JP2007194394A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2007194394A
JP2007194394A JP2006010834A JP2006010834A JP2007194394A JP 2007194394 A JP2007194394 A JP 2007194394A JP 2006010834 A JP2006010834 A JP 2006010834A JP 2006010834 A JP2006010834 A JP 2006010834A JP 2007194394 A JP2007194394 A JP 2007194394A
Authority
JP
Japan
Prior art keywords
film
forming
concentration substrate
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006010834A
Other languages
English (en)
Inventor
Akihiro Mitsuyasu
昭博 光安
Shinji Naito
伸二 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2006010834A priority Critical patent/JP2007194394A/ja
Publication of JP2007194394A publication Critical patent/JP2007194394A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】耐湿性と低容量特性とを兼ね備えたPINダイオードを製造する。
【解決手段】PINダイオードのチップを製造する工程において、CVD法によりn++型高濃度基板1上にPSG膜9を堆積し、低圧熱CVD法によりPSG膜9上にSi膜10を堆積することによって、PSG膜9およびSi膜10からなる表面保護膜を形成する。また、p++型半導体領域5と電気的に接続する表面電極12は、Si膜10の成膜後に形成する。
【選択図】図7

Description

本発明は、半導体装置の製造技術に関し、特に、PINダイオードの製造に適用して有効な技術に関するものである。
特開平8−37282号公報(特許文献1)には、強誘電体キャパシタにおける水素による特性劣化を防止するために、保護膜としての窒化シリコン膜をスパッタリング法で形成することにより、水素含有量が1×1021個/cm以下のシリコン窒化膜を形成する技術が開示されている。
特開平11−54505号公報(特許文献2)には、窒化シリコン膜中の水素含有量を低減するために、窒化シリコン膜をプラズマCVD法により形成して、その後真空雰囲気中で熱処理して窒化シリコン膜中の水素含有量を低減する技術が開示されている。
特開平9−260372号公報(特許文献3)には、容量の誘電体膜として窒化シリコン膜を用いた時に、水素によるリーク電流不良を低減するために窒化シリコン膜中の水素濃度を低減した膜とすることを目的として、CVD法で窒化シリコン膜を形成後に熱処理を行なって低水素化する技術が開示されている。
特開平11−176947号公報(特許文献4)には、ゲート電極の保護膜あるいは側壁膜として窒化シリコン膜を用いた時に、窒化シリコン膜中に含まれる水素が移動してゲート電極中のホウ素がゲート絶縁膜に拡散することによるしきい値電圧の変動の問題を解決するために、珪素ガスと窒素ガスにより窒化シリコン膜を形成することで水素を含まない窒化シリコン膜を形成する技術が開示されている。
特開平11−74485号公報(特許文献5)には、キャパシタ絶縁膜として窒化シリコン膜を用いる場合において、水素起因のリーク電流を低減するために、四塩化シリコンガスおよびアンモニアガスの混合ガスを用いた減圧CVD法により窒化シリコン膜を形成して水素面密度を1×1015cm−2以下とする技術が開示されている。
特開平8−37282号公報(段落番号[0015]−[0020]、図1) 特開平11−54505号公報(段落番号[0011]、[0012]、図1) 特開平9−260372号公報(段落番号[0016]−[0018]、図1、図2) 特開平11−176947号公報(段落番号[0020]−[0024]、図1−図3) 特開平11−74485号公報(段落番号[0058]−[0059]、図6)
近年、携帯電話等の移動体通信機器においては、使用周波数帯の高周波化が進んでいる。そのため、このような移動体通信機器に含まれる回路の高周波特性を向上するために、その回路中に含まれるPINダイオードには、更なる低容量特性が求められている。
PINダイオードを形成している半導体チップ(以下、単にチップと記す)においては、p型層とn型層との間にi型層を挟んだ構造を有している。また、そのi型層中の不純物濃度が極めて低いことから、拡散電位によってチップ全体に空乏層が広がり、低容量特性を得ることを可能としている。チップの表面保護膜は、可動イオンのゲッター膜であるPSG(Phospho Silicate Glass:リンガラス)膜および耐湿膜であるプラズマCVD(Chemical Vapor Deposition)法で成膜した窒化シリコン膜(以降、P−SiN膜と記す)を積層した構造を有している。
P−SiN膜は、チップ外部からの水分の浸入を防ぐ役割を有している一方で、膜中の水素含有量が多いことから蓄電しやすい性質を有している。そのため、チップ中に高抵抗エピタキシャル層を有するPINダイオードでは、P−SiN膜の成膜後に極性の表面反転および電荷の表面蓄積が発生し、寄生容量が生じてしまう不具合があった。この不具合の対策として、P−SiN膜の成膜後に紫外線照射によって蓄積した電荷を揮発させる手段が考えられるが、作業工程の追加によりPINダイオードの工期が延びてしまう課題がある。また、紫外線照射後に、たとえば380℃程度以上の熱処理工程がある場合には、PINダイオードの容量特性が再度変動してしまう課題を有している。
本発明の目的は、耐湿性と低容量特性とを兼ね備えたPINダイオードを製造できる技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
本発明による半導体装置の製造方法は、
(a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
(b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
(c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
(d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
を含む。
本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
すなわち、PINダイオードのチップの表面保護膜に含まれる窒化シリコン膜を低圧熱CVD法により成膜したSi膜とすることにより、耐湿性と低容量特性とを兼ね備えたPINダイオードを製造することができる。
以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、実施例等において構成要素等について、「Aからなる」、「Aよりなる」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、材料等について言及するときは、特にそうでない旨明記したとき、または、原理的または状況的にそうでないときを除き、特定した材料は主要な材料であって、副次的要素、添加物、付加要素等を排除するものではない。たとえば、シリコン部材は特に明示した場合等を除き、純粋なシリコンの場合だけでなく、添加不純物、シリコンを主要な要素とする2元、3元等の合金(たとえばSiGe)等を含むものとする。
また、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。
また、本実施の形態で用いる図面においては、平面図であっても図面を見易くするために部分的にハッチングを付す場合がある。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
(実施の形態1)
本実施の形態1の半導体装置は、たとえばPINダイオードを含むものである。この本実施の形態1の半導体装置の製造工程について図1〜図9を用いて説明する。
図1は、本実施の形態1の半導体装置の製造工程を示したフローチャートであり、図2〜図9は、本実施の形態1の半導体装置の製造工程中の要部断面図である。
まず、図2に示すように、n型の不純物(たとえばP(リン))が高濃度でドープされたn++型(第1導電型)高濃度基板1上にn−−型エピタキシャル層を成長させることにより、本実施の形態1のPINダイオードのI層2を形成する(工程P1)。このI層2は、抵抗率が約100Ωcm〜1000Ωcm程度であり、その厚さは、たとえば約8μm程度とすることを例示できる。
次に、図3に示すように、n++型高濃度基板1に熱処理を施し、I層2の表面に酸化シリコン膜3を形成する(工程P2)。続いて、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとして酸化シリコン膜3をドライエッチングし、I層2に達する開口部4を形成する。続いて、その開口部4よりI層2にp型の不純物(たとえばB(ホウ素))を導入し、p++型(第2導電型)半導体領域(第1半導体層)5を形成する。次いで、N(窒素)雰囲気中において、n++型高濃度基板1に1000℃程度の熱処理を施すことにより、p++型半導体領域5、I層2およびn++型高濃度基板1によるPIN接合を形成することができる(工程P3)。
次に、図4に示すように、酸化シリコン膜3を除去した後、高温低圧CVD法によりI層2上に酸化シリコン膜6を堆積する(工程P4)。続いて、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとして酸化シリコン膜6をドライエッチングし、開口部7を形成する。続いて、その開口部7よりI層2にn型の不純物(たとえばP)を導入し、平面でp++型半導体領域5を取り囲むn++型ガードリング領域8を形成する(工程P5)。このようなn++型ガードリング領域8を形成したことにより、本実施の形態1のPINダイオードの完成後(使用時)において、I層2に広がる空乏層をn++型ガードリング領域8で遮断することができる。また、I層2に広がる空乏層を遮断することによって、I層2とn++型高濃度基板1との接合面積、およびI層2とp++型半導体領域5との接合面積を小さくすることができる。それにより、I層2に形成される接合容量を小さくすることが可能となる。すなわち、本実施の形態1によりPINダイオードを低容量化することができる。
次に、図5に示すように、たとえばCVD法によりn++型高濃度基板1上にPSG(Phospho Silicate Glass)膜9を堆積する(工程P6)。続いて、低圧熱CVD法によりPSG膜9上にSi膜10を堆積し(工程P7)、PSG膜9およびSi膜10からなる表面保護膜を形成する。
ところで、上記Si膜10の代わりに、プラズマCVD法で成膜したP−SiN膜とした場合には、耐湿性がある一方で、膜中にSi−NH−Si、SiHおよびNH等の水素を含む要素が多くなり、熱処理によって蓄電しやすくなる。このような水素を含む要素は、電荷を取り込みやすいことから、P−SiN膜の成膜後に極性の表面反転および電荷の表面蓄積が発生し、PINダイオードに寄生容量が生じてしまう不具合が懸念される。一方、本実施の形態1のように低圧熱CVD法により成膜したSi膜10は、耐湿性を有し、ほぼ科学量論比(Si/N=0.75)を示し、膜中にほとんど水素を含まない特徴を有する。そのため、Si膜10を用いて表面保護膜を形成することにより、表面保護膜中の電荷蓄積を防ぐことができる。それにより、PINダイオードに寄生容量が生じてしまうことを防ぐことができるので、PINダイオードの低容量特性化を実現することができる。また、P−SiN膜を用いた場合には、P−SiN膜の成膜後に紫外線照射によって蓄積した電荷を揮発させる工程が必要となるが、Si膜10を用いた場合には、この工程を省略することができる。すなわち、本実施の形態1の半導体装置の工期を短縮化することができる。
次に、n++型高濃度基板1に熱処理を施すことによって、本実施の形態1のPINダイオードの容量特性の低下を防いでもよい(工程P8)。なお、この熱処理工程は省略してもよい。
次に、図6に示すように、フォトリソグラフィ技術によりパターニングされたフォトレジスト膜をマスクとしてSi膜10、PSG膜9および酸化シリコン膜6をドライエッチングし、p++型半導体領域5に達する開口部11を形成する(工程P9)。
次に、図7に示すように、開口部11の内部を含むn++型高濃度基板1上にAl(アルミニウム)およびSi(シリコン)からなる合金膜を蒸着する。続いて、フォトレジスト膜をマスクにして、そのAlおよびSiからなる合金膜をエッチングすることにより、表面電極(第1電極)12を形成する(工程P10)。表面電極12はAlおよびSiからなる合金膜から形成されていることから、前述の低圧熱CVD法によるSi膜10の成膜時の温度(800℃〜900℃程度)に耐えられない。そのため、本実施の形態1のように、表面電極12は、Si膜10の成膜後に形成することが好ましい。
次に、図8に示すように、表面電極12や表面保護膜などが形成されたn++型高濃度基板1の主面の水素等を除去するための熱処理(工程P11)を施した後、n++型高濃度基板1の主面に、その主面を保護するためのプラスチックでできた保護テープ(図示は省略)を貼り付ける。続いて、n++型高濃度基板1の裏面をグラインディングにより研削し、後述するパッケージ形態に合わせて、n++型高濃度基板1を薄くする(工程P12)。なお、n++型高濃度基板1の裏面を研削した後に、さらにn++型高濃度基板1の裏面をライトエッチングしてもよい。
次に、上記保護テープを剥がし、n++型高濃度基板1を洗浄した後、n++型高濃度基板1の裏面にAu(金)/Sb(アンチモン)/Auからなる多層膜を堆積する。続いて、そのAu/Sb/Auからなる多層膜をウェットエッチングし、裏面電極13を形成する(工程P13)。
次に、図9に示すように、n++型高濃度基板1をダイシングにより分割し、単位素子のPINダイオードのチップ14に分割する(工程P14)。続いて、個々のチップ14を封止樹脂により封止し、パッケージングする(工程P15)。このパッケージングにおいては、リード15にチップ14の裏面電極13を接続する。そして、表面電極12を、ボンディングワイヤ16を介してリード17と電気的に接続する。続いて、リード15、17、チップ14およびボンディングワイヤ16を封止樹脂18により封止(第1処理)することにより、リード15、17の一部を実装用に外部に露出させたパッケージを形成する。この封止工程において、多数のチップとリードとを一括モールドした後にダイシングにより個々のデバイスに分割する一括モールド方式、いわゆるMAP(Mold Array Package)方式を用いた場合には、チップ14に熱が長時間加わることになる。そのため、Si膜10の代わりにP−SiN膜とした場合には、この時の熱によって電荷を取り込んでしまう不具合が懸念されるが、低圧熱CVD法により成膜したSi膜10を用いた場合には、この不具合を防ぐことができる。すなわち、本実施の形態1によれば、Si膜10の成膜後の熱を伴う処理に関して制約事項を減らすことが可能となる。
その後、封止樹脂18の外周面にレーザー印字等の極性識別マークを形成する。以上のように製造された本実施の形態1のパッケージは、配線(実装)基板に実装(工程P16)されて、たとえば携帯電話等の移動体通信機器に組み込まれる。
ここで、図10は、蒸着法を用いた裏面電極形成前後、およびリード15にチップ14の裏面電極13を接続(チップ実装)する際の熱処理(第1処理)時における、単位素子の本実施の形態1のPINダイオードの容量値の変化率の特性を示したものであり、Si膜10の代わりにP−SiN膜とした場合のPINダイオードの容量値の変化率の特性についても併せて示してある。図10に示すように、P−SiN膜を用いた場合には、裏面電極の蒸着中およびリード15にチップ14の裏面電極13を接続する際の熱でP−SiN膜が電荷を取り込んでしまうことにより、PINダイオードの容量値が上昇してしまう。一方、本実施の形態1のSi膜10を用いている場合には、このような熱が加わっても電荷を取り込んでしまうことを防ぐことができるので、PINダイオードの容量値の上昇を防ぐことができる。すなわち、本実施の形態1によれば、PINダイオードの低容量化を実現することができる。
(実施の形態2)
図11および図12は、それぞれ本実施の形態2のPINダイオードの要部断面図であり、それぞれ異なる構造のPINダイオードを図示している。
本実施の形態2のPINダイオードは、n++型高濃度基板1に達する溝2Aにより平面でPIN接合部(p++型半導体領域5)を取り囲む構造(図11参照)、もしくは平面でPIN接合部(p++型半導体領域5)を取り囲む領域のI層2を除去してメサ型接合構造(図12参照)としている。また、前記実施の形態1で示したn++型ガードリング領域8(図4参照)は省略されている。それら以外の構造は、前記実施の形態1のPINダイオードと同様である。このような構造の本実施の形態2のPINダイオードの製造工程においても、Si膜10は前記実施の形態1と同様の工程(図5およびその説明を参照)で成膜することができる。それにより、本実施の形態2のPINダイオードにおいても、寄生容量が生じてしまうことを防ぐことができるので、PINダイオードの低容量特性化を実現することができる。また、本実施の形態2のPINダイオードにおいても、Si膜10の代わりにP−SiN膜を用いた場合に必要となる電荷を揮発させる工程を省略できるので、本実施の形態2の半導体装置の工期を短縮化することができる。本実施の形態2においては、n++型ガードリング領域8を形成しないため、酸化シリコン膜6は、溝2Aの側面あるいはメサ型の側面部にそのまま残されており、側面部の保護膜は、酸化シリコン膜6、PSG膜9およびSi膜10の3層の積層構造で形成されている。
本実施の形態2のように、溝2Aまたはメサ型接合構造を形成することにより、PINダイオードの使用時においてI層2に広がる空乏層を溝2Aまたはメサ部で遮断することができる。それにより、PIN接合部の接合面積を小さくすることができるので、PIN接合部における接合容量を小さくすることができる。すなわち、PINダイオードの更なる低容量特性化を実現することができる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
本発明の半導体装置の製造方法は、たとえばPINダイオードの製造工程に適用することができる。
本発明の一実施の形態である半導体装置の製造工程を示すフローチャートである。 本発明の一実施の形態である半導体装置の製造方法を説明する要部断面図である。 図2に続く半導体装置の製造工程中の要部断面図である。 図3に続く半導体装置の製造工程中の要部断面図である。 図4に続く半導体装置の製造工程中の要部断面図である。 図5に続く半導体装置の製造工程中の要部断面図である。 図6に続く半導体装置の製造工程中の要部断面図である。 図7に続く半導体装置の製造工程中の要部断面図である。 図8に続く半導体装置の製造工程中の要部断面図である。 本発明の一実施の形態である半導体装置の製造工程中における熱処理とPINダイオードの容量特性との関係を示す説明図である。 本発明の他の実施の形態である半導体装置の要部断面図である。 本発明の他の実施の形態である半導体装置の要部断面図である。
符号の説明
1 n++型高濃度基板
2 I層
2A 溝
3 酸化シリコン膜
4 開口部
5 p++型半導体領域(第1半導体層)
6 酸化シリコン膜
7 開口部
8 n++型ガードリング領域
9 PSG膜
10 Si
11 開口部
12 表面電極(第1電極)
13 裏面電極
14 チップ
15 リード
16 ボンディングワイヤ
17 リード
18 封止樹脂
P1〜P16 工程

Claims (5)

  1. (a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
    (b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
    (c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
    (d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
    を含むことを特徴とする半導体装置の製造方法。
  2. (a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
    (b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
    (c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
    (d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
    を含み、
    前記Si膜は、低圧熱CVD法で形成することを特徴とする半導体装置の製造方法。
  3. PINダイオードを含む半導体装置の製造方法であって、
    (a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
    (b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
    (c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
    (d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
    (e)前記(c)工程後かつ前記(d)工程前に前記表面保護膜に熱処理を施す工程、
    を含むことを特徴とする半導体装置の製造方法。
  4. PINダイオードを含む半導体装置の製造方法であって、
    (a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
    (b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
    (c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
    (d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
    (e)前記(d)工程後、前記高濃度基板を切断して複数の半導体チップを形成する工程、
    (f)前記複数の半導体チップの各々に高温を伴う第1処理を施す工程、
    を含むことを特徴とする半導体装置の製造方法。
  5. PINダイオードを含む半導体装置の製造方法であって、
    (a)第1導電型の高濃度基板の主面上に高抵抗エピタキシャル層を形成する工程、
    (b)前記高抵抗エピタキシャル層上に第2導電型の第1半導体層を形成する工程、
    (c)前記第1半導体層の形成後、前記高濃度基板上にSi膜を含む表面保護膜を形成する工程、
    (d)前記表面保護膜の存在下において、前記高濃度基板の前記主面上に前記第1半導体層と電気的に接続するアルミニウムを主成分とする第1電極を形成する工程、
    を含み、
    前記Si膜は、低圧熱CVD法で形成することを特徴とする半導体装置の製造方法。
JP2006010834A 2006-01-19 2006-01-19 半導体装置の製造方法 Pending JP2007194394A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006010834A JP2007194394A (ja) 2006-01-19 2006-01-19 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006010834A JP2007194394A (ja) 2006-01-19 2006-01-19 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007194394A true JP2007194394A (ja) 2007-08-02

Family

ID=38449852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006010834A Pending JP2007194394A (ja) 2006-01-19 2006-01-19 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007194394A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745626A (ja) * 1993-07-27 1995-02-14 Nec Corp 半導体装置およびその製造方法
JPH09260372A (ja) * 1996-03-21 1997-10-03 Toshiba Corp 半導体装置の絶縁膜の形成方法
JPH10107299A (ja) * 1996-09-27 1998-04-24 New Japan Radio Co Ltd 半導体装置
JPH10209151A (ja) * 1997-01-20 1998-08-07 Nec Corp 半導体装置の製造方法
JPH1154505A (ja) * 1997-07-30 1999-02-26 Mitsumi Electric Co Ltd 半導体装置の製造方法
JP2002124686A (ja) * 2000-10-16 2002-04-26 Hitachi Ltd 半導体装置の製造方法および半導体装置
JP2004327844A (ja) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd 窒化シリコン膜、およびその製造方法、ならびに機能デバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745626A (ja) * 1993-07-27 1995-02-14 Nec Corp 半導体装置およびその製造方法
JPH09260372A (ja) * 1996-03-21 1997-10-03 Toshiba Corp 半導体装置の絶縁膜の形成方法
JPH10107299A (ja) * 1996-09-27 1998-04-24 New Japan Radio Co Ltd 半導体装置
JPH10209151A (ja) * 1997-01-20 1998-08-07 Nec Corp 半導体装置の製造方法
JPH1154505A (ja) * 1997-07-30 1999-02-26 Mitsumi Electric Co Ltd 半導体装置の製造方法
JP2002124686A (ja) * 2000-10-16 2002-04-26 Hitachi Ltd 半導体装置の製造方法および半導体装置
JP2004327844A (ja) * 2003-04-25 2004-11-18 Toppan Printing Co Ltd 窒化シリコン膜、およびその製造方法、ならびに機能デバイス

Similar Documents

Publication Publication Date Title
US10784256B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6691076B2 (ja) パッシベーション層を有する半導体素子およびその生産方法
US9312332B2 (en) Semiconductor device and method for manufacturing the same
US6888206B2 (en) Power semiconductor device and method of manufacturing the same
US9871030B2 (en) Plasma protection diode for a HEMT device
WO2016080269A1 (ja) 半導体装置および半導体装置の製造方法
JP2017079324A (ja) 半導体装置および半導体装置の製造方法
JP2018029178A (ja) パワー半導体デバイスおよびこのようなパワー半導体デバイスの製造方法
JP7193387B2 (ja) 半導体装置
US10497784B2 (en) Semiconductor device
JP2007220814A (ja) 半導体装置
TWI405268B (zh) 台型半導體裝置及其製造方法
US20080265373A1 (en) Semiconductor device
JP2020129624A (ja) 半導体装置および半導体装置の製造方法
JP2000294778A (ja) 半導体装置
CN114843334B (zh) 一种平面式功率mosfet器件的闸汲端夹止结构
JP4856419B2 (ja) 双方向プレーナ型ダイオード
JP2007194394A (ja) 半導体装置の製造方法
CN210628308U (zh) 一种集成芯片
JP2004273647A (ja) 半導体素子及びその製造方法
JP2013134998A (ja) 半導体装置およびその製造方法
JP2007305906A (ja) ダイオード
CN112713124A (zh) 半导体装置
JP2006013070A (ja) 半導体装置およびその製造方法
JP2009130084A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A711 Notification of change in applicant

Effective date: 20100528

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Effective date: 20120501

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814