)および2フレーム目(FRCシーケンスのC1)は、階調1の階調パターン信号として0が出力され、階調2の階調パターン信号として1が出力される。また、3フレーム目(FRCシーケンスのC2)では、階調1の階調パターン信号として1が出力され、階調2の階調パターン信号として、0が出力される。
なお、1セグメント目(SEG1)に限らず、他のセグメントSEG2〜160についても同様である。また、コモンブロック0に限らず、他のコモンブロック1〜39についても同様である。
これに対し、ブリンキング動作時の場合、その正転表示の時は上記通常動作時の場合と同じである。一方、反転表示の時は、本実施形態の場合、FRC階調パレットの中間調のONシーケンスとOFFシーケンスの配置の組合せが、図7に示すように、正転表示の時の中間調のONシーケンスとOFFシーケンスを逆にし、さらに、FRCシーケンスの順序も逆にした配置の組合せとされている。
なお、ブリンキング動作時の場合、反転表示の時は、本実施形態の配置の組合せ方式に限定されない。
すなわち、FRC階調方式で1ピクセル当たりn階調の表示を行う場合、正転表示と反転表示とが交互に入れ替わりながら連続するシーケンスにおいて、(n−1)フレーム((n−1)FRCシーケンス)にわたってOFFシーケンスもしくはONシーケンスが連続しないように、反転表示の時のONシーケンスとOFFシーケンスの配置の組合せを変更すれば良い。
本実施形態のように、FRC階調方式で1ピクセル当たり4階調の表示を行う場合、正転表示と反転表示とが交互に入れ替わりながら連続するシーケンスにおいて、階調数4−1の3フレームにわたって“OFF−OFF−OFF”シーケンスもしくは“ON−ON−ON”シーケンスとならないように、反転表示の時のONシーケンスとOFFシーケンスの配置の組合せを変更する。その一例が前述の図7である。
詳細は後述するが、スクランブラ42は、同時に選択される3行のコモン電極数と同数の3組の8セグメント分のスクランブラを備えている。階調デコーダ36から出力される階調パターン信号は、各々対応するスクランブラ42に入力される。なお、階調0の階調パターン信号は常に0(OFF状態)であり、階調3の階調パターン信号は常に1(ON状態)であるから、階調デコーダ36から出力する必要はない。
ここで、図2に示すFRC階調パレットAを使用した場合を一例として、ブリンキング動作とその問題点、ならびに、本発明の提案する解決策について説明する。
図2に示すFRC階調パレットAは、階調0の時、階調パターン信号として、FRCシーケンスA0,A1,A2の全てにおいてOFFシーケンスを出力する。以下同様に、階調パターン信号として、階調1の時には“ON−OFF−OFF”シーケンス、階調2の時には“OFF−ON−ON”シーケンス、階調3の時には、全てONシーケンスを出力する。
通常表示動作において、階調1または階調2の中間調画像を表示する場合、FRCシーケンスは、図5に示すようにシーケンシャル(連続的)に使用される。本実施形態の場合、表示画像が階調1の時、最初のFRCシーケンスA0,A1,A2の階調パターン信号は、“ON−OFF−OFF”であり、2番目、3番目、…のFRCシーケンスについても同じである。また、階調2についても同様である。
一方、ブリンキング動作においては、一定期間(本実施形態では3フレーム)毎に、正転表示とその反転表示が交互に繰り返される。本実施形態の場合、表示画像が階調1の時、図6に示すように、最初のFRCシーケンスA0,A1,A2の階調パターン信号は“ON−OFF−OFF”、2番目は“OFF−ON−ON”であり、3番目以降はその繰り返しである。階調2の場合も同様である。
この場合、図6から分かるように、連続するシーケンスにおいて、“OFF−OFF−OFF”および“ON−ON−ON”というシーケンスが生じてしまい、ピクセルの黒(OFF)もしくは白(ON)への変化が瞬間的に視認される。本発明では、図3に示すように、ピクセル毎にFRC階調パレットA,B,Cを所定のパターンで割り当てて、空間的かつ時間的にFRC階調方式のONシーケンスおよびOFFシーケンスを分散させる。
図3を参照すると、FRC階調パレットA,B,Cは斜め(右上がり)に並んでいることが分かる。その結果、ブリンキング動作している瞬間に、斜め方向の縦縞模様が視認され、画質劣化を引き起こす原因となる。なお、上述する現象は、FRC階調パレットAまたはFRC階調パレットCを選択した場合にのみ発生し、FRC階調パレットBを選択した場合には発生しない。
FRC階調パレットBを選択した場合に斜め方向の縦縞模様が視認されない理由は、前述の通り、FRC階調パレットBにおけるONシーケンスおよびOFFシーケンスの配置の組合せにある。すなわち、FRC階調パレットBは、ブリンキング動作時に、3フレームにわたって“OFF−OFF−OFF”シーケンスもしくは“ON−ON−ON”シーケンスとならないONシーケンスとOFFシーケンスの配置の組合せとなっている。
既に述べたように、フレームレートを上げれば、この問題は軽減される。しかし、フレームレートを上げるに従って消費電力が著しく増大するため、現実的な解決方法とは言えない。本発明の提案する解決策は、前述の通り、3フレームにわたって、“OFF−OFF−OFF”シーケンスもしくは“ON−ON−ON”シーケンスとならないように、反転表示の時のONシーケンスとOFFシーケンスの配置の組合せを変更することである。
本実施形態では、図7に示すように、ブリンキング動作時の反転表示の時に、FRC階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを、正転表示の時の中間調のONシーケンスおよびOFFシーケンスを逆にし、かつ、FRCシーケンスの順序を逆にした配置の組合せとする。これにより、3フレームにわたって“OFF−OFF−OFF”シーケンスもしくは“ON−ON−ON”シーケンスとならないようにしている。
図7に示す例の場合、例えば表示画像が階調1の時、最初のFRCシーケンスA0,A1,A2の階調パターン信号は“ON−OFF−OFF”であり、そのON/OFFシーケンスとを逆にして、“OFF−ON−ON”とし、さらに、FRCシーケンスも逆にして、2番目のFRCシーケンスA2,A1,A0の階調パターン信号は“ON−ON−OFF”となる。3番目以降はその繰り返しである。
これにより、3フレームにわたって“OFF−OFF−OFF”シーケンスもしくは“ON−ON−ON”シーケンスとはならず、通常表示動作時と同様のONシーケンスおよびOFFシーケンスの配置が得られる。そのため、図6で述べたバイアス集中、大きな実効電圧変動を回避することができ、斜めの縦縞模様が視認されない高画質な表示画像を得ることができる。
最後に、セグメント電極の駆動回路20は、RAMデコーダ38と、コアメモリ40(コアメモリ0)と、スクランブラ42と、EXOR回路44と、アダー(加算器)46と、SBラッチ48(SBラッチ0)と、ラッチ&SEGセレクタ50(ラッチ&SEGセレクタ0)とによって構成されている。
なお、前述の通り、図1では、20個のセグメントブロック0〜19のうちのセグメントブロック0のみを示してある。セグメント電極の駆動回路20において、RAMデコーダ38、スクランブラ42、EXOR回路44およびアダー46は、それぞれ1つだけ設けられている。これに対し、コアメモリ40、SBラッチ48およびラッチ&SEGセレクタ50は、セグメントブロック0〜19に対応して1つずつ、合計で各々20組設けられている。
すなわち、RAMデコーダ38、スクランブラ42、EXOR回路44およびアダー46は、全てのセグメントブロック0〜19で時分割に使用される。
RAMデコーダ38は、信号CKの立ち下がりに同期して動作し、コモンカウント信号の値0〜39によって指定されるコモンブロックの情報と、セグメントカウント信号の値0〜19によって指定されるセグメントブロックの情報とから、処理対象となるコアメモリ40のメモリアドレスをデコードして順次出力する。このメモリアドレスはコアメモリ40に入力される。
コアメモリ40には、液晶パネルの120コモン×8セグメント(コアメモリ0の場合にはSEG1〜8)分の各ピクセルの階調データが保持されている。コアメモリ1〜19についても同様である。コアメモリ40からは、一度に3(同時に選択されるコモン電極数)×8(1セグメントブロック当たりのセグメント数)×2ビット(4階調を表現するために必要なビット数)=24ピクセルの48ビット分の階調データが読み出される。階調データはスクランブラ42に入力される。
スクランブラ42は、前述の通り、同時に選択される3行のコモン電極数と同数の3組の8セグメント分のスクランブラを備えている。スクランブラ42は、コアメモリ40から入力される24ピクセルの48ビット分の階調データと、階調デコーダ36から入力される階調パターン信号とから、2ビットの各々の階調データに対応する1ビットのON,OFF信号を出力する。このON,OFF信号は次段のEXOR回路44に入力される。
ここで、階調データが0(00(2進数表示、以下同じ))、3(11)の場合、図2のFRC階調パレットA,B,Cの階調0,3の階調パターンからも明らかなように、ON,OFF信号は、全てのフレーム(FRCシーケンス)において各々0,1固定となる。従って、フリッカ等には特に影響は及ぼさない。一方、階調データが1(01),2(10)の場合、ON,OFF信号は、階調パターン信号に応じて、その値が決定される。これらの階調1,2が、フレームレートによってフリッカに影響を及ぼす。
既に述べたように、図3に示すFRC階調パレットの割り当てテーブルでは、例えば1セグメント目(SEG1)のコモンブロック0の1〜3ライン(1〜3Line)のピクセルは、各々FRC階調パレットA,B,Cを使用するように割り当てられている。
従って、上記1セグメント目(SEG1)の場合、例えば1〜3ラインの各ピクセルの階調データが1の場合、スクランブラ42から出力される1〜3ライン目のON,OFF信号は、1フレーム目は1,0,0、2フレーム目は0,1,0、3フレーム目は0,0,1となる。また、階調データが2の場合、1〜3ライン目のON,OFF信号は、1フレーム目は0,1,1、2フレーム目は1,0,1、3フレーム目は1,1,0となる。
なお、1セグメント目(SEG1)に限らず、他のセグメントSEG2〜160についても同様である。また、コモンブロック0に限らず、他のコモンブロック1〜39についても同様である。
EXOR回路44は、スクランブラ42に合わせて3組の8セグメント分のEXOR回路が設けられている。各々のEXOR回路44には、選択パターン(コモン電圧を決定する時にも用いられる直交行列の列ベクトル)が入力されている。EXOR回路44では、選択パターンの3ビットの各々のビットと、これに対応する3行分のON,OFF信号の各々のビットとの排他的論理和がとられ、その出力信号はアダー46に入力される。
アダー46は、8セグメント分設けられている。アダー46は、EXOR回路44から入力される3行分の排他的論理和の総和を算出する。EXOR回路44およびアダー46により、選択パターンの各々のビットと、これに対応する3行分のON,OFF信号の各々のビットとの排他的論理和の総和が算出される。すなわち、MLS演算が行われる。アダー46の出力信号はそれぞれ2ビットのデータになるが、その上位1ビットのデータのみ、合計8ビットのデータがSBラッチ48に入力される。
SBラッチ48も、8セグメント分設けられている。SBラッチ48は、SEGブロック信号0がアクティブ状態の時に、信号CKの立ち上がりに同期して、アダー46の上位1ビットのデータからなる合計8ビットのデータを保持する。なお、図示していないが、SEGブロック信号0〜19により、セグメントブロック0〜19が時系列に選択され、同様にしてセグメントブロック0〜19のSBラッチ48に、各々対応する合計8ビットのデータが保持される。SBラッチ48の出力信号はラッチ&SEGセレクタ50に入力される。
ラッチ&SEGセレクタ50も8セグメント分設けられている。ラッチ&SEGセレクタ50は、信号DLYCLの立ち上がりに同期して、セグメントブロック0〜19のSBラッチ48から各々対応するラッチ&SEGセレクタ50に入力される8ビットのデータ、合計160ビットのデータを同時に保持し、その保持された160ビットのデータに対応するセグメント電圧を出力する。例えば、ラッチ&SEGセレクタ50からは、セグメント電圧として、SBラッチ48に保持されているデータが0の時はV0が出力され、1の時はV1が出力される。
以上のようにして、20個のセグメントブロック0〜19のラッチ&SEGセレクタ50から、セグメント電圧SEG1〜160が同時に出力され、160列のセグメント電極に同時に印加される。
なお、従来のMLS駆動方式では、同時に選択されるコモン電極数+1種類の電圧の異なるセグメント電圧が必要である。本実施形態では、3行のコモン電極を同時に選択するので、4種類のセグメント電圧が必要であるが、上記のように、アダー46の2ビットの出力信号の上位1ビットのみを使用することによって、使用するセグメント電圧を半分の2種類(V0,V1)に削減している。この技術は、本出願人に関わる特願2001−353001号によって既に提案済みである。
以下、液晶パネルの駆動回路10の動作を説明する。
前述の通り、液晶パネルの駆動回路10では、液晶パネルの120行を3行ずつの40個のコモンブロック0〜39に分割し、かつ160列を8列ずつの20個のセグメントブロック0〜19に分割する。そして、MLS駆動方式により、3行×4列の直交行列を用いて3行のコモン電極を同時に選択して液晶パネルの駆動制御を行い、かつFRC階調方式により、1ピクセル当たり4階調の表示を行うことによって、12フィールドで1画面の表示画像が完了する。
各々のフィールドにおいて、コモンブロックの制御回路12により、コモンカウント信号の値に応じてコモンブロック0〜39が順次選択される。また、各々のコモンブロック0〜39が時系列に選択される毎に、セグメントブロックの制御回路14により、セグメントカウント信号の値に応じてSEGブロック信号0〜19が順次アクティブ状態とされ、セグメントブロック0〜19が時系列に選択される。
まず最初に、コモンブロック0のセグメントブロック0が選択される。この時、RAMデコーダ38により、コモンブロック0のセグメントブロック0に対応するメモリアドレスが出力される。セグメントブロック0では、コアメモリ40から、コモンブロック0のメモリアドレスに対応する、3ライン×8セグメント×2ビット、すなわち24ピクセルの48ビット分の階調データが出力される。
また、階調制御回路18から、コモンカウント信号の値により指定されるコモンブロック0の24ピクセルについて、FRC階調パレットの割り当てテーブルによって割り当てられるFRC階調パレットA,B,Cのいずれかに従って、フレームカウント信号の値によって指定されるフレーム(FRCシーケンス)毎に、階調データの値が表す階調1,2に対応する階調パターン信号が出力される。
続いて、スクランブラ42により、コアメモリ40から入力される24ピクセルの48ビット分の階調データと、階調デコーダ36から入力される階調パターン信号とから、24ピクセルの各々の2ビットの階調データに対応する1ビットのON,OFF信号が出力される。なお、前述の通り、階調0の階調パターン信号は常に0(OFF状態)、階調3の階調パターン信号は常に1(ON状態)となる。
続いて、EXOR回路44により、選択パターンの各々のビットと、これに対応する3行分のON,OFF信号の各々のビットとの排他的論理和がとられ、アダー46により、その総和が算出される。すなわち、MLS演算が行われる。SEGブロック信号0がアクティブ状態となってセグメントブロック0が選択されているので、アダー46の2ビットの出力信号の上位1ビットのデータ、すなわち8セグメント分の合計で8ビットのデータがSBラッチ48に保持される。
以下同様にして、SEGブロック信号1〜19が順次アクティブ状態となり、セグメントブロック0〜19が時系列に選択されて、上記の動作が繰り返し行われる。その結果、セグメントブロック0〜19のSBラッチ48に、各々対応する8ビットのデータが保持される。
セグメントブロック0〜19全てのSBラッチ48に8ビットのデータが保持されると、全てのセグメントブロック0〜19において、SBラッチ48から8ビットのデータが各々対応するラッチ&SEGセレクタ50に同時に入力されて保持され、合計160ビットのデータに対応するセグメント電圧が出力される。本実施形態の場合、セグメント電圧として、保持されたデータが0の時はV0が出力され、1の時はV1が出力される。
以上のようにして、20個のセグメントブロック0〜19のラッチ&SEGセレクタ50から、セグメント電圧SEG1〜160が同時に出力され、160列のセグメント電極に同時に印加される。
また、従来技術で説明したので詳細は省略するが、選択パターンに応じて、コモンブロック0の3行のコモン電極が同時に選択される。また、上記動作をコモンブロック0〜39について繰り返し行うことで1フィールドの駆動制御が行われる。さらに、MLS演算の1フレーム(=4フィールド)×階調演算の3フレーム=12フィールドについて繰り返し行うことで1表示画像の階調表示が順次更新される。
本実施形態では、ONシーケンスおよびOFFシーケンスの配置が異なる複数のFRC階調パレットを用意しておき、液晶パネルの各々のピクセルに複数のFRC階調パレットを所定のパターンで割り当てる。図3に示す例では、3種類のFRC階調パレットA,B,Cが、液晶パネルの各々のピクセルの行方向および列方向の各々についてシフト(ローテーション)されている。なお、1画面の画像を構成する12フィールドにおけるFRC階調パレットの割り当ては全て同じである。
このように、各々のピクセルにONシーケンスおよびOFFシーケンスの配置の異なるFRC階調パレットA,B,Cをローテーションして割り当てることにより、常時ONもしくは常時OFF以外の中間階調領域の各々のピクセルのONおよびOFFの位置が、同一階調部分において空間的かつ時間的に分散されるので、同じフレームレートであっても、従来方式よりも見かけ上の周波数を高くできる。
このため、消費電力を増大させることなく、FRC階調方式の弱点であるフリッカによる画質劣化を抑制することができ、画像の種類に関わらず、より劣化の少ない高画質な表示画像を得ることができる。また、従来よりもフリッカの発生を抑制することができるので、従来のFRC階調方式と比べて、フレームレートを、より低く抑えることができ、消費電力の削減効果も期待できる。
一方、従来のFRC階調方式では、図4に示すように、表示画像を構成する全てのピクセルについて、全て同じFRC階調パレットが使用されている。図4は、図2に示すFRC階調パレットAのみを使用している例である。このように、全てのピクセルで同じFRC階調パレットを使用すると、一定階調部分が表示内に多くを占める画像では、フリッカが発生しやすくなることは説明した通りである。
また、ブリンキング時の動作は、正転表示の時は通常時の動作と同じである。
一方、ブリンキング動作下における反転表示の時は、3進フレームカウンタ34が1フレーム毎にカウントダウンされ、フレームカウント信号は2〜0の範囲で繰り返しカウントされる。また、FRC階調パレットA,B,Cの中間調のONシーケンスおよびOFFシーケンスの配置の組合せが、正転表示の時の中間調のONシーケンスおよびOFFシーケンスを逆にし、かつ、FRC階調方式のシーケンスの順序を逆にした配置の組合せとされる。
本実施形態において、通常動作時とブリンキング動作時の液晶パネルの駆動回路10の動作の違いは、上記の通りであるから、ここでは、繰り返しの説明を避けるため、ブリンキング時の動作の説明は省略する。
本実施形態では、ブリンキング動作時の反転表示の時に、上記の通り、FRC階調パレットの中間調のONシーケンスとOFFシーケンスの配置の組合せを、正転表示の時の中間調のONシーケンスとOFFシーケンスを逆にし、かつ、FRCシーケンスを逆にした配置の組合せとする。これによって、バイアス集中、大きな実効電圧変動を回避することができ、斜めの縦縞模様が視認されない高画質な表示画像を得ることができる。
なお、本発明の液晶表示装置の駆動方法を適用する液晶パネルの駆動回路の具体的な構成は、上記実施形態のものに限定されず、同様の機能を果たす各種構成のもので実現可能である。例えば、液晶パネルのサイズは、120行×160列に限定されず、任意の行数×任意の列数の液晶パネルに適用可能である。また、本発明の液晶表示装置は、液晶パネルと、上記実施形態の液晶パネルの駆動回路などによって構成されるものである。
また、FRC階調パレットは、2種類以上何種類のFRC階調パレットを使用しても良い。また、FRC階調パレットにおけるONシーケンスおよびOFFシーケンスの配置も限定されず、あらゆる組合せの中から必要に応じて必要なものを必要数だけ使用すれば良い。各ピクセルにおけるFRC階調パレットの割り当てはシフト(ローテーション)に限らず、ON,OFFの位置を空間的かつ時間的に分散させることができる任意のパターンでFRC階調パレットの割り当てをすれば良い。
また、MLS駆動方式によって同時に選択されるコモン電極の行数や、コモンブロックの個数、セグメントブロックの個数、各々のピクセルの階調数も何ら限定されず、必要に応じて適宜変更してもよい。また、階調制御の方式として、FRC階調方式だけを用いることにも限定されず、PWM階調方式とFRC階調方式とを組み合わせてもよい。既に述べたように、両者を組み合わせる従来技術としては、本出願人に関わる特許文献1などがある。
本発明は、基本的に以上のようなものである。
以上、本発明の液晶表示装置およびその駆動方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
本発明の液晶表示装置の駆動方法を適用する液晶パネルの駆動回路の構成を表す一実施形態のブロック概略図である。 図1に示す液晶パネルの駆動回路で使用されるFRC階調パレットA,BおよびCを表す概略図である。 図1に示す液晶パネルの駆動回路において、各ピクセルで使用されるFRCパレットの割り当てテーブルを表す概念図である。 従来の液晶パネルの駆動回路において、各ピクセルで使用されるFRCパレットの割り当てテーブルを表す概念図である。 通常動作時において、図2に示すFRC階調パレットAを使用して階調1および階調2を表示する場合のFRCシーケンスを表す概念図である。 ブリンキング動作時において、図2に示すFRC階調パレットAを使用して階調1および階調2を表示する場合の従来のFRCシーケンスを表す概念図である。 ブリンキング動作時において、図2に示すFRC階調パレットAを使用して階調1および階調2を表示する場合の本発明のFRCシーケンスを表す概念図である。
符号の説明
10 液晶パネルの駆動回路
12 コモンブロックの制御回路
14 セグメントブロックの制御回路
16 タイミング信号発生回路
18 階調制御回路
20 セグメント電極の駆動回路
22 ブロックカウンタ
24 エンドブロック検出回路
26 SBカウンタ
28 エンドSB検出回路
29 SEGデコーダ
30,32 フリップフロップ(F/F)
34 3進フレームカウンタ
36 階調デコーダ
38 RAMデコーダ
40 コアメモリ
42 スクランブラ
44 EXOR回路
46 アダー(加算器)
48 SBラッチ
50 ラッチ&SEGセレクタ

Claims (7)

  1. 単純マトリクス型の液晶パネルを用いる液晶表示装置において、マルチラインアドレッシング駆動方式により、直交行列を用いて前記液晶パネルの複数行のコモン電極を同時駆動する駆動制御を行い、かつ、フレームレート制御階調方式により、1画面の画像を構成する複数のフィールドにわたって階調制御を行う液晶表示装置の駆動方法であって、
    中間調のONシーケンスおよびOFFシーケンスの配置が異なる複数のフレームレート制御階調パレットを用意しておき、
    前記液晶パネルの各々のピクセルに複数の前記フレームレート制御階調パレットを所定のパターンで割り当てることによって、1フレーム毎に、前記液晶パネルの各々のピクセルのONおよびOFFの位置を空間的かつ時間的に分散させ、
    前記液晶パネルの各々のピクセルに割り当てられたフレームレート制御階調パレットを、前記1画面の画像を構成する複数のフィールドにわたって使用し、前記液晶パネルの各々のピクセルの階調制御を行うことを特徴とする液晶表示装置の駆動方法。
  2. 3行×4列の直交行列を用いて3行のコモン電極を同時駆動し、前記1画面の画像を構成する12フィールドにわたって4階調を表示する階調制御を行うことを特徴とする請求項1に記載の液晶表示装置の駆動方法。
  3. 前記パターンは、前記液晶パネルの各々のピクセルの行方向および列方向の各々について、複数の前記フレームレート制御階調パレットをローテーションさせるパターンであることを特徴とする請求項1または2に記載の液晶表示装置の駆動方法。
  4. 前記同時駆動されるコモン電極の本数に応じて、前記フレームレート制御階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを制御することを特徴とする請求項1〜3のいずれかに記載の液晶表示装置の駆動方法。
  5. フレームレート制御階調方式で1ピクセル当たりn階調の表示を行う場合、ブリンキング動作時の正転表示と反転表示とが交互に入れ替わりながら連続するシーケンスにおいて、(n−1)フレームにわたって前記OFFシーケンスもしくは前記ONシーケンスが連続しないように、前記反転表示の時のONシーケンスとOFFシーケンスの配置の組合せを変更することを特徴とする請求項1〜4のいずれかに記載の液晶表示装置の駆動方法。
  6. 前記ブリンキング動作時の場合、反転表示の時に、前記フレームレート制御階調パレットの中間調のONシーケンスおよびOFFシーケンスの配置の組合せを、前記正転表示の時の中間調のONシーケンスおよびOFFシーケンスを逆にし、かつ、前記フレームレート制御階調方式のシーケンスの順序を逆にした配置の組合せとすることを特徴とする請求項5に記載の液晶表示装置の駆動方法。
  7. 請求項1〜6のいずれかに記載の液晶表示装置の駆動方法により、前記液晶パネルの駆動制御および階調制御が行われることを特徴とする液晶表示装置。
JP2006202866A 2006-01-11 2006-07-26 液晶表示装置およびその駆動方法 Withdrawn JP2007212994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202866A JP2007212994A (ja) 2006-01-11 2006-07-26 液晶表示装置およびその駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006003603 2006-01-11
JP2006202866A JP2007212994A (ja) 2006-01-11 2006-07-26 液晶表示装置およびその駆動方法

Publications (1)

Publication Number Publication Date
JP2007212994A true JP2007212994A (ja) 2007-08-23

Family

ID=38491450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202866A Withdrawn JP2007212994A (ja) 2006-01-11 2006-07-26 液晶表示装置およびその駆動方法

Country Status (1)

Country Link
JP (1) JP2007212994A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107887A1 (zh) * 2013-01-08 2014-07-17 深圳市华星光电技术有限公司 选用frc图案的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014107887A1 (zh) * 2013-01-08 2014-07-17 深圳市华星光电技术有限公司 选用frc图案的方法
US9311866B2 (en) 2013-01-08 2016-04-12 Shenzhen China Star Optoelectronics Technology Co., Ltd Method for selecting FRC pattern

Similar Documents

Publication Publication Date Title
KR100246150B1 (ko) 액정 디스플레이 장치 및 그 구동 방법
JP4390483B2 (ja) 液晶中間調表示方法及びその方法を用いた液晶表示装置
US7362299B2 (en) Liquid crystal display device, driving circuit for the same and driving method for the same
JP4968857B2 (ja) 画素駆動装置及び画素駆動方法
JP2004294968A (ja) 単純マトリクス液晶のマルチラインアドレッシング駆動方法及び装置
US20080024527A1 (en) Display drive apparatus and display apparatus
JP4764272B2 (ja) 単純マトリクス液晶の駆動方法、液晶ドライバおよび液晶表示装置
KR20110071384A (ko) 액정표시장치 및 이의 구동방법
US6919872B2 (en) Method and apparatus for driving STN LCD
US10621937B2 (en) Liquid crystal display device and method of driving the same
US6980193B2 (en) Gray scale driving method of liquid crystal display panel
JP2007212994A (ja) 液晶表示装置およびその駆動方法
JP4166936B2 (ja) 液晶表示パネルの駆動方法
US20030085861A1 (en) Gray scale driving method of liquid crystal display panel
JP3582919B2 (ja) 画像表示装置の駆動方法
JP3576231B2 (ja) 画像表示装置の駆動方法
JP5063644B2 (ja) 液晶中間調表示方法及びその方法を用いた液晶表示装置
JP2011137929A (ja) 電気光学装置の駆動方法、電気光学装置の駆動装置、電気光学装置及び電子機器
JP2002229524A (ja) 単純マトリクス型液晶表示パネルの駆動回路及び液晶表示装置
JP3719973B2 (ja) 単純マトリクス液晶のマルチラインアドレッシング駆動方法及び装置
JP2008268442A (ja) 単純マトリクス液晶の駆動方法、液晶ドライバおよび液晶表示装置
JPH08160390A (ja) 画像表示装置を駆動する方法
JP3570757B2 (ja) 画像表示装置の駆動法
JP3979827B2 (ja) 単純マトリクス液晶のマルチラインアドレッシング駆動方法及び装置
JP3618141B2 (ja) 画像表示装置の駆動法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006