JP2007208296A - Member with filling metallic portion - Google Patents

Member with filling metallic portion Download PDF

Info

Publication number
JP2007208296A
JP2007208296A JP2007120269A JP2007120269A JP2007208296A JP 2007208296 A JP2007208296 A JP 2007208296A JP 2007120269 A JP2007120269 A JP 2007120269A JP 2007120269 A JP2007120269 A JP 2007120269A JP 2007208296 A JP2007208296 A JP 2007208296A
Authority
JP
Japan
Prior art keywords
metal
hole
molten metal
substrate
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007120269A
Other languages
Japanese (ja)
Other versions
JP4574642B2 (en
Inventor
Tatsuo Suemasu
龍夫 末益
Isao Takizawa
功 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007120269A priority Critical patent/JP4574642B2/en
Publication of JP2007208296A publication Critical patent/JP2007208296A/en
Application granted granted Critical
Publication of JP4574642B2 publication Critical patent/JP4574642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member with a filling metallic portion capable of securely filling molten metal in the vicinity of openings, especially openings which open on the work outer surface of fine pores formed on the work. <P>SOLUTION: In a member with a filling metallic portion according in the fine pore 11 formed in a work 10, the member has a filling metallic portion 22 formed by filling molten metal therein, and a metal layer 15 is formed in a region including an internal surface located at the edge opening at least to an outer surface of the work of the fine pore in the internal surface thereof. The filling metallic portion fills in the fine pore including the edge, where the metallic layer of the fine pore is formed, and provided so that electric conduction is secured. It is configured in such a way that one end forms a weld overlay and the other end makes flatness and a through electrode filling in the fine pore and bump composed of the weld overlay are integrally formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路基板に形成した貫通孔や非貫通孔など、部材に形成された微細孔に金属を充填する充填金属部付き部材に関する。   The present invention relates to a member with a filling metal part that fills a fine hole formed in a member such as a through hole and a non-through hole formed in a circuit board with metal.

例えば、ICチップ等の製造工程で基板(シリコン基板等)に貫通電極(ビアホール電極)を形成する場合、基板に貫通電極用の貫通孔を開け、この基板を導体用の金属を溶融させた溶融金属(メッキ液)に挿入、浸漬し、貫通孔内に溶融金属を充填するメッキ法を採用することが一般的である。   For example, when a through electrode (via hole electrode) is formed on a substrate (silicon substrate or the like) in the manufacturing process of an IC chip or the like, a through hole for the through electrode is formed in the substrate, and the substrate is melted by melting a metal for a conductor. It is common to employ a plating method that inserts and immerses in a metal (plating solution) and fills the through hole with molten metal.

しかし、メッキ法によって貫通孔に金属を充填する場合、何等かの原因によって基板の貫通孔入り口付近でメッキ層が集中的に成長して、貫通孔奥側へのメッキ液の進入が難しくなるケースがある。この場合、貫通孔内部に鬆ができるなど、空隙の無い状態に金属を充填することが困難になるといった問題があった。   However, when filling the through hole with metal by plating, the plating layer grows intensively near the through hole entrance of the substrate for some reason, making it difficult for the plating solution to enter the deep side of the through hole There is. In this case, there is a problem that it is difficult to fill the metal without voids, such as a void inside the through hole.

特に、貫通孔が高アスペクト比(孔深さ/開口部直径)の微細孔である場合、溶融金属を貫通孔の奥深くまで進入させることが難しいため、基板の貫通孔入り口付近でのメッキ層の集中的な成長が生じやすく、前述の問題が顕著になる。例えば、シリコンICチップなどを積層する高密度三次元実装では、一枚の基板の表裏の配線パターンを繋ぐために基板に貫通電極(貫通配線)を形成する場合があるが、基板に開ける貫通電極用の貫通孔は高アスペクト比の微細孔であるため、前述のメッキ法によって貫通孔に金属を充填して貫通電極を形成しようとすると、空隙の無い貫通電極を確実に形成することは困難である。   In particular, when the through hole is a fine hole having a high aspect ratio (hole depth / opening diameter), it is difficult to allow the molten metal to penetrate deep into the through hole. Concentrated growth tends to occur, and the above-mentioned problem becomes remarkable. For example, in high-density three-dimensional mounting in which silicon IC chips or the like are stacked, a through electrode (through wiring) may be formed on the substrate to connect the wiring patterns on the front and back of a single substrate. Since the through hole for use is a fine hole with a high aspect ratio, it is difficult to reliably form a through electrode without a gap when filling the through hole with metal by the above-described plating method to form a through electrode. is there.

本発明は、前記課題に鑑みて、ワークに形成された微細孔の特にワーク外面に開口する開口部付近での溶融金属の充填を確実に行うことができる充填金属部付き部材を提供することを目的としている。   In view of the above-mentioned problems, the present invention provides a member with a filling metal part that can reliably fill molten metal in the vicinity of an opening of a fine hole formed in a work, particularly in the outer surface of the work. It is aimed.

本発明は、ワークに形成された微細孔に金属を充填する方法であって、前記微細孔のワーク外面に開口する端部の内面に金属層を形成した後、前記ワークを溶融金属中に浸潰して前記微細孔に溶融金属を充填せしめ、次いで、微細孔の軸方向に沿った一方の端部の閉塞したまま前記ワークを前記溶融金属から取り出して冷却することを特徴とする金属充填方法を用いる。
この金属充填方法では、前記微細孔が前記ワークを貫通する貫通孔であり、この貫通孔の軸方向両端の内の少なくとも一端部の内面に前記金属層を形成し、溶融金属中に浸潰して前記貫通孔に溶融金属を充填せしめた前記ワークの溶融金属からの取り出しに際して、微細孔の軸方向一方の端部として、貫通孔の軸方向他端部の開口部を封止材で塞いでおく構成も採用可能である。さらに、前記微細孔の前記ワーク外面に開口する端部の内面とともに、この微細孔の前記金属層が形成された端部の周囲に延在するワーク外面にも金属層を形成し、このワークを溶融金属槽内の溶融金属中に浸潰して前記微細孔に溶融金属を充填せしめた後、ワークの冷却前に、前記溶融金属から取り出したワークの微細孔の前記ワーク外面に開口する端部の内面及び前記ワーク外面に開口する端部の周囲に形成した金属層の存在部位上に前記微細孔に充填された溶融金属を肉盛りしておき、次いで、ワークを冷却することで、前記微細孔内の溶融金属の固化によって形成される充填金属部と前記溶融金属の肉盛り部分の固化によって形成される外部金属部とを一体形成することも可能である。
また、上述した金属充填方法では、溶融金属中へのワークの浸漬前に、ワーク外面における微細孔の開口部の周囲の金属層を、形成する目的の外部金属部の形状に対応してパターニングすることも可能である。
本発明の請求項1に記載の充填金属部付き部材は、ワークに形成された微細孔内に、前記微細孔への溶融金属の充填によって形成された充填金属部を有し、前記微細孔の内面の、少なくとも前記微細孔のワーク外面に開口する端部に位置する内面を含む範囲に金属層が形成されており、前記充填金属部は、前記微細孔の前記金属層が形成されている端部を含む前記微細孔の内部を満たし、電気的な導通が確保されるように設けられており、一端が肉盛りを、他端が平坦をなすように構成され、前記微細孔の内部を満たしてなる貫通電極と前記肉盛りからなるバンプとが一体形成され連続しているであることを特徴とする。
本発明の請求項2に記載の充填金属部付き部材は、請求項1において、前記ワークが半導体基板であり、前記貫通電極が接する微細孔の内面には、絶縁層が設けられていることを特徴とする。
本発明の請求項3に記載の充填金属部付き部材は、請求項1において、前記ワークが半導体基板であり、前記貫通電極が接する微細孔の内面、および、前記肉盛り部が接する一方の面には、絶縁層が設けられていることを特徴とする。
The present invention is a method of filling a fine hole formed in a workpiece with a metal, and after forming a metal layer on the inner surface of the end of the fine hole that opens to the outer surface of the workpiece, the workpiece is immersed in molten metal. A metal filling method characterized by crushing and filling the fine holes with molten metal, and then taking out the workpiece from the molten metal and cooling while closing one end along the axial direction of the fine holes. Use.
In this metal filling method, the fine hole is a through-hole penetrating the work, and the metal layer is formed on the inner surface of at least one end of the through-holes in the axial direction, and is immersed in molten metal. When taking out the work in which the through-hole is filled with molten metal from the molten metal, the opening at the other end in the axial direction of the through-hole is closed with a sealing material as one end in the axial direction of the fine hole. A configuration can also be employed. Furthermore, a metal layer is formed on the outer surface of the work extending around the end of the fine hole formed on the outer surface of the fine hole, as well as on the inner surface of the fine hole. After immersing in the molten metal in the molten metal tank and filling the fine hole with the molten metal, before cooling the work, the end of the fine hole of the work taken out from the molten metal is opened to the outer surface of the work. The molten metal filled in the fine holes is built up on the presence portion of the metal layer formed around the inner surface and the end opened to the outer surface of the work, and then the fine holes are cooled by cooling the work. It is also possible to integrally form the filled metal portion formed by solidification of the molten metal and the external metal portion formed by solidification of the build-up portion of the molten metal.
Further, in the metal filling method described above, before the work is immersed in the molten metal, the metal layer around the opening of the fine hole on the outer surface of the work is patterned corresponding to the shape of the external metal part to be formed. It is also possible.
The member with a filling metal part according to claim 1 of the present invention has a filling metal part formed by filling molten metal into the fine hole in the fine hole formed in the workpiece, A metal layer is formed in a range including at least an inner surface located at an end of the fine hole that opens to the work outer surface of the fine hole, and the filled metal part is an end where the metal layer of the fine hole is formed. The inside of the fine hole including the portion is filled so as to ensure electrical conduction, and one end is built up and the other end is flat, and fills the inside of the fine hole. The through electrode and the bump made of the build-up are integrally formed and continuous.
The member with a filling metal part according to claim 2 of the present invention is the member according to claim 1, wherein the workpiece is a semiconductor substrate, and an insulating layer is provided on an inner surface of the fine hole with which the through electrode is in contact. Features.
The member with a filling metal part according to claim 3 of the present invention is the member according to claim 1, wherein the workpiece is a semiconductor substrate, the inner surface of a fine hole with which the through electrode is in contact, and one surface with which the build-up part is in contact Is characterized in that an insulating layer is provided.

この発明に係るワークは、貫通孔(微細孔)あるいは非貫通孔(軸方向に沿った一端のみがワーク外面に開口しており、他端が開口していない微細孔)である金属充填用の微細孔を有する部材であり、例えばビアホールや所謂インナービアホールが形成された基板(回路基板)等である。ワークの材質は、シリコン、ガリウム砒素(GaAs)などの半導体材料の他、ガラス等の絶縁材料など、各種採用可能である。
本発明に係るワークに微細孔(貫通孔、非貫通孔のいずれでも良い)を形成する手法としては、ICP−RIE(Inductively Coupled Plasma-Ractive Ion Etching)法に代表されるDeep−Ractive(DRIE)法、エッチング溶液を用いたウェットエッチング法、マイクロドリルによる機械加工法、光励起電解研磨法などが挙げられる。微細孔の直径、ワーク寸法、微細孔の深さ等は用途等に応じて適宜設定され、さらに、微細孔の断面形状(軸方向に垂直な断面の形状)も、円形、楕円形、三角形、矩形(四角形を含む)などいかなる形状であっても良い。
The workpiece according to the present invention is for filling a metal that is a through hole (micro hole) or a non-through hole (a micro hole in which only one end along the axial direction is open on the work outer surface and the other end is not open). A member having a fine hole, for example, a substrate (circuit board) on which a via hole or a so-called inner via hole is formed. Various materials such as a semiconductor material such as silicon and gallium arsenide (GaAs) and an insulating material such as glass can be employed as the material of the workpiece.
As a technique for forming fine holes (either through holes or non-through holes) in the workpiece according to the present invention, Deep-Reactive (DRIE) represented by ICP-RIE (Inductively Coupled Plasma-Ractive Ion Etching) method. Examples thereof include a wet etching method using an etching solution, a machining method using a micro drill, and a photoexcited electrolytic polishing method. The diameter of the microhole, the workpiece size, the depth of the microhole, etc. are appropriately set according to the application etc. Further, the cross-sectional shape of the microhole (the cross-sectional shape perpendicular to the axial direction) is also round, elliptical, triangular, Any shape such as a rectangle (including a rectangle) may be used.

本発明に係る金属充填方法では、ワークを加熱溶融した溶融金属中に浸潰して、微細孔に溶融金属を流入充填させた後、前記微細孔の軸方向一端を塞いだまま溶融金属中から取り出し、次いで、この取り出したワークの冷却によって、微細孔内の溶融金属を固化させる手法を採用している。微細孔が貫通孔の場合は、ワークの微細孔内に充填された溶融金属の固化によって貫通配線等を形成でき、微細孔が非貫通孔の場合は固化した溶融金属によって充填金属部としてワークの内部電極、内部配線などを形成できる。
なお、溶融金属中からのワークの取り出しの際に、「微細孔の軸方向一端を塞いだまま」にすることとは、微細孔が貫通孔の場合であれば、貫通孔の軸方向に沿った一端の開口部を封止材を用いて塞ぐことなどによって実現できる。また、微細孔が非貫通孔である場合は、この非貫通孔自体が、軸方向に沿った一端が開口され、他端が塞がれた構成であるので、封止材を用いる必要が無いことは言うまでも無い。
In the metal filling method according to the present invention, the work is crushed in the molten metal heated and melted, and the molten metal is poured into and filled in the fine holes, and then taken out from the molten metal while closing one end in the axial direction of the fine holes. Then, a technique is adopted in which the molten metal in the fine holes is solidified by cooling the taken-out work. When the fine hole is a through hole, a through wiring or the like can be formed by solidification of the molten metal filled in the fine hole of the work. When the fine hole is a non-through hole, the work piece as a filled metal part is formed by the solidified molten metal. Internal electrodes, internal wiring, etc. can be formed.
When taking out the workpiece from the molten metal, “leaving one end in the axial direction of the fine hole” means that if the fine hole is a through hole, it is along the axial direction of the through hole. This can be realized by closing the opening at one end with a sealing material. Further, when the fine hole is a non-through hole, the non-through hole itself has a configuration in which one end along the axial direction is opened and the other end is closed, so that it is not necessary to use a sealing material. Needless to say.

本発明に係る金属充填方法では、加熱溶融した溶融金属を微細孔に充填するので、メッキ法の場合の微細孔入口でのメッキ層の集中的な成長等に起因する充填不良(前述の空隙の形成等)を回避できる。本発明において「溶融金属」は加熱溶融した金属である。
本発明において、ワークの溶融金属中への浸潰とは、ワークを溶融金属中に埋没させることであり、換言すれば、溶融金属中へのワークの挿入である。但し、ここで言う浸潰は、槽(以下、溶融金属槽とも言う)内に貯留された溶融金属へのワークの没入に限定されず、ワークを収容した容器(前述の溶融金属槽も含む)内への溶融金属の注入なども含む。ここで、微細孔への「充填」とは、微細孔の内部全体に隙間無く充填することに限らず、例えば微細孔の軸方向の一部分に空隙を残したり(インナービアホール等の非貫通孔への金属充填の場合)、充填金属内に若干の空間が存在する構成も「充填」に含まれる。本発明では、特に、微細孔の開口部付近での金属充填がしっかりとなされることで、充填金属部の電気的、機械的特性の確保を充分に行える。また、溶融金属中からのワークの「取り出し」とは、槽内に貯留された溶融金属中から上方への引き上げの他、横方向への取り出しなどの他、槽内の溶融金属中に浸潰したワークを槽内からの溶融金属の排出によって露出させることなども含む。
In the metal filling method according to the present invention, the molten metal that has been heated and melted is filled into the fine holes. Therefore, incomplete filling caused by intensive growth of the plating layer at the fine hole entrance in the case of the plating method (the voids described above). Formation etc.) can be avoided. In the present invention, “molten metal” is a metal melted by heating.
In the present invention, the immersion of the workpiece into the molten metal is to immerse the workpiece in the molten metal, in other words, the insertion of the workpiece into the molten metal. However, the soaking referred to here is not limited to the immersion of the work into the molten metal stored in a tank (hereinafter also referred to as a molten metal tank), but a container containing the work (including the aforementioned molten metal tank). Also includes injection of molten metal into the inside. Here, the “filling” of the fine holes is not limited to filling the whole inside of the fine holes without any gaps, and for example, leaving a void in a part in the axial direction of the fine holes (to non-through holes such as inner via holes). In the case of metal filling of the above, a configuration in which some space exists in the filling metal is also included in the “filling”. In the present invention, particularly, the metal filling in the vicinity of the opening of the fine hole is made firm, so that the electrical and mechanical characteristics of the filled metal portion can be sufficiently ensured. In addition, the “removal” of the workpiece from the molten metal means that the workpiece is lifted upward from the molten metal stored in the tank, taken out in the horizontal direction, or is immersed in the molten metal in the tank. It also includes exposing exposed workpieces by discharging molten metal from the tank.

ところで、本発明者等は、シリコンやガラスから形成された基板といったワークについて、溶融金属中から取り出した後の微細孔内の溶融金属の充填状態を検証し、その結果、単に、微細孔に溶融金属を流入充填したワークを、微細孔の軸方向両端の内の閉じられている側を下端にして溶融金属から引き上げる(「取り出し」に相当)という方法であれば、引き上げ工程の際に、上側の面に開口する微細孔の開口部から溶融金属が流出しやすく、引き上げ工程の際の溶融金属の流出によって、結果的に冷却、固化時には溶融金属が充填不足になってしまうケースが多いことを見出した。溶融金属の流出が生じると微細孔内の溶融金属の収容量が減少するのであるから、例えば図15に示すように、微細孔1(図15は貫通孔を示す)内の溶融金属2の上面が、ワーク3(図15は基板)の上側の面4よりも若干低くなってしまい、段差Dが形成される場合がある。また、図15に示すように段差が形成されると、例えば、この溶融金属を固化した貫通配線上に、別工程でバンプを形成して接合しようとしても、バンプと貫通配線との間に接合不良が生じやすく、電気的接続が不完全になるなどの不良の原因になりやすい。   By the way, the present inventors verified the filling state of the molten metal in the fine holes after taking them out of the molten metal for a workpiece such as a substrate formed of silicon or glass, and as a result, simply melted into the fine holes. If the work is filled with metal and is pulled up from the molten metal (corresponding to “removal”) with the closed side of both ends in the axial direction of the fine hole as the lower end (corresponding to “removal”), The molten metal tends to flow out from the opening of the fine holes that open on the surface of the metal, and the molten metal flows out during the pulling process, resulting in many cases where the molten metal becomes insufficiently filled during cooling and solidification. I found it. When the molten metal flows out, the amount of molten metal contained in the fine hole is reduced. Therefore, for example, as shown in FIG. 15, the upper surface of the molten metal 2 in the fine hole 1 (FIG. 15 shows a through hole). However, it is slightly lower than the upper surface 4 of the workpiece 3 (FIG. 15 is a substrate), and a step D may be formed. Further, when a step is formed as shown in FIG. 15, for example, even if an attempt is made to form and bond a bump on the through wiring obtained by solidifying the molten metal in another process, the bonding is made between the bump and the through wiring. Defects are likely to occur, and it is easy to cause defects such as incomplete electrical connection.

溶融金属からのワークの引き上げの際に微細孔から溶融金属が流出する現象は、ワークを形成しているシリコンやガラスでは溶融金属との濡れ性を充分に確保できないことに起因しており、微細孔内面と溶融金属との間が馴染みにくいことから、微細孔からの溶融金属の流出が簡単に生じてしまう。
本発明では、微細孔において、ワークの溶融金属からの取り出し(引き上げなどによる取り出し)時に上側となる側の端部の内面に形成した金属層によって、微細孔に充填した溶融金属との濡れ性が確保されるようにした。これにより、溶融金属中からのワークの取り出し時に、微細孔の開口部からの溶融金属の流出が生じにくく、微細孔の開口部付近での段差の形成等の不都合を防止できる。金属層は微細孔の開口部付近の内面の出来るだけ広範囲に形成することがより好ましい。微細孔が貫通孔である場合、貫通孔の両端の内面に金属層を形成すれば、必ずしも貫通孔の軸方向に沿った全長にわたって内面全体に金属層を形成しなくても、貫通孔全体に溶融金属を効果的に馴染ませることができ、貫通孔内での空隙の形成防止等に有効である。
The phenomenon that the molten metal flows out of the fine holes when the workpiece is lifted from the molten metal is caused by the fact that silicon or glass forming the workpiece cannot secure sufficient wettability with the molten metal. Since it is difficult to fit between the inner surface of the hole and the molten metal, the outflow of the molten metal from the fine holes easily occurs.
In the present invention, in the fine holes, the metal layer formed on the inner surface of the end on the upper side when the workpiece is taken out from the molten metal (taken out by lifting or the like), the wettability with the molten metal filled in the fine holes is improved. It was ensured. Thereby, when taking out the workpiece from the molten metal, the molten metal does not easily flow out from the opening of the fine hole, and inconveniences such as formation of a step near the opening of the fine hole can be prevented. More preferably, the metal layer is formed as wide as possible on the inner surface near the opening of the micropore. When the fine hole is a through-hole, if a metal layer is formed on the inner surface of both ends of the through-hole, the metal layer is not necessarily formed on the entire inner surface over the entire length along the axial direction of the through-hole. Molten metal can be blended in effectively, and is effective in preventing the formation of voids in the through holes.

微細孔のワーク外面に開口する端部の内面とともに、該微細孔端部の周囲に延在するワーク外面にも金属層を形成しておくと、この開口部周囲の金属層に対する溶融金属の濡れ性によって、溶融金属中から基板を取り出したときの微細孔からの溶融金属の流出をより確実に防止できる。また、溶融金属中からワークを取り出したときに、この金属層(開口部周囲の金属層)に沿って溶融金属の層が形成されることを利用して、この金属層上の溶融金属の冷却、固化によって、基板上の配線のグランドやバンプ等などといった外部金属部を形成することができる。ここで形成されるグランドやバンプ等の外部金属部は、ワーク外面において微細孔の開口部の周囲に形成した金属層の存在部位上に肉盛りされた溶融金属を冷却、固化させたものであり、微細孔内で固化される充填金属部と一体形成される。こうして形成したグランドやバンプ等の外部金属部は、充填金属部と同一種類の金属によって充填金属部と連続しているので、充填金属部とは別に形成する場合に比べて、充填金属部との接合不良等の問題が生じないといった利点がある。
また、外部金属部と充填金属部とが異種材料である場合に生じるような熱膨張係数の違いや材料の拡散等に起因する接合部(外部金属部と充填金属部との間の接合部)の脆性化といった問題も無い。
When a metal layer is formed on the inner surface of the end of the fine hole that opens to the outer surface of the work and on the outer surface of the work that extends around the end of the fine hole, the molten metal wets the metal layer around the opening. Depending on the property, it is possible to more reliably prevent the molten metal from flowing out of the fine holes when the substrate is taken out from the molten metal. In addition, when the workpiece is taken out from the molten metal, the molten metal layer is formed along the metal layer (the metal layer around the opening) to cool the molten metal on the metal layer. By solidification, external metal parts such as grounds and bumps of wiring on the substrate can be formed. The external metal parts such as the ground and bumps formed here are those obtained by cooling and solidifying the molten metal built up on the existing part of the metal layer formed around the opening of the fine hole on the outer surface of the work. , Formed integrally with the filled metal portion solidified in the micropores. Since the external metal part such as the ground and the bump formed in this way is continuous with the filled metal part by the same type of metal as the filled metal part, compared with the case where it is formed separately from the filled metal part, There is an advantage that problems such as poor bonding do not occur.
Also, a joint part (joint part between the external metal part and the filling metal part) due to the difference in thermal expansion coefficient or the diffusion of the material that occurs when the external metal part and the filling metal part are different materials There is no problem of embrittlement.

例えば、ワークとしての基板上に、外部金属部としてのバンプを形成する場合、基板の一方の面における微細孔の開口部の周囲での金属層の形成範囲等によって、大きさや形状等を調整できる。溶融金属中から基板を取り出しときに、基板の一方の面における微細孔の開口部及び該開口部の周囲に形成した金属層の存在部位上に残る溶融金属を、その表面張力等によって山形の肉盛り状態とすることができるから、これを固化させることで山形のバンプが得られる。したがい、基板の一方の面における微細孔の開口部の周囲での金属層の形成範囲をパターニング等によって調整すると、バンプの高さ、大きさ等を調整することができる。   For example, when a bump as an external metal part is formed on a substrate as a workpiece, the size, shape, etc. can be adjusted depending on the formation range of the metal layer around the opening of the fine hole on one surface of the substrate. . When the substrate is taken out from the molten metal, the molten metal remaining on the opening of the micropores on one side of the substrate and the metal layer formed around the opening is removed by the surface tension, etc. Since it can be in a heaped state, a solid bump is obtained by solidifying it. Therefore, the height, size, etc. of the bumps can be adjusted by adjusting the formation range of the metal layer around the opening of the fine hole on one surface of the substrate by patterning or the like.

本発明に係る充填金属部付き部材では、微細孔のワーク外面に開口する端部の内面に形成された金属層の濡れ性によって、微細孔の前記金属層が形成されている端部に充填されている充填金属部と金属層との間に優れた密着性が確保されているため、微細孔の開口部付近における充填金属部の固定状態を長期にわたって安定に維持でき、長期の使用によっても、微細孔内面からの充填金属部の剥離、微細孔内での充填金属部の浮動等を確実に防止できるため、長期安定性が得られる。
さらに、前記充填金属部と一体に形成され前記ワーク外面に突出するように肉盛りされた形状の外部金属部が、微細孔の前記金属層が形成された端部の周囲に延在するワーク外面に形成された金属層を覆うように形成された構成では、微細孔内の充填金属部と外部金属部とが一体形成できるから、異種金属の接合による接合不良や、熱膨張係数の違いや材料の拡散等に起因する接合部の脆性化等の問題が無い。
In the member with a filling metal portion according to the present invention, the end portion where the metal layer of the fine hole is formed is filled by the wettability of the metal layer formed on the inner surface of the end portion opened to the outer surface of the fine hole workpiece. Since the excellent adhesion between the filled metal part and the metal layer is ensured, the fixed state of the filled metal part in the vicinity of the opening of the fine hole can be stably maintained over a long period of time, and even with long-term use, Long-term stability can be obtained because peeling of the filled metal part from the inner surface of the fine hole and floating of the filled metal part in the fine hole can be reliably prevented.
Further, the outer surface of the workpiece, which is formed integrally with the filled metal portion and is formed so as to protrude from the outer surface of the workpiece, extends around the end portion where the metal layer of the fine hole is formed. In the structure formed so as to cover the metal layer formed on the metal, the filling metal part in the microhole and the external metal part can be integrally formed. There is no problem such as brittleness of the joint due to diffusion of the metal.

以上述べたように、本発明によれば、微細孔の両端の内、ワーク外面に開口する端部の内面に形成した金属層によって、微細孔に充填した溶融金属との濡れ性が確保されるようにした。これにより、溶融金属中からの基板の取り出し時に、微細孔の開口部からの溶融金属の流出が生じにくく、微細孔の開口部付近での段差の形成等の不都合を防止できる。段差が無ければ、この溶融金属が固化した貫通配線等の充填金属部に対して別工程で形成したバンプ等を接合する場合に確実に接合させることができ、接合不良を防止できる。また、微細孔のワーク外面に開口する端部の内面に金属層を形成すれば、微細孔内部での空隙発生(特に、溶融金属中への浸潰時に塞がれている端部付近に発生しやい空隙)を有効に防止でき、微細孔全体に溶融金属を確実に充填でき、段差や空隙等の無い中実な貫通配線を形成できる。   As described above, according to the present invention, the wettability with the molten metal filled in the micropores is ensured by the metal layer formed on the inner surface of the end portion that opens to the outer surface of the workpiece among the both ends of the micropores. I did it. Accordingly, when the substrate is taken out from the molten metal, the molten metal does not easily flow out from the opening of the microhole, and inconveniences such as formation of a step near the opening of the microhole can be prevented. If there is no level difference, it is possible to reliably bond the bumps and the like formed in a separate process to the filling metal portion such as the through wiring in which the molten metal is solidified, and to prevent the bonding failure. In addition, if a metal layer is formed on the inner surface of the end of the fine hole that opens to the outer surface of the workpiece, voids are generated inside the fine hole (especially near the end that is closed when immersed in molten metal) (Smooth voids) can be effectively prevented, the entire fine holes can be filled with molten metal reliably, and solid through-wirings free from steps and voids can be formed.

微細孔の開口部付近の内面とともに、ワーク外面における微細孔の開口部の周囲にも金属層を形成しておくことで、この開口部周囲の金属層に対する溶融金属の濡れ性によって、溶融金属中からワークを取り出したときの微細孔からの溶融金属の流出をより確実に防止できる。また、溶融金属中から基板を取り出したときに、この金属層(開口部周囲の金属層)に沿って溶融金属の層が形成されることを利用して、この金属層上の溶融金属の冷却、固化によって基板上の配線のグランドやバンプ等を形成することができる。
外部金属部が、微細孔から連続して、ワーク外面における微細孔の開口部及び該開口部の周囲に形成した金属層の存在部位上に肉盛りされた溶融金属を冷却、固化させたものであれば、微細孔内で固化される溶融金属によって形成される充填金属部と一体形成されるから、充填金属部との接合不良等の問題が生じないといった利点がある。また、外部金属部と充填金属部とが異種材料である場合に生じるような熱膨張係数の違いや材料の拡散等に起因する接合部(外部金属部と充填金属部との接合部)の脆性化といった問題も無く、長期信頼性が向上する。
ワーク外面における微細孔の開口部の周囲の金属層を形成するにあたり、該金属層を、形成する目的の外部金属部の形状(バンプ形状等)に対応してパターニングすることで、目的サイズのバンプ等を簡単に形成できる。この場合、ワーク外面における微細孔の開口部の周囲での金属層の形成範囲をパターニングによって調整することで、バンプの高さ、大きさ等を簡単に調整できるといった利点がある。
By forming a metal layer around the opening of the microhole on the outer surface of the work as well as the inner surface near the opening of the microhole, the wettability of the molten metal to the metal layer around this opening causes It is possible to more reliably prevent the molten metal from flowing out of the fine holes when the workpiece is taken out of the workpiece. In addition, when the substrate is taken out from the molten metal, the molten metal layer is formed along the metal layer (the metal layer around the opening) to cool the molten metal on the metal layer. The ground and bumps of the wiring on the substrate can be formed by solidification.
The outer metal part is continuously cooled from the fine holes, and is obtained by cooling and solidifying the molten metal built up on the opening parts of the fine holes on the outer surface of the work and the metal layer formed around the openings. If there is, since it is integrally formed with the filled metal portion formed by the molten metal solidified in the micropores, there is an advantage that problems such as poor bonding with the filled metal portion do not occur. In addition, the brittleness of the joint (joint between the external metal part and the filled metal part) due to the difference in thermal expansion coefficient or the diffusion of the material that occurs when the external metal part and the filled metal part are made of different materials Long-term reliability is improved without any problem.
When forming the metal layer around the opening of the micro hole on the outer surface of the workpiece, the metal layer is patterned in accordance with the shape (bump shape, etc.) of the target external metal portion to be formed. Etc. can be formed easily. In this case, there is an advantage that the height, size, etc. of the bumps can be easily adjusted by adjusting the formation range of the metal layer around the opening of the fine hole on the outer surface of the work by patterning.

以下、本発明の実施の形態を、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
まず、本発明に係る第1実施形態の金属充填方法及び充填金属部付き部材を説明する。
この実施形態の金属充填方法は、ワークとしての基板(以下、ワークを「基板」と称する場合がある)の表裏両面(表面、裏面共に、ワーク外面に相当する)の配線パターンを繋ぐための貫通配線及びバンプを形成する方法(以下、この実施形態の金属充填方法を「貫通配線の形成方法」と称する場合がある)である。
(First embodiment)
First, the metal filling method and member with a filling metal part of 1st Embodiment which concern on this invention are demonstrated.
The metal filling method of this embodiment is a through-hole for connecting wiring patterns on both front and back surfaces (both front and back surfaces correspond to work outer surfaces) of a substrate as a workpiece (hereinafter, the workpiece may be referred to as “substrate”). This is a method of forming wirings and bumps (hereinafter, the metal filling method of this embodiment may be referred to as a “penetrating wiring forming method”).

図1に示すように、この金属充填方法に用いる基板は、微細孔として貫通配線用の貫通孔11(以下、微細孔を貫通孔と称する場合がある)が複数貫通形成されているものである。ここでは、基板10としてシリコン基板を採用しているが、基板としてはこれに限定されず、例えばガリウム砒素(GaAs)などの半導体材料、ガラスやセラミックなどの絶縁材料、合成樹脂製等も採用可能である。
さらに、例えば、エポキシ樹脂等の有機材料をガラスやシリコン製の基板と積層、一体化した複合基板なども採用可能である。また、基板としては、一方又は両方の主面(表面、裏面)に電気回路が直接形成されるものや、一方又は両方の主面に回路形成用のプラットフォームが形成されるもの、これらの複合など、各種構成が採用可能である。なお、基板10の厚さは数百μm程度である。
基板10に形成する貫通配線は本発明に係る充填金属部、バンプは本発明に係る外部金属部に相当するものである。この実施の形態において「基板」はワーク、貫通孔は微細孔、貫通配線は充填金属部、バンプは外部金属部と読み替えることができる。また、「貫通配線の形成方法」との記載箇所は金属充填方法と読み替えることができる。
As shown in FIG. 1, the substrate used in this metal filling method is one in which a plurality of through holes 11 for through wiring (hereinafter, the micro holes may be referred to as through holes) are formed as fine holes. . Here, a silicon substrate is used as the substrate 10, but the substrate is not limited to this. For example, a semiconductor material such as gallium arsenide (GaAs), an insulating material such as glass or ceramic, or a synthetic resin can be used. It is.
Furthermore, for example, a composite substrate in which an organic material such as an epoxy resin is laminated and integrated with a glass or silicon substrate can also be used. In addition, as a substrate, an electric circuit is directly formed on one or both main surfaces (front and back surfaces), a circuit forming platform is formed on one or both main surfaces, a combination of these, etc. Various configurations can be adopted. The thickness of the substrate 10 is about several hundred μm.
The through wiring formed on the substrate 10 corresponds to the filled metal portion according to the present invention, and the bump corresponds to the external metal portion according to the present invention. In this embodiment, the “substrate” can be read as a work, the through hole is a fine hole, the through wiring is a filled metal portion, and the bump is an external metal portion. In addition, the description of “a method for forming a through wiring” can be read as a metal filling method.

この貫通配線の形成方法は、基板の表裏両面における貫通孔の開口部の内面及び開口部の周囲に金属層を形成(メタライズ)する工程(メタライズ工程)と、このメタライズ工程を完了した基板を、溶融金属槽内に貯留されている溶融金属(加熱溶融した金属)中に浸潰して貫通孔に溶融金属を充填する溶融金属充填工程と、この溶融金属充填工程の後、溶融金属槽から取り出し(ここでは具体的には引き上げ)た基板を冷却することで、貫通孔内の溶融金属及び貫通孔から連続して基板上に突出状態に肉盛りされている溶融金属を固化して貫通配線とバンプとを形成する冷却固化工程とを有して構成されている。   This through-wiring forming method includes a step (metallization) of forming a metal layer on the inner surface of the opening of the through-hole and the periphery of the opening on both the front and back surfaces of the substrate (metallization step), and a substrate that has completed this metallization step, A molten metal filling process in which the molten metal (heated and melted metal) stored in the molten metal tank is immersed in the molten metal to fill the through hole with the molten metal, and after the molten metal filling process, the molten metal tank is taken out ( Here, specifically, the substrate that has been pulled up) is cooled to solidify the molten metal in the through-hole and the molten metal that is continuously built up on the substrate from the through-hole, and through-wires and bumps And a cooling and solidifying step of forming

(メタライズ工程)
まず、図1に示すように基板10を用意し、この基板10を熱酸化処理して基板10全体に電気絶縁層12としての酸化膜(以下、電気絶縁層を「酸化膜」と称する場合がある)を形成する(図2)。
貫通孔11は、基板10を貫通する径数十μm程度(例えば50μm)の微細孔であり、基板10の表面13と裏面14とに開口されている。基板10の熱酸化処理によって形成される酸化膜12は、基板10の表面13及び裏面14のみならず、貫通孔11内面にも形成される。
なお、ここで「表面」とは、後述の溶融金属充填工程(図9〜図13参照)にて上側に向けられる面(一方の面)であり、「裏面」は下側に向けられる面(他方の面)である。
この実施形態では、ワーク(基板10)に微細孔(貫通孔11)を形成する手法として、DRIE法を用いた場合を例に説明する。この実施形態のDRIE法は、エッチングガスに六フッ化硫黄(SF6)を用い、高密度プラズマによるエッチングと、基板壁面へのパッシベーション製膜とを交互に行うことにより(Boschプロセス)、基板10を深堀エッチングして、基板10の両側の主面(表面13と裏面14)とに貫通する貫通孔11を形成するものである。
また、ワーク(基板10)に微細孔(貫通孔11)を形成する手法としては、DRIE法以外に、前述のエッチング溶液を用いたウェットエッチング法、マイクロドリルによる機械加工法なども採用可能であることは、言うまでも無い。ウェットエッチング法をシリコン基板10への微細孔の形成に適用する場合は、エッチング液として水酸化カリウム(KOH)水溶液等が採用される。
(Metalizing process)
First, as shown in FIG. 1, a substrate 10 is prepared, and the substrate 10 is thermally oxidized to form an oxide film as an electric insulating layer 12 on the entire substrate 10 (hereinafter, the electric insulating layer is sometimes referred to as an “oxide film”). (FIG. 2).
The through hole 11 is a fine hole having a diameter of about several tens of μm (for example, 50 μm) penetrating the substrate 10, and is opened on the front surface 13 and the back surface 14 of the substrate 10. The oxide film 12 formed by the thermal oxidation treatment of the substrate 10 is formed not only on the front surface 13 and the back surface 14 of the substrate 10 but also on the inner surface of the through hole 11.
Here, the “front surface” is a surface (one surface) directed upward in a molten metal filling step (see FIGS. 9 to 13) described later, and the “back surface” is a surface directed downward ( The other side).
In this embodiment, a case where the DRIE method is used as an example of a technique for forming a fine hole (through hole 11) in a work (substrate 10) will be described. The DRIE method of this embodiment uses sulfur hexafluoride (SF6) as an etching gas, and alternately performs etching by high-density plasma and passivation film formation on the substrate wall surface (Bosch process). Deep etching is performed to form through-holes 11 penetrating the main surfaces (front surface 13 and back surface 14) on both sides of the substrate 10.
In addition to the DRIE method, a wet etching method using the above-described etching solution, a machining method using a micro drill, or the like can be employed as a method for forming the fine hole (through hole 11) in the workpiece (substrate 10). Needless to say. When the wet etching method is applied to the formation of micropores in the silicon substrate 10, a potassium hydroxide (KOH) aqueous solution or the like is employed as an etching solution.

次に、図3に示すように、基板10の表面13及び裏面14における貫通孔11の開口部内面(開口部付近の貫通孔内面)と、表面13及び裏面14における貫通孔11の開口部の周囲とに、金属スパッタリングによって金属層15を形成する。
具体的には、図4に示すように、まず、厚さ300Å程度のクロム(Cr)層である第1層15aをスパッタリングにより形成し、次いで、厚さ5000Å程度の金(Au)層である第2層15bを前記第1層15a上に積層形成する。貫通孔11内面に形成する金属層15は、基板10の表面13又は裏面14から貫通孔11の軸方向中央部に向かって少なくとも数十μm程度入った所まで形成する。
Next, as shown in FIG. 3, the inner surface of the through hole 11 in the front surface 13 and the back surface 14 of the substrate 10 (the inner surface of the through hole near the opening), and the opening portion of the through hole 11 in the front surface 13 and the back surface 14. A metal layer 15 is formed around the periphery by metal sputtering.
Specifically, as shown in FIG. 4, first, a first layer 15a which is a chromium (Cr) layer having a thickness of about 300 mm is formed by sputtering, and then a gold (Au) layer having a thickness of about 5000 mm. A second layer 15b is stacked on the first layer 15a. The metal layer 15 formed on the inner surface of the through hole 11 is formed from the front surface 13 or the back surface 14 of the substrate 10 to a place where it enters at least about several tens of μm toward the axial center of the through hole 11.

なお、金属層15は貫通孔11内面全体に形成しても良く、この貫通孔11に充填する溶融金属との濡れ性を確保して、貫通孔11内に空隙を生じることなく溶融金属を確実に充填するには、貫通孔11内の出来るだけ広範囲にわたって金属層15を形成することが好ましい。つまり、貫通孔11内面での金属層15の形成範囲は、少なくとも基板表面13側の貫通孔開口部付近の貫通孔11内面(貫通孔11の開口部から軸方向中央部に向かって少なくとも数十μm程度の範囲)であり、より好ましくは基板10の表裏両面における開口部付近(つまり、貫通孔11の軸方向両端付近。いずれの側の端部でも、貫通孔11の開口部から軸方向中央部に向かって少なくとも数十μm程度の範囲)の内面であり、最も好ましくは貫通孔11の内面の全体である。
また、スパッタリングを利用した金属層15の形成では、スパッタリングによって金属原子が到達できる範囲であれば金属層15の形成が可能であるため、貫通孔11内面への金属層15の形成を容易に行える利点がある。
The metal layer 15 may be formed on the entire inner surface of the through-hole 11, ensuring wettability with the molten metal filling the through-hole 11, and ensuring the molten metal without generating voids in the through-hole 11. It is preferable to form the metal layer 15 over as wide a range as possible in the through hole 11. That is, the formation range of the metal layer 15 on the inner surface of the through hole 11 is at least several tens of inner surfaces of the through hole 11 near the through hole opening on the substrate surface 13 side (from the opening of the through hole 11 toward the central portion in the axial direction). More preferably, it is in the vicinity of the opening on both the front and back surfaces of the substrate 10 (that is, in the vicinity of both ends in the axial direction of the through hole 11. The center in the axial direction from the opening of the through hole 11 at either end. The inner surface of the through-hole 11 is most preferable.
In addition, in the formation of the metal layer 15 using sputtering, the metal layer 15 can be formed as long as the metal atoms can reach by sputtering. Therefore, the metal layer 15 can be easily formed on the inner surface of the through hole 11. There are advantages.

一方、表面13及び裏面14における貫通孔11の開口部の周囲に形成する金属層15は、形成する目的のバンプのサイズに対応して、このバンプの形成範囲よりも広い領域(基板10の表面13全体、裏面14全体に形成しても良い)に形成しておき、後述の図5、図6に示す工程で、バンプの形成範囲に対応する大きさにパターニングする。
なお、金属層15の第1層15a、第2層15bを形成する金属は、前述のクロムや金に限定されず、他の金属であっても良い。
On the other hand, the metal layer 15 formed around the opening portion of the through hole 11 on the front surface 13 and the back surface 14 corresponds to the size of the target bump to be formed, and has a wider area (the surface of the substrate 10). 13 may be formed on the entire surface 13 and the entire back surface 14), and is patterned to a size corresponding to the bump formation range in the steps shown in FIGS.
The metal forming the first layer 15a and the second layer 15b of the metal layer 15 is not limited to the above-described chromium or gold, and may be other metals.

金属層15の形成が完了したら、図5に示すように、基板10の表面13及び裏面14に感光性レジスト16を塗設し、この感光性レジスト16をフォトリソグラフィ技術によってパターニングする。次いで、図6に示すように、金属層15(第1層15a及び第2層15b)をエッチングして、基板10の表面13及び裏面14における貫通孔11の開口部の周囲に、形成する目的のバンプサイズに適合する形状のメタルパターン(金属層15)を形成する。図7に、パターニングによって成形した金属層15形状の一例を示す。これにより、基板10の表面13及び裏面14における貫通孔11の開口部の周囲に目的形状の金属層15が形成され、メタライズ工程が完了する。
なお、基板10の表面13及び裏面14におけるパターニングによる金属層15の成形は、形成するバンプサイズに適合させることに限定されず、例えば、表面13や裏面14に形成されるパターン配線のグランドに適合する形状等であっても良く、また、パターン配線の一部を形成する形状であっても良い。
When the formation of the metal layer 15 is completed, as shown in FIG. 5, a photosensitive resist 16 is applied to the front surface 13 and the back surface 14 of the substrate 10, and the photosensitive resist 16 is patterned by a photolithography technique. Next, as shown in FIG. 6, the metal layer 15 (first layer 15 a and second layer 15 b) is etched and formed around the openings of the through holes 11 on the front surface 13 and the back surface 14 of the substrate 10. A metal pattern (metal layer 15) having a shape suitable for the bump size is formed. FIG. 7 shows an example of the shape of the metal layer 15 formed by patterning. Thereby, the metal layer 15 having a desired shape is formed around the opening of the through hole 11 on the front surface 13 and the back surface 14 of the substrate 10, and the metallization process is completed.
The formation of the metal layer 15 by patterning on the front surface 13 and the back surface 14 of the substrate 10 is not limited to adapting to the bump size to be formed, and for example, conforms to the ground of the pattern wiring formed on the front surface 13 and the back surface 14. The shape which forms a part etc. may be sufficient, and the shape which forms a part of pattern wiring may be sufficient.

微細孔が形成されたワーク(基板10)は、溶融金属の充填前にプラズマ前処理工程を行っておく。このプラズマ前処理工程は、ここでは酸素(O2)プラズマによる1分間の洗浄であり、プラズマにより、ワーク外面のレジスト層の残渣や異物などを洗浄除去する。このため、微細孔への均一な金属充填などが容易になる。なお、洗浄に使用するプラズマは、酸素プラズマに限定されず、水素(H2)プラズマや、アルゴン(Ar)プラズマでもよく、これらの組み合わせでも良い。また、このプラズマ前処理工程は、溶融金属の充填前のみならず、ワークに対する金属層の形成前にも実施できる。   The workpiece (substrate 10) in which the fine holes are formed is subjected to a plasma pretreatment process before filling with molten metal. This plasma pretreatment step is cleaning for one minute with oxygen (O 2) plasma here, and the resist layer residue and foreign matters on the outer surface of the workpiece are cleaned and removed by the plasma. For this reason, uniform metal filling into the fine holes is facilitated. Note that the plasma used for cleaning is not limited to oxygen plasma, and may be hydrogen (H 2) plasma, argon (Ar) plasma, or a combination thereof. Further, this plasma pretreatment step can be performed not only before filling with molten metal but also before forming a metal layer on the workpiece.

(溶融金属充填工程)
メタライズ工程が完了したら、図8に示すように、基板10の裏面14に封止材17として耐熱性フィルム(以下、封止材を「耐熱性フィルム」と称する場合がある)を貼り付けて、裏面14における貫通孔11の開口部を塞ぐ。
耐熱性フィルムとしては例えばポリイミドフィルムなどが採用可能であり、中でも好適なポリイミドフィルムとしてカプトン(登録商標)などが挙げられる。
カプトンの場合、溶融金属の温度(融点)では固くならないグレードのものを採用することが好ましく、この場合、後述する冷却固化工程で溶融金属20から取り出し(具体的には引き上げ。図13参照)た基板10からの耐熱性フィルムの剥がし作業を容易に行える等の利点がある。また、耐熱性フィルムとしては、カプトンなどのポリイミドフィルム同士、あるいは別の樹脂フィルムをシリコン系接着剤を用いて張り合わせた複合フィルムや、テープなども採用可能である。カプトンを用いたフィルムやテープである封止材(カプトン単体からなるフィルムを含む)は、片面にワークに対する接着用の粘着剤が塗布されたものを用いることが貫通孔の封止作業性の上で好ましい。但し、前記粘着剤としては、溶融金属の温度(融点)では固くならず、溶融金属中から取り出したワークからの剥がす作業を容易に行えるものを採用する。
この封止材17の取り付け作業は大気圧環境下で行うため、封止材17の取り付けによって貫通孔11の軸方向片端を塞いだときに、貫通孔11内の気圧は大気圧になっていることは言うまでも無い。
(Molten metal filling process)
When the metallization step is completed, as shown in FIG. 8, a heat resistant film (hereinafter, the sealing material may be referred to as “heat resistant film”) is attached to the back surface 14 of the substrate 10 as the sealing material 17. The opening of the through hole 11 on the back surface 14 is closed.
As the heat resistant film, for example, a polyimide film or the like can be used. Among them, a suitable polyimide film includes Kapton (registered trademark).
In the case of Kapton, it is preferable to adopt a grade that does not harden at the temperature (melting point) of the molten metal. In this case, the Kapton is taken out from the molten metal 20 (specifically, pulled up; see FIG. 13) in the cooling and solidification step described later. There is an advantage that the heat-resistant film can be easily peeled off from the substrate 10. In addition, as the heat resistant film, a composite film obtained by bonding polyimide films such as Kapton or other resin films using a silicon-based adhesive, a tape, or the like can be used. Sealing materials (including films made of Kapton alone) that are films and tapes using Kapton can be used with one side coated with an adhesive for bonding to the workpiece. Is preferable. However, as the pressure-sensitive adhesive, a pressure-sensitive adhesive that does not become hard at the temperature (melting point) of the molten metal and can be easily peeled off from the work taken out from the molten metal is adopted.
Since the mounting operation of the sealing material 17 is performed in an atmospheric pressure environment, when the axial end of the through hole 11 is blocked by the mounting of the sealing material 17, the atmospheric pressure in the through hole 11 is atmospheric pressure. Needless to say.

次いで、図9に示すように、この基板10を減圧チャンバー18に収容し、減圧チャンバー18内を減圧して、この減圧状態を保ったまま基板10を前記減圧チャンバー18内の溶融金属槽19内に貯留されている溶融金属20中に浸潰する(図10参照)。ここでの減圧は、貫通孔11のアスペクト比0.1〜200に対して真空圧103〜10−5Pa程度が適切である。図9、図10等において、符号19aは、溶融金属槽19の周囲に配設されたヒーターである。溶融金属20中への基板10の浸潰は、この基板10を、減圧チャンバー18内に設置されている昇降治具21に取り付けて、この昇降治具21を下降させることで、ほぼ水平を維持した状態でなされる。   Next, as shown in FIG. 9, the substrate 10 is accommodated in the decompression chamber 18, the inside of the decompression chamber 18 is decompressed, and the substrate 10 is kept in the molten metal tank 19 in the decompression chamber 18 while maintaining the decompressed state. The molten metal 20 is stored in the molten metal 20 (see FIG. 10). The vacuum pressure here is suitably about 103 to 10-5 Pa in vacuum pressure with respect to the aspect ratio of 0.1 to 200 of the through hole 11. In FIG. 9, FIG. 10, etc., a symbol 19 a is a heater disposed around the molten metal tank 19. The substrate 10 is immersed in the molten metal 20 by attaching the substrate 10 to an elevating jig 21 installed in the decompression chamber 18 and lowering the elevating jig 21 so that the substrate 10 is kept almost horizontal. Made in the state.

なお、昇降治具21に取り付けた基板10は、前記昇降治具21の昇降によってほぼ水平を維持したまま昇降されるようになっており、この基板10の溶融金属20からの引き上げもほぼ水平を維持したまま行われる。
封止材としては、耐熱性フィルムに限定されず、基板裏面14における貫通孔11の開口部を封止可能なものであれば良く、その形状も、前述の耐熱性フィルム17のように基板裏面14全体を覆うように接着される構成に限定されない。
ここでは、溶融金属20は、具体的には金−錫共晶ハンダ(Au−20wt%Sn)を加熱溶融したものであるが、本発明に係る溶融金属としてはこれに限定されず、異なる組成の金−錫合金や、錫(Sn)、インジウム(In)などの金属、また、錫鉛(Sn−Pb)系、錫(Sn)基、鉛(Pb)基、金(Au)基、インジウム(In)基、アルミニウム(Al)基などのハンダを使用することもできる。但し、金属層(特にその表層)と溶融金属とは、濡れ性を充分に確保できる組み合わせを選択する。
The substrate 10 attached to the lifting jig 21 is lifted and lowered while the lifting jig 21 is moved up and down while maintaining almost horizontal, and the lifting of the substrate 10 from the molten metal 20 is also almost horizontal. It is done while maintaining.
The sealing material is not limited to the heat resistant film, and any material that can seal the opening of the through hole 11 in the substrate back surface 14 may be used. The shape of the sealing material is the same as that of the heat resistant film 17 described above. It is not limited to the structure bonded so that the whole 14 may be covered.
Here, the molten metal 20 is specifically obtained by heating and melting gold-tin eutectic solder (Au-20 wt% Sn), but the molten metal according to the present invention is not limited to this, and has a different composition. Gold-tin alloy, metals such as tin (Sn), indium (In), tin-lead (Sn-Pb), tin (Sn) group, lead (Pb) group, gold (Au) group, indium A solder such as an (In) group or an aluminum (Al) group can also be used. However, the metal layer (especially the surface layer) and the molten metal are selected as a combination that can ensure sufficient wettability.

溶融金属20中への基板10の浸潰は、封止材17が取り付けられた基板裏面14が下側、表面13が上側として行い、基板表面13が露出しないように基板10全体を溶融金属20中に埋没させる。但し、この段階では、厚さ数百μm程度の基板10を貫通する径数十μm程度の高アスペクト比の微細孔である貫通孔11への溶融金属20の流入は殆ど開始されない。   The substrate 10 is immersed in the molten metal 20 with the back surface 14 to which the sealing material 17 is attached being the lower side and the front surface 13 being the upper side, so that the entire substrate 10 is not exposed so that the substrate surface 13 is not exposed. Buried inside. However, at this stage, the flow of the molten metal 20 into the through-hole 11 that is a fine hole with a high aspect ratio of about several tens of μm that penetrates the substrate 10 having a thickness of about several hundred μm is hardly started.

溶融金属20への基板10の浸潰を完了したら、前記減圧チャンバー18内を加圧する。図11(a)に示すように、減圧チャンバー18内の加圧前では溶融金属20が流入していない貫通孔11内は、その開口部(基板表面13側の開口部)を塞ぐ溶融金属20と封止材17とによって減圧状態が維持されているので、前記減圧チャンバー18内を加圧することにより、貫通孔11内に溶融金属20を確実に流入、充填させることができる(図11(b)、図12参照)。ここでの加圧は大気圧以上であれば良い。また、このとき、貫通孔11の基板裏面14側の端部内面に形成されている金属層15によって溶融金属20の濡れ性が確保されることから、貫通孔11の基板裏面14側の端部付近でも溶融金属20が貫通孔11内面によく馴染んで貫通孔11内に隙間無く充填されるため、貫通孔11全体に溶融金属20を確実に充填できる。
減圧チャンバー18内の加圧は、減圧チャンバー18内への窒素ガス等の不活性ガスの送り込みなどによって行うことも可能であり、この場合は、不活性ガス雰囲気によって、固化前の溶融金属への酸素の巻き込み等を防止して、基板10上や貫通孔11内の溶融金属の特性劣化を防げる利点がある。
When the immersion of the substrate 10 in the molten metal 20 is completed, the inside of the decompression chamber 18 is pressurized. As shown in FIG. 11A, in the through hole 11 into which the molten metal 20 does not flow before pressurization in the decompression chamber 18, the molten metal 20 that blocks the opening (opening on the substrate surface 13 side). Since the reduced pressure state is maintained by the sealing material 17 and the pressure inside the decompression chamber 18, the molten metal 20 can surely flow into and fill the through hole 11 (FIG. 11B). ), See FIG. The pressurization here should just be more than atmospheric pressure. At this time, since the wettability of the molten metal 20 is ensured by the metal layer 15 formed on the inner surface of the end portion of the through hole 11 on the substrate back surface 14 side, the end portion of the through hole 11 on the substrate back surface 14 side. Even in the vicinity, the molten metal 20 is well adapted to the inner surface of the through hole 11 and is filled in the through hole 11 without a gap, so that the molten metal 20 can be reliably filled in the entire through hole 11.
The pressurization in the decompression chamber 18 can also be performed by feeding an inert gas such as nitrogen gas into the decompression chamber 18, and in this case, the inert metal atmosphere is applied to the molten metal before solidification. There is an advantage that oxygen entrapment and the like can be prevented to prevent deterioration of characteristics of the molten metal on the substrate 10 and in the through hole 11.

(冷却固化工程)
貫通孔11への溶融金属20の充填が完了したら、図13に示すように基板10を溶融金属20から引き上げる。このとき、貫通孔11の基板裏面14側の開口部が耐熱性フィルム17によって塞がれた状態が維持されているので、貫通孔11内の溶融金属20が基板裏面14から抜け落ちない。また、貫通孔11の基板表面13側の開口部付近の内面と開口部の周囲とに形成されている金属層15に対する溶融金属20の濡れ性によって、貫通孔11内に充填された溶融金属20が、貫通孔11の基板表面13側の開口部から溶融金属20が流出するといった不都合も生じない。
(Cooling solidification process)
When the filling of the molten metal 20 into the through hole 11 is completed, the substrate 10 is pulled up from the molten metal 20 as shown in FIG. At this time, since the state where the opening on the substrate back surface 14 side of the through hole 11 is closed by the heat resistant film 17 is maintained, the molten metal 20 in the through hole 11 does not fall out of the substrate back surface 14. Further, the molten metal 20 filled in the through-hole 11 due to the wettability of the molten metal 20 to the metal layer 15 formed on the inner surface of the through-hole 11 near the opening on the substrate surface 13 side and the periphery of the opening. However, there is no inconvenience that the molten metal 20 flows out from the opening of the through hole 11 on the substrate surface 13 side.

溶融金属20中から引き上げた基板10の表面13上には、メタライズ工程にて形成されたメタルパターン(金属層15)に沿って溶融金属20が付着したまま落下せずに残る。メタルパターン以外の領域では、基板10に対する溶融金属20の濡れ性が悪いことから、溶融金属20中からの基板10の引き上げに伴って溶融金属20が落下する。
例えば図7に示すように、バンプ形状に対応して貫通孔11の開口部の周囲に環状の金属層15を形成した場合は、この金属層15と前記貫通孔11の開口部との存在領域(基板表面13における金属層15の存在領域及び貫通孔11の開口部の存在領域)上に、前記貫通孔11から連続する溶融金属20が肉盛り状態となる。
On the surface 13 of the substrate 10 pulled out from the molten metal 20, the molten metal 20 remains attached without falling along the metal pattern (metal layer 15) formed in the metallization process. In regions other than the metal pattern, the wettability of the molten metal 20 with respect to the substrate 10 is poor, and therefore the molten metal 20 falls as the substrate 10 is pulled out of the molten metal 20.
For example, as shown in FIG. 7, when an annular metal layer 15 is formed around the opening of the through hole 11 corresponding to the bump shape, the existence region of the metal layer 15 and the opening of the through hole 11 is present. On the substrate surface 13, the molten metal 20 continuous from the through-hole 11 becomes a build-up state on the presence region of the metal layer 15 and the existence region of the opening of the through-hole 11.

溶融金属20中から基板10を引き上げたら、この基板10を冷却して、貫通孔11内に充填されている溶融金属20及び前述の肉盛り状態の溶融金属20とを固化させる。これにより、図14に示すように、貫通孔11内の溶融金属20が固化してなる貫通配線22と、基板表面13上に突出するバンプ23とが、一体的に形成され、充填金属部(貫通配線22)と外部金属部(バンプ23)とが形成された貫通配線付き基板(本発明に係る充填金属部付き部材に相当)が得られる。
前述のように、溶融金属20中からの基板10の引き上げに伴う貫通孔11からの溶融金属20流出が防止され、貫通孔11に対する溶融金属20の充填状態を確実に維持できることから、内部の空隙等の不良の無い貫通配線22が確実に得られる。また、金属層15及び前記貫通孔11の開口部の存在領域上に肉盛り状態になっている溶融金属20はその表面張力等によって山形になるため、これを冷却、固化させることで、基板表面13上に突出する山形のバンプ23が形成される。
When the substrate 10 is pulled up from the molten metal 20, the substrate 10 is cooled to solidify the molten metal 20 filled in the through holes 11 and the above-described molten metal 20 in the build-up state. Thereby, as shown in FIG. 14, the through wiring 22 formed by solidifying the molten metal 20 in the through hole 11 and the bump 23 protruding on the substrate surface 13 are integrally formed, and the filled metal portion ( A substrate with through wiring (corresponding to the member with filled metal portion according to the present invention) in which the through wiring 22) and the external metal portion (bump 23) are formed is obtained.
As described above, it is possible to prevent the molten metal 20 from flowing out of the through hole 11 due to the pulling up of the substrate 10 from the molten metal 20 and to reliably maintain the filled state of the molten metal 20 in the through hole 11. The through wiring 22 having no defects such as the above can be obtained with certainty. Moreover, since the molten metal 20 that is in the built-up state on the metal layer 15 and the region where the opening of the through-hole 11 is formed has a mountain shape due to its surface tension or the like, the substrate surface is obtained by cooling and solidifying it. A chevron-shaped bump 23 protruding on the surface 13 is formed.

このように、貫通配線22とバンプ23とが一体形成されている構成では、貫通配線とは別にバンプを形成して貫通配線と接合させる構成に比べて、接合不良等の問題が無く、電気的特性を確実に確保できる。また、バンプと貫通配線とが異種材料である場合に生じるような熱膨張係数の違いや材料の拡散等に起因する接合部(バンプと貫通配線との間の接合部)の脆性化といった問題も無く、長期信頼性を向上できる。   As described above, in the configuration in which the through wiring 22 and the bump 23 are integrally formed, there is no problem of bonding failure and the like as compared with the configuration in which the bump is formed separately from the through wiring and bonded to the through wiring. The characteristics can be reliably secured. In addition, there is a problem such as a brittleness of the joint portion (joint portion between the bump and the penetrating wiring) due to the difference in thermal expansion coefficient or the diffusion of the material which occurs when the bump and the penetrating wiring are made of different materials. And long-term reliability can be improved.

図15は、比較例として、基板に金属層15を形成しないで、つまり、メタライズ工程を行わずに、溶融金属充填工程と、冷却固化工程とを行った例を示す。
図15中、基板3は、本実施の形態で説明した基板10と同じものである。図15中、符号2を付した溶融金属は、本実施の形態にて説明した溶融金属20と同じものを採用している。この場合も、溶融金属充填工程にて基板3の貫通孔1内全体に溶融金属2を充填できたが、溶融金属槽19内の溶融金属中から基板3を引き上げる際に貫通孔1から溶融金属が流出して、結果的に貫通孔1の溶融金属2が充填不足となり、溶融金属2上面が、引き上げ時に上側となっている基板3の面4から下方に数μm〜数十μm程度低くなっている段差Dを形成するケースが確認された。このことから、本発明に係る貫通配線の形成方法では、貫通孔の開口部付近の内面及び基板表面における貫通孔の開口部の周囲に形成した金属層15によって、溶融金属の流出防止効果が発揮されていることが明らかである。
FIG. 15 shows, as a comparative example, an example in which the molten metal filling step and the cooling and solidifying step are performed without forming the metal layer 15 on the substrate, that is, without performing the metallization step.
In FIG. 15, the substrate 3 is the same as the substrate 10 described in the present embodiment. In FIG. 15, the molten metal denoted by reference numeral 2 is the same as the molten metal 20 described in the present embodiment. Also in this case, the molten metal 2 could be filled in the entire through hole 1 of the substrate 3 in the molten metal filling step, but when the substrate 3 was pulled up from the molten metal in the molten metal tank 19, the molten metal was removed from the through hole 1. As a result, the molten metal 2 in the through hole 1 becomes insufficiently filled, and the upper surface of the molten metal 2 is lowered by several μm to several tens of μm downward from the surface 4 of the substrate 3 which is the upper side when it is pulled up. A case of forming a step D is confirmed. Therefore, in the method for forming a through wire according to the present invention, the metal layer 15 formed on the inner surface near the opening of the through hole and around the opening of the through hole on the substrate surface exhibits an effect of preventing the molten metal from flowing out. It is clear that

なお、本発明に係る貫通配線の形成方法について、貫通孔の開口部付近の内面のみに金属層を形成し、基板表面における貫通孔の開口部の周囲への金属層の形成を省略した場合についても検証したが、充分な大きさのバンプを形成することは困難であるものの、溶融金属中からの基板の引き上げに伴う貫通孔からの溶融金属の流出は防止することができ、溶融金属の充填不足による段差の発生等の不都合は生じない。この場合、例えば、貫通配線に接合するバンプを別工程で形成する際に、接合不良等の発生を非常に少なくすることができる等の効果が得られる。   In the method for forming a through-wiring according to the present invention, the metal layer is formed only on the inner surface near the opening of the through hole, and the formation of the metal layer around the opening of the through hole on the substrate surface is omitted. However, although it is difficult to form a sufficiently large bump, it is possible to prevent the molten metal from flowing out of the through-hole due to the lifting of the substrate from the molten metal. There is no inconvenience such as generation of a step due to lack. In this case, for example, when a bump to be bonded to the through wiring is formed in a separate process, an effect such as occurrence of bonding failure can be extremely reduced.

(第2実施形態)
次に、本発明の第2実施形態を説明する。
この実施形態の金属充填方法は、ワーク50として、非貫通孔51(微細孔)が形成されている基板(以下、ワークを「基板」と称する場合がある)を採用し、前記非貫通孔51に充填した溶融金属を固化した充填金属部及びバンプを形成する方法である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.
The metal filling method of this embodiment employs a substrate on which non-through holes 51 (fine holes) are formed as the workpiece 50 (hereinafter, the workpiece may be referred to as “substrate”). This is a method of forming a filled metal portion and bumps obtained by solidifying the molten metal filled in the metal.

図16に示すように、この実施形態では、基板50として、微細孔である非貫通孔51が複数形成されているガラス基板を用いた構成を例示するが、基板50の非貫通孔51以外の構成(材質など)は、第1実施形態の基板10と同様のものを採用することが可能である。
基板50に形成されている複数の非貫通孔51はインナービアホール等として機能するものである。この非貫通孔51の内径は、第1実施形態の基板10の貫通孔11(微細孔)と同様のもので良い。基板50に形成されている非貫通孔51は、全て、基板50の一方の面(ここでは表面53)に開口されており、この表面53における開口部からほぼ真っ直ぐに基板50の裏面54に向けて延びるように形成されている。
As shown in FIG. 16, in this embodiment, as the substrate 50, a configuration using a glass substrate in which a plurality of non-through holes 51 that are fine holes are formed is illustrated, but other than the non-through holes 51 of the substrate 50. The configuration (material, etc.) can be the same as that of the substrate 10 of the first embodiment.
The plurality of non-through holes 51 formed in the substrate 50 function as inner via holes or the like. The inner diameter of the non-through hole 51 may be the same as that of the through hole 11 (fine hole) of the substrate 10 of the first embodiment. All of the non-through holes 51 formed in the substrate 50 are opened on one surface (here, the front surface 53) of the substrate 50, and are directed almost straight from the opening portion on the front surface 53 toward the back surface 54 of the substrate 50. It is formed to extend.

この金属充填方法では、基板50を用いて、メタライズ工程と、溶融金属充填工程と、冷却固化工程とを第1実施形態と同様の順番で進めていく。但し、この金属充填方法で用いる基板50の微細孔51は非貫通孔であり、軸方向に沿った一方の端部のみ基板50外面(ここでは表面53)に開口しており、軸方向に沿った他方の端部は塞がっているため、溶融金属充填工程にて溶融金属20中に浸潰した基板50の溶融金属20からの取り出し作業(具体的には引き上げを採用できる)にあたり封止材を用いる必要が無い。この金属充填方法は、基板50への封止材の取り付け、取り外しを省略する点以外は、メタライズ工程と、溶融金属充填工程と、冷却固化工程とを第1実施形態と同様に進めていく構成になっている。また、プラズマ前処理工程なども、第1実施形態と同様に行う。
さらに、ここで説明する金属充填方法では、冷却固化工程の後に、基板裏面側に充填金属部を露出させる充填金属部露出工程(後述)を追加している。
In this metal filling method, using the substrate 50, the metallization process, the molten metal filling process, and the cooling and solidifying process are performed in the same order as in the first embodiment. However, the micro hole 51 of the substrate 50 used in this metal filling method is a non-through hole, and only one end portion along the axial direction is opened on the outer surface of the substrate 50 (here, the surface 53), and along the axial direction. Since the other end portion is closed, the sealing material is used in the operation of taking out the substrate 50 that has been crushed in the molten metal 20 in the molten metal filling step from the molten metal 20 (specifically, lifting can be adopted). There is no need to use it. In this metal filling method, the metallizing step, the molten metal filling step, and the cooling and solidifying step are advanced in the same manner as in the first embodiment except that the attachment and removal of the sealing material to the substrate 50 are omitted. It has become. Further, the plasma pretreatment process and the like are performed in the same manner as in the first embodiment.
Furthermore, in the metal filling method described here, a filling metal portion exposing step (described later) for exposing the filling metal portion on the back side of the substrate is added after the cooling and solidifying step.

図17は、メタライズ工程を完了した基板50を示す図であり、符号52は酸化膜等の電気絶縁層、符号55は金属層である。金属層55は、微細孔51内面と、ワーク50の表面53における微細孔51の開口部の周囲に形成されているが、微細孔51内面に対する形成範囲は、第1実施形態における金属層と同様に、微細孔51の開口部から微細孔51の奥側に向かって少なくとも数十μm程度入った所まで形成する。
図18は、金属充填工程にて基板50を溶融金属中に浸潰した状態を示す図であり、減圧チャンバー18内に設置されている溶融金属槽19内の溶融金属20中に浸潰した状態を示す。金属充填工程は、第1実施形態と同様であるが、但し、この図に示すように、封止材の使用を省略できる。
図19は、冷却固化工程にて、溶融金属20から取り出した基板50を冷却して、微細孔51内に充填されている溶融金属20及び該微細孔51の開口部付近に基板50上に突出するように肉盛りされた溶融金属20の固化によって、充填金属部56と、これに一体の外部金属部57(バンプ等)とを形成した状態を示す。図19に示す基板50、つまり、充填金属部56及び外部金属部57が形成された基板50が、この実施形態に係る充填金属部付き部材である。
図20は、充填金属部露出工程を示す図であり、冷却固化工程を完了した基板50の裏面側を研磨して、微細孔51内の充填金属部56を露出させた状態を示す。これにより、充填金属部56は、基板50の貫通配線等としても機能し得る。図20に示す基板も、この実施形態に係る充填金属部付き部材である。
基板50裏面側に充填金属部56を露出させる手法としては、研磨以外、例えば、ウェットエッチングによる基板50の一部除去など、各種手法が採用可能である。
FIG. 17 is a view showing the substrate 50 that has been subjected to the metallization process. Reference numeral 52 denotes an electrical insulating layer such as an oxide film, and reference numeral 55 denotes a metal layer. The metal layer 55 is formed around the inner surface of the minute hole 51 and the opening of the minute hole 51 on the surface 53 of the workpiece 50. The formation range for the inner surface of the minute hole 51 is the same as that of the metal layer in the first embodiment. Then, it is formed from the opening of the fine hole 51 to a place where it enters at least about several tens of μm from the fine hole 51 toward the back side.
FIG. 18 is a diagram showing a state in which the substrate 50 is crushed in the molten metal in the metal filling step, and is crushed in the molten metal 20 in the molten metal tank 19 installed in the decompression chamber 18. Indicates. The metal filling step is the same as in the first embodiment, except that the use of the sealing material can be omitted as shown in this figure.
FIG. 19 shows a cooling and solidification process in which the substrate 50 taken out from the molten metal 20 is cooled and protrudes on the substrate 50 in the vicinity of the molten metal 20 filled in the micro holes 51 and the openings of the micro holes 51. A state in which the filled metal portion 56 and the external metal portion 57 (such as a bump) integrated with the filled metal portion 56 are formed by solidification of the molten metal 20 that has been built up is shown. The substrate 50 shown in FIG. 19, that is, the substrate 50 on which the filling metal portion 56 and the external metal portion 57 are formed is the member with the filling metal portion according to this embodiment.
FIG. 20 is a view showing the filled metal portion exposing step, and shows a state where the back surface side of the substrate 50 that has completed the cooling and solidifying step is polished to expose the filled metal portion 56 in the microhole 51. Thereby, the filling metal part 56 can also function as a through wiring of the substrate 50 or the like. The board | substrate shown in FIG. 20 is also a member with a filling metal part which concerns on this embodiment.
As a method of exposing the filling metal portion 56 on the back surface side of the substrate 50, various methods other than polishing, such as partial removal of the substrate 50 by wet etching, can be employed.

(第3実施形態)
次に、本発明の第3実施形態を説明する。
図21は、ワーク24として棒状の部材(以下、ワークを「棒状部材」と称する場合がある)を採用し、この棒状部材24の軸方向(図21上下)に沿って穿設した径0.1mm、全長5mmの貫通孔25に、第1実施形態と同様の手法(前述と同様にメタライズ工程と、溶融金属充填工程と、冷却固化工程とを順に行う。このワーク24の後述する上側の面28を基板表面、逆側の面を基板裏面に対応させれば良い)により溶融金属として錫を充填して、充填金属部26と外部金属部27とを形成した例を示す。ワーク24に貫通孔を形成する手法は、前述のDRIE法等、各種採用可能である。
ワーク24(棒状部材)としては、ここではガラス棒であるが、これに限定されず、例えば、セラミック、シリコン、各種合成樹脂などから選択される1種の材料によって形成されたもの、あるいは、ガラス、セラミック、シリコン、合成樹脂などから選択される2種以上の材料を複合した材料によって形成されたものを採用できる。金属層15の種類、形成方法、耐熱性フィルム17等は、前述と同様のものを採用している。但し、金属層15の形成範囲は、貫通孔25の軸方向両端から軸方向中央部に向かって貫通孔25径の2〜3倍程度の範囲、棒状部材24の軸方向に対向する両側面における貫通孔25の開口部の周囲に該開口部の外周部から数mm程度の範囲とした。
(Third embodiment)
Next, a third embodiment of the present invention will be described.
21 employs a rod-like member (hereinafter, the workpiece may be referred to as a “rod-like member”) as the workpiece 24, and has a diameter of 0. The same method as in the first embodiment (a metallizing step, a molten metal filling step, and a cooling and solidifying step are sequentially performed in the through-hole 25 having a length of 1 mm and a total length of 5 mm. In this example, the filling metal portion 26 and the external metal portion 27 are formed by filling tin as a molten metal by using the substrate 28 as the substrate surface and the opposite surface as the substrate back surface. Various methods such as the above-mentioned DRIE method can be adopted as a method for forming a through hole in the work 24.
The workpiece 24 (rod-like member) is a glass rod here, but is not limited to this. For example, the workpiece 24 is formed of one material selected from ceramic, silicon, various synthetic resins, or glass. A material formed by combining two or more materials selected from ceramic, silicon, synthetic resin, and the like can be used. The kind of metal layer 15, the forming method, the heat resistant film 17 and the like are the same as described above. However, the formation range of the metal layer 15 is in a range of about 2 to 3 times the diameter of the through hole 25 from both axial ends of the through hole 25 toward the central part in the axial direction, on both side surfaces facing the axial direction of the rod-shaped member 24. The area around the opening of the through hole 25 was set to a range of several mm from the outer periphery of the opening.

貫通孔25に溶融金属を充填する手法も前述の溶融金属充填工程と同様であるが、但し、減圧チャンバー18内の溶融金属槽19に貯留されている溶融金属に対する棒状部材24の浸潰、引き上げは、耐熱性フィルム17側を下にして行う。図22を参照して説明すると(図22は、溶融金属20中からワーク24を引き上げた状態)、金属層15の形成を完了したワーク24は、減圧チャンバー18内の昇降治具21に取り付けて、該昇降治具21の昇降駆動によって、貫通孔25が上下となる姿勢を維持したまま減圧チャンバー18内で昇降されるようにする。但し、減圧チャンバー18内への収容時に上側に向けられる貫通孔25の軸方向一端部に対向して下側に向けられる軸方向他端部の開口部を、このワーク24を減圧チャンバー18に収容する前に、予め封止材17によって塞いでおく。このワーク24を減圧チャンバー18に収容したら、前記減圧チャンバー18内を減圧し、この減圧状態を保ったまま前記ワーク24を下降させて、前記減圧チャンバー18内の溶融金属槽19内に貯留されている溶融金属20中に浸潰する。次いで、ワーク24を溶融金属20中に浸潰した状態を保ったまま、減圧チャンバー18内を加圧して前記貫通孔25に溶融金属を充填せしめる。次いで、ワーク24を上昇させて前記溶融金属20中から引き上げ、冷却する。   The method of filling the through hole 25 with the molten metal is the same as the molten metal filling step described above, except that the rod-like member 24 is crushed and pulled up with respect to the molten metal stored in the molten metal tank 19 in the decompression chamber 18. Is performed with the heat resistant film 17 side down. Referring to FIG. 22 (FIG. 22 shows a state in which the workpiece 24 is pulled up from the molten metal 20), the workpiece 24 having completed the formation of the metal layer 15 is attached to the lifting jig 21 in the decompression chamber 18. The elevating and lowering drive of the elevating jig 21 causes the through hole 25 to be raised and lowered in the decompression chamber 18 while maintaining the vertical posture. However, the work 24 is accommodated in the decompression chamber 18 with an opening at the other end in the axial direction facing the one end in the axial direction of the through hole 25 directed upward when accommodated in the decompression chamber 18. Before the sealing, the sealing material 17 is used to block the material in advance. When the work 24 is accommodated in the decompression chamber 18, the inside of the decompression chamber 18 is decompressed, and the work 24 is lowered while maintaining the decompressed state, and is stored in the molten metal tank 19 in the decompression chamber 18. It is immersed in the molten metal 20. Next, while maintaining the state where the work 24 is immersed in the molten metal 20, the inside of the vacuum chamber 18 is pressurized to fill the through hole 25 with the molten metal. Next, the workpiece 24 is raised and pulled up from the molten metal 20 and cooled.

この例でも、前述の基板10の場合と同様に、貫通孔25全体への溶融金属の充填を確実に行うことができた。また、溶融金属20中から取り出し(具体的には引き上げ)たワーク24の上側の面28(貫通孔25の一端部が開口されている側のワーク24側面)における貫通孔25の開口部及び該開口部の周囲の金属層15の存在領域上には、貫通孔25から連続する溶融金属20が肉盛り状態になっており、溶融金属20中から引き上げたワーク24の冷却によって、貫通孔25内の溶融金属20が固化してなる充填金属部26と前述の肉盛り状態の溶融金属20が固化してなる外部金属部27とを一体形成することができ、充填金属部26と外部金属部27とを有する充填金属部付き部材が得られた。
得られた充填金属部付き部材の内部には、空隙の無い中実な充填金属部26を形成できた。また、貫通孔25の径(内径)は前述の基板10の貫通孔11に比べてかなり大きいが、充填金属部26は、貫通孔25の軸方向一端部も含めて貫通孔25全体に充填状態になっており、貫通孔25の軸方向一端部にて充填金属部26先端がワーク24側面から落ち込むような段差が形成されていないことから、この例でも、溶融金属槽19からの棒状部材24の引き上げ時における貫通孔25からの溶融金属の流出が防止されているものと考えられる。
Also in this example, similarly to the case of the substrate 10 described above, it was possible to reliably fill the entire through hole 25 with the molten metal. Further, the opening portion of the through hole 25 on the upper surface 28 of the work 24 taken out (specifically, pulled up) from the molten metal 20 (the side surface of the work 24 on the side where one end portion of the through hole 25 is opened) On the region where the metal layer 15 around the opening is present, the molten metal 20 continuous from the through-hole 25 is in a built-up state, and the inside of the through-hole 25 is cooled by cooling the work 24 pulled up from the molten metal 20. The filled metal portion 26 formed by solidifying the molten metal 20 and the external metal portion 27 formed by solidifying the above-described molten metal 20 can be integrally formed, and the filled metal portion 26 and the external metal portion 27 can be integrally formed. The member with a filling metal part which has these was obtained.
A solid filled metal portion 26 having no voids could be formed inside the obtained member with the filled metal portion. In addition, the diameter (inner diameter) of the through hole 25 is considerably larger than the through hole 11 of the substrate 10 described above, but the filled metal portion 26 fills the entire through hole 25 including one end portion in the axial direction of the through hole 25. In this example, there is no step where the tip of the filling metal part 26 falls from the side surface of the work 24 at one end of the through hole 25 in the axial direction. It is considered that the outflow of the molten metal from the through hole 25 at the time of pulling up is prevented.

(第4実施形態)
次に、本発明の第4実施形態を説明する。
この実施形態は、ワーク30として第3実施形態と同様の棒状部材(以下、ワークを棒状部材と称する場合がある)を採用することは同じであるが、図11に示すように、棒状部材の軸方向に沿って形成された微細孔31が、棒状部材30の軸方向一端部のみに開口し、軸方向他端部には開口していない非貫通孔(以下、微細孔を非貫通孔と称する場合がある)である点が異なる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
In this embodiment, it is the same that the same rod-like member as the third embodiment (hereinafter, the workpiece may be referred to as a rod-like member) is adopted as the workpiece 30. However, as shown in FIG. A fine hole 31 formed along the axial direction opens only at one axial end of the rod-shaped member 30 and does not open at the other axial end (hereinafter referred to as a fine through hole). It is different in that it may be called.

この実施形態の金属充填方法も、第3実施形態と同様にメタライズ工程と、溶融金属充填工程と、冷却固化工程の順に行うが、ワーク30に形成されている微細孔31が非貫通孔である故、封止材を使用する必要は無い。
図23は、冷却固化工程を完了したワーク30を示すものであり、図23に示すように充填金属部26及び外部金属部27が形成されたワーク30が、この実施形態に係る充填金属部付き部材である。また、この実施形態の金属充填方法では、冷却固化工程の後に充填金属部露出工程を追加して、棒状部材30の軸方法他端側にも充填金属部26を露出させることができる。つまり、図23に示す充填金属部付き部材(あるいはワーク30のみ)の、図23中、仮想線32から下側を研磨等によって除去することで、金属充填部26を露出させれば、金属充填部26を貫通配線等として利用することが可能になる。
Similarly to the third embodiment, the metal filling method of this embodiment is performed in the order of the metallization step, the molten metal filling step, and the cooling and solidifying step, but the fine holes 31 formed in the workpiece 30 are non-through holes. Therefore, it is not necessary to use a sealing material.
FIG. 23 shows the work 30 that has completed the cooling and solidifying process. As shown in FIG. 23, the work 30 on which the filling metal part 26 and the external metal part 27 are formed has the filling metal part according to this embodiment. It is a member. Moreover, in the metal filling method of this embodiment, the filling metal part exposure process is added after the cooling solidification process, and the filling metal part 26 can be exposed also to the other end side of the shaft method of the rod-shaped member 30. That is, if the metal filling portion 26 is exposed by removing the lower side from the virtual line 32 in FIG. 23 of the member with the filling metal portion (or only the workpiece 30) shown in FIG. The part 26 can be used as a through wiring or the like.

なお、本発明は、前記実施の形態に限定されず、各種変更が可能である。
例えば、金属層の形成手法としては、前述のスパッタリングに限定されず、メッキ法(基板をメッキ液に浸潰)等を採用することも可能である。
本発明に係る金属充填方法について、前記実施の形態では、ワークとして基板と棒状部材を例示したが、本発明はこれに限定されず、ワークの具体的形状、素材等は各種採用可能である。
基板やワークの溶融金属中への浸潰、溶融金属中からの取り出しは、図面等に例示したように封止材である耐熱性フィルムによって貫通孔を塞いだ側を下にした姿勢で行うことに限定されず、例えば、貫通孔の開口部付近内面等に形成した金属層と貫通孔内に流入した溶融金属との濡れ性や、溶融金属の流動性等の条件によっては、溶融金属中への浸潰時の姿勢並びに取り出し(引き上げ等)時の姿勢の自由度を大きく確保できる。
In addition, this invention is not limited to the said embodiment, A various change is possible.
For example, the method for forming the metal layer is not limited to the above-described sputtering, and a plating method (substrate is immersed in a plating solution) or the like can also be employed.
Regarding the metal filling method according to the present invention, the substrate and the rod-like member are exemplified as the workpiece in the above embodiment, but the present invention is not limited to this, and various specific shapes, materials, etc. of the workpiece can be adopted.
As shown in the drawings, etc., the board and workpiece should be immersed in the molten metal and removed from the molten metal in a posture with the through hole closed by the heat-resistant film as the sealing material. For example, depending on conditions such as the wettability between the metal layer formed on the inner surface near the opening of the through-hole and the molten metal flowing into the through-hole and the fluidity of the molten metal, It is possible to secure a large degree of freedom in the posture at the time of immersion and the posture at the time of taking out (pull-up).

本発明の第1実施形態を示す図であって、用意した基板を示す断面図である。It is a figure which shows 1st Embodiment of this invention, Comprising: It is sectional drawing which shows the prepared board | substrate. 図1の基板を熱酸化処理して電気絶縁層として酸化膜を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the oxide film as an electrically insulating layer by carrying out the thermal oxidation process of the board | substrate of FIG. 図2の熱酸化処理後の基板に金属層を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the metal layer in the board | substrate after the thermal oxidation process of FIG. 図3の金属層の詳細を示す断面図である。It is sectional drawing which shows the detail of the metal layer of FIG. 図3の金属層を形成した基板に感光性レジストを塗設した状態を示す断面図である。It is sectional drawing which shows the state which coated the photosensitive resist on the board | substrate in which the metal layer of FIG. 3 was formed. 図5の基板から感光性レジストを除去した状態を示す断面図である。It is sectional drawing which shows the state which removed the photosensitive resist from the board | substrate of FIG. 基板表面上の金属層のパターニングによる成形の一例を示す斜視図である。It is a perspective view which shows an example of shaping | molding by the patterning of the metal layer on a substrate surface. 図7の金属層のパターニングを完了した基板の裏面に耐熱性フィルムを貼り付けて貫通孔の開口部を塞いだ状態を示す図である。It is a figure which shows the state which affixed the heat resistant film on the back surface of the board | substrate which completed the patterning of the metal layer of FIG. 7, and blocked the opening part of the through-hole. 本発明に係る貫通配線の形成方法に適用される減圧チャンバーを示す断面図である。It is sectional drawing which shows the pressure reduction chamber applied to the formation method of the penetration wiring which concerns on this invention. 図9の減圧チャンバー内に設置された溶融金属槽内に貯留されている溶融金属中に基板を浸潰した状態を示す図である。FIG. 10 is a diagram showing a state in which a substrate is crushed in a molten metal stored in a molten metal tank installed in the decompression chamber of FIG. 9. (a)は減圧チャンバー内を減圧した状態で溶融金属中に基板を浸潰した状態を示す断面図、(b)は減圧チャンバー内を加圧して基板の貫通孔に溶融金属を充填した状態を示す断面図である。(A) is sectional drawing which shows the state which the substrate was crushed in the molten metal in the state which decompressed the inside of a decompression chamber, (b) is the state which pressurized the inside of a decompression chamber and filled the molten metal into the through-hole of the board | substrate. It is sectional drawing shown. 図11(b)の状態を詳細に示す断面図である。It is sectional drawing which shows the state of FIG.11 (b) in detail. 図9の減圧チャンバー内に設置された溶融金属槽内に貯留されている溶融金属中から基板を引き上げた状態を示す図である。It is a figure which shows the state which pulled up the board | substrate from the molten metal currently stored in the molten metal tank installed in the pressure reduction chamber of FIG. 溶融金属中から引き上げた基板を冷却して、貫通配線とバンプとを形成した状態を示す断面図である。It is sectional drawing which shows the state which cooled the board | substrate pulled up out of molten metal, and formed the penetration wiring and the bump. 比較例の貫通配線の形成方法によって基板の貫通孔に形成した貫通配線を示す断面図である。It is sectional drawing which shows the penetration wiring formed in the through-hole of a board | substrate by the formation method of the penetration wiring of a comparative example. 本発明の第2実施形態に適用する基板を示す断面図である。It is sectional drawing which shows the board | substrate applied to 2nd Embodiment of this invention. 図16の基板のメタライズ工程を完了した状態を示す断面図である。It is sectional drawing which shows the state which completed the metallization process of the board | substrate of FIG. 図16の基板をメタライズ工程の完了後、金属充填工程にて溶融金属中に浸潰した状態を示す図であり、減圧チャンバー内に設置されている溶融金属槽内の溶融金属中に浸潰した状態を示す。FIG. 17 is a diagram illustrating a state in which the substrate of FIG. 16 is crushed in a molten metal in a metal filling step after completion of a metallization step, and is crushed in a molten metal in a molten metal tank installed in a vacuum chamber. Indicates the state. 図18の金属充填工程の完了後、冷却固化工程にて、溶融金属から取り出した基板の冷却を完了して、充填金属部及び外部金属部を形成した状態を示す断面図である。FIG. 19 is a cross-sectional view showing a state in which, after the metal filling step of FIG. 18 is completed, the cooling of the substrate taken out from the molten metal is completed in the cooling and solidification step to form a filled metal portion and an external metal portion. 図19の冷却固化工程の完了後、充填金属部露出工程にて基板の裏面側を研磨して、微細孔内の充填金属部を露出させた状態を示す断面図である。FIG. 20 is a cross-sectional view showing a state where the back side of the substrate is polished in the filled metal portion exposing step after the cooling and solidifying step in FIG. 19 is completed to expose the filled metal portion in the fine holes. 本発明の第3実施形態を示す図であり、貫通孔が穿設されている棒状部材に、本発明に係る金属充填方法によって充填金属部と外部金属部とを形成した例を示す断面図である。It is a figure which shows 3rd Embodiment of this invention, and is sectional drawing which shows the example which formed the filling metal part and the external metal part in the rod-shaped member by which the through-hole was pierced with the metal filling method which concerns on this invention. is there. 図21の棒状部材の貫通孔に溶融金属を充填する工程を示す図であって、減圧チャンバー内に設置された溶融金属槽内に貯留されている溶融金属中から基板を引き上げた状態を示す図である。It is a figure which shows the process of filling a molten metal to the through-hole of the rod-shaped member of FIG. 21, Comprising: The figure which shows the state which pulled up the board | substrate from the molten metal stored in the molten metal tank installed in the decompression chamber It is. 本発明の第4実施形態を示す図であり、非貫通孔が穿設されている棒状部材に、本発明に係る金属充填方法によって充填金属部と外部金属部とを形成した例を示す断面図である。It is a figure which shows 4th Embodiment of this invention, and sectional drawing which shows the example which formed the filling metal part and the external metal part in the rod-shaped member by which the non-through-hole was pierced with the metal filling method which concerns on this invention It is.

符号の説明Explanation of symbols

10…ワーク(基板)、11…微細孔(貫通孔)、13…表面(一方の面)、14…裏面(他方の面)、15…金属層、17…封止材(耐熱性フィルム)、18…減圧チャンバー、19…溶融金属槽、20…溶融金属、22…充填金属部(貫通配線)、23…外部金属部(バンプ)、24…ワーク(棒状部材)、25…微細孔(貫通孔)、26…充填金属部、27…外部金属部、28…上側の面、30…ワーク(棒状部材)、31…微細孔(非貫通孔)、50…ワーク(基板)、51…微細孔(非貫通孔)、53…表面(一方の面)、54…裏面(他方の面)、55…金属層、56…充填金属部、57…外部金属部(バンプ)。   DESCRIPTION OF SYMBOLS 10 ... Work (board | substrate), 11 ... Fine hole (through-hole), 13 ... Front surface (one side), 14 ... Back surface (the other side), 15 ... Metal layer, 17 ... Sealing material (heat resistant film), DESCRIPTION OF SYMBOLS 18 ... Depressurization chamber, 19 ... Molten metal tank, 20 ... Molten metal, 22 ... Filling metal part (penetration wiring), 23 ... External metal part (bump), 24 ... Workpiece (rod-shaped member), 25 ... Fine hole (through hole) ), 26... Filled metal part, 27... External metal part, 28... Upper surface, 30... Work (bar-shaped member), 31. Non-through hole), 53... Front surface (one surface), 54. Back surface (the other surface), 55... Metal layer, 56.

Claims (3)

ワーク(10、24)に形成された微細孔(11、25)内に、前記微細孔への溶融金属の充填によって形成された充填金属部(22、26)を有し、前記微細孔の内面の、少なくとも前記微細孔のワーク外面に開口する端部に位置する内面を含む範囲に金属層(15)が形成されており、前記充填金属部は、前記微細孔の前記金属層が形成されている端部を含む前記微細孔の内部を満たし、電気的な導通が確保されるように設けられており、一端が肉盛りを、他端が平坦をなすように構成され、前記微細孔の内部を満たしてなる貫通電極と前記肉盛りからなるバンプとが一体形成され連続していることを特徴とする充填金属部付き部材。   The fine holes (11, 25) formed in the work (10, 24) have filled metal portions (22, 26) formed by filling the fine holes with molten metal, and the inner surfaces of the fine holes The metal layer (15) is formed in a range including at least an inner surface located at an end portion opened to the outer surface of the workpiece of the fine hole, and the metal layer of the fine hole is formed in the filling metal portion. The inside of the micropore is filled so that the electrical conduction is ensured including the end of the micropore, and one end is overlaid and the other end is flat. A member with a filling metal part, wherein a through electrode satisfying the above and a bump made of the above-described build-up are integrally formed. 前記ワークが半導体基板であり、前記貫通電極が接する微細孔の内面には、絶縁層が設けられていることを特徴とする請求項1に記載の充填金属部付き部材。   2. The member with a filled metal portion according to claim 1, wherein the workpiece is a semiconductor substrate, and an insulating layer is provided on an inner surface of a fine hole with which the through electrode is in contact. 前記ワークが半導体基板であり、前記貫通電極が接する微細孔の内面、および、前記肉盛り部が接する一方の面には、絶縁層が設けられていることを特徴とする請求項1に記載の充填金属部付き部材。   The said workpiece | work is a semiconductor substrate, The insulating layer is provided in the inner surface of the fine hole which the said penetration electrode contacts, and the one surface where the said build-up part contacts, The Claim 1 characterized by the above-mentioned. A member with a filled metal part.
JP2007120269A 2001-09-20 2007-04-27 Filled metal part Expired - Fee Related JP4574642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120269A JP4574642B2 (en) 2001-09-20 2007-04-27 Filled metal part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001287082 2001-09-20
JP2007120269A JP4574642B2 (en) 2001-09-20 2007-04-27 Filled metal part

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002270563A Division JP3967239B2 (en) 2001-09-20 2002-09-17 Method for producing member with filled metal part and member with filled metal part

Publications (2)

Publication Number Publication Date
JP2007208296A true JP2007208296A (en) 2007-08-16
JP4574642B2 JP4574642B2 (en) 2010-11-04

Family

ID=38487425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120269A Expired - Fee Related JP4574642B2 (en) 2001-09-20 2007-04-27 Filled metal part

Country Status (1)

Country Link
JP (1) JP4574642B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095590A (en) * 2013-11-13 2015-05-18 大日本印刷株式会社 Method of manufacturing through electrode substrate, through electrode substrate, and semiconductor device
JP2019067782A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263747A (en) * 1987-04-22 1988-10-31 Hitachi Ltd Manufacture of mounting board
JPH0590761A (en) * 1991-09-25 1993-04-09 Hitachi Ltd Production of wiring board
JPH1186930A (en) * 1997-09-12 1999-03-30 Ngk Spark Plug Co Ltd Relay substrate and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263747A (en) * 1987-04-22 1988-10-31 Hitachi Ltd Manufacture of mounting board
JPH0590761A (en) * 1991-09-25 1993-04-09 Hitachi Ltd Production of wiring board
JPH1186930A (en) * 1997-09-12 1999-03-30 Ngk Spark Plug Co Ltd Relay substrate and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095590A (en) * 2013-11-13 2015-05-18 大日本印刷株式会社 Method of manufacturing through electrode substrate, through electrode substrate, and semiconductor device
JP2019067782A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof
JP7102699B2 (en) 2017-09-28 2022-07-20 大日本印刷株式会社 Through Silicon Via Substrate and Its Manufacturing Method

Also Published As

Publication number Publication date
JP4574642B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP3967239B2 (en) Method for producing member with filled metal part and member with filled metal part
JP4463319B2 (en) Bonding structure
EP0177042B1 (en) Electronic circuit device and method of producing the same
JP2007311527A (en) Power module, substrate thereof, and manufacturing method thereof
EP1987535A1 (en) Vias and method of making
JP2017038026A (en) Electronic device and manufacturing method of electronic device
US20150305153A1 (en) Wiring substrate and method for manufacturing wiring substrate
JP4713602B2 (en) Substrate module, method for manufacturing the same, and electronic device
US7565739B2 (en) Method of making zinc-aluminum alloy connection
JP2007149742A (en) Package and electronic device using the same
US20060223307A1 (en) Process for producing electornic component and electronic component
JP4574642B2 (en) Filled metal part
US20050133910A1 (en) Metal article intended for at least partially coating with a substance and a method for producing the same
JP2006093575A (en) Semiconductor device and its manufacturing method
JP4260387B2 (en) Manufacturing method of substrate with through wiring and manufacturing method of product with filled metal part
JP2004119606A (en) Semiconductor substrate and method for filling through-hole thereof
JP4795112B2 (en) Manufacturing method of bonding substrate
JP2007305715A (en) Manufacturing method for wiring board
JP2006210369A (en) Semiconductor apparatus and manufacturing method thereof
JP2005101165A (en) Flip chip mounting structure, substrate for mounting the same, and method of manufacturing the same
JP2016178217A (en) Method of manufacturing bump electrode
JPH11297888A (en) Semiconductor package
JP2004265972A (en) Semiconductor device and its manufacturing method
JP2021158141A (en) Semiconductor device, wiring board, manufacturing method for semiconductor device, and manufacturing method for wiring board
JP4161359B2 (en) Electronic circuit device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees