JP7102699B2 - Through Silicon Via Substrate and Its Manufacturing Method - Google Patents

Through Silicon Via Substrate and Its Manufacturing Method Download PDF

Info

Publication number
JP7102699B2
JP7102699B2 JP2017188120A JP2017188120A JP7102699B2 JP 7102699 B2 JP7102699 B2 JP 7102699B2 JP 2017188120 A JP2017188120 A JP 2017188120A JP 2017188120 A JP2017188120 A JP 2017188120A JP 7102699 B2 JP7102699 B2 JP 7102699B2
Authority
JP
Japan
Prior art keywords
hole
substrate
electrode
adhesion layer
opening end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188120A
Other languages
Japanese (ja)
Other versions
JP2019067782A (en
Inventor
直大 高橋
敦子 千吉良
宏樹 古庄
恵大 笹生
進 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2017188120A priority Critical patent/JP7102699B2/en
Publication of JP2019067782A publication Critical patent/JP2019067782A/en
Application granted granted Critical
Publication of JP7102699B2 publication Critical patent/JP7102699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は貫通電極基板および貫通電極基板の製造方法に関する。 The present disclosure relates to a through silicon via substrate and a method for manufacturing the through silicon via substrate.

近年、集積回路の高性能化に伴い、集積回路はより微細化・複雑化している。集積回路には接続端子が配置されており、接続端子を介して、例えば外部装置から回路動作に必要な電源やロジック信号が入力される。接続端子のピッチが異なるそれぞれの集積回路を接続する場合、接続端子のピッチサイズを変換するための仲介基板となるインターポーザが用いられる。インターポーザでは、基板の一方の面に配置された配線と、他方の面に配置された配線とに異なる集積回路が実装される。インターポーザの基板の両面にそれぞれ配置された配線同士は、当該基板を貫通する貫通電極によって接続されている。 In recent years, integrated circuits have become finer and more complicated as the performance of integrated circuits has improved. Connection terminals are arranged in the integrated circuit, and power supplies and logic signals necessary for circuit operation are input from, for example, an external device via the connection terminals. When connecting integrated circuits with different pitches of connection terminals, an interposer serving as an intermediary board for converting the pitch size of the connection terminals is used. In the interposer, different integrated circuits are mounted on the wiring arranged on one surface of the substrate and the wiring arranged on the other surface. The wirings arranged on both sides of the interposer substrate are connected by through electrodes penetrating the substrate.

インターポーザとしては、シリコン基板を使用した貫通電極基板であるTSV(Through-Silicon Via)やガラス基板を使用した貫通電極基板であるTGV(Through-Glass Via)が開発されている(例えば、特許文献1)。貫通電極は、これらの基板を貫通する貫通孔を充填するように、金属導体によって形成される。 As interposers, TSV (Through-Silicon Via), which is a through electrode substrate using a silicon substrate, and TGV (Through-Glass Via), which is a through electrode substrate using a glass substrate, have been developed (for example, Patent Document 1). ). Through electrodes are formed of metal conductors to fill through holes that penetrate these substrates.

インターポーザにおいて、貫通孔内側面に対する貫通電極の密着性は非常に重要である。貫通孔内側面に対する貫通電極の密着性が弱いと、貫通電極が貫通孔から脱離しやすく、基板の両面に配置された配線同士の電気的接続を確保することができなくなる。特許文献2には、この問題を回避するために、貫通孔内側面と貫通電極の間に密着層を配置する構成が記載されている。 In the interposer, the adhesion of the through electrode to the inner surface of the through hole is very important. If the adhesion of the through electrode to the inner surface of the through hole is weak, the through electrode is easily detached from the through hole, and it becomes impossible to secure the electrical connection between the wirings arranged on both sides of the substrate. Patent Document 2 describes a configuration in which an adhesion layer is arranged between the inner surface of the through hole and the through electrode in order to avoid this problem.

特開2013-110347号公報Japanese Unexamined Patent Publication No. 2013-10347 特開2016-63114号公報Japanese Unexamined Patent Publication No. 2016-63114

一方で、インターポーザの用途の一つとして、基材が高温に耐えられるため後工程にて薄膜トランジスタ(TFT)を形成したデバイスへの応用が期待される。しかしながら、貫通電極基板形成後に高温の熱処理が施されると貫通電極(例えば銅等)と基板(例えばガラス等)の熱膨張率の差により基板破壊が生じることがある。 On the other hand, as one of the applications of the interposer, since the base material can withstand high temperatures, it is expected to be applied to a device in which a thin film transistor (TFT) is formed in a subsequent process. However, if high-temperature heat treatment is performed after forming the through electrode substrate, the substrate may be destroyed due to the difference in the coefficient of thermal expansion between the through electrode (for example, copper or the like) and the substrate (for example, glass or the like).

本開示は、上記実情に鑑み、信頼性の高い貫通電極基板及びその製造方法を提供することを目的とする。 An object of the present disclosure is to provide a highly reliable through electrode substrate and a method for manufacturing the same in view of the above circumstances.

本開示の一実施形態に係る貫通電極基板は、第1面および前記第1面に対向する第2面を貫通する貫通孔が設けられた基板と、前記貫通孔の内側面の一部に配置される密着層と、前記密着層に接し、前記貫通孔を充填する貫通電極と、を有する。 The through electrode substrate according to an embodiment of the present disclosure is arranged on a substrate provided with a through hole penetrating a first surface and a second surface facing the first surface, and a part of an inner surface surface of the through hole. It has an adhesion layer to be formed and a through electrode that is in contact with the adhesion layer and fills the through hole.

前記密着層は、前記内側面の前記第1面側または前記第2面側に配置されてもよい。 The adhesion layer may be arranged on the first surface side or the second surface side of the inner surface surface.

前記密着層は、前記内側面の前記第1面側に配置され、前記貫通孔は、前記第1面における第1開口端の径が、前記第2面における第2開口端の径よりも小さくてもよい。 The adhesion layer is arranged on the first surface side of the inner surface, and the through hole has a diameter of the first opening end on the first surface smaller than the diameter of the second opening end on the second surface. You may.

前記貫通孔は、前記第1面における第1開口端と前記第2面における第2開口端の間に、前記第1開口端の径および前記第2開口端の径よりも小さい径を有してもよい。 The through hole has a diameter smaller than the diameter of the first opening end and the diameter of the second opening end between the first opening end on the first surface and the second opening end on the second surface. You may.

前記密着層は、前記内側面の高さの12%以上50%以下の範囲に配置されてもよい。 The adhesion layer may be arranged in a range of 12% or more and 50% or less of the height of the inner side surface.

前記貫通電極は銅であり、前記密着層は、酸化亜鉛、チタン、酸化インジウムスズ、または酸化インジウム亜鉛のいずれかであってもよい。 The penetrating electrode is copper, and the adhesion layer may be either zinc oxide, titanium, indium tin oxide, or zinc indium oxide.

本開示の一実施形態に係る半導体装置は、前記貫通電極基板と、前記貫通電極基板の前記貫通電極の一端に接続された第1集積回路と、前記貫通電極基板の前記貫通電極の一端とは反対側の他端に接続された第2集積回路と、を有する。 In the semiconductor device according to the embodiment of the present disclosure, the through electrode substrate, the first integrated circuit connected to one end of the through electrode of the through electrode substrate, and one end of the through electrode of the through electrode substrate are It has a second integrated circuit connected to the other end on the opposite side.

本開示の一実施形態に係る貫通電極基板の製造方法は、基板に、第1面および前記第1面に対向する第2面を貫通する貫通孔を形成し、前記貫通孔の内側面の一部に密着層を形成し、前記密着層に接し、前記貫通孔を充填する貫通電極を形成すること、を含む。 In the method for manufacturing a through electrode substrate according to an embodiment of the present disclosure, a through hole is formed in the substrate so as to penetrate the first surface and the second surface facing the first surface, and one of the inner surfaces of the through hole. This includes forming a close contact layer on the portion, contacting the close contact layer, and forming a through electrode that fills the through hole.

前記密着層は、前記内側面の前記第1面側または前記第2面側にスパッタリング法によって形成されてもよい。 The close contact layer may be formed on the first surface side or the second surface side of the inner surface surface by a sputtering method.

前記密着層は、前記内側面の前記第1面側に形成され、前記貫通孔は、前記第1面における第1開口端の径が、前記第2面における第2開口端の径よりも小さく形成されてもよい。 The adhesion layer is formed on the first surface side of the inner surface, and the through hole has a diameter of the first opening end on the first surface smaller than the diameter of the second opening end on the second surface. It may be formed.

前記貫通孔は、前記第1面における第1開口端と前記第2面における第2開口端の間の径が、前記第1開口端の径および前記第2開口端の径よりも小さく形成されてもよい。 The through hole is formed so that the diameter between the first opening end on the first surface and the second opening end on the second surface is smaller than the diameter of the first opening end and the diameter of the second opening end. You may.

前記密着層は、前記内側面の高さの12%以上50%以下の範囲に形成してもよい。 The adhesion layer may be formed in a range of 12% or more and 50% or less of the height of the inner side surface.

前記貫通電極を形成することは、前記貫通孔の内側面および前記密着層上に第1導体層を形成し、前記第1導体層上に前記貫通孔を充填するように第2導体層を形成してもよい。 Forming the through electrode forms a first conductor layer on the inner surface of the through hole and on the close contact layer, and forms a second conductor layer on the first conductor layer so as to fill the through hole. You may.

本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)断面図、(C)下面図である。It is (A) top view, (B) sectional view, (C) bottom view which shows the structure of the through electrode substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the through silicon via substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板にかかる熱応力と、従来の貫通電極基板にかかる熱応力とを説明するための断面図である。It is sectional drawing for demonstrating the thermal stress applied to the through silicon via substrate which concerns on one Embodiment of this disclosure, and the thermal stress applied to the conventional through silicon via substrate. 本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)断面図、(C)下面図である。It is (A) top view, (B) sectional view, (C) bottom view which shows the structure of the through electrode substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)断面図、(C)下面図である。It is (A) top view, (B) sectional view, (C) bottom view which shows the structure of the through electrode substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)断面図、(C)下面図である。It is (A) top view, (B) sectional view, (C) bottom view which shows the structure of the through electrode substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板の変形例を示す断面図である。It is sectional drawing which shows the modification of the through silicon via substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る貫通電極基板の構成を示す断面図である。It is sectional drawing which shows the structure of the through silicon via substrate which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る半導体装置を示す図である。It is a figure which shows the semiconductor device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る半導体装置を示す図である。It is a figure which shows the semiconductor device which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る半導体装置を示す図である。It is a figure which shows the semiconductor device which concerns on one Embodiment of this disclosure.

以下、本開示の内容を、図面等を参照しながら説明する。但し、本開示は多くの異なる態様を含み、以下に例示する開示の内容に限定して解釈されるものではない。図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、それはあくまで一例であって、本開示の内容を必ずしも限定するものではない。また、本開示において、ある図面に記載されたある要素と、他の図面に記載されたある要素とが同一又は対応する関係にあるときは、同一の符号又は符号として記載された数字の後にa、bなどを付した符号を付して、繰り返しの説明を適宜省略することがある。さらに各要素に対する「第1」、「第2」と付記された文字は、各要素を区別するために用いられる便宜的な標識であり、特段の説明がない限りそれ以上の意味を有さない。 Hereinafter, the contents of the present disclosure will be described with reference to the drawings and the like. However, this disclosure includes many different aspects and is not construed as being limited to the content of the disclosures exemplified below. In order to clarify the explanation, the drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is just an example, and the contents of the present disclosure are not necessarily the same. It is not limited. Further, in the present disclosure, when a certain element described in a certain drawing and a certain element described in another drawing have the same or corresponding relationship, a code or a number described as the same code is followed by a. , B and the like are added, and the repeated description may be omitted as appropriate. Furthermore, the letters "1st" and "2nd" for each element are convenient signs used to distinguish each element, and have no further meaning unless otherwise specified. ..

本開示において、ある部材又は領域が他の部材又は領域の「上に」あるとする場合、特段の限定がない限りこれは他の部材又は領域の直上にある場合のみでなく他の部材又は領域の上方にある場合を含む。すなわち、他の部材又は領域の上方においてある部材又は領域との間に別の構成要素が含まれている場合も含む。同様に、ある部材又は領域が他の部材又は領域の「下に」あるとする場合、特段の限定がない限りこれは他の部材又は領域の直下にある場合のみでなく他の部材又は領域の下方にある場合を含む。すなわち、他の部材又は領域の下方においてある部材又は領域との間に別の構成要素が含まれている場合も含む。 In the present disclosure, when a member or region is "above" another member or region, this is not limited to the case where it is directly above the other member or region, unless otherwise specified. Including the case where it is above. That is, it also includes the case where another component is included between the member or region above the other member or region. Similarly, if one member or region is "below" another member or region, this is not only directly below the other member or region, but also of the other member or region, unless otherwise specified. Including the case where it is below. That is, it also includes the case where another component is included between the member or region below the other member or region.

<本開示に至る経緯>
貫通電極基板において、貫通孔内側面と貫通電極の間に密着層を配置することで、基板と貫通電極の接着性は向上する。一方で、このような構成を有する貫通電極基板は、後の工程における熱処理によって貫通電極(例えば銅等)と基板(例えばガラス等)とが熱膨張・熱収縮すると、それぞれの熱膨張率の差により基板破壊が生じることがある。
<Background to this disclosure>
In the through electrode substrate, by arranging the adhesion layer between the inner surface of the through hole and the through electrode, the adhesiveness between the substrate and the through electrode is improved. On the other hand, a penetrating electrode substrate having such a configuration has a difference in thermal expansion coefficient when the penetrating electrode (for example, copper or the like) and the substrate (for example, glass or the like) are thermally expanded or contracted by heat treatment in a later process. May cause substrate destruction.

本開示者は上述した事象を鋭意検討した結果、貫通孔内側面と貫通電極の間に配置する密着層の面積と位置によって、基板にかかる熱膨張・熱収縮による応力が大きくなり、この熱応力が基板破壊に起因することをみいだした。基板と貫通電極の接着性を保持し、かつ熱処理時における基板破壊を抑制できる条件を検討した結果、本願開示に至った。 As a result of diligent examination of the above-mentioned events, the present discloser increases the stress due to thermal expansion and contraction applied to the substrate depending on the area and position of the adhesion layer arranged between the inner surface of the through hole and the through electrode, and this thermal stress. Was found to be caused by the destruction of the substrate. As a result of investigating the conditions under which the adhesiveness between the substrate and the through electrode can be maintained and the substrate destruction during the heat treatment can be suppressed, the present application has been disclosed.

<第1実施形態>
[貫通電極基板の構成]
図1は、本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)A-A’断面図、(C)下面図である。図1(A)~(C)に示すように、貫通電極基板100は、基板102と、密着層104と、貫通電極106とを有する。
<First Embodiment>
[Construction of through silicon via substrate]
FIG. 1 is a top view of (A), a cross-sectional view of (B) AA', and a bottom view of (C) showing a configuration of a through electrode substrate according to an embodiment of the present disclosure. As shown in FIGS. 1A to 1C, the through electrode substrate 100 has a substrate 102, an adhesion layer 104, and a through electrode 106.

基板102には、第1面102s1および第1面に対向する第2面102s2を貫通する貫通孔112が設けられる。本実施形態において貫通孔112は円孔であり、基板102の第1面102s1および第2面102s2に対して略垂直である。すなわち、基板102の第1面102s1(または第2面102s2)と貫通孔112の内側面とがなす角度θは略垂直である。貫通孔112の第1面102s1における第1開口端の径d1と、貫通孔112の第2面102s2における第2開口端の径d2とは略同一である。 The substrate 102 is provided with a through hole 112 penetrating the first surface 102s1 and the second surface 102s2 facing the first surface. In the present embodiment, the through hole 112 is a circular hole and is substantially perpendicular to the first surface 102s1 and the second surface 102s2 of the substrate 102. That is, the angle θ formed by the first surface 102s1 (or the second surface 102s2) of the substrate 102 and the inner surface of the through hole 112 is substantially vertical. The diameter d1 of the first opening end on the first surface 102s1 of the through hole 112 and the diameter d2 of the second opening end on the second surface 102s2 of the through hole 112 are substantially the same.

貫通孔112の内側面の一部には、密着層104が配置される。本実施形態において密着層104は、貫通孔112の第1面102s1側(第1開口端側)に配置される。密着層104は、貫通孔112の内側面に接するように円筒型である。すなわち、密着層104は、貫通孔112の内側面の第1面102s1側(第1開口端側)を覆うように形成される。しかしながらこれに限定されず、密着層104は、貫通孔112の第2面102s2側(第2開口端側)に配置されてもよく、貫通孔112の第1開口端と第2開口端の間に配置されてもよい。密着層104は、貫通孔112の内側面に接するかぎり、どのような形状であってもよく、不均一であってもよく、不連続であってもよい。例えば、円筒を斜めに切った形であってもよく、円周において不連続であってもよい。 The adhesion layer 104 is arranged on a part of the inner surface of the through hole 112. In the present embodiment, the adhesion layer 104 is arranged on the first surface 102s1 side (first opening end side) of the through hole 112. The contact layer 104 is cylindrical so as to be in contact with the inner surface of the through hole 112. That is, the adhesion layer 104 is formed so as to cover the first surface 102s1 side (first opening end side) of the inner side surface of the through hole 112. However, the present invention is not limited to this, and the adhesion layer 104 may be arranged on the second surface 102s2 side (second opening end side) of the through hole 112, and is between the first opening end and the second opening end of the through hole 112. May be placed in. The adhesion layer 104 may have any shape, may be non-uniform, or may be discontinuous as long as it is in contact with the inner surface of the through hole 112. For example, the cylinder may be cut diagonally or may be discontinuous in circumference.

別言すると、貫通孔112の内側面の一部には、密着層104が配置されない領域がある。本実施形態において、貫通孔112の第2面102s2側(第2開口端側)には密着層104が配置されない。しかしながらこれに限定されず、貫通孔112の一端に密着層104が配置されない領域があればよい。 In other words, a part of the inner surface of the through hole 112 has a region where the adhesion layer 104 is not arranged. In the present embodiment, the adhesion layer 104 is not arranged on the second surface 102s2 side (second opening end side) of the through hole 112. However, the present invention is not limited to this, and it is sufficient that there is a region where the adhesion layer 104 is not arranged at one end of the through hole 112.

貫通孔112の内部には、貫通電極106が配置される。本実施形態において貫通電極106は略円柱型であり、第1面102s1側の径と第2面102s2側の径とが略同一である。貫通電極106は、貫通孔112の第1面102s1側(第1開口端)から第2面102s2側(第2開口端)までを充填する。さらに、貫通電極106の端部は基板102の第1面102s1および第2面102s2の上まで延在してもよい。貫通電極106は、第1面102s1側の配線と第2面102s2側の配線とを電気的に接続する役割を担う。 A through electrode 106 is arranged inside the through hole 112. In the present embodiment, the through electrode 106 has a substantially cylindrical shape, and the diameter on the first surface 102s1 side and the diameter on the second surface 102s2 side are substantially the same. The through electrode 106 fills the through hole 112 from the first surface 102s1 side (first opening end) to the second surface 102s2 side (second opening end). Further, the end portion of the through electrode 106 may extend over the first surface 102s1 and the second surface 102s2 of the substrate 102. The through electrode 106 plays a role of electrically connecting the wiring on the first surface 102s1 side and the wiring on the second surface 102s2 side.

貫通電極106は、貫通孔112の第1面102s1側(第1開口端側)において密着層104の内側面に接するように配置される。貫通電極106は、貫通孔112の第2面102s2側(第2開口端側)において貫通孔112の内側面に接するように配置される。しかしながらこれに限定されず、貫通電極106は貫通孔112の内側面において、密着層104が配置される領域では密着層104と接し、密着層104が配置されない領域では基板102と直接接している。別言すると、密着層104は、基板102と貫通電極106の間の一部に介在する。 The through electrode 106 is arranged so as to be in contact with the inner side surface of the close contact layer 104 on the first surface 102s1 side (first opening end side) of the through hole 112. The through electrode 106 is arranged so as to be in contact with the inner side surface of the through hole 112 on the second surface 102s2 side (second opening end side) of the through hole 112. However, the via silicon via 106 is not limited to this, and is in direct contact with the adhesion layer 104 in the region where the adhesion layer 104 is arranged and directly in contact with the substrate 102 in the region where the adhesion layer 104 is not arranged on the inner surface of the through hole 112. In other words, the adhesion layer 104 is interposed between the substrate 102 and the through silicon via 106.

貫通孔112の内側面において密着層104が配置される領域では、貫通電極106は密着層104を介して基板102と強く接着する。一方で、貫通孔112の内側面において密着層104が配置されない領域では、貫通電極106は基板102と弱く接着する。貫通孔112の一部において密着層104が配置される領域を有することで、貫通電極106は基板102との接着性を向上することができ、貫通電極106が貫通孔112から脱落することを抑制することができる。貫通孔112の一端において密着層104が配置されない領域を有することで、貫通電極106および基板102の熱膨張・熱収縮による応力を貫通孔112の一端方向に分散することができ、熱処理時における基板破壊を抑制することができる。 In the region where the adhesion layer 104 is arranged on the inner surface of the through hole 112, the through electrode 106 strongly adheres to the substrate 102 via the adhesion layer 104. On the other hand, in the region where the adhesion layer 104 is not arranged on the inner surface of the through hole 112, the through electrode 106 weakly adheres to the substrate 102. By having a region in which the adhesion layer 104 is arranged in a part of the through hole 112, the through electrode 106 can improve the adhesiveness with the substrate 102 and suppress the through electrode 106 from falling out of the through hole 112. can do. By having a region where the adhesion layer 104 is not arranged at one end of the through hole 112, stress due to thermal expansion / contraction of the through electrode 106 and the substrate 102 can be dispersed in the direction of one end of the through hole 112, and the substrate during heat treatment can be dispersed. Destruction can be suppressed.

貫通孔112の内側面において密着層104が配置される領域は、貫通孔112の内側面の高さ(貫通孔112の深さ、基板102の第1面102s1から第2面102s2までの内側面の距離)の20%以上50%以下の範囲に位置することが好ましい。別言すると、貫通孔112の内側面において密着層104が配置されない領域は、貫通孔112の内側面の高さの50%以上80%以下の範囲に位置することが好ましい。密着層104が配置される領域が、貫通孔112の内側面の高さの20%以上の範囲に位置することで、基板102と貫通電極106の接着性を向上することができ、貫通電極106が貫通孔112から脱落することを抑制することができる。密着層104が配置されない領域が、貫通孔112の内側面の高さの50%以上の範囲に位置することで、基板が受ける熱応力を抑制することができ、熱処理時における基板破壊を抑制することができる。 The region on the inner surface of the through hole 112 where the adhesion layer 104 is arranged is the height of the inner surface of the through hole 112 (depth of the through hole 112, the inner surface of the substrate 102 from the first surface 102s1 to the second surface 102s2). It is preferable that the distance is 20% or more and 50% or less. In other words, the region on the inner surface of the through hole 112 where the adhesion layer 104 is not arranged is preferably located in a range of 50% or more and 80% or less of the height of the inner surface of the through hole 112. By locating the region where the adhesion layer 104 is arranged in a range of 20% or more of the height of the inner surface of the through hole 112, the adhesiveness between the substrate 102 and the through electrode 106 can be improved, and the through electrode 106 can be improved. Can be prevented from falling out of the through hole 112. By locating the region where the adhesion layer 104 is not arranged within a range of 50% or more of the height of the inner surface of the through hole 112, the thermal stress received by the substrate can be suppressed, and the substrate breakage during heat treatment can be suppressed. be able to.

基板102は、ガラス基板を用いることができる。また、ガラス基板の他にも、石英基板、サファイア基板、樹脂基板などの絶縁基板、シリコン基板、炭化シリコン基板、化合物半導体基板などの半導体基板を用いることができる。基板に使用する材料は特に限定されず、熱膨張係数が0.5×10-6[/K]以上16.8×10-6[/K]以下の範囲の材料であればよい。また、これらが積層されたものであってもよい。基板102の厚さは、特に限定されず、例えば、300μm以上700μm以下の範囲の厚さの基板を使用することができる。基板102の厚さは、より好ましくは、400μm以上500μm以下の範囲であるとよい。基板102の厚さが300μm未満であると、基板のたわみが大きくなる。その影響で、製造過程におけるハンドリングが困難になるとともに、基板上に形成する薄膜等の内部応力により基板が反ってしまう。また、基板102の厚さが700μmより厚くなると、貫通孔の形成工程が長くなる。その影響で、製造工程が長期化し、製造コストも上昇してしまう。 A glass substrate can be used as the substrate 102. In addition to the glass substrate, an insulating substrate such as a quartz substrate, a sapphire substrate, or a resin substrate, a silicon substrate, a silicon carbide substrate, or a semiconductor substrate such as a compound semiconductor substrate can be used. The material used for the substrate is not particularly limited, and any material having a coefficient of thermal expansion in the range of 0.5 × 10 -6 [/ K] or more and 16.8 × 10 -6 [/ K] or less may be used. Further, these may be laminated. The thickness of the substrate 102 is not particularly limited, and for example, a substrate having a thickness in the range of 300 μm or more and 700 μm or less can be used. The thickness of the substrate 102 is more preferably in the range of 400 μm or more and 500 μm or less. If the thickness of the substrate 102 is less than 300 μm, the deflection of the substrate becomes large. As a result, handling in the manufacturing process becomes difficult, and the substrate warps due to the internal stress of the thin film or the like formed on the substrate. Further, when the thickness of the substrate 102 is thicker than 700 μm, the step of forming the through hole becomes long. As a result, the manufacturing process becomes longer and the manufacturing cost also rises.

第1開口端の径d1および第2開口端の径d2は、50μm以上160μm以下の範囲であることが好ましい。すなわち、貫通孔112のアスペクト比は、1.8以上10以下の範囲であることが好ましい。ここで貫通孔112のアスペクト比とは、貫通孔112の第1開口端の径d1(または第2開口端の径d2)に対する貫通孔112の深さ(基板102の厚さ)と定義する。貫通孔112のアスペクト比が10より大きい場合、後述するシード層106’を形成するときに、スパッタリング法を用いて貫通孔112の内側面に貫通孔112の深さ全体に亘ってシード層106’を形成することが困難になる。貫通孔112のアスペクト比が1.8未満である場合、貫通孔の形成工程が長くなる。その影響で、製造工程が長期化し、製造コストも上昇してしまう。 The diameter d1 of the first opening end and the diameter d2 of the second opening end are preferably in the range of 50 μm or more and 160 μm or less. That is, the aspect ratio of the through hole 112 is preferably in the range of 1.8 or more and 10 or less. Here, the aspect ratio of the through hole 112 is defined as the depth of the through hole 112 (thickness of the substrate 102) with respect to the diameter d1 (or the diameter d2 of the second opening end) of the first opening end of the through hole 112. When the aspect ratio of the through hole 112 is larger than 10, when the seed layer 106'described later is formed, the seed layer 106'is used on the inner surface of the through hole 112 by a sputtering method over the entire depth of the through hole 112. Becomes difficult to form. When the aspect ratio of the through hole 112 is less than 1.8, the process of forming the through hole becomes long. As a result, the manufacturing process becomes longer and the manufacturing cost also rises.

密着層104は、基板102と密着性がよい材料を用いることができる。例えば、チタン(Ti)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニッケル(Ni)、クロム(Cr)、アルミニウム(Al)これらの化合物、あるいはこれらの合金などを用いることができる。また、酸化インジウムスズ(ITO)や酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO2)などの無機酸化物の他、シランカップリング剤などの有機物も用いることができる。特に、貫通電極106が銅(Cu)を含む場合、密着層104は、Cuの拡散を抑制する材料を使用することができ、例えば窒化チタン(TiN)、窒化モリブデン(MoN)、窒化タンタル(TaN)等を用いてもよい。ここで、密着層104の厚さは、特に限定しない。例えば、5nm以上300nm以下の範囲で適宜選択することができる。 For the adhesion layer 104, a material having good adhesion to the substrate 102 can be used. For example, titanium (Ti), molybdenum (Mo), tungsten (W), tantalum (Ta), nickel (Ni), chromium (Cr), aluminum (Al), these compounds, or alloys thereof can be used. .. In addition to inorganic oxides such as indium tin oxide (ITO), zinc oxide (IZO), zinc oxide (ZnO), and tin oxide (SnO 2) , organic substances such as silane coupling agents can also be used. In particular, when the through electrode 106 contains copper (Cu), a material that suppresses the diffusion of Cu can be used for the adhesion layer 104, for example, titanium nitride (TiN), molybdenum nitride (MoN), and tantalum nitride (TaN). ) Etc. may be used. Here, the thickness of the adhesion layer 104 is not particularly limited. For example, it can be appropriately selected in the range of 5 nm or more and 300 nm or less.

貫通電極106は、密着層104との密着性が良く、電気伝導度が高い導電材料を用いることができる。例えば、銅(Cu)、金(Au)、銀(Ag)、白金(Pt)、鉄(Fe)、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)、クロム(Cr)等の金属またはこれらを用いた合金などから選択することができる。貫通電極106は貫通孔112の内部を充填するように配置される。すなわち、貫通孔112の内部にはボイド等が形成されず、貫通孔112の内部の空間は密着層104および貫通電極106で満たされている。 For the through electrode 106, a conductive material having good adhesion to the adhesion layer 104 and high electrical conductivity can be used. For example, metals such as copper (Cu), gold (Au), silver (Ag), platinum (Pt), iron (Fe), tin (Sn), zinc (Zn), nickel (Ni), chromium (Cr) or It can be selected from alloys using these. Through electrodes 106 are arranged so as to fill the inside of the through holes 112. That is, no void or the like is formed inside the through hole 112, and the space inside the through hole 112 is filled with the close contact layer 104 and the through electrode 106.

以上のように、本実施形態に係る貫通電極基板100によると、貫通孔112の一部において密着層104が配置される領域を有する。基板102と貫通電極106の間の一部に密着層104が配置されることで、貫通電極106は基板102との接着性を向上することができ、貫通電極106が貫通孔112から脱落することを抑制することができる。本実施形態に係る貫通電極基板100は、貫通孔112の一端において密着層104が配置されない領域を有することで、貫通電極106および基板102の熱膨張・熱収縮による応力を貫通孔112の一端方向に分散することができ、熱処理時における基板破壊を抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As described above, the through electrode substrate 100 according to the present embodiment has a region in which the adhesion layer 104 is arranged in a part of the through hole 112. By arranging the close contact layer 104 in a part between the substrate 102 and the through electrode 106, the through electrode 106 can improve the adhesiveness with the substrate 102, and the through electrode 106 falls off from the through hole 112. Can be suppressed. The through electrode substrate 100 according to the present embodiment has a region in which the adhesion layer 104 is not arranged at one end of the through hole 112, so that the stress due to thermal expansion and contraction of the through electrode 106 and the substrate 102 is applied to the one end direction of the through hole 112. It is possible to disperse in the substrate and suppress substrate breakage during heat treatment. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板の製造方法]
次に、図2を用いて、本開示の一実施形態に係る貫通電極基板の製造方法について詳細に説明する。図2は、本開示の一実施形態に係る貫通電極基板の製造方法を説明するための断面図である。
[Manufacturing method of through silicon via substrate]
Next, a method for manufacturing the through silicon via substrate according to the embodiment of the present disclosure will be described in detail with reference to FIG. FIG. 2 is a cross-sectional view for explaining a method of manufacturing a through electrode substrate according to an embodiment of the present disclosure.

図2(A)は、基板102に貫通孔112を形成する方法を示す図である。基板102は、第1面102s1と、第1面に対向する第2面102s2を有する。基板102に、第1面102s1から第2面102s2を貫通する少なくとも1つの貫通孔112を形成する。貫通孔112の形成には、対応するマスクを形成し、RIE(Reactive Ion Etching:反応性イオンエッチング)、DRIE(Deep RIE:深掘り反応性イオンエッチング)等のドライエッチング加工、サンドブラスト加工、レーザ加工等を用いることができる。ここで、基板102の第1面102s1(または第2面102s2)と貫通孔112の内側面とがなす角度θは略垂直である。また、貫通孔112の第1面102s1における第1開口端の径d1と、貫通孔112の第2面102s2における第2開口端の径d2とは略同一である。 FIG. 2A is a diagram showing a method of forming a through hole 112 in the substrate 102. The substrate 102 has a first surface 102s1 and a second surface 102s2 facing the first surface. At least one through hole 112 penetrating the first surface 102s1 to the second surface 102s2 is formed on the substrate 102. For the formation of the through hole 112, a corresponding mask is formed, and dry etching processing such as RIE (Reactive Ion Etching) and DRIE (Deep Reactive Ion Etching), sandblasting, and laser processing are performed. Etc. can be used. Here, the angle θ formed by the first surface 102s1 (or the second surface 102s2) of the substrate 102 and the inner surface of the through hole 112 is substantially vertical. Further, the diameter d1 of the first opening end on the first surface 102s1 of the through hole 112 and the diameter d2 of the second opening end on the second surface 102s2 of the through hole 112 are substantially the same.

図2(B)は、貫通孔112に密着層104を形成する方法を示す図である。密着層104は、PVD法(真空蒸着法またはスパッタリング法)によって、基板102の第1面102s1側から貫通孔112の内側面に沿って形成される。本実施形態において密着層104は、基板102に対して略垂直方向から貫通孔112の第1開口端に向けて材料粒子をスパッタまたは蒸着することによって形成する。したがって、密着層104は貫通孔112の内側面の第1面102s1側および第1面102s1上を覆うように開口端付近に連続的に形成される。しかしながらこれに限定されず、密着層104は、基板102に対して角度を有する一方向から貫通孔112の第1開口端に向けて材料粒子をスパッタまたは蒸着することによって形成してもよい。この場合、密着層104は貫通孔112の内側面の第1面102s1側の一部および第1面102s1上に形成される。また、図には示さながったが、密着層104の厚さは貫通孔112の深さ方向に変化してもよい。すなわち、密着層104は、貫通孔112の第1開口端から第2開口端に向けて薄くなるよう形成されてもよい。密着層104は、貫通孔112の内側面の高さの20%以上50%以下の範囲に位置する領域に形成される。密着層104の厚みは、5nm以上300nm以下、例えば50nmの厚さを有する。 FIG. 2B is a diagram showing a method of forming the adhesion layer 104 in the through hole 112. The adhesion layer 104 is formed from the first surface 102s1 side of the substrate 102 along the inner surface of the through hole 112 by the PVD method (vacuum deposition method or sputtering method). In the present embodiment, the adhesion layer 104 is formed by sputtering or depositing material particles from a direction substantially perpendicular to the substrate 102 toward the first opening end of the through hole 112. Therefore, the adhesion layer 104 is continuously formed in the vicinity of the opening end so as to cover the first surface 102s1 side and the first surface 102s1 of the inner surface of the through hole 112. However, the adhesion layer 104 may be formed by sputtering or vapor-depositing material particles from one direction having an angle with respect to the substrate 102 toward the first opening end of the through hole 112. In this case, the adhesion layer 104 is formed on a part of the inner surface of the through hole 112 on the first surface 102s1 side and on the first surface 102s1. Further, as shown in the figure, the thickness of the adhesion layer 104 may change in the depth direction of the through hole 112. That is, the adhesion layer 104 may be formed so as to become thinner from the first opening end to the second opening end of the through hole 112. The adhesion layer 104 is formed in a region located in a range of 20% or more and 50% or less of the height of the inner surface of the through hole 112. The thickness of the adhesion layer 104 has a thickness of 5 nm or more and 300 nm or less, for example, 50 nm.

図2(C)から図2(E)は、貫通孔112に貫通電極106を形成する方法を示す図である。図2(C)に示すように、まず、貫通孔112に、シード層(第1導体層)106’を形成する。シード層106’は、PVD法(真空蒸着法またはスパッタリング法)等または無電解めっき法によって、密着層104および基板102に接するように形成される。PVD法の場合、シード層106’は、第1面102s1および第2面102s2のそれぞれの面側から貫通孔112の内側面、第1面102s1、および第2面102s2に沿って形成される。無電解めっき法の場合、シード層106’は、例えば少なくとも銅イオンを含むめっき液を貫通孔112の内側面、第1面102s1、および第2面102s2に接触させることで、めっき液が接触した領域にめっき層を成長させる。めっき液は、例えば銅イオンを提供するための硫酸銅などの銅化合物、ならびにホルムアルデヒドおよび水酸化ナトリウムなどの添加物を含んでもよい。 2 (C) to 2 (E) are views showing a method of forming the through electrode 106 in the through hole 112. As shown in FIG. 2C, first, a seed layer (first conductor layer) 106'is formed in the through hole 112. The seed layer 106'is formed in contact with the adhesion layer 104 and the substrate 102 by a PVD method (vacuum deposition method or sputtering method) or an electroless plating method. In the case of the PVD method, the seed layer 106'is formed from the respective surface sides of the first surface 102s1 and the second surface 102s2 along the inner surface of the through hole 112, the first surface 102s1, and the second surface 102s2. In the case of the electroless plating method, the seed layer 106'is in contact with the plating solution by, for example, bringing a plating solution containing at least copper ions into contact with the inner side surface of the through hole 112, the first surface 102s1 and the second surface 102s2. A plating layer is grown in the area. The plating solution may contain, for example, a copper compound such as copper sulfate to provide copper ions, as well as additives such as formaldehyde and sodium hydroxide.

しかしながらこれに限定されず、基板102の第1面102s1および第2面102s2は、シード層106’が形成されないようにあらかじめレジストなどで保護してもよい。この場合シード層106’は、貫通孔112の内側面および貫通孔112の内側面に形成された密着層104上に形成される。このような処理をすることで、基板102の第1面102s1および第2面102s2上に、余分な金属導体が形成されることを防ぐこともできる。 However, the present invention is not limited to this, and the first surface 102s1 and the second surface 102s2 of the substrate 102 may be protected in advance with a resist or the like so that the seed layer 106'is not formed. In this case, the seed layer 106'is formed on the adhesion layer 104 formed on the inner surface of the through hole 112 and the inner surface of the through hole 112. By performing such a process, it is possible to prevent an extra metal conductor from being formed on the first surface 102s1 and the second surface 102s2 of the substrate 102.

図2(D)に示すように、次いで、貫通孔112を、めっき層(第2導体層)で充填する。めっき層は、シード層106’を介して電流が供給される電解めっき法によって、貫通孔112の内部に成長させる。 As shown in FIG. 2D, the through hole 112 is then filled with a plating layer (second conductor layer). The plating layer is grown inside the through hole 112 by an electrolytic plating method in which an electric current is supplied through the seed layer 106'.

図2(E)に示すように、基板102の第1面102s1上および第2面102s2上に形成された余分な金属導体(シード層106’及びめっき層)を除去することで、貫通電極106を形成する。余分な金属導体(シード層106’及びめっき層)を除去する方法としては、ドライエッチング法、ウェットエッチング法、又は化学機械研磨(CMP:Chemical Mechanical Polishing)を用いることができる。金属導体(シード層106’及びめっき層)は、基板102の第1面102s1および第2面102s2を露出するように除去する。本実施形態において、貫通電極106の第1面102s1側および第2面102s2側の両端部は、第1面102s1および第2面102s2と面一となるよう形成される。しかしながらこれに限定されず、貫通電極106の両端部は、第1面102s1および第2面102s2に対して凹形状となるよう形成されてもよく、凸形状となるよう形成されてもよい。またこのとき、貫通電極106の形成と同じ工程で、第1面102s1および第2面102s2上に、配線層が形成されてもよい。 As shown in FIG. 2E, through silicon via 106 is removed by removing excess metal conductors (seed layer 106'and plating layer) formed on the first surface 102s1 and the second surface 102s2 of the substrate 102. To form. As a method for removing the excess metal conductor (seed layer 106'and the plating layer), a dry etching method, a wet etching method, or chemical mechanical polishing (CMP) can be used. The metal conductor (seed layer 106'and the plating layer) is removed so as to expose the first surface 102s1 and the second surface 102s2 of the substrate 102. In the present embodiment, both ends of the through electrode 106 on the first surface 102s1 side and the second surface 102s2 side are formed so as to be flush with the first surface 102s1 and the second surface 102s2. However, the present invention is not limited to this, and both ends of the through electrode 106 may be formed to have a concave shape with respect to the first surface 102s1 and the second surface 102s2, or may be formed to have a convex shape. At this time, the wiring layer may be formed on the first surface 102s1 and the second surface 102s2 in the same process as the formation of the through electrode 106.

なお、基板102には、複数の貫通電極106が設けられていてもよい。この場合、複数の貫通電極106は、100μm以上の間隔で配置されていることが好ましい。基板102に設けられる貫通電極106は、後述する基板102の第1面102s1側と第2面102s2側に配置される配線と電気的に接続され、基板102の第1面102s1側と第2面102s2側との間に導電経路を形成する。 The substrate 102 may be provided with a plurality of through electrodes 106. In this case, the plurality of through electrodes 106 are preferably arranged at intervals of 100 μm or more. The through electrodes 106 provided on the substrate 102 are electrically connected to the wirings arranged on the first surface 102s1 side and the second surface 102s2 side of the substrate 102, which will be described later, and are electrically connected to the first surface 102s1 side and the second surface 102s2 side of the substrate 102. A conductive path is formed between the 102s2 side and the side.

以上のように、本実施形態に係る貫通電極基板100の製造方法によると、貫通孔112の一部において密着層104を形成することができる。密着層104が基板102と貫通電極106の間の一部に形成されることによって、貫通電極106は基板102との接着性を向上することができ、貫通電極106が貫通孔112から脱落することを抑制することができる。本実施形態に係る貫通電極基板100は、貫通孔112の一端において密着層104が形成されないことによって、貫通電極106および基板102の熱膨張・熱収縮による応力を貫通孔112の一端方向に分散することができ、熱処理時における基板破壊を抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As described above, according to the method for manufacturing the through electrode substrate 100 according to the present embodiment, the adhesion layer 104 can be formed in a part of the through holes 112. By forming the adhesion layer 104 in a part between the substrate 102 and the through electrode 106, the through electrode 106 can improve the adhesiveness with the substrate 102, and the through electrode 106 falls off from the through hole 112. Can be suppressed. In the through electrode substrate 100 according to the present embodiment, since the adhesion layer 104 is not formed at one end of the through hole 112, the stress due to thermal expansion and contraction of the through electrode 106 and the substrate 102 is dispersed in the direction of one end of the through hole 112. It is possible to suppress substrate breakage during heat treatment. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板にかかる熱応力]
次に、図3を用いて、本開示の一実施形態に係る貫通電極基板にかかる熱応力と、従来の貫通電極基板にかかる熱応力について詳細に説明する。図3(A)は、本開示の一実施形態に係る貫通電極基板にかかる熱応力を説明するための断面図である。図3(B)は、従来の貫通電極基板にかかる熱応力を説明するための断面図である。
[Thermal stress on the through silicon via substrate]
Next, with reference to FIG. 3, the thermal stress applied to the through silicon via substrate according to the embodiment of the present disclosure and the thermal stress applied to the conventional through silicon via substrate will be described in detail. FIG. 3A is a cross-sectional view for explaining the thermal stress applied to the through silicon via substrate according to the embodiment of the present disclosure. FIG. 3B is a cross-sectional view for explaining the thermal stress applied to the conventional through silicon via substrate.

図3(A)に示すように、本実施形態に係る貫通電極基板100は、貫通孔112の第2面102s2側(第2開口端側)において密着層104が配置されない領域を有する。密着層104が配置されない領域において基板102と貫通電極106の間に密着層104が介在しないことで、貫通電極106と基板102とが部分的に弱く接着する。貫通電極106と基板102との熱膨張率が異なることから、貫通電極基板100は熱処理によって貫通電極106および基板102の熱膨張・熱収縮による応力を受ける。本実施形態に係る貫通電極基板100は、熱応力を、貫通電極106と基板102とが弱く接着する貫通孔112の第2面102s2(第2開口端)の方向に分散することができ、熱処理時における基板破壊を抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As shown in FIG. 3A, the through electrode substrate 100 according to the present embodiment has a region on the second surface 102s2 side (second opening end side) of the through hole 112 where the adhesion layer 104 is not arranged. By not interposing the adhesion layer 104 between the substrate 102 and the through electrode 106 in the region where the adhesion layer 104 is not arranged, the through electrode 106 and the substrate 102 are partially and weakly adhered to each other. Since the coefficient of thermal expansion of the through electrode 106 and the substrate 102 are different, the through electrode substrate 100 receives stress due to thermal expansion and contraction of the through electrode 106 and the substrate 102 by heat treatment. The through electrode substrate 100 according to the present embodiment can disperse thermal stress in the direction of the second surface 102s2 (second opening end) of the through hole 112 in which the through electrode 106 and the substrate 102 are weakly adhered to each other, and is heat-treated. Substrate destruction at times can be suppressed. Therefore, a highly reliable through electrode substrate can be obtained.

図3(B)に示すように、従来の貫通電極基板100aは、貫通孔112aの内側面全面において密着層104aが配置される。基板102aと貫通電極106aとの間に密着層104aが介在することで、貫通孔112aの内側面全面において貫通電極106aと基板102aとが強く接着する。従来の貫通電極基板100aは、熱処理時における応力が貫通孔112aの内側面全面にかかる。この結果、従来の貫通電極基板100aは、熱処理時によって破壊することがある。特に、より剛性が小さい基板102aはクラックなどが入り破壊することがある。 As shown in FIG. 3B, in the conventional through electrode substrate 100a, the adhesion layer 104a is arranged on the entire inner surface of the through hole 112a. By interposing the adhesion layer 104a between the substrate 102a and the through electrode 106a, the through electrode 106a and the substrate 102a are strongly adhered to each other on the entire inner surface of the through hole 112a. In the conventional through electrode substrate 100a, stress during heat treatment is applied to the entire inner surface of the through hole 112a. As a result, the conventional through silicon via substrate 100a may be destroyed by the heat treatment. In particular, the substrate 102a having a lower rigidity may be cracked or broken.

<第2実施形態>
[貫通電極基板の構成]
図4は、本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)B-B’断面図、(C)下面図である。図4(A)~(C)に示すように、貫通電極基板100bは、基板102bと、密着層104bと、貫通電極106bとを有する。本実施形態に係る貫通電極基板100bは、貫通電極106bが円錐台型であること以外、第1実施形態に係る貫通電極基板100と同じであるから、ここでは、第1実施形態に係る貫通電極基板100と相違する部分について説明する。
<Second Embodiment>
[Construction of through silicon via substrate]
FIG. 4 is a top view (A), a cross-sectional view (B) BB', and a bottom view (C) showing the configuration of the through silicon via substrate according to the embodiment of the present disclosure. As shown in FIGS. 4A to 4C, the through electrode substrate 100b has a substrate 102b, an adhesion layer 104b, and a through electrode 106b. Since the through electrode substrate 100b according to the present embodiment is the same as the through electrode substrate 100 according to the first embodiment except that the through electrode 106b has a truncated cone shape, the through electrode substrate 100b according to the first embodiment is described here. A part different from the substrate 100 will be described.

基板102bには、第1面102bs1および第1面に対向する第2面102bs2を貫通する貫通孔112bが設けられる。本実施形態において貫通孔112bは円孔であり、基板102bの第1面102bs1と貫通孔112bの内側面とがなす角度θは鋭角である。基板102bの第1面102bs1と貫通孔112bの内側面とがなす角度θは80°以上90°未満の範囲であることが好ましい。したがって、貫通孔112bの第1面102bs1における第1開口端の径d1bは、貫通孔112bの第2面102bs2における第2開口端の径d2bより小さい。基板102bの第1面102bs1と貫通孔112bの内側面とがなす角度θが80°未満である場合、貫通電極基板100bに微細パターンを形成することが困難になる。 The substrate 102b is provided with a through hole 112b that penetrates the first surface 102bs1 and the second surface 102bs2 facing the first surface. In the present embodiment, the through hole 112b is a circular hole, and the angle θ formed by the first surface 102bs1 of the substrate 102b and the inner surface of the through hole 112b is an acute angle. The angle θ formed by the first surface 102bs1 of the substrate 102b and the inner surface of the through hole 112b is preferably in the range of 80 ° or more and less than 90 °. Therefore, the diameter d1b of the first opening end on the first surface 102bs1 of the through hole 112b is smaller than the diameter d2b of the second opening end on the second surface 102bs2 of the through hole 112b. When the angle θ formed by the first surface 102bs1 of the substrate 102b and the inner surface of the through hole 112b is less than 80 °, it becomes difficult to form a fine pattern on the through electrode substrate 100b.

貫通孔112bの内側面の一部には、密着層104bが配置される。本実施形態において密着層104bは、貫通孔112bの第1面102bs1側(第1開口端側)に配置される。密着層104bは、貫通孔112bの内側面に接するように、貫通孔112bの内側面の第1面102bs1側(第1開口端側)を覆うように形成される。しかしながらこれに限定されず、密着層104bは、貫通孔112bの第1開口端と第2開口端の間に配置されてもよい。密着層104bは、貫通孔112bの内側面に接するかぎり、どのような形状であってもよく、不均一であってもよく、不連続であってもよい。例えば、貫通孔112bの内側面を斜めに切った形であってもよく、円周において不連続であってもよい。 An adhesion layer 104b is arranged on a part of the inner surface of the through hole 112b. In the present embodiment, the adhesion layer 104b is arranged on the first surface 102bs1 side (first opening end side) of the through hole 112b. The adhesion layer 104b is formed so as to cover the first surface 102bs1 side (first opening end side) of the inner surface of the through hole 112b so as to be in contact with the inner surface of the through hole 112b. However, the present invention is not limited to this, and the adhesion layer 104b may be arranged between the first opening end and the second opening end of the through hole 112b. The contact layer 104b may have any shape, may be non-uniform, or may be discontinuous as long as it is in contact with the inner surface of the through hole 112b. For example, the inner side surface of the through hole 112b may be cut diagonally, or may be discontinuous in the circumference.

別言すると、貫通孔112bの内側面の一部には、密着層104bが配置されない領域がある。本実施形態において、貫通孔112bの第2面102bs2側(第2開口端側)には密着層104bが配置されない。 In other words, a part of the inner surface of the through hole 112b has a region where the adhesion layer 104b is not arranged. In the present embodiment, the adhesion layer 104b is not arranged on the second surface 102bs2 side (second opening end side) of the through hole 112b.

貫通孔112bの内部には、貫通電極106bが配置される。本実施形態において貫通電極106bは略円錐台型であり、第1面102bs1側の径が第2面102bs2側の径より小さい。貫通電極106bは、貫通孔112bの第1面102bs1側(第1開口端)から第2面102bs2側(第2開口端)までを充填する。さらに、貫通電極106bの端部は基板102bの第1面102bs1および第2面102bs2の上まで延在してもよい。貫通電極106bは、第1面102bs1側の配線と第2面102bs2側の配線とを電気的に接続する役割を担う。 A through electrode 106b is arranged inside the through hole 112b. In the present embodiment, the through electrode 106b has a substantially truncated cone shape, and the diameter on the first surface 102bs1 side is smaller than the diameter on the second surface 102bs2 side. The through electrode 106b fills the through hole 112b from the first surface 102bs1 side (first opening end) to the second surface 102bs2 side (second opening end). Further, the end portion of the through electrode 106b may extend over the first surface 102bs1 and the second surface 102bs2 of the substrate 102b. The through electrode 106b plays a role of electrically connecting the wiring on the first surface 102bs1 side and the wiring on the second surface 102bs2 side.

貫通電極106bは、貫通孔112bの第1面102bs1側(第1開口端側)において密着層104bの内側面に接するように配置される。貫通電極106bは、貫通孔112bの第2面102bs2側(第2開口端側)において貫通孔112bの内側面に接するように配置される。しかしながらこれに限定されず、貫通電極106bは貫通孔112bの内側面において、密着層104bが配置される領域では密着層104bと接し、密着層104bが配置されない領域では基板102bと直接接している。別言すると、密着層104bは、基板102bと貫通電極106bの間の一部に介在する。 The through electrode 106b is arranged so as to be in contact with the inner side surface of the close contact layer 104b on the first surface 102bs1 side (first opening end side) of the through hole 112b. The through electrode 106b is arranged so as to be in contact with the inner side surface of the through hole 112b on the second surface 102bs2 side (second opening end side) of the through hole 112b. However, the via silicon via 106b is not limited to this, and is in direct contact with the adhesion layer 104b in the region where the adhesion layer 104b is arranged and directly in contact with the substrate 102b in the region where the adhesion layer 104b is not arranged on the inner surface of the through hole 112b. In other words, the adhesion layer 104b is interposed between the substrate 102b and the through silicon via 106b.

貫通孔112bの内側面において密着層104bが配置される領域では、貫通電極106bは密着層104bを介して基板102bと強く接着する。一方で、貫通孔112bの内側面において密着層104bが配置されない領域では、貫通電極106bは基板102bと弱く接着する。貫通孔112bの一部において密着層104bが配置される領域を有することで、貫通電極106bは基板102bとの接着性を向上することができ、貫通電極106bが貫通孔112bから脱落することを抑制することができる。径が大きい貫通孔112bの第2面102bs2側(第2開口端側)において密着層104bが配置されない領域を有することで、貫通電極106bおよび基板102bの熱膨張・熱収縮による応力を貫通孔112bの第2面102bs2(第2開口端)の方向により分散することができ、熱処理時における基板破壊をより抑制することができる。 In the region where the adhesion layer 104b is arranged on the inner surface of the through hole 112b, the through electrode 106b strongly adheres to the substrate 102b via the adhesion layer 104b. On the other hand, in the region where the adhesion layer 104b is not arranged on the inner surface of the through hole 112b, the through electrode 106b is weakly adhered to the substrate 102b. By having a region in which the adhesion layer 104b is arranged in a part of the through hole 112b, the through electrode 106b can improve the adhesiveness with the substrate 102b and suppress the through electrode 106b from falling out from the through hole 112b. can do. By having a region where the adhesion layer 104b is not arranged on the second surface 102bs2 side (second opening end side) of the through hole 112b having a large diameter, the stress due to thermal expansion / contraction of the through electrode 106b and the substrate 102b is applied to the through hole 112b. It is possible to disperse in the direction of the second surface 102bs2 (second opening end) of the above, and it is possible to further suppress substrate destruction during heat treatment.

貫通孔112bの内側面において密着層104bが配置される領域は、貫通孔112bの内側面の高さの12%以上50%未満の範囲に位置することが好ましい。別言すると、貫通孔112bの内側面において密着層104bが配置されない領域は、貫通孔112bの内側面の高さの50%以上88%以下の範囲に位置することが好ましい。密着層104bが配置される領域が、貫通孔112bの内側面の高さの12%以上の範囲に位置することで、基板102bと貫通電極106bの接着性を向上することができ、貫通電極106bが貫通孔112bから脱落することを抑制することができる。密着層104bが配置されない領域が、貫通孔112bの内側面の高さの50%以上の範囲に位置することで、基板が受ける熱応力を抑制することができ、熱処理時における基板破壊を抑制することができる。 The region on the inner surface of the through hole 112b where the adhesion layer 104b is arranged is preferably located in a range of 12% or more and less than 50% of the height of the inner surface of the through hole 112b. In other words, the region on the inner surface of the through hole 112b where the adhesion layer 104b is not arranged is preferably located in a range of 50% or more and 88% or less of the height of the inner surface of the through hole 112b. By locating the region where the adhesion layer 104b is arranged in a range of 12% or more of the height of the inner surface of the through hole 112b, the adhesiveness between the substrate 102b and the through electrode 106b can be improved, and the through electrode 106b can be improved. Can be prevented from falling out of the through hole 112b. By locating the region where the adhesion layer 104b is not arranged within a range of 50% or more of the height of the inner surface of the through hole 112b, the thermal stress received by the substrate can be suppressed, and the substrate breakage during heat treatment can be suppressed. be able to.

以上のように、本実施形態に係る貫通電極基板100bによると、貫通孔112bの一部において密着層104bが配置される領域を有する。基板102bと貫通電極106bの間の一部に密着層104bが配置されることで、貫通電極106bは基板102bとの接着性を向上することができ、貫通電極106bが貫通孔112bから脱落することを抑制することができる。本実施形態に係る貫通電極基板100bは、径が大きい貫通孔112bの第2面102bs2側(第2開口端側)において密着層104bが配置されない領域を有することで、貫通電極106bおよび基板102bの熱膨張・熱収縮による応力を貫通孔112bの第2面102bs2(第2開口端)の方向により分散することができ、熱処理時における基板破壊をより抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As described above, the through electrode substrate 100b according to the present embodiment has a region in which the adhesion layer 104b is arranged in a part of the through hole 112b. By arranging the close contact layer 104b in a part between the substrate 102b and the through electrode 106b, the through electrode 106b can improve the adhesiveness with the substrate 102b, and the through electrode 106b falls off from the through hole 112b. Can be suppressed. The through electrode substrate 100b according to the present embodiment has a region on the second surface 102bs2 side (second opening end side) of the through hole 112b having a large diameter, so that the through electrode 106b and the substrate 102b are not arranged. The stress due to thermal expansion and contraction can be dispersed in the direction of the second surface 102bs2 (second opening end) of the through hole 112b, and substrate destruction during heat treatment can be further suppressed. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板の製造方法]
本開示の一実施形態に係る貫通電極基板100bの製造方法は、貫通孔112bの第1開口端の径d1bを第2開口端の径d2bより小さく形成すること以外、第1実施形態に係る貫通電極基板100の製造方法と同じであり、ここでの説明は省略する。
[Manufacturing method of through silicon via substrate]
The method for manufacturing the through silicon via substrate 100b according to the embodiment of the present disclosure is the penetration according to the first embodiment, except that the diameter d1b of the first opening end of the through hole 112b is formed to be smaller than the diameter d2b of the second opening end. The method is the same as that for manufacturing the electrode substrate 100, and the description thereof is omitted here.

<第3実施形態>
[貫通電極基板の構成]
図5は、本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)C-C’断面図、(C)下面図である。図5(A)~(C)に示すように、貫通電極基板100cは、基板102cと、密着層104cと、貫通電極106cとを有する。本実施形態に係る貫通電極基板100cは、貫通電極106cが第1面102cs1側と第2面102cs2側の間に両端より小さい径を有すること以外、第1実施形態に係る貫通電極基板100と同じであるから、ここでは、第1実施形態に係る貫通電極基板100と相違する部分について説明する。
<Third Embodiment>
[Construction of through silicon via substrate]
5A and 5B are a top view of (A), a cross-sectional view of (B) CC', and a bottom view of (C) showing the configuration of the through silicon via substrate according to the embodiment of the present disclosure. As shown in FIGS. 5A to 5C, the through electrode substrate 100c has a substrate 102c, an adhesion layer 104c, and a through electrode 106c. The through electrode substrate 100c according to the present embodiment is the same as the through electrode substrate 100 according to the first embodiment, except that the through electrode 106c has a diameter smaller than both ends between the first surface 102cs1 side and the second surface 102cs2 side. Therefore, here, a portion different from the through electrode substrate 100 according to the first embodiment will be described.

基板102cには、第1面102cs1および第1面に対向する第2面102cs2を貫通する貫通孔112cが設けられる。本実施形態において貫通孔112cは円孔であり、内側面が回転双曲面である。基板102cの第1面102cs1(または第2面102cs2)と貫通孔112cの内側面の接線とがなす角度θは鈍角である。基板102cの第1面102cs1と貫通孔112cの内側面とがなす角度θは90°より大きく105°以下の範囲であることが好ましい。c基板102cの第1面102cs1と貫通孔112cの内側面とがなす角度θが105°より大きい場合、貫通電極基板100cに微細パターンを形成することが困難になる。貫通孔112cの第1面102cs1における第1開口端の径d1cと、貫通孔112cの第2面102cs2における第2開口端の径d2cとは略同一である。さらに貫通孔112cは、第1開口端と第2開口端の間に、第1開口端の径d1cと第2開口端の径d2cより小さい径d3cを有する。貫通孔112cは第1開口端と第2開口端の間に第1開口端の径d1cと第2開口端の径d2cより小さい径d3cを有することで、貫通電極106cが貫通孔112cから脱落することを抑制することができる。 The substrate 102c is provided with a through hole 112c that penetrates the first surface 102cs1 and the second surface 102cs2 facing the first surface. In the present embodiment, the through hole 112c is a circular hole, and the inner side surface is a rotating hyperboloid. The angle θ formed by the first surface 102cs1 (or the second surface 102cs2) of the substrate 102c and the tangent line of the inner surface of the through hole 112c is an obtuse angle. The angle θ formed by the first surface 102cs1 of the substrate 102c and the inner surface of the through hole 112c is preferably in the range of 105 ° or less, which is larger than 90 °. When the angle θ formed by the first surface 102cs1 of the c substrate 102c and the inner surface of the through hole 112c is larger than 105 °, it becomes difficult to form a fine pattern on the through electrode substrate 100c. The diameter d1c of the first opening end on the first surface 102cs1 of the through hole 112c and the diameter d2c of the second opening end on the second surface 102cs2 of the through hole 112c are substantially the same. Further, the through hole 112c has a diameter d1c of the first opening end and a diameter d3c smaller than the diameter d2c of the second opening end between the first opening end and the second opening end. The through hole 112c has a diameter d1c of the first opening end and a diameter d3c smaller than the diameter d2c of the second opening end between the first opening end and the second opening end, so that the through electrode 106c falls off from the through hole 112c. Can be suppressed.

貫通孔112cの内側面の一部には、密着層104cが配置される。本実施形態において密着層104cは、貫通孔112cの第1面102cs1側(第1開口端側)に配置される。密着層104cは、貫通孔112cの内側面に接するように、貫通孔112cの内側面の第1面102cs1側(第1開口端側)を覆うように形成される。しかしながらこれに限定されず、密着層104cは、貫通孔112cの第2面102cs2側(第2開口端側)に配置されてもよく、後述するように貫通孔112cの第1開口端と第2開口端の間に配置されてもよい。密着層104cは、貫通孔112cの内側面に接するかぎり、どのような形状であってもよく、不均一であってもよく、不連続であってもよい。例えば、貫通孔112cの内側面を斜めに切った形であってもよく、円周において不連続であってもよい。 A close contact layer 104c is arranged on a part of the inner surface of the through hole 112c. In the present embodiment, the adhesion layer 104c is arranged on the first surface 102cs1 side (first opening end side) of the through hole 112c. The adhesion layer 104c is formed so as to cover the first surface 102cs1 side (first opening end side) of the inner side surface of the through hole 112c so as to be in contact with the inner side surface of the through hole 112c. However, the present invention is not limited to this, and the adhesion layer 104c may be arranged on the second surface 102cs2 side (second opening end side) of the through hole 112c, and as will be described later, the first opening end and the second opening end of the through hole 112c. It may be placed between the open ends. The contact layer 104c may have any shape, may be non-uniform, or may be discontinuous as long as it is in contact with the inner surface of the through hole 112c. For example, the inner side surface of the through hole 112c may be cut diagonally, or may be discontinuous in the circumference.

別言すると、貫通孔112cの内側面の一部には、密着層104cが配置されない領域がある。本実施形態において、貫通孔112cの第2面102cs2側(第2開口端側)には密着層104cが配置されない。しかしながらこれに限定されず、貫通孔112cの一端に密着層104cが配置されない領域があればよい。 In other words, a part of the inner surface of the through hole 112c has a region where the adhesion layer 104c is not arranged. In the present embodiment, the adhesion layer 104c is not arranged on the second surface 102cs2 side (second opening end side) of the through hole 112c. However, the present invention is not limited to this, and it is sufficient that there is a region where the adhesion layer 104c is not arranged at one end of the through hole 112c.

貫通孔112cの内部には、貫通電極106cが配置される。本実施形態において貫通電極106cは、第1面102cs1側の径と第2面102cs2側の径とが略同一である。さらに貫通電極106cは、第1面102cs1側と第2面102cs2側の間に両端より小さい径を有する。貫通電極106cは、貫通孔112cの第1面102cs1側(第1開口端)から第2面102cs2側(第2開口端)までを充填する。さらに、貫通電極106cの端部は基板102cの第1面102cs1および第2面102cs2の上まで延在してもよい。貫通電極106cは、第1面102cs1側の配線と第2面102cs2側の配線とを電気的に接続する役割を担う。 A through electrode 106c is arranged inside the through hole 112c. In the present embodiment, the diameter of the through electrode 106c on the first surface 102cs1 side and the diameter on the second surface 102cs2 side are substantially the same. Further, the through electrode 106c has a diameter smaller than both ends between the first surface 102cs1 side and the second surface 102cs2 side. The through electrode 106c fills the through hole 112c from the first surface 102cs1 side (first opening end) to the second surface 102cs2 side (second opening end). Further, the end portion of the through electrode 106c may extend over the first surface 102cs1 and the second surface 102cs2 of the substrate 102c. The through electrode 106c plays a role of electrically connecting the wiring on the first surface 102cs1 side and the wiring on the second surface 102cs2 side.

貫通電極106cは、貫通孔112cの第1面102cs1側(第1開口端側)において密着層104cの内側面に接するように配置される。貫通電極106cは、貫通孔112cの第2面102cs2側(第2開口端側)において貫通孔112cの内側面に接するように配置される。しかしながらこれに限定されず、貫通電極106cは貫通孔112cの内側面において、密着層104cが配置される領域では密着層104cと接し、密着層104cが配置されない領域では基板102cと直接接している。別言すると、密着層104cは、基板102cと貫通電極106cの間の一部に介在する。 The through electrode 106c is arranged so as to be in contact with the inner side surface of the close contact layer 104c on the first surface 102cs1 side (first opening end side) of the through hole 112c. The through electrode 106c is arranged so as to be in contact with the inner side surface of the through hole 112c on the second surface 102cs2 side (second opening end side) of the through hole 112c. However, the via silicon via 106c is not limited to this, and is in direct contact with the adhesion layer 104c in the region where the adhesion layer 104c is arranged and directly in contact with the substrate 102c in the region where the adhesion layer 104c is not arranged on the inner surface of the through hole 112c. In other words, the adhesion layer 104c is interposed between the substrate 102c and the through silicon via 106c.

貫通孔112cの内側面において密着層104cが配置される領域では、貫通電極106cは密着層104cを介して基板102cと強く接着する。一方で、貫通孔112cの内側面において密着層104cが配置されない領域では、貫通電極106cは基板102cと弱く接着する。貫通孔112cの一部において密着層104cが配置される領域を有することで、貫通電極106cは基板102cとの接着性を向上することができ、貫通電極106cが貫通孔112cから脱落することを抑制することができる。貫通孔112cの一端において密着層104cが配置されない領域を有することで、貫通電極106cおよび基板102cの熱膨張・熱収縮による応力を貫通孔112cの一端方向に分散することができ、熱処理時における基板破壊を抑制することができる。 In the region where the adhesion layer 104c is arranged on the inner surface of the through hole 112c, the through electrode 106c strongly adheres to the substrate 102c via the adhesion layer 104c. On the other hand, in the region where the adhesion layer 104c is not arranged on the inner surface of the through hole 112c, the through electrode 106c is weakly adhered to the substrate 102c. By having a region in which the adhesion layer 104c is arranged in a part of the through hole 112c, the through electrode 106c can improve the adhesiveness with the substrate 102c and suppress the through electrode 106c from falling out from the through hole 112c. can do. By having a region where the adhesion layer 104c is not arranged at one end of the through hole 112c, the stress due to thermal expansion and contraction of the through electrode 106c and the substrate 102c can be dispersed in the direction of one end of the through hole 112c, and the substrate during heat treatment can be dispersed. Destruction can be suppressed.

貫通孔112cの内側面において密着層104cが配置される領域は、貫通孔112cの内側面の高さの16%以上50%以下の範囲に位置することが好ましい。別言すると、貫通孔112cの内側面において密着層104cが配置されない領域は、貫通孔112cの内側面の高さの50%以上84%以下の範囲に位置することが好ましい。密着層104cが配置される領域が、貫通孔112cの内側面の高さの16%以上の範囲に位置することで、基板102cと貫通電極106cの接着性を向上することができ、貫通電極106cが貫通孔112cから脱落することを抑制することができる。密着層104cが配置されない領域が、貫通孔112cの内側面の高さの50%以上の範囲に位置することで、基板が受ける熱応力を抑制することができ、熱処理時における基板破壊を抑制することができる。 The region where the adhesion layer 104c is arranged on the inner surface of the through hole 112c is preferably located in a range of 16% or more and 50% or less of the height of the inner surface of the through hole 112c. In other words, the region on the inner surface of the through hole 112c where the adhesion layer 104c is not arranged is preferably located in a range of 50% or more and 84% or less of the height of the inner surface of the through hole 112c. By locating the region where the adhesion layer 104c is arranged in a range of 16% or more of the height of the inner surface of the through hole 112c, the adhesiveness between the substrate 102c and the through electrode 106c can be improved, and the through electrode 106c can be improved. Can be prevented from falling out of the through hole 112c. By locating the region where the adhesion layer 104c is not arranged within a range of 50% or more of the height of the inner surface of the through hole 112c, the thermal stress received by the substrate can be suppressed, and the substrate breakage during heat treatment can be suppressed. be able to.

以上のように、本実施形態に係る貫通電極基板100cによると、貫通孔112cの一部において密着層104cが配置される領域を有する。基板102cと貫通電極106cの間の一部に密着層104cが配置されることで、貫通電極106cは基板102cとの接着性をより向上することができ、貫通電極106cが貫通孔112cから脱落することをより抑制することができる。本実施形態に係る貫通電極基板100cは、貫通孔112cの一端において密着層104cが配置されない領域を有することで、貫通電極106cおよび基板102cの熱膨張・熱収縮による応力を貫通孔112cの一端方向に分散することができ、熱処理時における基板破壊を抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As described above, the through electrode substrate 100c according to the present embodiment has a region in which the adhesion layer 104c is arranged in a part of the through hole 112c. By arranging the close contact layer 104c in a part between the substrate 102c and the through electrode 106c, the through electrode 106c can further improve the adhesiveness with the substrate 102c, and the through electrode 106c falls off from the through hole 112c. It can be suppressed more. The through electrode substrate 100c according to the present embodiment has a region in which the adhesion layer 104c is not arranged at one end of the through hole 112c, so that the stress due to thermal expansion / contraction of the through electrode 106c and the substrate 102c is applied to the one end direction of the through hole 112c. It is possible to disperse in the substrate and suppress substrate breakage during heat treatment. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板の製造方法]
本開示の一実施形態に係る貫通電極基板100cの製造方法は、貫通孔112cの第1開口端と第2開口端の間の径d3cを、第1開口端の径d1cおよび第2開口端の径d2cより小さく形成すること以外、第1実施形態に係る貫通電極基板100の製造方法と同じであり、ここでの説明は省略する。
[Manufacturing method of through silicon via substrate]
In the method for manufacturing the through electrode substrate 100c according to the embodiment of the present disclosure, the diameter d3c between the first opening end and the second opening end of the through hole 112c is set to the diameter d1c of the first opening end and the diameter d1c of the second opening end. The method is the same as that of the through silicon via substrate 100 according to the first embodiment except that the diameter is smaller than d2c, and the description thereof is omitted here.

<第4実施形態>
[貫通電極基板の構成]
図6は、本開示の一実施形態に係る貫通電極基板の構成を示す(A)上面図、(B)D-D’断面図、(C)下面図である。図5(A)~(C)に示すように、貫通電極基板100dは、基板102dと、密着層104dと、貫通電極106dとを有する。本実施形態に係る貫通電極基板100dは、貫通電極106dの第1面102ds1側の径が第2面102ds2側の径より小さいこと以外、第3実施形態に係る貫通電極基板100cと同じであるから、ここでは、第3実施形態に係る貫通電極基板100cと相違する部分について説明する。
<Fourth Embodiment>
[Construction of through silicon via substrate]
6A and 6B are a top view of (A), a cross-sectional view of (B) DD', and a bottom view of (C) showing the configuration of the through silicon via substrate according to the embodiment of the present disclosure. As shown in FIGS. 5A to 5C, the through electrode substrate 100d has a substrate 102d, an adhesion layer 104d, and a through electrode 106d. The through electrode substrate 100d according to the present embodiment is the same as the through electrode substrate 100c according to the third embodiment, except that the diameter of the through electrode 106d on the first surface 102ds1 side is smaller than the diameter on the second surface 102ds2 side. Here, a portion different from the through silicon via substrate 100c according to the third embodiment will be described.

基板102dには、第1面102ds1および第1面に対向する第2面102ds2を貫通する貫通孔112dが設けられる。本実施形態において貫通孔112dは円孔であり、内側面が回転双曲面である。基板102dの第1面102ds1と貫通孔112dの第1面102ds1側内側面の接線とがなす角度θ1は鈍角である。基板102dの第2面102ds2と貫通孔112dの第2面102ds2側内側面の接線とがなす角度θ2は鈍角である。第1面102ds1と貫通孔112dの第1面102ds1側内側面の接線とがなす角度θ1は、第2面102ds2と貫通孔112dの第2面102ds2側内側面の接線とがなす角度θ2より小さいまたは同じ(θ1≦θ2)であってもよい。基板102dの第1面102ds1と貫通孔112dの内側面とがなす角度θ1は90°より大きく105°以下の範囲であることが好ましい。基板102dの第2面102ds2と貫通孔112dの内側面とがなす角度θ2は90°より大きく110°以下の範囲であることが好ましい。θ1およびθ2が110°より大きい場合、貫通電極基板100dに微細パターンを形成することが困難になる。貫通孔112dの第1面102ds1における第1開口端の径d1dは、貫通孔112dの第2面102ds2における第2開口端の径d2dより小さい。さらに貫通孔112dは、第1開口端と第2開口端の間に、第1開口端の径d1dと第2開口端の径d2dより小さい径d3dを有する。貫通孔112dは第1開口端と第2開口端の間に第1開口端の径d1dと第2開口端の径d2dより小さい径d3dを有することで、貫通電極106dが貫通孔112dから脱落することを抑制することができる。 The substrate 102d is provided with a through hole 112d penetrating the first surface 102ds1 and the second surface 102ds2 facing the first surface. In the present embodiment, the through hole 112d is a circular hole, and the inner side surface is a rotating hyperboloid. The angle θ1 formed by the tangent line of the first surface 102ds1 of the substrate 102d and the inner surface of the first surface 102ds1 side of the through hole 112d is an obtuse angle. The angle θ2 formed by the tangent line of the second surface 102ds2 of the substrate 102d and the inner surface of the second surface 102ds2 side of the through hole 112d is an obtuse angle. The angle θ1 formed by the tangent line of the first surface 102ds1 and the inner surface of the first surface 102ds1 side of the through hole 112d is smaller than the angle θ2 formed by the tangent line of the second surface 102ds2 and the inner surface of the second surface 102ds2 side of the through hole 112d. Alternatively, they may be the same (θ1 ≦ θ2). The angle θ1 formed by the first surface 102ds1 of the substrate 102d and the inner surface of the through hole 112d is preferably in the range of 105 ° or less, which is larger than 90 °. The angle θ2 formed by the second surface 102ds2 of the substrate 102d and the inner surface of the through hole 112d is preferably in the range of more than 90 ° and 110 ° or less. When θ1 and θ2 are larger than 110 °, it becomes difficult to form a fine pattern on the through silicon via substrate 100d. The diameter d1d of the first opening end on the first surface 102ds1 of the through hole 112d is smaller than the diameter d2d of the second opening end on the second surface 102ds2 of the through hole 112d. Further, the through hole 112d has a diameter d1d of the first opening end and a diameter d3d smaller than the diameter d2d of the second opening end between the first opening end and the second opening end. The through hole 112d has a diameter d1d of the first opening end and a diameter d3d smaller than the diameter d2d of the second opening end between the first opening end and the second opening end, so that the through electrode 106d falls off from the through hole 112d. Can be suppressed.

貫通孔112dの内側面の一部には、密着層104dが配置される。本実施形態において密着層104dは、貫通孔112dの第1面102ds1側(第1開口端側)に配置される。密着層104dは、貫通孔112dの内側面に接するように、貫通孔112dの内側面の第1面102ds1側(第1開口端側)を覆うように形成される。しかしながらこれに限定されず、密着層104dは、後述するように貫通孔112dの第1開口端と第2開口端の間に配置されてもよい。密着層104dは、貫通孔112dの内側面に接するかぎり、どのような形状であってもよく、不均一であってもよく、不連続であってもよい。例えば、貫通孔112dの内側面を斜めに切った形であってもよく、円周において不連続であってもよい。 A close contact layer 104d is arranged on a part of the inner surface of the through hole 112d. In the present embodiment, the adhesion layer 104d is arranged on the first surface 102ds1 side (first opening end side) of the through hole 112d. The adhesion layer 104d is formed so as to cover the first surface 102ds1 side (first opening end side) of the inner side surface of the through hole 112d so as to be in contact with the inner side surface of the through hole 112d. However, the present invention is not limited to this, and the adhesion layer 104d may be arranged between the first opening end and the second opening end of the through hole 112d as described later. The contact layer 104d may have any shape, may be non-uniform, or may be discontinuous as long as it is in contact with the inner surface of the through hole 112d. For example, the inner side surface of the through hole 112d may be cut diagonally, or may be discontinuous in the circumference.

別言すると、貫通孔112dの内側面の一部には、密着層104dが配置されない領域がある。本実施形態において、貫通孔112dの第2面102ds2側(第2開口端側)には密着層104dが配置されない。 In other words, a part of the inner surface of the through hole 112d has a region where the adhesion layer 104d is not arranged. In the present embodiment, the adhesion layer 104d is not arranged on the second surface 102ds2 side (second opening end side) of the through hole 112d.

貫通孔112dの内部には、貫通電極106dが配置される。本実施形態において貫通電極106dは、第1面102ds1側の径が第2面102ds2側の径より小さい。さらに貫通電極106dは、第1面102ds1側と第2面102ds2側の間に両端より小さい径を有する。貫通電極106dは、貫通孔112dの第1面102ds1側(第1開口端)から第2面102ds2側(第2開口端)までを充填する。さらに、貫通電極106dの端部は基板102dの第1面102ds1および第2面102ds2の上まで延在してもよい。貫通電極106dは、第1面102ds1側の配線と第2面102ds2側の配線とを電気的に接続する役割を担う。 A through electrode 106d is arranged inside the through hole 112d. In the present embodiment, the diameter of the through electrode 106d on the first surface 102ds1 side is smaller than the diameter on the second surface 102ds2 side. Further, the through electrode 106d has a diameter smaller than both ends between the first surface 102ds1 side and the second surface 102ds2 side. The through electrode 106d fills the through hole 112d from the first surface 102ds1 side (first opening end) to the second surface 102ds2 side (second opening end). Further, the end portion of the through electrode 106d may extend over the first surface 102ds1 and the second surface 102ds2 of the substrate 102d. The through electrode 106d plays a role of electrically connecting the wiring on the first surface 102ds1 side and the wiring on the second surface 102ds2 side.

貫通電極106dは、貫通孔112dの第1面102ds1側(第1開口端側)において密着層104dの内側面に接するように配置される。貫通電極106dは、貫通孔112dの第2面102ds2側(第2開口端側)において貫通孔112dの内側面に接するように配置される。しかしながらこれに限定されず、貫通電極106dは貫通孔112dの内側面において、密着層104dが配置される領域では密着層104dと接し、密着層104dが配置されない領域では基板102dと直接接している。別言すると、密着層104dは、基板102dと貫通電極106dの間の一部に介在する。 The through electrode 106d is arranged so as to be in contact with the inner side surface of the close contact layer 104d on the first surface 102ds1 side (first opening end side) of the through hole 112d. The through electrode 106d is arranged so as to be in contact with the inner side surface of the through hole 112d on the second surface 102ds2 side (second opening end side) of the through hole 112d. However, the via silicon via 106d is not limited to this, and is in direct contact with the adhesion layer 104d in the region where the adhesion layer 104d is arranged and directly in contact with the substrate 102d in the region where the adhesion layer 104d is not arranged on the inner surface of the through hole 112d. In other words, the adhesion layer 104d is interposed between the substrate 102d and the through silicon via 106d.

貫通孔112dの内側面において密着層104dが配置される領域では、貫通電極106dは密着層104dを介して基板102dと強く接着する。一方で、貫通孔112dの内側面において密着層104dが配置されない領域では、貫通電極106dは基板102dと弱く接着する。貫通孔112dの一部において密着層104dが配置される領域を有することで、貫通電極106dは基板102dとの接着性を向上することができ、貫通電極106dが貫通孔112dから脱落することを抑制することができる。径が大きい貫通孔112dの第2面102ds2側(第2開口端側)において密着層104dが配置されない領域を有することで、貫通電極106dおよび基板102dの熱膨張・熱収縮による応力を貫通孔112dの一端方向により分散することができ、熱処理時における基板破壊をより抑制することができる。 In the region where the adhesion layer 104d is arranged on the inner surface of the through hole 112d, the through electrode 106d strongly adheres to the substrate 102d via the adhesion layer 104d. On the other hand, in the region where the adhesion layer 104d is not arranged on the inner surface of the through hole 112d, the through electrode 106d adheres weakly to the substrate 102d. By having a region in which the adhesion layer 104d is arranged in a part of the through hole 112d, the through electrode 106d can improve the adhesiveness with the substrate 102d and suppress the through electrode 106d from falling out from the through hole 112d. can do. By having a region where the adhesion layer 104d is not arranged on the second surface 102ds2 side (second opening end side) of the through hole 112d having a large diameter, the stress due to thermal expansion / contraction of the through electrode 106d and the substrate 102d is applied to the through hole 112d. It can be dispersed depending on the direction of one end of the substrate, and the destruction of the substrate during the heat treatment can be further suppressed.

貫通孔112dの内側面において密着層104dが配置される領域は、貫通孔112dの内側面の高さの24%以上50%以下の範囲に位置することが好ましい。別言すると、貫通孔112dの内側面において密着層104dが配置されない領域は、貫通孔112dの内側面の高さの50%以上76%以下の範囲に位置することが好ましい。密着層104dが配置される領域が、貫通孔112dの内側面の高さの24%以上の範囲に位置することで、基板102dと貫通電極106dの接着性を向上することができ、貫通電極106dが貫通孔112dから脱落することを抑制することができる。密着層104dが配置されない領域が、貫通孔112dの内側面の高さの76%以上の範囲に位置することで、基板が受ける熱応力を抑制することができ、熱処理時における基板破壊を抑制することができる。 The region where the adhesion layer 104d is arranged on the inner surface of the through hole 112d is preferably located in a range of 24% or more and 50% or less of the height of the inner surface of the through hole 112d. In other words, the region on the inner surface of the through hole 112d where the adhesion layer 104d is not arranged is preferably located in a range of 50% or more and 76% or less of the height of the inner surface of the through hole 112d. By locating the region where the adhesion layer 104d is arranged in a range of 24% or more of the height of the inner surface of the through hole 112d, the adhesiveness between the substrate 102d and the through electrode 106d can be improved, and the through electrode 106d can be improved. Can be prevented from falling out of the through hole 112d. By locating the region where the adhesion layer 104d is not arranged within a range of 76% or more of the height of the inner surface of the through hole 112d, the thermal stress received by the substrate can be suppressed, and the substrate breakage during heat treatment can be suppressed. be able to.

以上のように、本実施形態に係る貫通電極基板100dによると、貫通孔112dの一部において密着層104dが配置される領域を有する。基板102dと貫通電極106dの間の一部に密着層104dが配置されることで、貫通電極106dは基板102dとの接着性をより向上することができ、貫通電極106dが貫通孔112dから脱落することをより抑制することができる。本実施形態に係る貫通電極基板100dは、径が大きい貫通孔112dの第2面102ds2側(第2開口端側)において密着層104dが配置されない領域を有することで、貫通電極106dおよび基板102dの熱膨張・熱収縮による応力を貫通孔112dの第2面102ds2(第2開口端)の方向により分散することができ、熱処理時における基板破壊をより抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 As described above, the through electrode substrate 100d according to the present embodiment has a region in which the adhesion layer 104d is arranged in a part of the through hole 112d. By arranging the close contact layer 104d in a part between the substrate 102d and the through electrode 106d, the through electrode 106d can further improve the adhesiveness with the substrate 102d, and the through electrode 106d falls off from the through hole 112d. It can be suppressed more. The through electrode substrate 100d according to the present embodiment has a region on the second surface 102ds2 side (second opening end side) of the through hole 112d having a large diameter in which the adhesion layer 104d is not arranged. The stress due to thermal expansion and contraction can be dispersed in the direction of the second surface 102ds2 (second opening end) of the through hole 112d, and substrate destruction during heat treatment can be further suppressed. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板の製造方法]
本開示の一実施形態に係る貫通電極基板100dの製造方法は、貫通孔112dの第1開口端の径d1dを第2開口端の径d2dより小さく形成すること以外、第3実施形態に係る貫通電極基板100cの製造方法と同じであり、ここでの説明は省略する。
[Manufacturing method of through silicon via substrate]
The method for manufacturing the through silicon via substrate 100d according to the embodiment of the present disclosure is the penetration according to the third embodiment, except that the diameter d1d of the first opening end of the through hole 112d is formed to be smaller than the diameter d2d of the second opening end. The method is the same as that for manufacturing the electrode substrate 100c, and the description thereof is omitted here.

<変形例1>
[貫通電極基板の構成]
図7(A)~(C)は、本開示の一実施形態に係る貫通電極基板の変形例を示す断面図である。図7(A)は、本開示の第2実施形態に係る貫通電極基板の変形例を示す断面図である。図7(B)は、本開示の第3実施形態に係る貫通電極基板の変形例を示す断面図である。図7(C)は、本開示の第4実施形態に係る貫通電極基板の変形例を示す断面図である。ここで本変形例に係る貫通電極基板100e、100f、100gを、とくに区別しないときには貫通電極基板100とする。同様に、基板102e、102f、102g、密着層104e、104f、104g、および貫通電極106e、106f、106gは、基板102、密着層104、および貫通電極106とする。
<Modification example 1>
[Construction of through silicon via substrate]
7 (A) to 7 (C) are cross-sectional views showing a modified example of the through silicon via substrate according to the embodiment of the present disclosure. FIG. 7A is a cross-sectional view showing a modified example of the through silicon via substrate according to the second embodiment of the present disclosure. FIG. 7B is a cross-sectional view showing a modified example of the through silicon via substrate according to the third embodiment of the present disclosure. FIG. 7C is a cross-sectional view showing a modified example of the through silicon via substrate according to the fourth embodiment of the present disclosure. Here, the through electrode substrates 100e, 100f, and 100 g according to this modification are referred to as the through electrode substrate 100 unless otherwise specified. Similarly, the substrates 102e, 102f, 102g, the adhesion layers 104e, 104f, 104g, and the through electrodes 106e, 106f, 106g are the substrate 102, the adhesion layer 104, and the through electrodes 106.

図7(A)~(C)に示すように、貫通電極基板100は、基板102と、密着層104と、貫通電極106とを有する。本変形例に係る貫通電極基板100は、密着層104が貫通孔112の第1開口端と第2開口端の間に配置されること以外、第2実施形態から第4実施形態に係る貫通電極基板と同じであるから、ここでは、相違する部分について説明する。 As shown in FIGS. 7A to 7C, the through electrode substrate 100 has a substrate 102, an adhesion layer 104, and a through electrode 106. In the through electrode substrate 100 according to the present modification, the through electrodes according to the second to fourth embodiments are provided, except that the adhesion layer 104 is arranged between the first opening end and the second opening end of the through hole 112. Since it is the same as the substrate, the different parts will be described here.

図7(A)~(C)に示すように、本変形例に係る貫通電極基板100は、密着層104が貫通孔112の第1開口端と第2開口端の間に配置される。密着層104は、貫通孔112の内側面に接するように、貫通孔112の内側面の一部を覆うように形成される。しかしながらこれに限定されず、密着層104は、貫通孔112の内側面に接するかぎり、どのような形状であってもよく、不均一であってもよく、不連続であってもよい。例えば、貫通孔112の内側面を斜めに切った形であってもよく、円周において不連続であってもよい。別言すると、貫通孔112の内側面両端(第1開口端および第2開口端)には、密着層104が配置されない As shown in FIGS. 7A to 7C, in the through electrode substrate 100 according to the present modification, the adhesion layer 104 is arranged between the first opening end and the second opening end of the through hole 112. The adhesion layer 104 is formed so as to cover a part of the inner surface of the through hole 112 so as to be in contact with the inner surface of the through hole 112. However, the adhesion layer 104 may have any shape, may be non-uniform, or may be discontinuous as long as it is in contact with the inner surface of the through hole 112. For example, the inner side surface of the through hole 112 may be cut diagonally, or may be discontinuous in the circumference. In other words, the adhesion layer 104 is not arranged at both ends of the inner side surface (first opening end and second opening end) of the through hole 112.

貫通孔112の内部には、貫通電極106が配置される。貫通電極106は、貫通孔112の第1面102s1側(第1開口端)から第2面102s2側(第2開口端)までを充填する。貫通電極106は、貫通孔112の第1面102s1側(第1開口端)と第2面102s2側(第2開口端)の間において密着層104の内側面に接するように配置される。貫通電極106は、貫通孔112の第1面102s1側(第1開口端)および第2面102s2側(第2開口端)において貫通孔112の内側面に接するように配置される。しかしながらこれに限定されず、貫通電極106は貫通孔112の内側面において、密着層104が配置される領域では密着層104と接し、密着層104が配置されない領域では基板102と直接接している。別言すると、密着層104は、基板102と貫通電極106の間の一部に介在する。 A through electrode 106 is arranged inside the through hole 112. The through electrode 106 fills the through hole 112 from the first surface 102s1 side (first opening end) to the second surface 102s2 side (second opening end). The through electrode 106 is arranged so as to be in contact with the inner side surface of the adhesion layer 104 between the first surface 102s1 side (first opening end) and the second surface 102s2 side (second opening end) of the through hole 112. Through electrodes 106 are arranged so as to be in contact with the inner side surface of the through hole 112 on the first surface 102s1 side (first opening end) and the second surface 102s2 side (second opening end) of the through hole 112. However, the via silicon via 106 is not limited to this, and is in direct contact with the adhesion layer 104 in the region where the adhesion layer 104 is arranged and directly in contact with the substrate 102 in the region where the adhesion layer 104 is not arranged on the inner surface of the through hole 112. In other words, the adhesion layer 104 is interposed between the substrate 102 and the through silicon via 106.

貫通孔112の内側面において密着層104が配置される領域では、貫通電極106は密着層104を介して基板102と強く接着する。一方で、貫通孔112の内側面において密着層104が配置されない領域では、貫通電極106は基板102と弱く接着する。貫通孔112の一部において密着層104が配置される領域を有することで、貫通電極106は基板102との接着性を向上することができ、貫通電極106が貫通孔112から脱落することを抑制することができる。貫通孔112の両端において密着層104が配置されない領域を有することで、貫通電極106および基板102の熱膨張・熱収縮による応力を貫通孔112の両端方向にさらに分散することができ、熱処理時における基板破壊をさらに抑制することができる。したがって、信頼性の高い貫通電極基板を得ることができる。 In the region where the adhesion layer 104 is arranged on the inner surface of the through hole 112, the through electrode 106 strongly adheres to the substrate 102 via the adhesion layer 104. On the other hand, in the region where the adhesion layer 104 is not arranged on the inner surface of the through hole 112, the through electrode 106 weakly adheres to the substrate 102. By having a region in which the adhesion layer 104 is arranged in a part of the through hole 112, the through electrode 106 can improve the adhesiveness with the substrate 102 and suppress the through electrode 106 from falling out of the through hole 112. can do. By having a region where the adhesion layer 104 is not arranged at both ends of the through hole 112, stress due to thermal expansion / contraction of the through electrode 106 and the substrate 102 can be further dispersed in the direction of both ends of the through hole 112, and during heat treatment. Substrate destruction can be further suppressed. Therefore, a highly reliable through electrode substrate can be obtained.

[貫通電極基板の製造方法]
本開示の一実施形態に係る貫通電極基板100dの製造方法は、密着層104を貫通孔112の第1開口端と第2開口端の間に形成すること以外、第2実施形態から第4実施形態に係る貫通電極基板の製造方法と同じであり、ここでの説明は省略する。
[Manufacturing method of through silicon via substrate]
The method for manufacturing the through electrode substrate 100d according to the embodiment of the present disclosure is the second to fourth embodiments, except that the adhesion layer 104 is formed between the first opening end and the second opening end of the through hole 112. This is the same as the method for manufacturing the through electrode substrate according to the embodiment, and the description thereof is omitted here.

<第5実施形態>
[貫通電極基板の構成]
図8は、本開示の一実施形態に係る貫通電極基板の構成を示す断面図である。図8に示すように、貫通電極基板100hは、基板102hと、密着層104hと、貫通電極106hと、多層配線構造体110hおよび210hを有する。本実施形態に係る貫通電極基板100hは、基板102hの第1面102hs1および第2面102hs2上に、多層配線構造体110hおよび210hを含むこと以外、第1実施形態に係る貫通電極基板と同じであるから、ここでは相違する部分について説明する。
<Fifth Embodiment>
[Construction of through silicon via substrate]
FIG. 8 is a cross-sectional view showing the configuration of the through silicon via substrate according to the embodiment of the present disclosure. As shown in FIG. 8, the through electrode substrate 100h has a substrate 102h, an adhesion layer 104h, a through electrode 106h, and a multilayer wiring structure 110h and 210h. The through electrode substrate 100h according to the present embodiment is the same as the through electrode substrate according to the first embodiment except that the multilayer wiring structures 110h and 210h are included on the first surface 102hs1 and the second surface 102hs2 of the substrate 102h. Therefore, the differences will be explained here.

図8に示すように、本実施形態に係る貫通電極基板100hは、基板102hの第1面102hs1上に多層配線構造体110hを、基板102hの第2面102hs2上に多層配線構造体210hを含む。多層配線構造体110hは、第1配線108hおよび第1絶縁層118hを含む。第1配線108hは、基板102hと第1絶縁層118hとの間に介在する。第1配線108hの一端は、貫通電極106hの第1面102hs1側一端と電気的に接続する。さらに、第1配線108hは、例えば、第1配線108hの一端とは反対側の他端において第1絶縁層118hに設けられた開口部128hを介して外部基板または上層側に配置された配線と電気的に接続されていてもよい。本実施形態において、第1配線108hは1つ配置したが、この構成に限定するものではなく、複数含まれていてもよい。また、多層配線構造体110hは、基板102hの第1面102hs1に1層の配線層(第1配線108h)と、1層の絶縁層(第1絶縁層118h)とが積層した構造体を指すが、この構造に限定するものではなく、例えば、配線層と絶縁層とが繰り返し複数積層されていてもよく、また、トランジスタ等の素子が配置されていてもよい。 As shown in FIG. 8, the through electrode substrate 100h according to the present embodiment includes the multilayer wiring structure 110h on the first surface 102hs1 of the substrate 102h and the multilayer wiring structure 210h on the second surface 102hs2 of the substrate 102h. .. The multilayer wiring structure 110h includes a first wiring 108h and a first insulating layer 118h. The first wiring 108h is interposed between the substrate 102h and the first insulating layer 118h. One end of the first wiring 108h is electrically connected to one end on the first surface 102hs1 side of the through electrode 106h. Further, the first wiring 108h is, for example, a wiring arranged on the outer substrate or the upper layer side through an opening 128h provided in the first insulating layer 118h at the other end opposite to one end of the first wiring 108h. It may be electrically connected. In the present embodiment, one first wiring 108h is arranged, but the present invention is not limited to this configuration, and a plurality of first wirings 108h may be included. Further, the multilayer wiring structure 110h refers to a structure in which one wiring layer (first wiring 108h) and one insulating layer (first insulating layer 118h) are laminated on the first surface 102hs1 of the substrate 102h. However, the structure is not limited to this, and for example, a plurality of wiring layers and insulating layers may be repeatedly laminated, or elements such as transistors may be arranged.

多層配線構造体210hは、第2配線208hおよび第2絶縁層218hを含む。第2配線208hは、基板102hと第2絶縁層218hとの間に介在する。第2配線208hの一端は、貫通電極106hの第2面102hs2側一端と電気的に接続する。さらに、第2配線208hは、例えば、第2配線208hの一端とは反対側の他端において第2絶縁層218hに設けられた開口部228hを介して外部基板または上層側に配置された配線と電気的に接続されていてもよい。本実施形態において、第2配線208hは1つ配置したが、この構成に限定するものではなく、複数含まれていてもよい。また、多層配線構造体210hは、基板102hの第2面102hs2に1層の配線層(第2配線208h)と、1層の絶縁層(第2絶縁層218h)とが積層した構造体を指すが、この構造に限定するものではなく、例えば、配線層と絶縁層とが繰り返し複数積層されていてもよく、また、トランジスタ等の素子が配置されていてもよい。 The multilayer wiring structure 210h includes a second wiring 208h and a second insulating layer 218h. The second wiring 208h is interposed between the substrate 102h and the second insulating layer 218h. One end of the second wiring 208h is electrically connected to one end on the second surface 102hs2 side of the through electrode 106h. Further, the second wiring 208h is, for example, a wiring arranged on the outer substrate or the upper layer side through the opening 228h provided in the second insulating layer 218h at the other end opposite to one end of the second wiring 208h. It may be electrically connected. In the present embodiment, one second wiring 208h is arranged, but the present invention is not limited to this configuration, and a plurality of second wirings 208h may be included. Further, the multilayer wiring structure 210h refers to a structure in which one wiring layer (second wiring 208h) and one insulating layer (second insulating layer 218h) are laminated on the second surface 102hs2 of the substrate 102h. However, the structure is not limited to this, and for example, a plurality of wiring layers and insulating layers may be repeatedly laminated, or elements such as transistors may be arranged.

<第6実施形態>
[半導体装置の構造]
第6実施形態では、第1実施形態から第5実施形態に示す貫通電極基板を用いて製造される半導体装置について説明する。以下の説明では、第1実施形態から第5実施形態に係る貫通電極基板をインターポーザとして各集積回路を接続する半導体装置について説明する。本実施形態において集積回路とは、半導体チップや半導体チップを搭載した回路基板などを示す。
<Sixth Embodiment>
[Structure of semiconductor device]
In the sixth embodiment, the semiconductor device manufactured by using the through electrode substrates shown in the first to fifth embodiments will be described. In the following description, a semiconductor device for connecting each integrated circuit using the through silicon via substrate according to the first to fifth embodiments as an interposer will be described. In the present embodiment, the integrated circuit means a semiconductor chip, a circuit board on which the semiconductor chip is mounted, or the like.

図9は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置を示す断面図である。半導体装置1000は、3つの貫通電極基板1310、1320、1330が積層され、例えば、DRAM等の半導体素子が形成された回路基板1400に接続されている。貫通電極基板1310は、接続端子1511および接続端子1512を有している。貫通電極基板1320は、接続端子1521および接続端子1522を有している。貫通電極基板1330は、接続端子1532を有している。接続端子1511、1521は、例えば図8に示した第2絶縁層218hに設けられた開口部228hにおいて露出された第2配線208hに相当する。接続端子1512、1522、1532は、例えば図8に示した第1絶縁層118hに設けられた開口部128hにおいて露出された第1配線108hに相当する。 FIG. 9 is a cross-sectional view showing a semiconductor device using the through electrode substrate according to the embodiment of the present disclosure. The semiconductor device 1000 is connected to a circuit board 1400 in which three through electrode substrates 1310, 1320, and 1330 are laminated and, for example, a semiconductor element such as a DRAM is formed. The through silicon via substrate 1310 has a connection terminal 1511 and a connection terminal 1512. The through silicon via substrate 1320 has a connection terminal 1521 and a connection terminal 1522. The through silicon via substrate 1330 has a connection terminal 1532. The connection terminals 1511 and 1521 correspond to the second wiring 208h exposed in the opening 228h provided in the second insulating layer 218h shown in FIG. 8, for example. The connection terminals 1512, 1522, and 1532 correspond to the first wiring 108h exposed in the opening 128h provided in the first insulating layer 118h shown in FIG. 8, for example.

貫通電極基板1310、1320、1330の各々の基板の材質は異なっていてもよい。接続端子1512は、バンプ1610によって回路基板1400の接続端子1500と接続されている。接続端子1511は、バンプ1620によって接続端子1522と接続されている。接続端子1521は、バンプ1630によって接続端子1532と接続されている。バンプ1610、1620、1630として、例えば、インジウム、銅、金等の金属が用いられる。 The materials of the through silicon via substrates 1310, 1320, and 1330 may be different. The connection terminal 1512 is connected to the connection terminal 1500 of the circuit board 1400 by a bump 1610. The connection terminal 1511 is connected to the connection terminal 1522 by a bump 1620. The connection terminal 1521 is connected to the connection terminal 1532 by a bump 1630. As the bumps 1610, 1620, 1630, for example, metals such as indium, copper, and gold are used.

貫通電極基板の積層数は3層に限らず、2層であってもよく4層以上であってもよい。対向する貫通電極基板同士の接続は、バンプを介した接続に限定されず、共晶接合など他の接合技術を用いてもよい。その他の接続方法として、ポリイミド、エポキシ樹脂等を塗布、焼成することによって、対向する貫通電極基板同士が接着されてもよい。 The number of laminated through electrode substrates is not limited to three, and may be two or four or more. The connection between the through silicon via substrates facing each other is not limited to the connection via bumps, and other bonding techniques such as eutectic bonding may be used. As another connection method, the through silicon via substrates facing each other may be adhered to each other by applying and firing polyimide, epoxy resin, or the like.

図10は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置の別の例を示す断面図である。図10に示す半導体装置1000は、MEMSデバイス、CPU、メモリ等の半導体チップ1410、1420、および貫通電極基板1300が積層され、回路基板1400に接続されている。 FIG. 10 is a cross-sectional view showing another example of the semiconductor device using the through electrode substrate according to the embodiment of the present disclosure. In the semiconductor device 1000 shown in FIG. 10, semiconductor chips 1410 and 1420 such as a MEMS device, a CPU, and a memory, and a through electrode substrate 1300 are laminated and connected to a circuit board 1400.

半導体チップ1410と半導体チップ1420との間に貫通電極基板1300が配置されている。半導体チップ1410と貫通電極基板1300とはバンプ1640によって接続されている。半導体チップ1420貫通電極基板1300とはバンプ1650によって接続されている。回路基板1400上に半導体チップ1410が載置され、回路基板1400と半導体チップ1420とはワイヤ1700によって接続されている。この例では、貫通電極基板1300は、それぞれ機能の異なる複数の半導体チップを接続する役割を果たしており、多機能の半導体装置が実現される。例えば、半導体チップ1410を3軸加速度センサとし、半導体チップ1420を2軸磁気センサとすることによって、5軸モーションセンサを1つのモジュールで実現することができる。 A through electrode substrate 1300 is arranged between the semiconductor chip 1410 and the semiconductor chip 1420. The semiconductor chip 1410 and the through silicon via substrate 1300 are connected by bumps 1640. It is connected to the semiconductor chip 1420 through silicon via substrate 1300 by a bump 1650. A semiconductor chip 1410 is placed on the circuit board 1400, and the circuit board 1400 and the semiconductor chip 1420 are connected by a wire 1700. In this example, the through silicon via substrate 1300 plays a role of connecting a plurality of semiconductor chips having different functions, and a multifunctional semiconductor device is realized. For example, by using the semiconductor chip 1410 as a 3-axis acceleration sensor and the semiconductor chip 1420 as a 2-axis magnetic sensor, a 5-axis motion sensor can be realized by one module.

半導体チップがMEMSデバイスなどのセンサの場合、センシング結果がアナログ信号で出力される場合がある。この場合、ローパスフィルタ、アンプ等が半導体チップまたは貫通電極基板1300に形成されてもよい。 When the semiconductor chip is a sensor such as a MEMS device, the sensing result may be output as an analog signal. In this case, a low-pass filter, an amplifier, or the like may be formed on the semiconductor chip or the through silicon via substrate 1300.

図11は、本開示の一実施形態に係る貫通電極基板を用いた半導体装置のさらに別の例を示す断面図である。上記2つの例(図9および図10)は3次元実装であったが、図11に示す例は2次元と3次元との併用実装に適用した例である(2.5次元という場合もある)。図11に示す例では、回路基板1400には、6つの貫通電極基板1310、1320、1330、1340、1350、1360が積層されている。ただし、全ての貫通電極基板が積層されているだけでなく、基板面内方向にも並んで配置されている。これらの貫通電極基板の各々の基板の材質は異なっていてもよい。 FIG. 11 is a cross-sectional view showing still another example of the semiconductor device using the through electrode substrate according to the embodiment of the present disclosure. The above two examples (FIGS. 9 and 10) were three-dimensional implementations, but the example shown in FIG. 11 is an example applied to the combined implementation of two dimensions and three dimensions (sometimes referred to as 2.5 dimensions). ). In the example shown in FIG. 11, six through electrode substrates 1310, 1320, 1330, 1340, 1350, and 1360 are laminated on the circuit board 1400. However, not only all the through electrode substrates are laminated, but they are also arranged side by side in the in-plane direction of the substrate. The material of each of these through silicon via substrates may be different.

図11では、回路基板1400上に貫通電極基板1310、1350が接続され、貫通電極基板1310上に貫通電極基板1320、1340が接続され、貫通電極基板1320上に貫通電極基板1330が接続され、貫通電極基板1350上に貫通電極基板1360が接続されている。図11に示すように、これらの貫通電極基板を複数の半導体チップを接続するためのインターポーザとして用いることができ、2次元と3次元との併用実装が可能である。なお、貫通電極基板1330、1340、1360などが半導体チップに置き換えられてもよい。 In FIG. 11, through electrode substrates 1310 and 1350 are connected on the circuit board 1400, through electrode substrates 1320 and 1340 are connected on the through electrode substrate 1310, and through electrode substrates 1330 are connected on the through electrode substrate 1320. A through silicon via 1360 is connected on the electrode substrate 1350. As shown in FIG. 11, these through silicon via substrates can be used as an interposer for connecting a plurality of semiconductor chips, and can be mounted in combination with two dimensions and three dimensions. The through silicon via substrates 1330, 1340, 1360 and the like may be replaced with semiconductor chips.

なお、本開示は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present disclosure is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.

100:貫通電極基板、102:基板、102s1:第1面、102s2:第2面、104:密着層、106:貫通電極、112:貫通孔、1000:半導体装置 100: Through Silicon Via Substrate, 102: Substrate, 102s1: First Surface, 102s2: Second Surface, 104: Adhesion Layer, 106: Through Electrode, 112: Through Hole, 1000: Semiconductor Device

Claims (15)

第1面および前記第1面に対向する第2面を貫通し、前記第1面における第1開口端の径が、前記第2面における第2開口端の径よりも小さい貫通孔が設けられた基板と、
前記貫通孔の内側面の一部に配置される密着層と、
前記密着層に接し、前記内側面の前記第2面側で前記基板と接し、前記貫通孔を充填する貫通電極と、
を有する貫通電極基板。
A through hole is provided that penetrates the first surface and the second surface facing the first surface, and the diameter of the first opening end on the first surface is smaller than the diameter of the second opening end on the second surface. With the board
An adhesion layer arranged on a part of the inner surface of the through hole,
A through electrode that is in contact with the adhesion layer, is in contact with the substrate on the second surface side of the inner surface, and fills the through hole.
Through electrode substrate having.
前記密着層は、前記内側面の前記第1面側に配置される請求項1に記載の貫通電極基板。 The through silicon via substrate according to claim 1, wherein the adhesion layer is arranged on the first surface side of the inner surface surface. 前記貫通孔の内側面と、前記第1面と、がなす角度θは90°未満である請求項2に記載の貫通電極基板。 The through electrode substrate according to claim 2, wherein the angle θ formed by the inner surface of the through hole and the first surface is less than 90 °. 前記貫通孔の内側面と、前記第1面と、がなす角度θは80°以上である請求項に記載の貫通電極基板。 The through electrode substrate according to claim 3 , wherein the angle θ formed by the inner surface of the through hole and the first surface is 80 ° or more. 前記密着層は、前記内側面の高さの12%以上50%以下の範囲に配置される請求項1乃至4のいずれか一に記載の貫通電極基板。 The through electrode substrate according to any one of claims 1 to 4, wherein the adhesion layer is arranged in a range of 12% or more and 50% or less of the height of the inner side surface. 前記貫通電極は、前記内側面の高さの50%以上88%以下の範囲で前記基板と接する、請求項1乃至5のいずれか一に記載の貫通電極基板。 The through electrode substrate according to any one of claims 1 to 5, wherein the through electrode is in contact with the substrate within a range of 50% or more and 88% or less of the height of the inner surface surface. 前記貫通電極は銅であり、前記密着層は、酸化亜鉛、チタン、酸化インジウムスズ、または酸化インジウム亜鉛のいずれかである請求項1乃至6のいずれか一に記載の貫通電極基板。 The penetrating electrode substrate according to any one of claims 1 to 6, wherein the penetrating electrode is copper, and the adhesion layer is any one of zinc oxide, titanium, indium tin oxide, and zinc oxide. 請求項1乃至7のいずれか一に記載の貫通電極基板と、
前記貫通電極基板の前記貫通電極の一端に接続された第1集積回路と、
前記貫通電極基板の前記貫通電極の一端とは反対側の他端に接続された第2集積回路と、
を有する、半導体装置。
The through silicon via substrate according to any one of claims 1 to 7.
A first integrated circuit connected to one end of the through electrode of the through electrode substrate,
A second integrated circuit connected to the other end of the through electrode substrate on the opposite side of the through electrode.
A semiconductor device.
基板に、第1面および前記第1面に対向する第2面を貫通し、前記第1面における第1開口端の径が、前記第2面における第2開口端の径よりも小さい貫通孔を形成し、
前記貫通孔の内側面の一部に密着層を形成し、
前記密着層に接し、前記内側面の前記第2面側で前記基板と接し、前記貫通孔を充填する貫通電極を形成すること、
を含む貫通電極基板の製造方法。
A through hole that penetrates the first surface and the second surface facing the first surface through the substrate, and the diameter of the first opening end on the first surface is smaller than the diameter of the second opening end on the second surface. Form and
A close contact layer is formed on a part of the inner surface of the through hole.
To form a through electrode that is in contact with the adhesion layer and is in contact with the substrate on the second surface side of the inner surface to fill the through hole.
A method for manufacturing a through silicon via substrate including.
前記密着層は、前記内側面の前記第1面側にスパッタリング法によって形成される請求項9に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to claim 9, wherein the adhesion layer is formed on the first surface side of the inner surface surface by a sputtering method. 前記貫通孔の内側面と、前記第1面と、がなす角度θは90°未満に形成される請求項10に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to claim 10, wherein the angle θ formed by the inner surface of the through hole and the first surface is less than 90 °. 前記貫通孔の内側面と、前記第1面と、がなす角度θは80°以上に形成される請求項11に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to claim 11 , wherein the angle θ formed by the inner surface of the through hole and the first surface is 80 ° or more. 前記密着層は、前記内側面の高さの12%以上50%以下の範囲に形成する請求項9乃至12のいずれか一に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to any one of claims 9 to 12, wherein the adhesion layer is formed in a range of 12% or more and 50% or less of the height of the inner side surface. 前記貫通電極は、前記内側面の高さの50%以上88%以下の範囲で前記基板と接するように形成する、請求項9乃至13のいずれか一に記載の貫通電極基板の製造方法。 The method for manufacturing a through electrode substrate according to any one of claims 9 to 13, wherein the through electrode is formed so as to be in contact with the substrate within a range of 50% or more and 88% or less of the height of the inner surface surface. 前記貫通電極を形成することは、
前記貫通孔の内側面および前記密着層上に第1導体層を形成し、
前記第1導体層上に前記貫通孔を充填するように第2導体層を形成する
請求項9乃至14のいずれか一に記載の貫通電極基板の製造方法。



Forming the through electrode
A first conductor layer is formed on the inner surface of the through hole and on the close contact layer.
The method for manufacturing a through electrode substrate according to any one of claims 9 to 14, wherein a second conductor layer is formed on the first conductor layer so as to fill the through holes.



JP2017188120A 2017-09-28 2017-09-28 Through Silicon Via Substrate and Its Manufacturing Method Active JP7102699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188120A JP7102699B2 (en) 2017-09-28 2017-09-28 Through Silicon Via Substrate and Its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188120A JP7102699B2 (en) 2017-09-28 2017-09-28 Through Silicon Via Substrate and Its Manufacturing Method

Publications (2)

Publication Number Publication Date
JP2019067782A JP2019067782A (en) 2019-04-25
JP7102699B2 true JP7102699B2 (en) 2022-07-20

Family

ID=66339968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188120A Active JP7102699B2 (en) 2017-09-28 2017-09-28 Through Silicon Via Substrate and Its Manufacturing Method

Country Status (1)

Country Link
JP (1) JP7102699B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208296A (en) 2001-09-20 2007-08-16 Fujikura Ltd Member with filling metallic portion
JP2011114103A (en) 2009-11-26 2011-06-09 Kyocera Corp Wiring board
JP2013077808A (en) 2011-09-16 2013-04-25 Hoya Corp Method for manufacturing substrate and method for manufacturing wiring board
JP2015156424A (en) 2014-02-20 2015-08-27 凸版印刷株式会社 Printed circuit board, semiconductor device, and manufacturing method therefor
JP2016034030A (en) 2015-09-29 2016-03-10 大日本印刷株式会社 Through-electrode substrate and method for manufacturing through-electrode substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208296A (en) 2001-09-20 2007-08-16 Fujikura Ltd Member with filling metallic portion
JP2011114103A (en) 2009-11-26 2011-06-09 Kyocera Corp Wiring board
JP2013077808A (en) 2011-09-16 2013-04-25 Hoya Corp Method for manufacturing substrate and method for manufacturing wiring board
JP2015156424A (en) 2014-02-20 2015-08-27 凸版印刷株式会社 Printed circuit board, semiconductor device, and manufacturing method therefor
JP2016034030A (en) 2015-09-29 2016-03-10 大日本印刷株式会社 Through-electrode substrate and method for manufacturing through-electrode substrate

Also Published As

Publication number Publication date
JP2019067782A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US20230223365A1 (en) Semiconductor device and manufacturing method thereof
KR100764055B1 (en) Wafer level chip scale package and method for manufacturing a chip scale package
TWI313492B (en) Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices
US20160379945A1 (en) Semiconductor Device and Method of Manufacture Thereof
KR20090013417A (en) Semiconductor package, wafer stack package using the same, and method for manufacturing the same
US11664306B2 (en) Semiconductor structure and manufacturing method thereof
KR20080018919A (en) Integrated circuit die containing metal- and particle-filled through-silicon vias
US20170047301A1 (en) Semiconductor device structure and method for forming the same
US10217710B2 (en) Wiring board with embedded component and integrated stiffener, method of making the same and face-to-face semiconductor assembly using the same
CN108417550B (en) Semiconductor device and method for manufacturing the same
US11923287B2 (en) Method for manufacturing semiconductor device having chip stacked and molded
US11270934B2 (en) Semiconductor device and method for manufacturing same
JP6561635B2 (en) Through electrode substrate and manufacturing method thereof
JP7102699B2 (en) Through Silicon Via Substrate and Its Manufacturing Method
TWI579937B (en) Substrate structure and the manufacture thereof and conductive structure
TWI704848B (en) Wiring board with embedded component and integrated stiffener, method of making the same and face-to-face semiconductor assembly using the same
US8217434B2 (en) Semiconductor package having through-electrodes which are electrically connected with internal circuit patterns formed in a semiconductor chip and method for manufacturing the same
US20210028102A1 (en) Semiconductor packages
JP2009200132A (en) Semiconductor device and manufacturing method of the same
JP2016167491A (en) Method of manufacturing through wiring board
JP2017085028A (en) Interposer and method of manufacturing interposer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7102699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150