JP2007191746A - Fire-resistant steel material superior in weldability - Google Patents

Fire-resistant steel material superior in weldability Download PDF

Info

Publication number
JP2007191746A
JP2007191746A JP2006009992A JP2006009992A JP2007191746A JP 2007191746 A JP2007191746 A JP 2007191746A JP 2006009992 A JP2006009992 A JP 2006009992A JP 2006009992 A JP2006009992 A JP 2006009992A JP 2007191746 A JP2007191746 A JP 2007191746A
Authority
JP
Japan
Prior art keywords
less
steel material
strength
value
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006009992A
Other languages
Japanese (ja)
Other versions
JP4656416B2 (en
Inventor
Yoshiomi Okazaki
喜臣 岡崎
Toshio Murakami
俊夫 村上
Eiichi Tamura
栄一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006009992A priority Critical patent/JP4656416B2/en
Priority to CNA2006101274682A priority patent/CN101003881A/en
Priority to KR1020070005220A priority patent/KR20070076528A/en
Publication of JP2007191746A publication Critical patent/JP2007191746A/en
Application granted granted Critical
Publication of JP4656416B2 publication Critical patent/JP4656416B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire-resistant steel material having both of excellent fire resistance and weldability in spite of high strength of a 50 to 60 kilogram grade (tensile strength of 490 to 590 MPa at room temperature). <P>SOLUTION: The fire-resistant steel material comprises, by mass%, more than 0.02 but 0.15% or less C, 0.1-1.0% Si, 1.0-2.0% Mn, 0.020% or less P, 0.010% or less S, 0.005-0.050% Al, 0.015-0.10% Ti, 0.2-2.0% Cr, 0.002-0.010% N, 0.0005-0.0050% B, 0% or more but less than 0.3% Mo, 0% or more but less than 0.005% Nb, 0% or more but less than 0.005% V, while controlling the following TS value into 0 to 0.10% and the following CS value into 0.12 to 0.22: TS=[Ti]-3.4×[N], and CS=6.4×[C]-1.4[Ti]+0.004×[Cr]+3.2×[N], (wherein [X] represents mass% of an element (X)), and the balance Fe with unavoidable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、火災などの高温に曝される可能性のある建築構造材などに適した耐火鋼材に関する。   The present invention relates to a refractory steel material suitable for, for example, a building structure material that may be exposed to a high temperature such as a fire.

一般に構造用鋼材は、室温(常温)では十分な強度が確保できるように設計されているが、500℃以上の高温状態になると大幅に強度が低下する。このため、火災等により高温に曝される建築構造用鋼材では、高温状態で脆くなって、構造物が倒壊したり著しく変形することがないように、鋼材に耐火被覆が施される。
このような耐火被覆は、建築コストを高め、また工期の長期化を招くことにもなるので、近年、この種の耐火被覆を施さなくとも高温でも強度を維持する耐火鋼材が開発されてきた。例えば、特公平4−50362号公報(特許文献1)には、Mo、Nb、V等の微細炭化物により析出強化した鋼材が記載されている。しかし、このような析出強化元素により強化した鋼材は、建築用鋼材として要求される溶接性、特にHAZ靭性を低下させるという問題があった。
In general, structural steel materials are designed so that sufficient strength can be secured at room temperature (normal temperature), but the strength is significantly reduced when the steel is in a high temperature state of 500 ° C. or higher. For this reason, in steel materials for building structures that are exposed to high temperatures due to fire or the like, the steel materials are provided with a fireproof coating so that the steel materials do not become brittle at high temperatures and the structure does not collapse or deform significantly.
Since such a fireproof coating increases the construction cost and leads to a prolonged construction period, in recent years, a fireproof steel material has been developed that maintains strength even at high temperatures without applying this type of fireproof coating. For example, Japanese Patent Publication No. 4-50362 (Patent Document 1) describes a steel material that is precipitation strengthened by fine carbides such as Mo, Nb, and V. However, the steel material strengthened with such a precipitation strengthening element has a problem of reducing weldability, particularly HAZ toughness, required as a steel material for construction.

これに対して、出願人は、特開2002−249854号公報(特許文献2)に記載されているように、高温でのCuの析出を活用し、前記Mo等の元素を低減した耐火鋼材を提案した。この鋼材により、溶接入熱5kJ/mm程度の溶接に対応できるようになったが、溶接施工効率低減の観点から一層の大入熱溶接が望まれている今日においては、十分な溶接性が得られているとは言えない。   In contrast, as described in Japanese Patent Application Laid-Open No. 2002-249854 (Patent Document 2), the applicant uses a refractory steel material in which Cu and other elements such as Mo are reduced using precipitation of Cu at a high temperature. Proposed. This steel material has made it possible to cope with welding with a heat input of about 5 kJ / mm, but sufficient weldability is obtained in the present day when higher heat input welding is desired from the viewpoint of reducing welding work efficiency. It cannot be said that it is done.

また、大入熱溶接に対応できる耐火鋼材として、特開2001−262269号公報(特許文献3)には、酸化物とTiNの複合介在物を活用することにより、HAZ靭性を改善したMo含有耐火鋼材が提案されているが、HAZ靭性の改善、特に60キロ級の高強度鋼材のHAZ靭性レベルが不十分で、また酸化物系介在物を均一に分散させることが製造上難しいという課題もある。   In addition, as a refractory steel material that can cope with high heat input welding, Japanese Patent Laid-Open No. 2001-262269 (Patent Document 3) discloses a Mo-containing refractory with improved HAZ toughness by utilizing a composite inclusion of oxide and TiN. Although steel materials have been proposed, there is a problem that the HAZ toughness is improved, in particular, the HAZ toughness level of high-strength steel materials of 60 kg class is insufficient, and it is difficult to manufacture oxide inclusions uniformly. .

一方、建築分野向けの60キロ級の高HAZ靭性鋼材として、特開2005−36295号公報(特許文献4)には、溶接HAZの硬化性を表す炭素当量(CEN )、平均アスペクト比を規定し、島状マルテンサイト相、ε−Cu相を基地中に分散させた大入熱建築用鋼材が提案されているが、製造段階での組織制御が複雑である上、高温強度(高温耐力)が低いため、十分な耐火性を有しているとは言えない。
特公平4−50362号公報 特開2002−249854号公報 特開2001−262269号公報 特開2005−36295号公報
On the other hand, as a 60 kg-class high HAZ toughness steel material for the construction field, Japanese Patent Application Laid-Open No. 2005-36295 (Patent Document 4) defines the carbon equivalent (CE N ) and average aspect ratio representing the curability of welded HAZ. However, high heat input architectural steel materials in which island-like martensite phase and ε-Cu phase are dispersed in the matrix have been proposed, but the structure control in the manufacturing stage is complicated and high temperature strength (high temperature proof stress) Therefore, it cannot be said that it has sufficient fire resistance.
Japanese Patent Publication No. 4-50362 JP 2002-249854 A JP 2001-262269 A JP-A-2005-36295

上記のとおり、十分な高温強度(耐火性)と溶接性(溶接HAZ靭性)とを兼備した高強度鋼材は未だ開発されておらず、本発明は50〜60キロ級(室温での引張強さ490〜590MPa)の高強度でありながら、優れた耐火性と溶接性とを兼備した耐火鋼材を提供することを目的とする。   As described above, a high-strength steel material that has both sufficient high-temperature strength (fire resistance) and weldability (weld HAZ toughness) has not yet been developed, and the present invention has a 50-60 kg class (tensile strength at room temperature). An object of the present invention is to provide a refractory steel material having both excellent fire resistance and weldability while having a high strength of 490 to 590 MPa.

本発明の耐火鋼材は、化学成分が、mass%で、C:0.02超〜0.15%、Si:0.1〜1.0%、Mn:1.0〜2.0%、P:0.020%以下、S:0.010%以下、Al:0.005〜0.050%、Ti:0.015〜 0.10%、Cr:0.2〜2.0%、N:0.002〜0.010%、B:0.0005〜0.0050%、Mo:0〜0.30%未満、Nb:0〜0.005%未満、V:0〜0.005%未満を含み、下記TS値が0〜0.10%、CS値が0.12〜0.22%とされ、残部Feおよび不可避的不純物からなるものである。但し、[X]は元素Xのmass%を示す。
TS=[Ti]−3.4×[N]
CS=6.4×[C]−1.4[Ti]+0.004×[Cr]+3.2×[N]
In the refractory steel material of the present invention, the chemical component is mass%, C: more than 0.02 to 0.15%, Si: 0.1 to 1.0%, Mn: 1.0 to 2.0%, P : 0.020% or less, S: 0.010% or less, Al: 0.005 to 0.050%, Ti: 0.015 to 0.10%, Cr: 0.2 to 2.0%, N: 0.002 to 0.010%, B: 0.0005 to 0.0050%, Mo: 0 to less than 0.30%, Nb: 0 to less than 0.005%, V: 0 to less than 0.005% In addition, the following TS value is 0 to 0.10%, CS value is 0.12 to 0.22%, and the balance is composed of the remaining Fe and inevitable impurities. However, [X] indicates mass% of the element X.
TS = [Ti] -3.4 × [N]
CS = 6.4 × [C] −1.4 [Ti] + 0.004 × [Cr] + 3.2 × [N]

本発明の耐火鋼材によれば、溶接HAZのベイナイト組織を粗大化するMo、Nb、Vの3元素の含有量を制限したので、HAZ靭性を確保することができる。また、S量を抑制した上、TS値が0以上、0.10以下となる範囲で、TiをNに対して十分に添加し、かつCS値を0.12〜0.22%の範囲でCrを適量添加したので、高温時に先ずTiCが微細析出させ、それを核としてCr炭化物が微細析出し、さらにBを適量添加することで、粗大化し易いといわれているCr炭化物の粗大化を抑制し、前記TiCの微細析出と相まってCr炭化物の微細化により優れた高温強度(高温耐力)を確保することができる。   According to the refractory steel material of the present invention, since the contents of the three elements Mo, Nb, and V that coarsen the bainite structure of the welded HAZ are limited, HAZ toughness can be ensured. In addition, the amount of S is suppressed, Ti is sufficiently added to N in the range where the TS value is 0 or more and 0.10 or less, and the CS value is in the range of 0.12 to 0.22%. Since an appropriate amount of Cr is added, TiC is first finely precipitated at a high temperature, Cr carbide is finely precipitated as a core, and addition of an appropriate amount of B suppresses the coarsening of Cr carbide, which is said to be easily coarsened. In combination with the fine precipitation of TiC, excellent high temperature strength (high temperature proof stress) can be ensured by making the Cr carbide fine.

上記耐火鋼材において、HAZ靭性向上元素としてA群(Zr:0.005〜0.050%、Ca,Mg,REM(希土類元素):各々0.0005〜0.0050%)の元素から、あるいは高温強度向上元素としてB群(Cu,Ni:各々0.1〜2.0%、但しAS値(=[Mn]+[Ni]+2*[Cu]):4.5%以下)の元素から、1種以上の元素をさらに添加することができる。   In the above-mentioned refractory steel material, from an element of Group A (Zr: 0.005 to 0.050%, Ca, Mg, REM (rare earth element): 0.0005 to 0.0050% each) as a HAZ toughness improving element or at a high temperature From elements of group B (Cu, Ni: 0.1 to 2.0% each, but AS value (= [Mn] + [Ni] + 2 * [Cu]): 4.5% or less) as strength improving elements One or more elements can be further added.

本発明の耐火鋼材によれば、溶接HAZ組織を粗大化し、その靭性を劣化させるMo、Nb、Vの添加を抑制しつつ、Ti、Cr、Bの所定量の添加により、これらの炭化物を高温下で微細析出させることができ、優れた溶接性と高温強度(高温耐力)を備える。このため、耐火鋼材として好適であり、その製造方法も容易で、生産性も良好である。   According to the refractory steel material of the present invention, these carbides are heated to a high temperature by adding a predetermined amount of Ti, Cr, and B while suppressing the addition of Mo, Nb, and V, which coarsens the weld HAZ structure and degrades its toughness. It can be finely deposited below and has excellent weldability and high temperature strength (high temperature proof stress). For this reason, it is suitable as a refractory steel material, its manufacturing method is easy, and productivity is also good.

まず、本発明の耐火鋼材の化学成分について説明する。以下、単位はmass%である。C:0.02超〜0.15%
Cは、強化元素として添加される。0.02%以下では490MPa以上の強度を確保することが困難となり、一方0.15%を超えるとHAZ中の硬質のMA組織(Martensite Austenite Constituent マルテンサイトとオーステナイトとの混合組織)が増加するためHAZ靭性が低下する。このため、C量は0.02%超、好ましくは0.03%以上とし、その上限を0.15%、好ましくは0.12%とする。
First, the chemical components of the refractory steel material of the present invention will be described. Hereinafter, the unit is mass%. C: more than 0.02 to 0.15%
C is added as a strengthening element. If it is 0.02% or less, it becomes difficult to secure a strength of 490 MPa or more. On the other hand, if it exceeds 0.15%, the hard MA structure (mixed structure of martensite and austenite) in HAZ increases. HAZ toughness decreases. Therefore, the C content is more than 0.02%, preferably 0.03% or more, and the upper limit is 0.15%, preferably 0.12%.

Si:0.1〜1.0%
Siは、強度の確保及び脱酸のために添加される。0.1%未満ではこれらの効果が過少であり、一方1.0%を超えると硬質MA組織が増加し、HAZ靭性が劣化する。このため、Siの下限を0.1%、好ましくは0.12%とし、一方その上限を1.0%、好ましくは0.80%とする。
Si: 0.1 to 1.0%
Si is added for securing strength and deoxidation. If it is less than 0.1%, these effects are insufficient, while if it exceeds 1.0%, the hard MA structure increases and the HAZ toughness deteriorates. For this reason, the lower limit of Si is 0.1%, preferably 0.12%, while the upper limit is 1.0%, preferably 0.80%.

Mn:1.0〜2.0%
Mnは、強度確保のために添加される。1.0%未満では所定強度が得られず、一方2.0%を超えると、HAZの強度が高くなり過ぎて、延性が返って劣化するようになる。このため、Mnの下限を1.0%、好ましくは1.2%とし、一方その上限を2.0%、好ましくは1.8%とする。
Mn: 1.0-2.0%
Mn is added to ensure strength. If it is less than 1.0%, the predetermined strength cannot be obtained. On the other hand, if it exceeds 2.0%, the strength of the HAZ becomes too high, and the ductility returns and deteriorates. For this reason, the lower limit of Mn is 1.0%, preferably 1.2%, while the upper limit is 2.0%, preferably 1.8%.

P:0.020%以下
Pは粒界破壊を助長する不純物元素であり、HAZ靭性確保のため0.020%以下、好ましくは0.012%以下に止める。
P: 0.020% or less P is an impurity element that promotes grain boundary fracture, and is 0.020% or less, preferably 0.012% or less, to ensure HAZ toughness.

S:0.010%以下
SはHAZの高温割れを助長する不純物元素であり、またTiと結びついてTi量を低下させる。HAZ靭性確保及びTi量低下防止の点から0.010%以下、好ましくは0.008%に止める。
S: 0.010% or less S is an impurity element that promotes hot cracking of HAZ, and is combined with Ti to reduce the amount of Ti. From the viewpoints of securing HAZ toughness and preventing a decrease in Ti amount, it is 0.010% or less, preferably 0.008%.

Al:0.005〜0.050%
Alは、脱酸元素として添加される。0.005%未満では脱酸が不十分となるため、延性が低下し、一方0.050%超になるとSiと同様、HAZ靭性が劣化するようになる。このため、Al量の下限を0.005%、好ましくは0.010%とし、その上限を0.050%、好ましくは0.040%とする。
Al: 0.005 to 0.050%
Al is added as a deoxidizing element. If it is less than 0.005%, deoxidation becomes insufficient, so that the ductility is lowered. On the other hand, if it exceeds 0.050%, the HAZ toughness deteriorates as in the case of Si. For this reason, the lower limit of the Al amount is 0.005%, preferably 0.010%, and the upper limit is 0.050%, preferably 0.040%.

Ti:0.015〜0.10%
Tiは窒化物を形成することでHAZ靭性を向上させる。また微細なTiCを生成し、これを核としてCr炭化物の微細析出化に寄与し、これらの作用により高温強度を向上させる。Ti量が0.015%未満ではこれらの効果が過少であり、一方0.10%を超えるとHAZ靭性が返って低下するようになる。このため、Ti量の下限を0.015%、好ましくは0.020%とし、その上限を0.10%、好ましくは0.080%とする。
Ti: 0.015-0.10%
Ti improves the HAZ toughness by forming a nitride. Moreover, fine TiC is produced | generated and it contributes to fine precipitation of Cr carbide | carbonized_material using this as a nucleus, and high temperature strength is improved by these effect | actions. If the amount of Ti is less than 0.015%, these effects are too small. On the other hand, if it exceeds 0.10%, the HAZ toughness returns and decreases. For this reason, the lower limit of the Ti amount is 0.015%, preferably 0.020%, and the upper limit is 0.10%, preferably 0.080%.

Cr:0.2〜2.0%
CrはCr炭化物を形成することにより高温強度の確保に寄与する。0.2%未満ではかかる作用が過少となり、一方2.0%を超えるとCr炭化物の粗大化を免れず、返って高温強度が低下するようになる。このため、Cr量の下限を0.2%、好ましくは0.5%とし、一方その上限を2.0%、好ましくは1.5%とする。
Cr: 0.2 to 2.0%
Cr contributes to securing high temperature strength by forming Cr carbide. If it is less than 0.2%, such an action is insufficient. On the other hand, if it exceeds 2.0%, the coarsening of Cr carbide is unavoidable and the high-temperature strength is lowered. For this reason, the lower limit of the Cr content is 0.2%, preferably 0.5%, while the upper limit is 2.0%, preferably 1.5%.

N:0.002〜0.010%
NはTiの一部と結びついてTiNを形成し、HAZ靭性の改善に寄与する。0.002%未満ではかかる効果が過少であり、一方0.010%を超えるとTiCの析出量が低下するようになるので高温強度が低下するようになり、また窒化物が過多となってHAZ靭性も低下するようになる。このため、N量の下限を0.0020%、好ましくは0.0025%とし、一方その上限を0.010%、好ましくは0.008%とする。
N: 0.002 to 0.010%
N combines with part of Ti to form TiN and contributes to the improvement of HAZ toughness. If it is less than 0.002%, such an effect is too small. On the other hand, if it exceeds 0.010%, the precipitation amount of TiC is lowered, so that the high-temperature strength is lowered. Toughness also decreases. For this reason, the lower limit of the N amount is 0.0020%, preferably 0.0025%, while the upper limit is 0.010%, preferably 0.008%.

B:0.0005〜0.0050%
BはCr炭化物の成長を抑制することから高温強度の向上に寄与する。0.0005%未満ではかかる効果が過少であり、一方0.0050%超ではHAZ靭性が返って低下するようになる。
B: 0.0005 to 0.0050%
Since B suppresses the growth of Cr carbide, it contributes to the improvement of high temperature strength. If it is less than 0.0005%, such an effect is insufficient. On the other hand, if it exceeds 0.0050%, the HAZ toughness returns and decreases.

Mo:0〜0.30%未満
MoはHAZのベイナイト組織を粗大化し、靭性を低下させるので少ないほうが好ましい。無添加でもよい。本発明の成分系では0.30%未満まで許容されるが、0.20%未満に止めることが好ましい。
Mo: 0 to less than 0.30% Since Mo coarsens the bainite structure of HAZ and lowers toughness, it is preferable that it be less. There may be no additive. In the component system of the present invention, it is allowed to be less than 0.30%, but is preferably limited to less than 0.20%.

Nb、V:各々0〜0.005%未満
Moと同様、HAZのベイナイト組織を粗大化し、靭性を低下させるので少ないほうが好ましい。無添加でもよい。本発明の成分系では0.005%未満まで許容されるが、0.004%以下に止めることが好ましい。
Nb and V: 0 to less than 0.005%, respectively. Like Mo, the HAZ bainite structure is coarsened and the toughness is lowered, so that the smaller one is preferable. There may be no additive. In the component system of the present invention, it is allowed to be less than 0.005%, but is preferably limited to 0.004% or less.

TS値(=[Ti]-3.4*[N]):0〜0.10%
TS値は、Ti炭化物の析出可否を示す指標である。本発明ではS量が制限されていることから、Tiはほとんど硫化物を形成することなく、大部分が炭窒化物として析出する。TS値はTi総量から窒化物として固定されたTi量を差し引いた値に該当する。TS値が0%以上でないとTiCが確保できないが、0.10%を超えるとTiCが過多となり、HAZ靭性が返って低下するようになる。このため、TS値を0%以上、0.10%以下とする。好ましくは、下限を0.01%、上限を0.08%とするのがよい。
TS value (= [Ti] -3.4 * [N]): 0 to 0.10%
The TS value is an index indicating whether Ti carbide can be precipitated. In the present invention, since the amount of S is limited, Ti hardly forms sulfides and most of them precipitate as carbonitrides. The TS value corresponds to a value obtained by subtracting the Ti amount fixed as nitride from the total Ti amount. If the TS value is not 0% or more, TiC cannot be secured, but if it exceeds 0.10%, TiC becomes excessive, and the HAZ toughness returns and decreases. For this reason, the TS value is set to 0% or more and 0.10% or less. Preferably, the lower limit is 0.01% and the upper limit is 0.08%.

CS値(=6.4*[C]-1.4[Ti]+0.004*[Cr]+3.2*[N]):0.12〜0.22%
CS値は、熱力学計算で算出したCr炭化物量と主要元素の影響を定量化したものであり、TiCとCr炭化物のバランスの指標である。0.12%未満ではCr炭化物がほとんど生成しないようになり、0.22%超ではCr炭化物が粗大化し、返って高温強度が低下するようになる。このため、CS値の下限を0.12%、好ましくは0.13%とし、その上限を0.22%、好ましくは0.20%とする。
CS value (= 6.4 * [C] -1.4 [Ti] + 0.004 * [Cr] + 3.2 * [N]): 0.12-0.22%
The CS value quantifies the amount of Cr carbide calculated by thermodynamic calculation and the influence of main elements, and is an index of the balance between TiC and Cr carbide. If it is less than 0.12%, almost no Cr carbide is generated, and if it exceeds 0.22%, the Cr carbide becomes coarse and the high-temperature strength decreases. For this reason, the lower limit of the CS value is 0.12%, preferably 0.13%, and the upper limit is 0.22%, preferably 0.20%.

本発明の耐火鋼材は、上記基本成分の他、残部Feおよび不可避的不純物よりなるが、さらにHAZ靭性向上元素としてA群(Zr,Ca,Mg,REM(希土類元素))の元素から、あるいは高温強度向上元素としてB群(Cu,Ni)の元素から、1種以上の元素を所定量添加して下記(1) 、(2) 、(3) の成分とすることができる。
(1) 基本成分+A群から1種以上の元素
(2) 基本成分+B群から1種以上の元素
(3) 上記(1) の成分+B群から1種以上の元素
The refractory steel material of the present invention is composed of the balance of Fe and unavoidable impurities in addition to the above basic components, and further from elements of Group A (Zr, Ca, Mg, REM (rare earth element)) as a HAZ toughness improving element, or at a high temperature. By adding a predetermined amount of one or more elements from the group B (Cu, Ni) elements as the strength improving elements, the following components (1), (2) and (3) can be obtained.
(1) Basic component + one or more elements from group A
(2) Basic component + one or more elements from group B
(3) Component (1) above + one or more elements from Group B

上記特性向上元素の添加量、並びにより具体的な作用について説明する。
Zr:0.005〜0.050%
Zrは窒化物の形成によりHAZ靭性を改善するので、0.005%以上の添加が好ましい。一方、0.050%超と過剰に添加すると窒化物が粗大化し、HAZ靭性が返って低下するようになる。このため、0.050%以下に止めることが望ましい。
Ca,Mg,REM:各々0.0005〜0.0050%
これらの元素は介在物の形態を球状化することによって靭性を改善する作用を有する。そのためには0.0005%以上の添加が望ましい。一方、各々0.0050%超と過剰に添加すると酸化物を形成し、HAZ靭性が返って低下するようになる。このため、0.0050%以下に止めるのがよい。
The addition amount of the above characteristic improving element and a more specific action will be described.
Zr: 0.005 to 0.050%
Zr improves HAZ toughness by forming nitrides, so 0.005% or more is preferable. On the other hand, when it is excessively added to exceed 0.050%, the nitride becomes coarse, and the HAZ toughness returns and decreases. For this reason, it is desirable to stop at 0.050% or less.
Ca, Mg, REM: 0.0005 to 0.0050% each
These elements have the effect of improving toughness by spheroidizing inclusions. Therefore, addition of 0.0005% or more is desirable. On the other hand, if added in excess of 0.0050% each, an oxide is formed, and the HAZ toughness returns and decreases. For this reason, it is good to stop at 0.0050% or less.

Cu,Ni:各々0.1〜2.0%
これらの元素はHAZ靭性に影響を与えず、強度を向上させる。各々0.1%未満では強度向上作用が過少であり、2.0%を超えて添加しても作用が飽和し、材料コスト高を招来する。このため、各々0.1%以上、2.0%以下添加することが望ましい。
Cu, Ni: 0.1 to 2.0% each
These elements do not affect the HAZ toughness and improve the strength. If the content is less than 0.1%, the effect of improving the strength is too small. If the content exceeds 2.0%, the effect is saturated, resulting in high material costs. For this reason, it is desirable to add 0.1% or more and 2.0% or less, respectively.

AS値(=[Mn]+[Ni]+2*[Cu]):4.5%以下
Cu、Niを添加する場合、上記のとおり強度向上に有効であり、60キロ級の高強度鋼を得ることができるようになるが、これらは、Mnと同様、オーステナイト安定化元素であり、過剰な添加は高温時にオーステナイト化し易くなり、高温強度が低下するようになる。このため、Ni、Cuを添加する場合、AS値を4.5%以下に止めることが望ましい。
AS value (= [Mn] + [Ni] + 2 * [Cu]): 4.5% or less When Cu and Ni are added, it is effective for improving the strength as described above. Although these can be obtained, these are austenite stabilizing elements like Mn, and excessive addition tends to austenite at a high temperature, and the high temperature strength decreases. For this reason, when adding Ni and Cu, it is desirable to stop AS value to 4.5% or less.

本発明の耐火鋼材は、上記成分を鋼を常法によって熱間圧延することによって製造される。すなわち、上記成分の鋼を溶製し、その鋼片を1100〜1200℃程度の温度に加熱した後、仕上圧延温度を850℃程度として熱間圧延を終了し、空冷により冷却することによって製造される。
このようにして製造された鋼材の組織は、フェライトおよび低温変態生成物(ベイナイトあるいは/及びマルテンサイト)からなる組織となるが、本発明の耐火鋼材はいずれの組織であってもいよい。
次に、本発明の熱延鋼板及びその製造方法を実施例を挙げてより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。
The refractory steel material of the present invention is manufactured by hot-rolling the above components with steel by a conventional method. That is, it is manufactured by melting the steel of the above components and heating the steel piece to a temperature of about 1100 to 1200 ° C., then finishing the hot rolling at a finish rolling temperature of about 850 ° C. and cooling by air cooling. The
The structure of the steel material thus manufactured is a structure composed of ferrite and a low-temperature transformation product (bainite or / and martensite), but the refractory steel material of the present invention may be any structure.
Next, the hot-rolled steel sheet and the method for producing the same according to the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

表1、表2に示す鋼種を溶製し、その鋼片を1150℃に加熱し、熱間圧延を施し、仕上圧延終了温度を850℃として圧延を終了し、空冷して板厚50mmの試験用鋼板を製作した。
各試料の鋼板を用いて、常温引張試験及び600℃における高温引張試験を行い、常温での耐力(YS)及び引張強さ(TS)並びに高温でのYSを調べた。引張試験は、JISZ2201に従って鋼板板厚の1/4部位から引張試験片を加工し、JISZ2241に従って実施した。これらの測定結果を表3に示す。常温引張強さが490MPa以上、高温YS/常温YSが75%以上が合格レベルと評価される。
Steel types shown in Table 1 and Table 2 are melted, the steel pieces are heated to 1150 ° C., hot rolled, the finish rolling finish temperature is 850 ° C., the rolling is finished, air-cooled, and the sheet thickness is 50 mm. Steel plates were manufactured.
Using the steel plate of each sample, a normal temperature tensile test and a high temperature tensile test at 600 ° C. were performed, and the yield strength (YS) and tensile strength (TS) at normal temperature and YS at high temperature were examined. The tensile test was performed in accordance with JISZ2241, by processing a tensile test piece from a ¼ portion of the steel plate thickness according to JISZ2201. These measurement results are shown in Table 3. A normal temperature tensile strength of 490 MPa or higher and a high temperature YS / normal temperature YS of 75% or higher are evaluated as acceptable levels.

また、溶接性を調べるため試料鋼板に対して熱サイクル試験を実施した。熱サイクル試験は、溶接入熱量が65kJ/cmに相当する熱サイクルとして、1400℃に加熱した後に800℃から500℃に500sec で冷却する熱サイクルを1回与えるものであり、熱サイクル試験後、鋼板より衝撃試験片を採取し、シャルピー衝撃試験(試験温度0℃)を実施し、衝撃吸収性特性吸収エネルギー(vE0)を測定した。vE0が150J以上がHAZ靭性の合格レベルと評価される。試験結果を表3に併せて示す。   In addition, a thermal cycle test was performed on the sample steel plate in order to investigate weldability. The thermal cycle test is a thermal cycle in which the heat input of welding is equivalent to 65 kJ / cm, and is given a thermal cycle that is heated to 1400 ° C. and then cooled from 800 ° C. to 500 ° C. in 500 seconds. After the thermal cycle test, An impact test piece was collected from the steel plate, subjected to a Charpy impact test (test temperature 0 ° C.), and an impact absorption characteristic absorption energy (vE 0) was measured. A vE0 of 150 J or higher is evaluated as an acceptable level of HAZ toughness. The test results are also shown in Table 3.

表3より、発明例の試料No. 1〜20は、常温引張強さが490MPa以上でありながら、高温YS/常温YSが75%以上であり、600℃における高温状態においても相当な強度が確保されていることがわかる。しかも、熱サイクル試験の結果も衝撃吸収エネルギーが150J以上確保されており、優れたHAZ靭性を兼備している。特に、Cu、NiをAS値が4.5%以下で添加した試料No. 15〜20は、常温強度が600MPa以上であるが、高い高温強度(高温耐力)が確保されており、しかもHAZ靭性にも優れている。   From Table 3, Sample Nos. 1 to 20 of the invention example have a normal temperature tensile strength of 490 MPa or more and a high temperature YS / normal temperature YS of 75% or more, and a considerable strength is ensured even in a high temperature state at 600 ° C. You can see that Moreover, as a result of the thermal cycle test, an impact absorption energy of 150 J or more is secured, and it has excellent HAZ toughness. In particular, Sample Nos. 15 to 20 to which Cu and Ni are added at an AS value of 4.5% or less have a normal temperature strength of 600 MPa or more, but a high high temperature strength (high temperature proof stress) is secured, and HAZ toughness is also achieved. Also excellent.

Figure 2007191746
Figure 2007191746

Figure 2007191746
Figure 2007191746

Figure 2007191746
Figure 2007191746

Claims (3)

化学成分が、mass%で
C:0.02超〜0.15%、Si:0.1〜1.0%、
Mn:1.0〜2.0%、P:0.020%以下、
S:0.010%以下、Al:0.005〜0.050%、
Ti:0.015〜 0.10%、Cr:0.2〜2.0%、
N:0.002〜0.010%、B:0.0005〜0.0050%、
Mo:0〜0.30%未満、Nb:0〜0.005%未満、
V:0〜0.005%未満を含み、下記TS値が0〜0.10%、CS値が0.12〜0.22%とされ、残部Feおよび不可避的不純物からなる、溶接性に優れた耐火鋼材。
TS=[Ti]−3.4×[N]
CS=6.4×[C]−1.4[Ti]+0.004×[Cr]+3.2×[N]
但し、[X]は元素Xのmass%を示す。
Chemical component is mass%, C: more than 0.02 to 0.15%, Si: 0.1 to 1.0%,
Mn: 1.0 to 2.0%, P: 0.020% or less,
S: 0.010% or less, Al: 0.005 to 0.050%,
Ti: 0.015-0.10%, Cr: 0.2-2.0%,
N: 0.002-0.010%, B: 0.0005-0.0050%,
Mo: 0 to less than 0.30%, Nb: 0 to less than 0.005%,
V: 0 to less than 0.005%, the following TS value is 0 to 0.10%, CS value is 0.12 to 0.22%, and consists of the balance Fe and inevitable impurities, excellent weldability Refractory steel.
TS = [Ti] -3.4 × [N]
CS = 6.4 × [C] −1.4 [Ti] + 0.004 × [Cr] + 3.2 × [N]
However, [X] indicates mass% of the element X.
化学成分が、さらにZr:0.005〜0.050%、Ca:0.0005〜0.0050%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0050%の1種以上を含む、請求項1に記載した耐火鋼材。   The chemical component is further Zr: 0.005 to 0.050%, Ca: 0.0005 to 0.0050%, Mg: 0.0005 to 0.0050%, REM: 0.0005 to 0.0050% The refractory steel material according to claim 1, comprising more than seeds. 化学成分が、さらにCu:0.1〜2.0%、Ni:0.1〜2.0%の1種以上を含み、かつ下記AS値が4.5%以下である、請求項1又は2に記載した耐火鋼材。
AS=[Mn]+[Ni]+2×[Cu]


The chemical component further includes one or more of Cu: 0.1 to 2.0% and Ni: 0.1 to 2.0%, and the following AS value is 4.5% or less. 2. The refractory steel material described in 2.
AS = [Mn] + [Ni] + 2 × [Cu]


JP2006009992A 2006-01-18 2006-01-18 Refractory steel with excellent weldability Expired - Fee Related JP4656416B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006009992A JP4656416B2 (en) 2006-01-18 2006-01-18 Refractory steel with excellent weldability
CNA2006101274682A CN101003881A (en) 2006-01-18 2006-09-15 Welding property excellent fire-resistant steel
KR1020070005220A KR20070076528A (en) 2006-01-18 2007-01-17 Fire-resistant steels having excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009992A JP4656416B2 (en) 2006-01-18 2006-01-18 Refractory steel with excellent weldability

Publications (2)

Publication Number Publication Date
JP2007191746A true JP2007191746A (en) 2007-08-02
JP4656416B2 JP4656416B2 (en) 2011-03-23

Family

ID=38447684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009992A Expired - Fee Related JP4656416B2 (en) 2006-01-18 2006-01-18 Refractory steel with excellent weldability

Country Status (3)

Country Link
JP (1) JP4656416B2 (en)
KR (1) KR20070076528A (en)
CN (1) CN101003881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280844A (en) * 2008-05-20 2009-12-03 Kobe Steel Ltd High-tension steel plate excellent in toughness of welding heat-affected zone and fatigue crack progressing restraint, and producing method therefor
US20150020992A1 (en) * 2012-03-23 2015-01-22 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624578A (en) * 2016-01-20 2016-06-01 广西丛欣实业有限公司 Fire resistant steel for building
CN105624577B (en) * 2016-01-20 2017-11-17 广西柳州中嘉知识产权服务有限公司 The manufacture method of Fire-resistant Steels Used in Buildings material
CN111593271B (en) * 2020-06-09 2021-09-21 首钢集团有限公司 Economical corrosion-resistant and fire-resistant steel plate, and preparation method and application thereof
CN111926245B (en) * 2020-07-10 2022-01-11 南京钢铁股份有限公司 Thin-specification anti-seismic fire-resistant steel plate with yield strength of 345MPa and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186453A (en) * 1985-02-13 1986-08-20 Kobe Steel Ltd High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS62256946A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Cr-mo steel excellent in resistance to creep embrittlement and low-temperature cracking
JPH04362156A (en) * 1991-06-05 1992-12-15 Sumitomo Metal Ind Ltd Steel excellent in fire resistance and toughness in welded joint part
JPH09137218A (en) * 1995-11-13 1997-05-27 Kawasaki Steel Corp Manufacture of wide flange shape for building construction
JP2001335883A (en) * 2000-05-24 2001-12-04 Kobe Steel Ltd High tensile steel sheet excellent in weldability
JP2003171730A (en) * 1999-12-08 2003-06-20 Nkk Corp Wear resistant steel having delayed fracture resistance, and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186453A (en) * 1985-02-13 1986-08-20 Kobe Steel Ltd High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPS62256946A (en) * 1986-04-30 1987-11-09 Nippon Kokan Kk <Nkk> Cr-mo steel excellent in resistance to creep embrittlement and low-temperature cracking
JPH04362156A (en) * 1991-06-05 1992-12-15 Sumitomo Metal Ind Ltd Steel excellent in fire resistance and toughness in welded joint part
JPH09137218A (en) * 1995-11-13 1997-05-27 Kawasaki Steel Corp Manufacture of wide flange shape for building construction
JP2003171730A (en) * 1999-12-08 2003-06-20 Nkk Corp Wear resistant steel having delayed fracture resistance, and production method therefor
JP2001335883A (en) * 2000-05-24 2001-12-04 Kobe Steel Ltd High tensile steel sheet excellent in weldability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280844A (en) * 2008-05-20 2009-12-03 Kobe Steel Ltd High-tension steel plate excellent in toughness of welding heat-affected zone and fatigue crack progressing restraint, and producing method therefor
US20150020992A1 (en) * 2012-03-23 2015-01-22 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel
US10036085B2 (en) * 2012-03-23 2018-07-31 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel
US10822681B2 (en) 2012-03-23 2020-11-03 Salzgitter Flachstahl Gmbh Non-scaling heat-treatable steel and method for producing a non-scaling component from said steel

Also Published As

Publication number Publication date
KR20070076528A (en) 2007-07-24
CN101003881A (en) 2007-07-25
JP4656416B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
US20060016526A1 (en) High-strength steel for welded structures excellent in high temperature strength and method of production of the same
TWI418641B (en) High-strength steel plate and producing method thereof
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5849846B2 (en) Refractory steel and manufacturing method thereof
JP2012031511A (en) Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
JP4656417B2 (en) Low yield ratio refractory steel
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
JP4656416B2 (en) Refractory steel with excellent weldability
JP4571915B2 (en) Refractory thick steel plate and manufacturing method thereof
JPWO2007091725A1 (en) High strength rolled steel for fireproofing and method for producing the same
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP5170212B2 (en) Method for producing high-tensile steel with high yield point
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2008144216A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP4539100B2 (en) Super high heat input welded heat affected zone
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP2009179868A (en) High tensile strength steel plate having excellent weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees