JP2007192042A - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
JP2007192042A
JP2007192042A JP2006008606A JP2006008606A JP2007192042A JP 2007192042 A JP2007192042 A JP 2007192042A JP 2006008606 A JP2006008606 A JP 2006008606A JP 2006008606 A JP2006008606 A JP 2006008606A JP 2007192042 A JP2007192042 A JP 2007192042A
Authority
JP
Japan
Prior art keywords
temperature
rotor
signal
magnetic
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006008606A
Other languages
English (en)
Other versions
JP4725328B2 (ja
Inventor
Junichiro Ozaki
純一郎 小崎
Yoshio Tsunasawa
義夫 綱澤
Akira Arakawa
彰 荒川
Masamiki Ofuji
正幹 大藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006008606A priority Critical patent/JP4725328B2/ja
Publication of JP2007192042A publication Critical patent/JP2007192042A/ja
Application granted granted Critical
Publication of JP4725328B2 publication Critical patent/JP4725328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】温度感知用磁性体と検出コイルとのギャップが変動しても、ロータ温度を精度良く検出できる真空ポンプの提供。
【解決手段】磁性体102に関する検出信号を、切り欠き103に関する下側信号と磁性体104に関する上側信号との差信号により規格化補正し、その規格化補正信号(S−L)/(H−L)と閾値レベルとを比較することにより、ロータ温度が磁性体102のキュリー温度を超えたか否かを判断する。規格化補正信号を用いたことで、キュリー温度前後の信号変化をギャップ寸法に依らずほぼ同一とすることが可能となり、ギャップ変動の影響を受けることなく温度判定を正確に行うことができる。
【選択図】図7

Description

本発明は、磁性体のキュリー温度を利用してロータ温度を判定したり、その判定結果を用いてロータ回転の制御を行う真空ポンプに関する。
ターボ分子ポンプでは、ロータ材料としてアルミ合金が一般的に用いられている。アルミ合金はクリープ変形の許容温度が比較的低い温度(約110℃〜130℃)であるため、ポンプ運転時にはロータ温度がこの許容温度以下になるように常に監視する必要がある。そのため、強磁性体の透磁率がキュリー温度において大きく変化することを利用して、ロータ温度を非接触で検出する方法も知られている(例えば、特許文献1参照)。この従来の方法では、リング状の強磁性体をロータ外周に装着し、キュリー温度における強磁性体の透磁率変化をインダクタンス検出用コイルにより検出するようにしている。
特開平7−5051号公報
しかしながら、上述した従来の検出方法では、検出コイルとキュリー温度検出用磁性体の隙間の変動が、検出コイルのインダクタンス変化幅に大きく影響し、透磁率の変化を精度良く検出できないという問題があった。
請求項1の発明は、ステータに対してロータを回転することによりガスを排気する真空ポンプに適用され、ロータに設けられ、ロータの温度監視範囲内にキュリー温度を有する磁性体と、ロータに設けられ、キュリー温度より高温状態にある磁性体の透磁率にほぼ等しい透磁率を有する高温側基準被検体と、ステータに設けられ、磁性体および被検体のそれぞれの透磁率に応じた検出信号を出力する検出部と、磁性体に関する検出信号と高温側基準被検体に関する検出信号との差信号に基づいて、ロータの温度を検出する温度検出手段とを設けたことを特徴とする。
請求項2の発明は、ステータに対してロータを回転することによりガスを排気する真空ポンプに適用され、ロータに設けられ、ロータの温度監視範囲内にキュリー温度を有する磁性体と、ロータに設けられ、キュリー温度より高温状態にある磁性体の透磁率にほぼ等しい透磁率を有する高温側基準被検体と、ロータに設けられ、キュリー温度より低温状態にある磁性体の透磁率にほぼ等しい透磁率を有する低温側基準被検体と、ステータに設けられ、磁性体、高温側基準被検体および低温側基準被検体のそれぞれの透磁率に応じた検出信号を出力する検出部と、高温側基準被検体に関する検出信号および低温側基準被検体に関する検出信号に基づいて、磁性体に関する検出信号を補正する補正手段と、補正手段で補正された補正後検出信号に基づいてロータの温度を検出する温度検出手段とを設けたことを特徴とする。
請求項3の発明は、請求項2に記載の真空ポンプにおいて、補正手段は、磁性体に関する検出信号を、高温側基準被検体に関する検出信号と低温側基準被検体に関する検出信号との差信号に基づいて規格化補正するようにしたものである。
請求項4の発明は、請求項2または3に記載の真空ポンプおいて、磁性体に関する検出信号をS、高温側基準被検体に関する検出信号をL、低温側基準被検体に関する検出信号をHとした場合に、補正手段が、補正後検出信号としてS/(H−L)、(S−L)/(H−L)、(S−H)/(H−L)および(H−S)/(H−L)のいずれか一つを出力するものである。
請求項5の発明は、請求項1〜4のいずれか一項に記載の真空ポンプにおいて、高温側基準被検体は、ロータの検出部対向面に形成された凹部空間または非磁性体により構成されるものである。
請求項6の発明は、請求項2〜5のいずれか一項に記載の真空ポンプにおいて、磁性体は、ロータ上のロータ回転軸を中心とした第1の円周上に配設され、低温側基準被検体は、ロータ上のロータ回転軸を中心とした第2の円周上に配設され、高温側基準被検体は、第1の円周および第2の円周に跨るように配設され、検出部が、磁性体および高温側基準被検体を検出する第1の検出部と、低温側基準被検体および高温側基準被検体を検出する第2の検出部とを備えたことを特徴とする。
請求項7の発明は、請求項1〜6のいずれか一項に記載の真空ポンプにおいて、磁性体はキュリー温度の異なる複数の磁性部材を含み、温度検出手段が、複数の磁性部材の各キュリー温度に応じて複数の温度を検出するようにしたものである。
請求項8の発明は、請求項7に記載の真空ポンプにおいて、複数の磁性部材には、キュリー温度付近における透磁率が温度変化に対して緩やかに変化する磁性部材が含まれ、温度検出手段は、透磁率が緩やかに変化する磁性部材に関する検出信号に基づいて、ロータの温度の連続的な変化を検出するものである。
請求項9の発明は、請求項1〜8のいずれか一項に記載の真空ポンプにおいて、基準被検体に関する検出信号に基づいて、検出部が正常動作しているか否かを判定する判定手段をさらに備えたものである。
請求項10の発明は、請求項1〜9のいずれか一項に記載の真空ポンプにおいて、ロータは、モータ回転子が設けられたシャフトと、そのシャフトの端部に設けられるとともにポンプ排気機能部が形成されたポンプロータ部とから成り、被検体の各々を、端部に設けるようにしたものである。
本発明によれば、磁性体に関する検出信号と高温側基準被検体に関する検出信号との差信号や、高温側基準被検体および低温側基準被検体の各検出信号に基づいて補正された信号に基づいて、ロータの温度を検出するようにしたので、ロータ温度を精度良く検出できる。
以下、図を参照して本発明を実施するための最良の形態について説明する。
−第1の実施形態−
図1は本発明による真空ポンプの一実施の形態を示す図であり、磁気軸受式ターボ分子ポンプのポンプ本体1とコントローラ30の概略構成を示したものである。ロータ2が取り付けられたシャフト3は、ベース4に設けられた電磁石51,52,53によって非接触支持されている。シャフト3の浮上位置は、ベース4に設けられたラジアル変位センサ71,72およびアキシャル変位センサ73によって検出される。ラジアル磁気軸受を構成する電磁石51,52と、アキシャル磁気軸受を構成する電磁石53と、変位センサ71〜73とで5軸制御型磁気軸受が構成される。
シャフト3の下端には円形のディスク41が設けられており、このディスク41を上下に挟むように電磁石53が設けられている。この電磁石53によりディスク41を吸引することにより、シャフト3がアキシャル方向に浮上する。ディスク41はナット42によりシャフト3の下端部に固定されており、シャフト3と一体で回転する。
ロータ2には、回転軸方向に沿って複数段の回転翼8が形成されている。上下に並んだ回転翼8の間には固定翼9がそれぞれ配設されている。これらの回転翼8と固定翼9とにより、ポンプ本体1のタービン翼段が構成される。各固定翼9は、スペーサ10によって上下に挟持されるように保持されている。スペーサ10は、固定翼9の保持機能とともに、固定翼9間のギャップを所定間隔に維持する機能を有している。
さらに、固定翼9の後段(図示下方)にはドラッグポンプ段を構成するネジステータ11が設けられており、ネジステータ11の内周面とロータ2の円筒部12との間にはギャップが形成されている。ロータ2およびスペーサ10によって保持された固定翼9は、吸気口13aが形成されたケーシング13内に納められている。ロータ2が取り付けられたシャフト3を電磁石51〜53により非接触支持しつつモータ6により回転駆動すると、吸気口13a側のガスは矢印G1のように背圧側(空間SP)に排気される。背圧側に排気されたガスは、排気口26に接続された補助ポンプにより排出される。
本実施の形態のターボ分子ポンプではロータ温度を非接触で検出するために、ロータ2側にキュリー温度感知用の磁性体102が、ステータ側に磁性体102の透磁率変化を検出するための検出コイル44がそれぞれ設けられている。検出コイル44により透磁率を監視して磁性体102がキュリー温度を越えたか否かを判定し、その判定結果によりロータ温度を推定する。
磁性体102にはフェライト等の強磁性体が用いられ、シャフト3に形成されたフランジ101に埋め込まれるように設けられている。また、フランジ101には、切り欠き103が形成されている。ステータ側のフランジ101と対向する位置には、上述した検出コイル44が設けられている。シャフト3が回転すると、磁性体102および切り欠き103が検出コイル44に対向する。図2は、シャフト3のフランジ101部分を、検出コイル44側から見た図である。
ターボ分子ポンプ本体1は、コントローラ30によって駆動制御される。コントローラ30には、磁気軸受を駆動制御する磁気軸受駆動制御部32およびモータ6を駆動制御するモータ駆動制御部33が設けられている。温度検出部31には上述した検出コイル44の出力信号が入力され、温度検出部31はロータ温度モニタ信号をモータ駆動制御部33および警報部34に出力する。なお、ロータ温度モニタ信号をコントローラ30の外部に出力できる出力端子を設けるようにしても良い。警報部34はロータ温度異常などの警報情報をオペレータに提示する警報手段であり、警告音を発生するスピーカや警告を表示する表示装置などにより構成される。
ところで、特許文献1に記載の発明では、ロータ外周に装着された強磁性体の透磁率変化をインダクタンス検出用コイルにより検出するようにしているので、強磁性体とコイルのとの隙間が変化すると透磁率の変化を精度良く検出できないという問題があった。
図3は、検出コイル44と磁性体102とのギャップ寸法が異なる場合の、検出されるインダクタンスの違いを説明する図である。図3(a)は検出コイル44と磁性体102との位置関係を示したものであり、左右方向に並べて図示した。検出コイル44は、磁性体102との間に数mm程度のギャップを設けて配設されている。
図3(b)は、温度と磁性体102の透磁率(比透磁率)との関係を示す図である。磁性体102の温度が上昇し、キュリー温度Tcを超えると急激に透磁率が低下する。このような変化は、磁性体102が強磁性体から常磁性体に変わることにより生じ、キュリー温度Tcを大きく越えた温度では、比透磁率は十分低下して常磁性体透磁率である1近くになる。
検出コイル44および磁性体102間のギャップ寸法は、ステータ4と高速回転するロータ2との位置関係に依存して刻々と変化する。図3(c)は、ギャップ寸法が2mmおよび0.7mmの場合の、磁性体温度と検出コイル44のインダクタンスとの関係を示す図である。磁性体温度がキュリー温度Tc(約103℃)を越えると、インダクタンスは減少する。
しかし、ギャップ寸法が0.7mmの場合にはインダクタンスが大きく減少するが、ギャップ寸法が2mmの場合には減少の程度が非常に少なく、0.7mmの場合に比べて1/5程度になっている。また、ギャップ寸法が2mmの場合には、インダクタンスの出力レベル自体が小さいという問題もある。そのため、このようにギャップ寸法が変動した場合には、ギャップ寸法2mmおよび0.7mmの両方に対して、キュリー温度Tcを検出することができるインダクタンス閾値を設定することは不可能である。
例えば、閾値を5.5mHに設定すると、ギャップ寸法0.7mmに対してはキュリー温度検出ができるが、ギャップ寸法2mmの場合にはキュリー温度検出ができない。一方、閾値を4.5mHに設定すると、ギャップ寸法2mmに対してはキュリー温度検出ができるが、ギャップ寸法0.7mmの場合にはキュリー温度検出ができない。
そこで、本実施の形態では、図3(b)に示すキュリー点より少し下の温度T1におけるインダクタンス信号(上側信号Hと呼ぶ)と、磁性体102の比透磁率がほぼ1となる温度T2におけるインダクタンス信号(下側信号Lと呼ぶ)とを用いて、インダクタンス信号Sを次式(1)のように規格化する。そして、この規格化インダクタンスS10を用いてロータ温度を推定する。
S10=(S−L)/(H−L) …(1)
ところで、磁性体102に関するインダクタンス信号S10だけを検出する場合、上述した上側信号Hや下側信号Lは常時検出されるわけではなく、対応する温度となった場合にのみ検出される。特に、下側信号Lの場合には、ロータ温度がキュリー温度を超えない限り検出されない。そのため、本実施の形態では、上側信号Hや下側信号Lを検出するための被検体(ターゲット)を、磁性体102とは別に設けるようにした。それにより、上述した規格化インダクタンスS10を、ロータ温度に関係なく常時検出できるようにした。
図4は、2種類のギャップ寸法2mmおよび0.7mmに対して、式(1)で算出される規格化インダクタンスS10を示したものである。規格化を行うことにより、ギャップ寸法2mmの場合の曲線と、ギャップ寸法0.7mmの場合の曲線とがほぼ一致するようになる。すなわち、規格化インダクタンスS10は、大幅なギャップ変動があってもほとんど変動することがなく、同一の閾値を用いてキュリー温度を安定して検出することができる。
図2に示す例は、上側信号Hを省略して、差信号(S−L)を求める場合の構成を示したものである。フランジ101(図2参照)に設けられた温度感知用の磁性体102にはフェライトが用いられており、それらのキュリー温度が検出したい温度域にある材料が選ばれる。例えば、ロータ2を構成するアルミ合金材料の場合、クリープ変形の許容温度は110℃〜130℃であるので、この場合には、この許容温度範囲内にキュリー温度を有する磁性体が選ばれる。また、許容温度範囲の上下10℃程のキュリー温度を有する磁性体をさらに加えて、複数レベルの温度検出を行っても良い。
また、フランジ101には、切り欠き103が2カ所形成されている。図2に示す例では、この切り欠き103が検出コイル44に対向したときのインダクタンスを、上述した下側信号Lとして用いることにする。シャフト3が回転してこの切り欠き103が検出コイル44に対向すると、検出コイル44側から見た場合、比透磁率がほぼ1の物質が対向したのと同じ状態となる。
そのため、検出コイル44のインダクタンスは低下し、図3(b)の温度T2の場合の下側信号Lと同等のインダクタンス信号が検出される。磁性体102だけを検出している限りにおいては、キュリー温度を越えない限り温度T2(図3(b)参照)におけるインダクタンス信号(下側信号L)は検出できないが、切り欠き103を設けたことにより、キュリー点の前後いずれの温度においても下側信号Lを常時取得することができる。すなわち、差信号S−Lを常に取得することができる。
一方、検出コイル44の対向位置に磁性体102が位置すると、磁性体温度がキュリー温度を越えていなければ磁性体102の比透磁率は十分に大きく、高いインダクタンス信号が得られる。そして、磁性体温度がキュリー温度を越えると、比透磁率が1に近くなって下側信号Lに近接した低いインダクタンス信号が得られる。
次に、信号検出系について説明する。図5は温度検出部31のブロック図である。温度検出部31には、整流回路110,フィルタ回路111,直流成分除去回路112,振幅抽出回路113,比較回路114および閾値設定部115が設けられている。
検出コイル44には、交流発振器60からの数十kHzの交流出力が抵抗Rを介して印加される。ロータの回転に応じて、キュリー温度感知用の磁性体102と下側信号取得用の切り欠き103とが、検出コイル44と対向する。その結果、検出コイル44のインダクタンスは、交互に変化することになる。
図5の(a)の位置に現れる信号は、元の数十kHzの交流が検出コイル44のインダクタンスで変調され、図6(a)に示すような2種の振幅レべルを有する振幅変調信号となる。図6(a)は(a)点に現れる振幅変調信号の典型例を示したものである。交流発振器60の周波数をf、振幅をVin、検出コイル4のインダクタンスをL、抵抗をRとすると、(a)点に現れる信号の振幅Voutは次式(2)のように表される。
Figure 2007192042
なお、式(2)において、Rが2πLfに比べて十分(例えば、1桁)に大きければ、振幅VoutはインダクタンスLにほぼ比例する。そこで、以下では、これまで述べてきたインダクタンスLではなく振幅Voutを用いて説明することにする。
図6(a)の信号を、整流回路110で整流した後にフィルタ回路111でフィルタ処理することにより、(b)点には図6(b)に示すような信号が現れる。図6(b)の信号は、図6(a)の信号から振幅を取り出したものになっている。検出コイル44が磁性体102に対向したときの振幅をVout(S)、切り欠き103が検出コイル44に対向したときの振幅をVout(L)と称することにする。振幅Vout(S),Vout(L)は、ロータが1回転する間に2回ずつ現れる。
図6(b)に示す信号が直流成分除去回路112を通過すると、(c)点には図6(c)に示すような信号が現れる。この信号は、振幅Vout(S)から振幅Vout(L)を差し引いた差信号になっている。以下では、記載を簡単にするために、振幅Vout(S)を単にS、振幅Vout(L)をLと表記することにする。そうすると、差信号はS−Lのように表される。振幅抽出回路113では差信号S−Lの振幅を抽出し、その振幅のレベルと、閾値設定部115で設定された閾値信号レベルとを比較回路114で比較する。その比較の結果、ロータ温度(磁性体温度)がキュリー温度を越えたか否かを判定することができる。
このように、温度感知用磁性体102と切り欠き103を検出コイル44と対向配置することにより、差信号S−Lを取得することができる。ここで、検出コイル44が切り欠き103に対向した場合の比透磁率は厳密には1ではないので、ギャップ変動の影響は、信号S,Lの両方に現れる。ところが、差信号S−Lを用いることで、ギャップ変動の影響を除去することができる。
また、磁性体102と下側信号取得用の切り欠き103とを、ロータ1周期に対してほぼ等間隔に配置しているので、信号Sと信号Lとがロータ回転数の整数倍の周波数で交互に現れる。その結果、上述したように、これらの信号を交流信号として取り出すことにより、その実効値または振幅から、信号Sと信号Lの差に相当する信号を容易に得ることができる。すなわち、同期信号を用いることなく信号S−Lが得られるので、同期信号を用いる検出方法に比べて、検出処理の簡易化を行うことができる。
[変形例]
図7(a)は、上述した第1の実施の形態の変形例を示す図であり、図2と同様に、フランジ101を検出コイル方向から見た図である。この変形例では、温度感知用磁性体102に加えて上側信号用の磁性体104を設け、検出コイル44aで磁性体102および切り欠き103を検出し、検出コイル44bで磁性体104および切り欠き103を検出するようにした。磁性体102はフランジ101の軸中心から半径R1の円周上に設けられ、磁性体104は軸中心から半径R2(<R1)の円周上に設けられている。検出コイル44aは磁性体102と対向するように半径R1の位置に配設され、検出コイル44bは磁性体104と対向するように半径R2の位置に配設されている。
磁性体104および検出コイル44bは、上述した上側信号Hを取得するために設けられたものである。磁性体104は、検出温度に比べて十分高いキュリー温度を有する磁性体であれば良く、例えば、キュリー温度の高いフェライトや、純鉄材等が用いられる。従って、検出コイル44bが磁性体104と対向したときには上側信号H(=Vout(H))が取得され、切り欠き103と対向したときには下側信号L(=Vout(L))が取得される。磁性体104を検出することで得られる上側信号Hは、温度感知用磁性体102の上側信号H(温度T1)とは若干異なるが、検出温度に比べてキュリー温度が十分に高いので、磁性体102のキュリー点より高温領域でも上側信号Hを常に取得することができる。
この変形例では、2組の検出コイル44a,44bが設けられているので、信号検出系については、図8に示すように図5に示した検出系と同一のものが2系列必要となる。図8において、上側に示した検出系が検出コイル44aに関するものであり、下側の検出系が検出コイル44bに関するものである。検出コイル44aに関する信号検出系からは、上述した検出コイル44と全く同じ差信号S−Lが得られる。
一方、検出コイル44bに関する検出系は上側信号取得用の検出系であり、検出コイル44aの信号検出系と全く同じ構成である。上述したように、検出コイル44bが磁性体104および切り欠き103と対向すると、磁性体104の場合には上側信号H、切り欠き103の場合には下側信号Lが得られ、(c)点には差信号H−Lが現れる。
その後、取得された差信号S−Lおよび差信号H−Lは、それぞれの検出系に設けられた振幅抽出回路113で振幅が抽出され、いずれの振幅も割算回路116に入力される。割算回路116では、入力された2つの差信号S−L,H−Lから規格化補正信号(S−L)/(H−L)を算出する。ここで、信号H,Lは信号Sに関する温度感知用磁性体102とは別のターゲット(磁性体104,切り欠き103)について取得されるものであるが、信号H,Lもギャップ寸法が変動するとその影響を受ける。ここで取得された規格化補正信号(S−L)/(H−L)も、図4に示す規格化信号S10の場合と同様の温度依存性を有しており、規格化信号S10と同様にギャップ寸法に依存しない。
割算回路116で算出された規格化補正信号(S−L)/(H−L)は、比較回路114に入力される。比較回路114は、閾値設定部115で設定された閾値信号レベルと規格化補正信号(S−L)/(H−L)とを比較し、ロータ温度(磁性体温度)がキュリー温度を越えたか否かを判定し、その判定結果をロータ温度モニタ信号として出力する。
図7(a)に示す例では、半径R1の円周上に温度感知用磁性体102と下側信号用の切り欠き103を形成して差信号H−Lを取得したが、図7(b)に示すように、半径R1の円周上に磁性体102と磁性体104を配置して、差信号H−Sを取得するようにしても良い。この場合の規格化補正信号は(H−S)/(H−L)となり、信号Sを測る基準が信号Lから信号Hに変更されたことになる。
ここで、規格化信号(S−L)/(H−L)と規格化信号(H−S)/(H−L)との違いは、温度がキュリー点を越えるときの信号の変化の仕方である。規格化信号(H−S)/(H−L)の場合には、ゼロに近い値から1に近い値へと増加し、規格化信号(S−L)/(H−L)の場合、逆に1に近い値からゼロに近い値へと減少する。これらの規格化信号を用いた場合、典型的な閾値としては0.5程度の値が用いられる。
また、ギャップ寸法が変化した場合、下側信号Lの変化は差信号H−Lの変化に比べて一般的に小さいので、信号Lを概算の一定値L0に固定し、規格化信号(S−L)/(H−L)の代わりに、信号(S−L0)/(H−L0)または信号S/(H−L0)の値を閾値と比較するようにしても良い。
このように、本実施の形態では、信号Sを差信号(H−L)で規格化することにより、キュリー点前後における検出信号の変化幅がギャップ変動により変化するのを防止することができる。そのため、閾値水準の設定範囲が広くなるという作用効果を奏する。
ところで、本実施の形態では、磁性体102と切り欠き103とを検出コイル44で検出することにより、磁性体102の信号Sと常時検出される下側信号Lとが同時に取得される。そのため、これらの信号S,Lを警報部34に取り込むことにより、検出系の故障診断を行うことが可能となる。例えば、常時検出されるべき下側信号Sが検出されない場合には、検出コイル44の故障と判断し、信号S,Lの一方が検出されない場合には、検出されない方の被検体(磁性体102、切り欠き103)の異常と判断する。
−第2の実施形態−
図9は本発明の第2の実施形態を説明する図であり、(a)はシャフト3のフランジ101部分を示す斜視図であり、(b)は検出コイル44側から見た図である。第1の実施形態で説明したように、信号Sを差信号(H−L)で規格化することにより、閾値水準の設定範囲が広くすることができる。そこで、第2の実施形態では、閾値水準の設定範囲が広くなったことを利用し、複数の温度感知用磁性体を設けて複数の温度判定を行うようにした。
フランジ101には、シャフト3の軸を中心とする同一円周上に、温度感知用の磁性体102a,102bと下側信号取得用の非磁性体130とが設けられている。非磁性体130は温度感知用磁性体と102a,102bと同一形状であり、アルミ合金や樹脂等が用いられる。また、非磁性体130に代えて、第1実施形態と同様の下側信号取得用の切り欠きや穴を設けてもかまわない。円周上において、非磁性体130は磁性体102a,102bに対して交互に配置されている。
磁性体102aおよび102bのキュリー温度を異なるものとすることにより、例えば、磁性体102aのキュリー温度を130℃、磁性体102bのキュリー温度を120℃とすることにより、2段階の温度検出を行うことができる。検出コイル44と、磁性体102a,102bおよび非磁性体130の対向面との距離は、1mm〜3mm程度に設定されている。
フランジ101は鉄材等で形成されており、十分に高いキュリー温度を有している。そのため、フランジ下面101aが検出コイル44に対向するとインダクタンスが高くなり、このフランジ下面101aを上側信号取得用のターゲットとして利用することができる。すなわち、シャフト3が一回転すると、2種類の温度感知用磁性体102a、102bが一回ずつ、下側信号取得用の磁性体130が2回、上側信号取得用のフランジ下面101aが4回、検出コイル44と対向することになる。そして、検出用コイル44はそれぞれに対して信号を発生するので、ロータ2が1回転する間の信号発生回数は8回となる。
図10は、第2の実施形態における信号検出系を示すブロック図である。なお、図5,8に示した信号検出系と同一部分には同一符号を付し、異なる部分を中心に説明する。上述したように、2種類の温度感知用磁性体102a,102b、下側信号取得用非磁性体130および上側信号取得用フランジ下面101aは、検出コイル44の対向位置を順に通過する。従って、4種の振幅レベルを有する変調信号が、図10の(a)点に現れる。
図11(a)は、図10の(a)点に現れる信号波形の一例を示したものである。整流回路110およびフィルタ回路111を通過した後の(b)点における信号波形は、図11(b)に示すような信号波形となる。この信号波形には、上述したように4つの振幅レベルが現れる。すなわち、ロータ2が1回転する間の、検出コイル44が各磁性体102a,102b,130およびフランジ下面101aのそれぞれに対向する8つの区間に対応して、4種類の振幅信号S1,S2,L,HがH、S1、H、L、H、S2、H、Lの順序で現れている。
なお、ここでは、磁性体102aのキュリー温度を130℃、磁性体102bのキュリー温度を120℃とし、図11(b)に示す状態では、ロータ温度Tが120℃<T<130℃である場合を仮定している。そのため、磁性体102aに関する振幅信号S1は上側信号Hに近い高い値になっているが、キュリー点を越えている磁性体102bに関する振幅信号S2は、下側信号Lに近い低い値になっている。
図11(b)に示したような図10の(b)点の信号波形は、弁別回路122によって4種の信号(S1信号、S2信号、H信号、L信号)に弁別される。この弁別処理のために、信号弁別パルス回路111は、図11(c)に示すような4種の信号弁別パルスPS1,PS2,PH,PLを発生し、これらを弁別回路122に入力する。弁別回路122では、PS1,PS2,PH,PLの各信号弁別パルスがハイレベルになる区間に相当する部分が、図11(b)の信号と重ねられた後に、その部分がサンプリングにより切り取られ、S1信号、S2信号、H信号、L信号として出力される。なお、信号弁別パルスPS1,PS2,PH,PLは、ロータ2の位相パルスをもとに作成される。
次いで、演算回路124は、S1信号、S2信号、H信号、L信号に基づいて、規格化補正されたS11信号「(S1−L)/(H−L)」およびS12信号「(S2−L)/(H−L)」を生成する。S11信号「(S1−L)/(H−L)」は比較回路114aに入力され、閾値設定部115aからのS11信号用閾値と比較される。S11信号「(S1−L)/(H−L)」がS11信号用閾値より低い場合には、比較回路114aは、ロータ温度が磁性体102aのキュリー温度(130℃)を超えていることを報知する信号を出力する。
一方、S12信号「(S2−L)/(H−L)」は比較回路114bに入力され、閾値設定部115bからのS12信号用閾値と比較される。そして、S12信号「(S2−L)/(H−L)」がS12信号用閾値より低い場合には、ロータ温度が磁性体102bのキュリー温度(120℃)を超えていることを報知するロータ温度モニタ信号が、比較回路114bから出力される。図1の警報部34は、これらのロータ温度モニタ信号に基づいて、ポンプの回転数を減らすなどの保守操作を行う。
なお、上述した例では、弁別回路112を用いて4つの信号(S1信号、S2信号、H信号、L信号)を弁別したが、次のような信号処理方法を採用することにより、弁別回路112を用いない方法も可能である。例えば、十分に速い速度でデジタル信号に変換できるA/D変換器を用いて、図11(b)に示す信号をデジタル化し、デジタル信号処理器(DSP)によりロータ1周期毎に図11(b)に示す信号の重ね合わせを400回転分行えば、約1秒毎に平均化された1周期の8つの区間のデジタル信号が得られる。そして、補正されたS11信号および補正されたS12信号は、計算により容易に得られる。
[変形例]
図12は第2の実施形態の変形例を示す図であり、図9(b)と同様に、フランジ101を検出センサ44側から見た図である。この変形例では、フランジ101が、ロータ2と同様のアルミ合金(非磁性体)で形成されている場合を考える。フランジ101には、キュリー温度の異なる温度感知用磁性体102a、102bと、純鉄で形成された上側信号取得用ターゲット140とが設けられ、また、下側信号取得用の穴部131が2カ所に形成されている。これらはシャフト3の軸を中心とする円周上に設けられており、ターゲット140は穴部131と磁性体102a、102bとの間の4カ所に設けられている。ここでは、穴部131の形状を磁性体102a、102bと同じ形状とする。
このような構成とすることにより、フランジ101が非磁性材料で形成されている場合でも、上述した第2の実施形態と同様に、2種類のキュリー温度感知用磁性体信号、大きなインダクタンスの上側信号、小さなインダクタンスの下側信号の、4種類の信号を得ることができる。信号処理系については、図9(b)の構成の場合と同様であるので、説明を省略する。
また、キュリー温度を越えた直後の透磁率変化が急峻な磁性体と、透磁率変化が穏やかなものとを組み合わせて用いることにより、温度検出をより細かく行うようにしても良い。例えば、3種類の温度感知用磁性体を設け、それらの内の2種類は透磁率変化が急峻な磁性体を選び、残り1種類は透磁率変化が緩やかな磁性体を選ぶ。そして、これら3種類の磁性体と、上側信号H用のターゲット(例えば、フランジ底面101a)と、下側信号L用のターゲット(例えば、フランジ101に形成された穴131)とを同一円周上に配設し、それらを検出コイル44により検出する。
図13は、3種類の温度感知用磁性体に関して、それぞれの規格化補正信号(S−L)/(H−L)の温度による変化を示したものである。曲線F1,F3は透磁率変化が急峻な磁性体の規格化補正信号を示しており、曲線F1では、温度115℃のところで急激に0.9程度から0.1程度に低下し、曲線F3では温度130℃のところで急激に0.9程度から0.1程度に低下する。一方、曲線F2は透磁率変化が緩やかな磁性体の規格化補正信号を示しており、温度115℃から温度130℃にわたって0.7程度から0.2程度まで徐々に低下している。
曲線F1で示す信号を用いることにより、ロータ温度が115℃を越えるのを正確に検出することができ、また、曲線F3で示す信号を用いることにより、ロータ温度が130℃を越えるのを正確に検出することができる。また、温度115℃から温度130℃までの温度範囲に対しても、この温度範囲の曲線F2(図13のAで示す範囲の曲線)に関して、規格化補正信号から温度への逆変換曲線を温度検出部31の記憶部(不図示)に記憶させておけば、この温度範囲においてロータ温度が上昇しているのか降下しているのかを判断することができる。さらに、温度115℃および130℃を越える瞬間において逆変換曲線を補正する機能を設ければ、温度範囲115℃〜130℃におけるロータ温度の連続的な変化を、正確に測定することができる。なお、透磁率変化が緩やかな磁性体を複数個用いて、連続温度の範囲をさらに広くすることも可能である。
図14は、フランジ部分の構成(ターゲット構成)を図7に示す構成とした真空ポンプを動作させたときの、差信号H−Lおよび差信号S−Lに関する実際の測定結果を示したものである。図14において、(a)はギャップ寸法を2mmに設定した場合であり、(b)はギャップ寸法を1mmに設定した場合を示す。また、図13(c)は、規格化補正後の信号(S−L)/(H−L)の変化を示したものである。
図14(a),(b)の矢印で示した区間では、ポンプに対して多量のガスを流すことでロータ温度を意図的に上昇させ、ロータ温度を温度感知用磁性体のキュリー温度よりも高くなるようにした。そのため、その区間においては、信号S−Lの曲線は階段状に低下している。また、信号H−Lおよび信号S−Lのいずれも、時間が経過するにつれて少しずつ低下する右下がりの傾向を有している。これは、ギャップ寸法が徐々に広がっているために信号が低下したものと推定される。
図14の(a),(b)を比較すると、矢印区間における信号S−Lの低下は、ギャップ寸法1mmの場合はギャップ寸法2mmの場合の2〜3倍程度となっており、ギャップ変動による、信号の変化幅が大きく変わることが確認された。
一方、図14(c)に示す規格化補正後の信号(S−L)/(H−L)の場合、ギャップ寸法が1mmであっても2mmであっても、矢印区間における信号の低下は同程度となり、同一曲線で表すことができる。また、図14(a),(b)に見られた経時的なドリフトもほとんど修正される。すなわち、ギャップ寸法が変動しても、キュリー点における透磁率の変化を、すなわち、ロータ温度がキュリー温度を超えたことを安定して検出することができる。
なお、上述した実施の形態では、シャフト3の上部に設けられてロータ2が取り付けられるフランジ101に、キュリー温度検出用の磁性体を配設したが、配設場所はこの位置に限定されるものではない。例えば、ロータ2の内側表面やシャフト3の下端など、スペース的に配置可能であって、かつ、機械的強度において高速回転に耐えられる場所であれば、種々の場所に配設することができる。
しかし、次のような理由から、シャフト上部に設置するのが好ましい。温度感知用磁性体に用いられるフェライトの機械的強度は、アルミ合金や純鉄に比べて1桁以上小さい。そのため、遠心応力が極力小さくなるように、ロータ2の回転中心から離れない方が有利である。一方、検出コイル44で検出すべきターゲット(温度感知用磁性体、下側信号用ターゲットおよび上側信号用ターゲット)が、ロータ回転に伴って検出コイルに順に対向するように構成するためには、回転中心から離したところにそれらを配置する必要がある。
ロータ2とシャフト3とを合わせた回転体全体を考えた場合、シャフト3の部分は回転半径が小さいので上記ターゲットの配置場所として適している。さらに、ロータ2が固定されるフランジ101は、ロータ2に形成された回転翼からの熱抵抗が小さいので、温度監視対象である回転翼との温度距離が小さく、回転翼に比較的近い近似的な温度を示すことが解った。その結果、ターゲット設置場所としては、シャフト上部が最適である。
上述した実施の形態においては、以下のような作用効果を奏することができる。
(1)温度感知用の磁性体102に加えて、キュリー温度が磁性体102に比べて高い基準被検体として切り欠き103、非磁性体130および穴131を設け、磁性体102の検出信号Sと基準被検体の検出信号(下側信号L)との差信号S−Lを用いることにより、温度検出に対するギャップ変動の影響を低減することができる。また、下側信号Lはロータ温度に依らず常時取得できるため、常に正確な温度検出を行うことができる。
(2)また、磁性体102と下側信号取得用の切り欠き103とを、ロータ1周期に対してほぼ等間隔に配置してそれらを検出コイル44で検出するようにしたので、同期信号を用いることなく信号S−Lが得られる。そのため、同期信号を用いる検出方法に比べて検出処理の簡易化を行うことができる。
(3)磁性体102に関する信号Sを、常時検出される下側信号Lおよび上側信号Hにより規格化補正した信号を用いることにより、具体的には、信号Sや差信号S−L,S−H,H−Sを差信号H−Lで割算することにより、キュリー点前後の信号変化をギャップ寸法に依らずほぼ同一とすることが可能となる。その結果、ギャップ変動の影響を受けることなく閾値を用いた温度判定を正確に行うことができる。
(4)被検体(磁性体102、切り欠き103)を検出コイル44で検出することにより、信号Sと常時検出される信号Lとが同時に取得されるので、これらの信号S,Lを利用することにより検出系の故障診断を行うことが可能となる。
(5)信号Sを差信号(H−L)で規格化することにより、キュリー点前後における検出信号の変化幅がギャップ変動により変化するのを防止することができるので、閾値水準の設定範囲が広くなる。その結果、複数の温度感知用磁性体を設けて、温度監視範囲内において複数の温度判定を行うことができる。
(6)さらに、キュリー温度を超えた温度領域における透磁率変化が緩やかな磁性体を被検体として設けることにより、温度監視範囲内においてロータ温度の変化を連続的に検出することができる。
(7)また、温度感知用磁性体102をシャフト3のフランジ101に設けることにより、温度検出すべきロータ2と磁性体102との距離が短くなり、ロー端温度をより正確に検出することができる。
なお、上述した実施の形態では、ターボ分子ポンプのロータ温度計測を例に説明したが、ターボ分子ポンプに限らずドラッグポンプ等の種々の真空ポンプにも本発明は適用できる。
以上説明した実施の形態と特許請求の範囲の要素との対応において、検出コイル44aは第1の検出部を、検出コイル44bは第2の検出部を、温度検出部31は温度検出手段および補正手段を、切り欠き103,非磁性体130および穴部131は高温側基準被検体を、磁性体104,ターゲット140およびフランジ下面101aは低温側基準被検体を、警報部34は判定手段を、切り欠き103および穴部131は凹部空間を、回転翼8および円筒部12はポンプ排気機能部を、ロータ2はポンプロータ部をそれぞれ構成する。また、請求項1のロータは、ロータ2とシャフト3とにより構成される。なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。
本発明による真空ポンプの第1の実施形態を示す図である。 シャフト3のフランジ101部分を、検出コイル44側から見た図である。 インダクタンスを説明する図であり、(a)は検出コイル44と磁性体102との位置関係を示す図、(b)は磁性体102の透磁率(比透磁率)との関係を示す図、(c)はギャップ寸法のインダクタンスへの影響を説明する図である。 規格化補正信号S10を説明する図である。 信号検出系を示すブロック図である。 信号波形を説明する図であり、(a)は図5の(a)点の信号を示し、(b)は図5の(b)点の信号を示し、(c)は図5の(c)点の信号を示す。 (a)は第1の実施の形態の変形例を説明する図であり、(b)は他の変形例を説明する図である。 変形例における信号検出系を示すブロック図である。 第2の実施形態を説明する図であり、(a)はフランジ101部分を示す斜視図であり、(b)はフランジ部分を検出コイル44側から見た図である。 第2の実施形態における信号検出系を示すブロック図である。 第2の実施形態における信号波形を説明する図であり、(a)は図10の(a)点の信号を示し、(b)は図10の(b)点の信号を示し、(c)は図10の(c)点の信号を示す。 変形例を説明する図であり、フランジ部分を検出コイル44側から見た図である。 第2の実施形態における規格化補正信号を説明する図である。 差信号H−Lおよび差信号S−Lの時間変化を示す図であり、(a)はギャップ寸法を2mmに設定した場合を、(b)はギャップ寸法を1mmに設定した場合を示す。
符号の説明
1:ポンプ本体、2:ロータ、3:シャフト、4:ステータ、6:モータ、8:回転翼、30:コントローラ、31:温度検出部、32:磁気軸受駆動制御部、33:モータ駆動制御部、34:警報部、44,44a,44b:検出コイル、101:フランジ、102,104:磁性体、103:切り欠き、130:非磁性体、131:穴部、140:ターゲット

Claims (10)

  1. ステータに対してロータを回転することによりガスを排気する真空ポンプにおいて、
    前記ロータに設けられ、前記ロータの温度監視範囲内にキュリー温度を有する磁性体と、
    前記ロータに設けられ、前記キュリー温度より高温状態にある前記磁性体の透磁率にほぼ等しい透磁率を有する高温側基準被検体と、
    前記ステータに設けられ、前記磁性体および被検体のそれぞれの透磁率に応じた検出信号を出力する検出部と、
    前記磁性体に関する前記検出信号と前記高温側基準被検体に関する前記検出信号との差信号に基づいて、前記ロータの温度を検出する温度検出手段とを設けたことを特徴とする真空ポンプ。
  2. ステータに対してロータを回転することによりガスを排気する真空ポンプにおいて、
    前記ロータに設けられ、前記ロータの温度監視範囲内にキュリー温度を有する磁性体と、
    前記ロータに設けられ、前記キュリー温度より高温状態にある前記磁性体の透磁率にほぼ等しい透磁率を有する高温側基準被検体と、
    前記ロータに設けられ、前記キュリー温度より低温状態にある前記磁性体の透磁率にほぼ等しい透磁率を有する低温側基準被検体と、
    前記ステータに設けられ、前記磁性体、高温側基準被検体および低温側基準被検体のそれぞれの透磁率に応じた検出信号を出力する検出部と、
    前記高温側基準被検体に関する前記検出信号および前記低温側基準被検体に関する前記検出信号に基づいて、前記磁性体に関する前記検出信号を補正する補正手段と、
    前記補正手段で補正された補正後検出信号に基づいて前記ロータの温度を検出する温度検出手段とを設けたことを特徴とする真空ポンプ。
  3. 請求項2に記載の真空ポンプにおいて、
    前記補正手段は、前記磁性体に関する前記検出信号を、前記高温側基準被検体に関する前記検出信号と前記低温側基準被検体に関する前記検出信号との差信号に基づいて規格化補正することを特徴とする真空ポンプ。
  4. 請求項2または3に記載の真空ポンプおいて、
    前記磁性体に関する前記検出信号をS、前記高温側基準被検体に関する前記検出信号をL、前記低温側基準被検体に関する前記検出信号をHとした場合に、
    前記補正手段は、前記補正後検出信号としてS/(H−L)、(S−L)/(H−L)、(S−H)/(H−L)および(H−S)/(H−L)のいずれか一つを出力することを特徴とする真空ポンプ。
  5. 請求項1〜4のいずれか一項に記載の真空ポンプにおいて、
    前記高温側基準被検体は、前記ロータの検出部対向面に形成された凹部空間または非磁性体により構成されることを特徴とする真空ポンプ。
  6. 請求項2〜5のいずれか一項に記載の真空ポンプにおいて、
    前記磁性体は、前記ロータ上のロータ回転軸を中心とした第1の円周上に配設され、
    前記低温側基準被検体は、前記ロータ上のロータ回転軸を中心とした第2の円周上に配設され、
    前記高温側基準被検体は、前記第1の円周および前記第2の円周に跨るように配設され、
    前記検出部は、前記磁性体および高温側基準被検体を検出する第1の検出部と、前記低温側基準被検体および高温側基準被検体を検出する第2の検出部とを備えたことを特徴とする真空ポンプ。
  7. 請求項1〜6のいずれか一項に記載の真空ポンプにおいて、
    前記磁性体はキュリー温度の異なる複数の磁性部材を含み、
    前記温度検出手段は、前記複数の磁性部材の各キュリー温度に応じて複数の温度を検出することを特徴とする真空ポンプ。
  8. 請求項7に記載の真空ポンプにおいて、
    前記複数の磁性部材には、キュリー温度付近における透磁率が温度変化に対して緩やかに変化する磁性部材が含まれ、
    前記温度検出手段は、前記透磁率が緩やかに変化する磁性部材に関する検出信号に基づいて、前記ロータの温度の連続的な変化を検出することを特徴とする真空ポンプ。
  9. 請求項1〜8のいずれか一項に記載の真空ポンプにおいて、
    前記基準被検体に関する前記検出信号に基づいて、前記検出部が正常動作しているか否かを判定する判定手段をさらに備えたことを特徴とする真空ポンプ。
  10. 請求項1〜9のいずれか一項に記載の真空ポンプにおいて、
    前記ロータは、モータ回転子が設けられたシャフトと、そのシャフトの端部に設けられるとともにポンプ排気機能部が形成されたポンプロータ部とから成り、
    前記被検体の各々を、前記端部に設けたことを特徴とする真空ポンプ。
JP2006008606A 2006-01-17 2006-01-17 真空ポンプ Active JP4725328B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008606A JP4725328B2 (ja) 2006-01-17 2006-01-17 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008606A JP4725328B2 (ja) 2006-01-17 2006-01-17 真空ポンプ

Publications (2)

Publication Number Publication Date
JP2007192042A true JP2007192042A (ja) 2007-08-02
JP4725328B2 JP4725328B2 (ja) 2011-07-13

Family

ID=38447951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008606A Active JP4725328B2 (ja) 2006-01-17 2006-01-17 真空ポンプ

Country Status (1)

Country Link
JP (1) JP4725328B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175142A (ja) * 2007-12-27 2009-08-06 Edwards Kk 物理量計測装置及び該物理量計測装置を備えた磁気浮上装置、真空ポンプ
JP2010096098A (ja) * 2008-10-16 2010-04-30 Shimadzu Corp 真空ポンプ
JP2011089845A (ja) * 2009-10-21 2011-05-06 Nippon Steel Corp 鋳片状態測定装置、鋳片状態測定方法、及びコンピュータプログラム
JP2011089852A (ja) * 2009-10-21 2011-05-06 Nippon Steel Corp 鋳片表面温度導出装置及び鋳片表面温度導出方法
CN113915157A (zh) * 2021-12-13 2022-01-11 天津飞旋科技股份有限公司 磁悬浮分子泵的断电测试方法、装置及主控设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018189A (ja) * 1998-06-30 2000-01-18 Ebara Corp ターボ分子ポンプ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018189A (ja) * 1998-06-30 2000-01-18 Ebara Corp ターボ分子ポンプ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175142A (ja) * 2007-12-27 2009-08-06 Edwards Kk 物理量計測装置及び該物理量計測装置を備えた磁気浮上装置、真空ポンプ
JP2013101145A (ja) * 2007-12-27 2013-05-23 Edwards Kk 真空ポンプ
JP2015129521A (ja) * 2007-12-27 2015-07-16 エドワーズ株式会社 真空ポンプ
JP2010096098A (ja) * 2008-10-16 2010-04-30 Shimadzu Corp 真空ポンプ
JP2011089845A (ja) * 2009-10-21 2011-05-06 Nippon Steel Corp 鋳片状態測定装置、鋳片状態測定方法、及びコンピュータプログラム
JP2011089852A (ja) * 2009-10-21 2011-05-06 Nippon Steel Corp 鋳片表面温度導出装置及び鋳片表面温度導出方法
CN113915157A (zh) * 2021-12-13 2022-01-11 天津飞旋科技股份有限公司 磁悬浮分子泵的断电测试方法、装置及主控设备

Also Published As

Publication number Publication date
JP4725328B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4710322B2 (ja) 真空ポンプ
US7417398B2 (en) Vacuum pump
US8690525B2 (en) Vacuum pump
JP4725328B2 (ja) 真空ポンプ
US7392713B2 (en) Monitoring system for turbomachinery
US7564670B2 (en) Vacuum pump
US20150308859A1 (en) method for monitoring a rotation of a compressor wheel
EP3128332A2 (en) Magnetic sensing system and method for detecting shaft speed
US20130229079A1 (en) Magnetic bearing control device and exhaust pump having magnetic bearing control device
KR102542137B1 (ko) 로터 위치 검출 장치 및 그 방법
US7965054B2 (en) Vacuum pump
JP2012082803A (ja) 遠心圧縮機およびその運転監視方法
JP4525267B2 (ja) 真空ポンプ
JP2009013825A (ja) 真空ポンプ
KR20170085039A (ko) 진공 펌프 및 이 진공 펌프의 이상 원인 추정 방법
JP4941047B2 (ja) 回転真空ポンプ
JP2011226399A (ja) 真空ポンプ
JP5267135B2 (ja) 真空ポンプ
US20110044826A1 (en) Vacuum pump
JP5353720B2 (ja) 真空ポンプ
EP1167772A1 (en) Vacuum pump
CN109075736A (zh) 电动机的控制系统
JP2021179187A (ja) 真空ポンプ
JP4978203B2 (ja) 真空ポンプ
US11768087B2 (en) Detection device, rotary machine, and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R151 Written notification of patent or utility model registration

Ref document number: 4725328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3