JP2007208293A - Method for setting thickness of conductor pattern - Google Patents

Method for setting thickness of conductor pattern Download PDF

Info

Publication number
JP2007208293A
JP2007208293A JP2007114545A JP2007114545A JP2007208293A JP 2007208293 A JP2007208293 A JP 2007208293A JP 2007114545 A JP2007114545 A JP 2007114545A JP 2007114545 A JP2007114545 A JP 2007114545A JP 2007208293 A JP2007208293 A JP 2007208293A
Authority
JP
Japan
Prior art keywords
ceramic green
conductor pattern
ceramic
green sheets
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007114545A
Other languages
Japanese (ja)
Inventor
Satoshi Adachi
聡 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007114545A priority Critical patent/JP2007208293A/en
Publication of JP2007208293A publication Critical patent/JP2007208293A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for setting thicknesses of conductor patterns in a method of manufacturing a ceramic multilayer substrate for preventing the occurrence of defective printing of subsequently formed conductor patterns by flattening the surface of a burned body. <P>SOLUTION: The method of manufacturing a ceramic multilayer substrate includes steps of: printing conductor patterns 12, 12a on a plurality of ceramic green sheets 11, 11a, 11b; laminating the ceramic green sheets; and burning the laminated sheets while applying pressure thereto to form the ceramic multilayer substrate. The method for setting the thicknesses of the conductor patterns therefor is to allow the thicknesses of the conductor patterns 12, 12a to be equivalent to the thickness deformation of the ceramic green sheets 11, 11a, 11b in printing the conductor patterns 12, 12a during the steps of laminating, applying pressure, and burning. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導体パターンの厚み設定方法に関するものである。特に、セラミック多層基板の製造方法のために用いることが好適な導体パターンの厚み設定方法に関する。   The present invention relates to a method for setting a thickness of a conductor pattern. In particular, the present invention relates to a method for setting the thickness of a conductor pattern suitable for use in a method for manufacturing a ceramic multilayer substrate.

図2(A)〜(C)を参照して、従来のセラミック多層基板をセラミックグリーンシートの積層法で製造する方法について説明する。図2(A)に示すように、複数枚(本例では4枚)のセラミックグリーンシート51,51a,51b,51cのそれぞれにプレス金型等を用いてスルーホール(図示せず)を穿設し、このスルーホールにスクリーン印刷で導体ペーストを充填してビア導体を形成すると同時に、導体ペーストを用いてスクリーン印刷で導体パターン(図示せず)を形成する。次いで、図2(B)に示すように、これらのセラミックグリーンシート51,51a,51b,51cを重ね合わせて積層体52を形成し、更に、積層体52の下層と上層にセラミックグリーンシート51,51a,51b,51cの焼成温度では焼結しない拘束用セラミックグリーンシート53,53aを重ね合わせ、加圧体54で加圧しながら焼成する。次いで、図2(C)に示すように、拘束用セラミックグリーンシート53,53aを除去して、焼成体55を形成する。そして、この焼成体55には、更に、表面に導体パターン(図示せず)を後付けスクリーン印刷し、焼成してセラミック多層基板50を製造する。   With reference to FIGS. 2A to 2C, a method of manufacturing a conventional ceramic multilayer substrate by a method of laminating ceramic green sheets will be described. As shown in FIG. 2A, through holes (not shown) are formed in each of a plurality (four in this example) of ceramic green sheets 51, 51a, 51b, 51c using a press die or the like. Then, via conductors are filled in the through holes by screen printing to form via conductors, and at the same time, conductor patterns (not shown) are formed by screen printing using the conductor paste. Next, as shown in FIG. 2B, these ceramic green sheets 51, 51a, 51b, 51c are overlapped to form a laminated body 52, and further, ceramic green sheets 51, The constraining ceramic green sheets 53 and 53a that are not sintered at the firing temperatures 51a, 51b, and 51c are superposed and fired while being pressed by the pressure body 54. Next, as shown in FIG. 2C, the ceramic ceramic sheets 53 and 53a for restraint are removed, and the fired body 55 is formed. The fired body 55 is further screen-printed with a conductor pattern (not shown) on the surface and fired to produce the ceramic multilayer substrate 50.

拘束用セラミックグリーンシートを備える積層体を加圧しながら焼成した後に基板の表面に導体パターンを形成するセラミック多層基板の製造方法については、特開平7−86743号公報(特許文献1)に記載されている。
特開平7−86743号公報
A method for manufacturing a ceramic multilayer substrate in which a conductor pattern is formed on the surface of a substrate after firing a laminate including a constraining ceramic green sheet under pressure is described in Japanese Patent Laid-Open No. 7-86743 (Patent Document 1). Yes.
JP 7-86743 A

しかしながら、前述したような従来のセラミック多層基板の製造方法は、次のような問題がある。   However, the conventional method for manufacturing a ceramic multilayer substrate as described above has the following problems.

図3(A)〜(C)に示すように、例えば、導体パターン62,62aを印刷したセラミックグリーンシート61,61a及びセラミックグリーンシート61b(本例ではセラミックグリーンシートを3枚用いる)を重ねた積層体を焼成して形成するセラミック多層基板60は、積層体の両面にセラミックグリーンシート61,61a,61bの焼成温度では焼結しない拘束用セラミックグリーンシート63,63aを載置して加圧体64で加圧しながら焼成したとしても、導体パターン62,62aによって、焼成体65の外表面側が凸状に膨れ、表面に凹凸が発生する。この焼成体65の表面の凹凸によって、焼成後の後付け導体パターン(図示せず)の形成において、印刷滲みや、パターン欠け等が発生し、歩留の低下をきたしている。焼成体65の表面には、特に、セラミックグリーンシート61,61a,61bの厚みが100μm以下の場合に、凹凸が発生しやすい。   As shown in FIGS. 3A to 3C, for example, ceramic green sheets 61 and 61a on which conductor patterns 62 and 62a are printed and ceramic green sheets 61b (three ceramic green sheets are used in this example) are stacked. A ceramic multilayer substrate 60 formed by firing a laminate is a pressure body in which constraining ceramic green sheets 63, 63a that are not sintered at the firing temperature of the ceramic green sheets 61, 61a, 61b are placed on both sides of the laminate. Even if firing is performed while applying pressure at 64, the conductor pattern 62, 62a causes the outer surface side of the fired body 65 to bulge into a convex shape, resulting in irregularities on the surface. Due to the unevenness of the surface of the fired body 65, printing blur, pattern chipping, etc. occur in the formation of a post-fired conductor pattern (not shown) after firing, resulting in a decrease in yield. Unevenness is likely to occur on the surface of the fired body 65, particularly when the thickness of the ceramic green sheets 61, 61 a, 61 b is 100 μm or less.

本発明は、かかる事情に鑑みてなされたものであって、焼成体の表面を平坦にし、後付け導体パターンの印刷不良の発生を防止するセラミック多層基板の製造方法における導体パターンの厚み設定方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for setting the thickness of a conductor pattern in a method for manufacturing a ceramic multilayer substrate that flattens the surface of a fired body and prevents the occurrence of defective printing of a retrofitted conductor pattern. The purpose is to do.

上記目的を達成するため、本発明に基づく導体パターンの厚み設定方法は、複数枚のセラミックグリーンシートに導体パターンを印刷し、前記複数枚のセラミックグリーンシートを積層し、加圧しながら焼成して形成するセラミック多層基板の製造方法のための導体パターンの厚み設定方法において、前記導体パターンを印刷するに当たり、前記導体パターンを、前記積層、加圧および焼成の工程における前記セラミックグリーンシートの厚み変形量と同等の導体厚みに設定する。これにより、導体パターンの導体厚みがセラミックグリーンシートの厚み変形量の中に押さえ込むことができるので、焼成体の表面を平坦にすることができ、印刷滲みや、パターン欠け等の後付け印刷時の不良の発生を防止することができる。   In order to achieve the above object, a method for setting the thickness of a conductor pattern according to the present invention is formed by printing a conductor pattern on a plurality of ceramic green sheets, laminating the plurality of ceramic green sheets, and firing them while applying pressure. In the method for setting the thickness of the conductor pattern for the method of manufacturing a ceramic multilayer substrate, the thickness of the ceramic green sheet in the laminating, pressing and firing steps is determined when the conductor pattern is printed. Set to equivalent conductor thickness. As a result, the conductor thickness of the conductor pattern can be suppressed within the thickness deformation of the ceramic green sheet, so that the surface of the fired body can be flattened, and printing defects such as print bleeding and pattern chipping can occur. Can be prevented.

ここで、セラミックグリーンシートが800〜1000℃で焼成可能な低温焼成セラミックからなるのがよい。これにより、セラミックグリーンシートの焼成温度では焼結しない拘束用セラミックグリーンシートを用いて容易に加圧しながら焼成を行うことができる。   Here, the ceramic green sheet is preferably made of a low-temperature fired ceramic that can be fired at 800 to 1000 ° C. Thereby, it is possible to perform firing while easily pressurizing using a constraining ceramic green sheet that is not sintered at the firing temperature of the ceramic green sheet.

本発明によれば、導体パターンの導体厚みがセラミックグリーンシートの厚み変形量の中に押さえ込むことができるので、焼成体の表面を平坦にすることができ、印刷滲みや、パターン欠け等の後付け印刷時の不良の発生を防止することができる。   According to the present invention, since the conductor thickness of the conductor pattern can be suppressed within the thickness deformation amount of the ceramic green sheet, the surface of the fired body can be flattened, and post-printing such as printing bleeding and pattern chipping can be achieved. It is possible to prevent occurrence of defects at the time.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。ここに、図1(A)〜(C)はそれぞれ本発明の一実施の形態に係るセラミック多層基板の製造方法の説明図である。   Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIGS. 1A to 1C are explanatory views of a method for manufacturing a ceramic multilayer substrate according to an embodiment of the present invention.

図1(A)〜(C)を参照しながら、本発明の一実施の形態に係るセラミック多層基板の製造方法を説明する。なお、ここではセラミックに低温焼成セラミックを用いたセラミック多層基板の製造方法を説明する。図1(A)に示すように、先ず、使用する低温焼成セラミックのセラミックグリーンシート11,11a,11b(本実施の形態では3枚のセラミックグリーンシートを用いている)は、次のように作製される。CaO−Al23−SiO2−B23系ガラス粉末50〜65重量%(好ましくは、60重量%)と、アルミナ粉末50〜35重量%(好ましくは、40重量%)とを混合して低温焼成セラミック粉末を作製し、この低温焼成セラミック粉末に、例えば、トルエン、キシレン、ブタノール等の溶剤と、例えば、ポリビニルブチラール、アクリル樹脂等のバインダー、及び、例えば、DOA(アジピン酸ジエチルヘキシル)等の可塑剤を加え、十分に混練してスラリーを作製し、通常のドクターブレード法を用いてシート状に成形する。 A method for manufacturing a ceramic multilayer substrate according to an embodiment of the present invention will be described with reference to FIGS. Here, a method for manufacturing a ceramic multilayer substrate using a low-temperature fired ceramic as the ceramic will be described. As shown in FIG. 1 (A), first, ceramic green sheets 11, 11a, 11b of low-temperature fired ceramics to be used (three ceramic green sheets are used in the present embodiment) are produced as follows. Is done. CaO—Al 2 O 3 —SiO 2 —B 2 O 3 glass powder 50 to 65 wt% (preferably 60 wt%) and alumina powder 50 to 35 wt% (preferably 40 wt%) are mixed A low-temperature fired ceramic powder is prepared, and a solvent such as toluene, xylene, butanol, a binder such as polyvinyl butyral or acrylic resin, and a DOA (diethylhexyl adipate), for example, A plasticizer such as) is added and sufficiently kneaded to prepare a slurry, which is then formed into a sheet using a normal doctor blade method.

次いで、シート状から所定の寸法に切断して形成したセラミックグリーンシート11,11a,11bのそれぞれの所定位置に打ち抜き金型や、NCマシーン等を用いて、ビアホール(図示せず)を穿孔する。そして、各層のセラミックグリーンシート11,11a,11bのビアホールにAg,Ag−Pd,Ag−Pt等からなるAg系の導体ペーストをスクリーン印刷等で充填し、ビアホール導体を形成する。更に、各層のセラミックグリーンシート11,11aには、同様の組成の導体ペーストを用いてセラミックグリーンシート11,11a,11bの厚み変形量と同等、又は小さい導体厚みの導体パターン12,12aをスクリーン印刷で形成する。なお、最上層のセラミックグリーンシート11bの外表面側、あるいは最下層のセラミックグリーンシート11の外表面側には、導体パターンを形成してもよく、又は、焼成後の後付け導体パターン16(図1(C)参照)の形成のみであってもよい。また、導体ペーストは、Ag系以外にCu系や、Au系等の他の低融点金属ペーストを用いてもよい。   Next, via holes (not shown) are drilled at predetermined positions of the ceramic green sheets 11, 11a, and 11b formed by cutting the sheet shape into predetermined dimensions using a punching die, an NC machine, or the like. Then, Ag-based conductor paste made of Ag, Ag-Pd, Ag-Pt, or the like is filled in the via holes of the ceramic green sheets 11, 11a, 11b of each layer by screen printing or the like to form via-hole conductors. Furthermore, on the ceramic green sheets 11 and 11a of the respective layers, conductor patterns 12 and 12a having a conductor thickness equal to or smaller than the thickness deformation of the ceramic green sheets 11, 11a and 11b are screen-printed using a conductor paste having the same composition. Form with. Note that a conductor pattern may be formed on the outer surface side of the uppermost ceramic green sheet 11b or the outer surface side of the lowermost ceramic green sheet 11, or a post-fired conductor pattern 16 (FIG. 1). (See (C)). Further, as the conductor paste, other low melting point metal pastes such as Cu type and Au type may be used in addition to the Ag type.

次いで、図1(B)に示すように、セラミックグリーンシート11,11a,11bを重ね合わせて積層し、更に、下層及び上層にセラミックグリーンシート11,11a,11bの焼成温度では焼結しない拘束用セラミックグリーンシート13,13aを載置して積層し、アルミナ、SiC等で形成した多孔質の絶縁板の間に挟み込んで両側から押さえ込んで形成する圧力体14で105〜107Pa程度の圧力を掛けながら800〜1000℃で焼成し、焼成体15(図1(C)参照)を形成する。焼成体15は、導体パターン12,12aの導体厚みがセラミックグリーンシート11,11a,11bの厚み変形量と同等、又は小さいのでセラミックグリーンシート11,11a,11bの積層時に導体がグリーンシート内に埋まり込み、更に、加圧して焼成するので、極めて平坦に焼成することができる。なお、上記で用いる拘束用セラミックグリーンシート13,13aは、高温焼成用セラミック、例えば、アルミナ、マグネシア、ジルコニア等を用いて、このセラミック粉末にバインダー(例えば、ポリビニルブチラール、アクリル系、ニトロセルロース系等の樹脂)、溶剤(例えば、トルエン、キシレン、ブタノール等)及び可塑剤を配合して、十分に混練してスラリーを作製し、通常のドクターブレード法を用いてシート状に成形している。 Next, as shown in FIG. 1 (B), ceramic green sheets 11, 11a, 11b are stacked one on top of the other, and further, the lower layer and the upper layer are not sintered at the firing temperature of the ceramic green sheets 11, 11a, 11b. The ceramic green sheets 13 and 13a are placed and stacked, and are sandwiched between porous insulating plates made of alumina, SiC or the like and pressed from both sides to apply a pressure of about 10 5 to 10 7 Pa. While firing at 800 to 1000 ° C., a fired body 15 (see FIG. 1C) is formed. In the fired body 15, since the conductor thickness of the conductor patterns 12, 12a is equal to or smaller than the thickness deformation amount of the ceramic green sheets 11, 11a, 11b, the conductors are embedded in the green sheets when the ceramic green sheets 11, 11a, 11b are laminated. In addition, since it is fired under pressure, it can be fired extremely flat. The constraining ceramic green sheets 13 and 13a used above are made of a ceramic for high temperature firing, such as alumina, magnesia, zirconia, etc., and a binder (for example, polyvinyl butyral, acrylic, nitrocellulose, etc.) is used for this ceramic powder. Resin), a solvent (for example, toluene, xylene, butanol, etc.) and a plasticizer, and kneaded sufficiently to prepare a slurry, which is formed into a sheet using a normal doctor blade method.

拘束用セラミックグリーンシート13,13aは、1300〜1600℃程度に加熱しなければ焼結できない。また、拘束用セラミックグリーンシート13,13aには、シリカ、マグネシア、カルシア等の焼結助剤が含まれていないので焼結しずらくなっている。従って、800〜1000℃で焼成すれば、拘束用セラミックグリーンシート13,13aは、焼結されないまま残される。但し、拘束用セラミックグリーンシート13,13a中のバインダー等の有機物は焼成過程で熱分解して飛散し、無機物のセラミック粉体のみが残る。   The restraining ceramic green sheets 13 and 13a cannot be sintered unless heated to about 1300 to 1600 ° C. In addition, the restraining ceramic green sheets 13 and 13a do not contain a sintering aid such as silica, magnesia, or calcia, and thus are difficult to sinter. Therefore, if firing at 800-1000 ° C., the constraining ceramic green sheets 13, 13a remain unsintered. However, the organic matter such as the binder in the constraining ceramic green sheets 13 and 13a is thermally decomposed and scattered in the firing process, and only the inorganic ceramic powder remains.

焼成後は、図1(C)に示すように、拘束用セラミックグリーンシート13,13a中のバインダー等の有機物を飛散させて残ったセラミック粉体を除去して焼成体15を作製する。そして、この焼成体15の表面にAg,Ag−Pd,Ag−Pt等からなるAg系や、Au系、Cu系等の低融点金属ペーストを用いて後付け導体パターン16をスクリーン印刷等で形成する。この後付け導体パターン16の形成においては、焼成体15の内部に形成されている導体パターン12,12aの影響を受けることなく、焼成体15の表面が極めて平坦に作製されているので、印刷滲みや、パターン欠け等の不良を発生させることなく印刷することができる。印刷後は、後付け導体パターン16を焼成し、導体パターン12,12aとビアホール導体(図示せず)を介して導通状態としたセラミック多層基板10を作製する。   After firing, as shown in FIG. 1 (C), organic materials such as binder in the constraining ceramic green sheets 13 and 13a are scattered to remove the remaining ceramic powder, and the fired body 15 is produced. Then, a retrofitted conductor pattern 16 is formed on the surface of the fired body 15 by screen printing or the like using a low-melting point metal paste such as Ag, Ag-Pd, Ag-Pt, or the like, or Au or Cu. . In the formation of the post-attached conductor pattern 16, the surface of the fired body 15 is made extremely flat without being affected by the conductor patterns 12 and 12a formed inside the fired body 15. Thus, printing can be performed without causing defects such as pattern chipping. After printing, the post-conducting conductor pattern 16 is fired to produce the ceramic multilayer substrate 10 in a conductive state via the conductor patterns 12 and 12a and via-hole conductors (not shown).

なお、上記実施の形態では、低温焼成セラミック材料として、CaO−Al23−SiO2−B23系ガラス粉末と、アルミナ粉末との混合物を用いているが、これに代えて、MgO−Al23−SiO2−B23系ガラス粉末と、アルミナ粉末との混合物や、SiO2−B23系ガラス粉末と、アルミナ粉末との混合物や、PbO−SiO2−B23系ガラス粉末と、アルミナ粉末との混合物や、コージェライト系結晶化ガラス等の800〜1000℃で焼成できる低温焼成セラミック材料を用いてもよい。なお、これらの800〜1000℃で焼成できる低温焼成セラミック材料をセラミック多層基板に用いることで、セラミックグリーンシートの焼成温度では焼結しない拘束用セラミックグリーンシートがアルミナ等を用いて容易に選択することができ、容易に加圧しながら焼成を行うことができる。 In the above embodiment, a mixture of CaO—Al 2 O 3 —SiO 2 —B 2 O 3 glass powder and alumina powder is used as the low-temperature fired ceramic material, but instead of this, MgO and -Al 2 O 3 -SiO 2 -B 2 O 3 based glass powder, and a mixture of alumina powder, glass powder SiO 2 -B 2 O 3 -based, or a mixture of alumina powder, PbO-SiO 2 -B A low-temperature fired ceramic material that can be fired at 800 to 1000 ° C. such as a mixture of 2 O 3 glass powder and alumina powder or cordierite crystallized glass may be used. In addition, by using these low-temperature fired ceramic materials that can be fired at 800 to 1000 ° C. for the ceramic multilayer substrate, the ceramic green sheets for restraint that are not sintered at the firing temperature of the ceramic green sheets can be easily selected using alumina or the like. It is possible to perform firing while easily applying pressure.

なお、本発明は、低温焼成セラミックからなるセラミック多層基板10に限定されず、アルミナ(Al23)多層基板、窒化アルミニウム(AlN)多層基板等、他のセラミック多層基板にも適用することができる。 The present invention is not limited to the ceramic multilayer substrate 10 made of a low-temperature fired ceramic, but may be applied to other ceramic multilayer substrates such as an alumina (Al 2 O 3 ) multilayer substrate and an aluminum nitride (AlN) multilayer substrate. it can.

また、特に、通常はセラミックグリーンシート11,11a,11bの厚みが100μm以下の時に、導体パターン12,12aの導体厚みとセラミックグリーンシート11,11a,11bの厚みとの比率が近くなるので平坦な焼成体15を得ることが難しくなる。しかしながら、この時において、セラミックグリーンシート11,11a,11bの厚み変形量と同等、又は小さい場合の条件が有効に作用して、平坦な焼成体15を容易に得ることができる。   Further, in particular, when the thickness of the ceramic green sheets 11, 11a, 11b is usually 100 μm or less, the ratio between the conductor thickness of the conductor patterns 12, 12a and the thickness of the ceramic green sheets 11, 11a, 11b is close, so that it is flat. It becomes difficult to obtain the fired body 15. However, at this time, a condition when the thickness deformation amount of the ceramic green sheets 11, 11 a, 11 b is equal to or smaller than that of the ceramic green sheets 11 acts effectively, and the flat fired body 15 can be easily obtained.

(実施例)
本発明者は、本発明による製造方法で作製するセラミック多層基板の焼成体の表面の凹凸と、従来の製造方法で作製するセラミック多層基板の焼成体の表面の凹凸の発生度合いを比較した。先ず、本発明でのサンプルとして、低温焼成セラミックグリーンシートの厚みを300,200,100,80μmの4種とし、同一の厚み変形量からなる6枚の低温焼成セラミックグリーンシートを1単位とし、厚み変形量を30,27,18,15,9,7μmに変化させた6単位を設定した。Agからなる導体ペーストを用いて、大きさ20×20mmからなる同一導体厚みの導体パターンを5枚の低温焼成セラミックグリーンシートにスクリーン印刷で形成し、最上層に導体パターンを形成しない低温焼成セラミックグリーンシートを載置して105Paの圧力で6枚の低温焼成セラミックグリーンシートを積層したセラミック多層基板について、導体パターンの導体厚みを変化させた8種類のサンプルを作製した。そして、これらのサンプルにアルミナからなる拘束用セラミックグリーンシートを下層と上層に積層し、加圧しながら焼成して形成する本発明の製造方法で作製したセラミック多層基板の焼成体の表面の凹凸を測定した。また、これに併せて、従来の製造方法で作製した6種類のセラミック多層基板の焼成体を作製し、その表面の凹凸を測定した。測定結果を表1に示す。
(Example)
The present inventor compared the degree of unevenness on the surface of the fired body of the ceramic multilayer substrate produced by the manufacturing method according to the present invention and the degree of unevenness on the surface of the fired body of the ceramic multilayer substrate produced by the conventional manufacturing method. First, as a sample in the present invention, the thickness of the low-temperature fired ceramic green sheet is set to four types of 300, 200, 100, and 80 μm, and six low-temperature fired ceramic green sheets having the same thickness deformation amount are set as one unit. Six units were set in which the amount of deformation was changed to 30, 27, 18, 15, 9, and 7 μm. Using a conductor paste made of Ag, a conductor pattern having a size of 20 × 20 mm and having the same conductor thickness is formed by screen printing on five low-temperature fired ceramic green sheets, and a conductor pattern is not formed on the uppermost layer. Eight types of samples in which the conductor thickness of the conductor pattern was changed were prepared for the ceramic multilayer substrate on which the sheet was placed and six low-temperature fired ceramic green sheets were laminated at a pressure of 10 5 Pa. Then, the surface roughness of the fired body of the ceramic multilayer substrate produced by the manufacturing method of the present invention is formed by laminating ceramic green sheets for restraint made of alumina on the lower layer and the upper layer on these samples and firing them while applying pressure. did. In addition to this, fired bodies of six types of ceramic multilayer substrates prepared by a conventional manufacturing method were prepared, and the surface irregularities were measured. The measurement results are shown in Table 1.

Figure 2007208293
Figure 2007208293

本発明のセラミック多層基板の製造方法の場合の測定の結果は、何れも導体パターンの導体厚みがセラミックグリーンシートの厚み変形量と同等、又は小さい場合に、セラミック多層基板の焼成体の表面の凹凸が実質的に無いことが確認できた。また、従来のセラミック多層基板の製造方法の場合の導体パターンの導体厚みがセラミックグリーンシートの厚み変形量を超えるセラミック多層基板の焼成体の表面は、大きい凹凸の値が測定された。   As a result of measurement in the method of manufacturing the ceramic multilayer substrate of the present invention, the unevenness of the surface of the fired body of the ceramic multilayer substrate is found when the conductor thickness of the conductor pattern is equal to or smaller than the thickness deformation amount of the ceramic green sheet. It was confirmed that there was substantially no. Further, a large unevenness value was measured on the surface of the fired body of the ceramic multilayer substrate in which the conductor thickness of the conductor pattern in the conventional method for producing a ceramic multilayer substrate exceeded the thickness deformation amount of the ceramic green sheet.

第1の導体パターンの厚み設定方法は、複数枚のセラミックグリーンシートに導体パターンを印刷し、前記複数枚のセラミックグリーンシートを積層し、加圧しながら焼成して形成するセラミック多層基板の製造方法のための導体パターンの厚み設定方法において、前記導体パターンを印刷するに当たり、前記導体パターンを、前記積層、加圧および焼成の工程における前記セラミックグリーンシートの厚み変形量と同等の導体厚みに設定する。第2の導体パターンの厚み設定方法は、複数枚のセラミックグリーンシートに導体パターンを印刷し、前記複数枚のセラミックグリーンシートを積層し、加圧しながら焼成して形成するセラミック多層基板の製造方法のための導体パターンの厚み設定方法において、前記導体パターンを印刷するに当たり、前記導体パターンを、前記積層、加圧および焼成の工程における前記セラミックグリーンシートの厚み変形量より小さい導体厚みに設定する。これらの導体パターンの厚み設定方法によれば、導体パターンの導体厚みがセラミックグリーンシートの厚み変形量の中に押さえ込むことで、焼成体の表面を平坦にでき、印刷滲みや、パターン欠け等の後付け印刷時の不良の発生を防止することができる。   The thickness setting method of the first conductor pattern is a method of manufacturing a ceramic multilayer substrate in which a conductor pattern is printed on a plurality of ceramic green sheets, the plurality of ceramic green sheets are stacked, and fired while being pressed. In the method for setting the thickness of the conductor pattern for printing, when the conductor pattern is printed, the conductor pattern is set to a conductor thickness equivalent to the thickness deformation amount of the ceramic green sheet in the laminating, pressing and firing steps. The thickness setting method of the second conductor pattern is a method for manufacturing a ceramic multilayer substrate in which a conductor pattern is printed on a plurality of ceramic green sheets, the plurality of ceramic green sheets are laminated, and fired while being pressed. In the method for setting the thickness of the conductor pattern for printing, when the conductor pattern is printed, the conductor pattern is set to a conductor thickness smaller than the thickness deformation amount of the ceramic green sheet in the steps of lamination, pressing and firing. According to these conductor pattern thickness setting methods, the surface of the fired body can be flattened by pressing the conductor thickness of the conductor pattern into the thickness deformation amount of the ceramic green sheet. The occurrence of defects during printing can be prevented.

なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。   In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and includes all modifications within the scope and meaning equivalent to the terms of the claims.

(A)〜(C)はそれぞれ本発明の一実施の形態に係るセラミック多層基板の製造方法の説明図である。(A)-(C) are explanatory drawings of the manufacturing method of the ceramic multilayer substrate which concerns on one embodiment of this invention, respectively. (A)〜(C)はそれぞれ従来のセラミック多層基板の製造方法の説明図である。(A)-(C) are explanatory drawings of the manufacturing method of the conventional ceramic multilayer substrate, respectively. (A)〜(C)はそれぞれ従来のセラミック多層基板の製造方法で作製したセラミック多層基板の問題点の説明図である。(A)-(C) is explanatory drawing of the problem of the ceramic multilayer substrate produced with the manufacturing method of the conventional ceramic multilayer substrate, respectively.

符号の説明Explanation of symbols

10 セラミック多層基板、11,11a,11b セラミックグリーンシート、12,12a 導体パターン、13,13a 拘束用セラミックグリーンシート、14 圧力体、15 焼成体、16 後付け導体パターン。   DESCRIPTION OF SYMBOLS 10 Ceramic multilayer substrate, 11, 11a, 11b Ceramic green sheet, 12, 12a Conductor pattern, 13, 13a Restraining ceramic green sheet, 14 Pressure body, 15 Fired body, 16 Retrofitted conductor pattern.

Claims (2)

複数枚のセラミックグリーンシートに導体パターンを印刷し、前記複数枚のセラミックグリーンシートを積層し、加圧しながら焼成して形成するセラミック多層基板の製造方法のための導体パターンの厚み設定方法において、
前記導体パターンを印刷するに当たり、前記導体パターンを、前記積層、加圧および焼成の工程における前記セラミックグリーンシートの厚み変形量と同等の導体厚みに設定する、導体パターンの厚み設定方法。
In a method for setting the thickness of a conductor pattern for a method of manufacturing a ceramic multilayer substrate, wherein a conductor pattern is printed on a plurality of ceramic green sheets, the plurality of ceramic green sheets are laminated, and fired while being pressed.
A method for setting a thickness of a conductor pattern, wherein the conductor pattern is set to a conductor thickness equivalent to a thickness deformation amount of the ceramic green sheet in the laminating, pressing and firing steps when printing the conductor pattern.
複数枚のセラミックグリーンシートに導体パターンを印刷し、前記複数枚のセラミックグリーンシートを積層し、加圧しながら焼成して形成するセラミック多層基板の製造方法のための導体パターンの厚み設定方法において、
前記導体パターンを印刷するに当たり、前記導体パターンを、前記積層、加圧および焼成の工程における前記セラミックグリーンシートの厚み変形量より小さい導体厚みに設定する、導体パターンの厚み設定方法。
In a method for setting the thickness of a conductor pattern for a method of manufacturing a ceramic multilayer substrate, wherein a conductor pattern is printed on a plurality of ceramic green sheets, the plurality of ceramic green sheets are laminated, and fired while being pressed.
A method for setting a thickness of a conductor pattern, wherein the conductor pattern is set to a conductor thickness smaller than a thickness deformation amount of the ceramic green sheet in the steps of laminating, pressing and firing in printing the conductor pattern.
JP2007114545A 2007-04-24 2007-04-24 Method for setting thickness of conductor pattern Pending JP2007208293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007114545A JP2007208293A (en) 2007-04-24 2007-04-24 Method for setting thickness of conductor pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007114545A JP2007208293A (en) 2007-04-24 2007-04-24 Method for setting thickness of conductor pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002028959A Division JP2003229664A (en) 2002-02-06 2002-02-06 Method of manufacturing multilayered ceramic substrate

Publications (1)

Publication Number Publication Date
JP2007208293A true JP2007208293A (en) 2007-08-16

Family

ID=38487422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007114545A Pending JP2007208293A (en) 2007-04-24 2007-04-24 Method for setting thickness of conductor pattern

Country Status (1)

Country Link
JP (1) JP2007208293A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188481A (en) * 1998-12-24 2000-07-04 Sumitomo Metal Electronics Devices Inc Ceramic circuit board
JP2001126946A (en) * 1999-10-28 2001-05-11 Murata Mfg Co Ltd Laminated ceramic electronic component and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188481A (en) * 1998-12-24 2000-07-04 Sumitomo Metal Electronics Devices Inc Ceramic circuit board
JP2001126946A (en) * 1999-10-28 2001-05-11 Murata Mfg Co Ltd Laminated ceramic electronic component and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3716783B2 (en) Method for manufacturing ceramic multilayer substrate and semiconductor device
US5601672A (en) Method for making ceramic substrates from thin and thick ceramic greensheets
JPH0992983A (en) Manufacture of ceramic multilayer board
JP2004214573A (en) Manufacturing method for multilayered ceramic substrate
JP2006196854A (en) Manufacturing method of metalized ceramic substrate
JPH09260844A (en) Ceramic multilayered board manufacturing method
JP3956148B2 (en) Method for manufacturing ceramic multilayer substrate and semiconductor device
KR100674843B1 (en) Method for manufacturing LTCC substrate having minimized deimension change, and LTCC substrate thus obtained
TWI388533B (en) Manufacturing method of ceramic molded body
JP2856045B2 (en) Manufacturing method of ceramic substrate
TWI356049B (en) Method for manufacturing ceramic compact
JP2004022706A (en) Method for manufacturing ceramic multilayered substrate
JP2007208293A (en) Method for setting thickness of conductor pattern
JP2006120779A (en) Multilayer substrate and manufacturing method thereof
JP2003229664A (en) Method of manufacturing multilayered ceramic substrate
JP4508625B2 (en) Multilayer substrate and manufacturing method thereof
JP3912153B2 (en) Manufacturing method of ceramic multilayer substrate
US6103354A (en) Ceramic circuit substrate and method of fabricating the same
JP3922257B2 (en) Method for manufacturing ceramic laminate
JP2003158376A (en) Method for manufacturing ceramic multi-layer substrate
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP4423025B2 (en) Multilayer substrate and manufacturing method thereof
JPH09312476A (en) Method of manufacturing multilayer ceramic wiring board
JP2003095755A (en) Method of manufacturing ceramic circuit board by firing ceramic at low temperature
JP4543447B2 (en) Manufacturing method of multilayer ceramic electronic component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601