JP2007186799A - Copper or copper-based alloy with excellent press-workability and manufacturing method therefor - Google Patents

Copper or copper-based alloy with excellent press-workability and manufacturing method therefor Download PDF

Info

Publication number
JP2007186799A
JP2007186799A JP2007073983A JP2007073983A JP2007186799A JP 2007186799 A JP2007186799 A JP 2007186799A JP 2007073983 A JP2007073983 A JP 2007073983A JP 2007073983 A JP2007073983 A JP 2007073983A JP 2007186799 A JP2007186799 A JP 2007186799A
Authority
JP
Japan
Prior art keywords
diffraction intensity
copper
cross
ray diffraction
processing direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007073983A
Other languages
Japanese (ja)
Other versions
JP5017719B2 (en
Inventor
Koichi Hatakeyama
浩一 畠山
Akira Sugawara
章 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2007073983A priority Critical patent/JP5017719B2/en
Publication of JP2007186799A publication Critical patent/JP2007186799A/en
Application granted granted Critical
Publication of JP5017719B2 publication Critical patent/JP5017719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based alloy with excellent press-workability out of which a small-sized connector, switch, and relay are stamped into pre-determined shapes by high-speed press forming process, and a manufacturing method therefor. <P>SOLUTION: The copper-based alloy excellent in press-workability and its manufacturing method are characterized in that the total of diffracted intensities of ä111} and ä222} is twice or more of the diffracted intensity of ä200} in surface X-ray diffraction of materials. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プレス加工性に優れた銅または銅基合金およびその製造方法に関し、
詳しくは民生用製品,例えば半導体用リードフレームの原板、情報・通信用の狭
ピッチコネクタの原板および小型リレーの原板等を構成するプレス加工性に優れ
た銅基合金およびその製造方法に関するものである。
The present invention relates to copper or a copper-based alloy excellent in press workability and a method for producing the same,
More specifically, the present invention relates to a copper-based alloy excellent in press workability constituting a consumer product, for example, a semiconductor lead frame master, an information / communication narrow-pitch connector master and a small relay master, and a manufacturing method thereof. .

家電製品、情報通信機器や自動車用部品の高密度実装化に伴い、コネクタ、ス
イッチ、リレー等の小型化が進み、これらを構成する材料も薄肉化、細線化する
傾向にある。
これらの部品は、金型を用いた高速のプレスにより打抜き加工されることが常
であり、プレス加工の際、材料は金型のパンチによりせん断変形を生じた後に、
刃先からのクラック発生によって、破断変形を生じて所定の形状に打抜かれる。
With the high-density mounting of home appliances, information communication devices, and automotive parts, connectors, switches, relays, and the like have been miniaturized, and the materials constituting them tend to be thinner and thinner.
These parts are usually stamped by a high-speed press using a mold, and after pressing, the material is subjected to shear deformation by a punch of the mold.
Due to the occurrence of cracks from the cutting edge, fracture deformation occurs, and the die is punched into a predetermined shape.

しかし、プレスのショット数が増すにつれて、金型のパンチの刃先の磨耗が進
み、その結果として、刃先からのクラック発生が不均一になり、破断形状が乱れ
て、具体的にはせん断帯と破断帯の段差が大きくなったり、大きなバリが発生し
たり、破断により生じた材料の大きなカスが発生して、所定の製品形状を保てな
くなる。
However, as the number of press shots increases, wear of the die punch blade edge advances, and as a result, crack generation from the blade edge becomes uneven, the fracture shape is disturbed, specifically, the shear band and fracture The step of the band becomes large, large burrs are generated, and large waste of material generated by fracture is generated, so that a predetermined product shape cannot be maintained.

従来、金型寿命を向上させる対策として、パンチの材質の向上、プレス潤滑油
による潤滑性の改善や、各々の銅基合金に適したクリアランスの設定等により対
応してきたが、画期的な改善は実現できなかった。
Conventionally, measures to improve the mold life have been dealt with by improving the material of the punch, improving the lubricity by press lubricant, and setting the clearance suitable for each copper base alloy. Could not be realized.

上記のような従来技術の問題点を解決すべく鋭意検討を行なったところ、金型
を用いた高速プレス成形加工によって、所定の形状に打抜かれる小型のコネクタ,
スイッチ,リレー用等の材料では、特にプレス加工性が優れていることが問題点
を解決すべき特性上の重要な課題であるとの知見を得た。
すなわち、材料の結晶方位を制御することで、プレス加工性に優れた銅基合金
が得られることがわかったので、本発明はその合金とその製造方法を提案するも
のである。
As a result of diligent research to solve the above-mentioned problems of the prior art, a small connector that is punched into a predetermined shape by high-speed press molding using a mold,
In materials for switches, relays, etc., it was found that excellent press workability is an important characteristic problem that should solve the problem.
That is, it has been found that a copper-based alloy having excellent press workability can be obtained by controlling the crystal orientation of the material, and therefore the present invention proposes the alloy and its manufacturing method.

本発明は、銅または銅基合金材料について、特に材料のRD面(板材の圧延方
向に垂直な断面。以下、RD面という。)とTD面(板材の圧延方向に平行な断面。
以下、TD面という。)に着目してX線回折を行ない、得られる結晶方位のうち
特定の方向の強度を制御することで、プレス加工性を向上させた銅基合金材料お
よびその製造方法を提供するものである。なおここで、X線回折強度とは、例え
ばX線回折法で測定される材料の結晶方位の積分強度を示すものである。
The present invention relates to a copper or copper-based alloy material, in particular, an RD surface (cross section perpendicular to the rolling direction of the plate material; hereinafter referred to as RD surface) and a TD surface (cross section parallel to the rolling direction of the plate material).
Hereinafter, it is referred to as a TD surface. The copper-based alloy material with improved press workability and a method for manufacturing the same are provided by performing X-ray diffraction focusing on the above) and controlling the strength in a specific direction among the obtained crystal orientations. Here, the X-ray diffraction intensity indicates, for example, the integrated intensity of the crystal orientation of the material measured by the X-ray diffraction method.

すなわち、本発明は
1. 材料の断面のX線回折強度においてS≧2であることを特徴とするプレス加
工性に優れた銅または銅基合金。
ただし、

Figure 2007186799
I{111}は{111}の回折強度、I{222}は{222}の回折強度、
I{200}は{200}の回折強度である。 That is, the present invention is 1. Copper or a copper-based alloy excellent in press workability, wherein S ≧ 2 in the X-ray diffraction intensity of the cross section of the material.
However,
Figure 2007186799
I {111} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222},
I {200} is the diffraction intensity of {200}.

2. 材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ 材料
の加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD×STD≧16
であることを特徴とするプレス加工性に優れた銅または銅基合金。ただし

Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。 2. S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material, and S TD ≧ 4 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, and S RD × S TD ≧ 16
A copper or copper base alloy excellent in press workability, characterized by being. However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.

3. Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから選ばれる1種ま
たは2種以上を総量で0.01〜35wt%含み、残部Cuおよび不可避的不純物か
らなる銅基合金で、かつ材料の加工方向に垂直な断面のX線回折強度においてS
RD≧2 かつ 材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、
RD×STD≧16であることを特徴とするプレス加工性に優れた銅または銅基
合金。
ただし、

Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。 3. A copper-based alloy comprising 0.01 to 35 wt% of one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt%, the balance being Cu and inevitable impurities, S in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material
RD ≧ 2 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, S TD ≧ 4,
A copper or copper-based alloy having excellent press workability, wherein S RD × S TD ≧ 16.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.

4.Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから選ばれる1種ま
たは2種以上を総量で0.01〜35wt%含み、残部Cuおよび不可避的不純物か
らなる銅基合金のインゴットを圧延、または熱間圧延と熱処理を繰り返すことで
所定の板厚にした材料を350〜750℃の温度で熱処理を施して、材料の加工
方向に垂直な断面のX線回折強度において1≦SRD≦3かつ材料の加工方向に
平行な断面のX線回折強度で1≦STD≦3として、しかる後に圧延加工率3
0%以上、または50%以上、の冷間圧延と、再結晶温度未満の低温焼鈍を組み
合わせることで、材料の加工方向に垂直な断面のX線回折強度においてSRD
2 かつ 材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD
×STD≧16であることを特徴とするプレス加工性に優れた銅または銅基合金。
ただし、

Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。 4. An ingot of a copper-based alloy containing one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt%, and the balance being Cu and inevitable impurities Or by subjecting a material having a predetermined plate thickness by repeating hot rolling and heat treatment to a heat treatment at a temperature of 350 to 750 ° C., the X-ray diffraction intensity of the cross section perpendicular to the material processing direction is 1 ≦ S RD ≦ 3 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material is set to 1 ≦ S TD ≦ 3.
By combining cold rolling at 0% or more or 50% or more and low-temperature annealing at a temperature lower than the recrystallization temperature, in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material, S RD
2 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, S TD ≧ 4, and S RD
XS TD ≧ 16 Copper or copper-based alloy excellent in press workability.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.

以下に、本発明の内容を具体的に説明する。
本発明は、銅または銅基合金について、特に材料の加工方向に垂直な断面と平
行な断面に着目してX線回折を行い、得られる結晶方位のうち特定の方位の強度
を制御することでプレス加工性を向上させるものである。
The contents of the present invention will be specifically described below.
The present invention performs X-ray diffraction on copper or a copper-based alloy, focusing particularly on a cross section perpendicular to the processing direction of the material and controlling the intensity of a specific orientation among the obtained crystal orientations. This improves press workability.

まず、プレス加工に際して、材料のせん断変形を生じた時に、刃先からのクラ
ック発生を均一にするためには、結晶方位をある一定の方位にそろえることが大
切であり、特に、断面の結晶方位は{111}にそろっている方がプレス断面の
形状が良好である。一方、断面に他の面、特に{200}面が多く存在すると、
せん断変形を生じた時に発生したクラックの伸展方向がプレスの方向に対して2
0°以上の角度になってしまい、その結果として刃先の磨耗を促進してしまう
こと、また、破断により発生した材料の大きなカスが刃先に付着して刃先の磨耗
を促進してしまう。従って、{200}面が少ない方が、プレス断面の形状が良
好であり、刃先の磨耗を抑制することができる。
First of all, it is important to align the crystal orientation to a certain orientation in order to make the crack generation from the blade uniform when the material undergoes shear deformation during press working. The shape of the press cross section is better when aligned with {111}. On the other hand, if there are many other surfaces, especially {200} surfaces in the cross section,
The extension direction of cracks generated when shear deformation occurs is 2 with respect to the press direction.
The angle becomes 0 ° or more, and as a result, the wear of the cutting edge is promoted, and a large residue of material generated by breakage adheres to the cutting edge and promotes the wear of the cutting edge. Therefore, the smaller the {200} plane, the better the cross-sectional shape of the press, and the wear of the cutting edge can be suppressed.

材料の加工方向に垂直な断面をRD面、平行な断面をTD面と表現する。RD
面およびTD面のX線回折を行い、{111}の回折強度 I{111}、{2
22}の回折強度 I{222}、{200}の回折強度 I{200}を測定し、

Figure 2007186799
なるパラメーターSを導入し、RD面について測定したSをSRD、TD面につ
いて測定したSをSTDとすると、SRD≧2 かつ STD≧4で、かつ SRD×STD
≧16のときは、プレスで打抜いた端子の形状が良好であった。 A cross section perpendicular to the processing direction of the material is expressed as an RD plane, and a parallel cross section is expressed as a TD plane. RD
X-ray diffraction of the surface and TD surface, and {111} diffraction intensity I {111}, {2
22} diffraction intensity I {222}, {200} diffraction intensity I {200},
Figure 2007186799
S RD and S TD ≧ 4, and S RD × S TD , where S RD is S RD and S TD is S measured for the RD surface, and S TD is S TD
When ≧ 16, the shape of the terminal punched out by the press was good.

一方、
RD≧2 かつ STD≧4 かつ SRD×STD<16のとき、
RD≧2 かつ STD<4 かつ SRD×STD<16のとき、
RD≧2 かつ STD<4 かつ SRD×STD≧16のとき、
RD<2 かつ STD≧4 かつ SRD×STD<16のとき、
RD<2 かつ STD≧4 かつ SRD×STD≧16のとき、
RD<2 かつ STD<4 かつ SRD×STD<16のときは、
プレスのショット数が増すと、刃先の磨耗が進み、打抜いた端子の形状が悪くな
った。
on the other hand,
When S RD ≧ 2 and S TD ≧ 4 and S RD × S TD <16,
When S RD ≧ 2 and S TD <4 and S RD × S TD <16,
When S RD ≧ 2 and S TD <4 and S RD × S TD ≧ 16,
When S RD <2 and S TD ≧ 4 and S RD × S TD <16,
When S RD <2 and S TD ≧ 4 and S RD × S TD ≧ 16,
When S RD <2 and S TD <4 and S RD × S TD <16,
As the number of press shots increased, wear of the blade edge advanced, and the shape of the punched terminal deteriorated.

本発明の材料は、次のような工程を経て製造することができる。即ち、第1の
工程は、各成分を所定量配合して溶解し、得られた液体から所定の組成のインゴ
ットを鋳造する工程である。この工程は、大気中の溶解法でも還元雰囲気中の溶
解法でも真空中の溶解法でも適用できる。
The material of the present invention can be manufactured through the following steps. That is, the first step is a step in which a predetermined amount of each component is blended and dissolved, and an ingot having a predetermined composition is cast from the obtained liquid. This step can be applied by a melting method in the air, a melting method in a reducing atmosphere, or a vacuum melting method.

第2の工程は、得られたインゴットに熱処理を施す工程で、この工程は、70
0℃以上の温度で熱処理することで鋳造時に生じた偏析を少なくする工程で、材
料の結晶方位を均一にするためには重要な工程である。
The second step is a step of subjecting the obtained ingot to a heat treatment.
This is a process for reducing the segregation generated during casting by heat treatment at a temperature of 0 ° C. or higher, and is an important process for making the crystal orientation of the material uniform.

第3の工程は、粗圧延工程であり、圧延加工率が50%以上であることが望ま
しい。この工程は、次の第5の工程で再結晶処理をするために重要な工程で、圧
延加工率が50%未満の場合、再結晶粒が不均一になり、その結果、結晶方位が
不均一になり、その後の工程で、材料断面の結晶方位を{111}に配向せしめ
ることが困難になる。なお、この工程は、冷間圧延でも温間圧延でも適用できる。
The third step is a rough rolling step, and the rolling rate is preferably 50% or more. This step is an important step for recrystallization in the next fifth step. When the rolling rate is less than 50%, the recrystallized grains become non-uniform, and as a result, the crystal orientation is non-uniform. In the subsequent process, it becomes difficult to orient the crystal orientation of the material cross section to {111}. This process can be applied to both cold rolling and warm rolling.

第4の工程は、熱処理工程で、材料の結晶粒径を均一微細にする工程であり、
第5の工程以降で材料の断面の結晶方位を{111}に配向せしめるために、一
度無方位状態にせしめるための工程である。熱処理温度は、350〜750℃で
ある。温度が350℃未満の場合には、上記の熱処理効果が充分に発現できず、
また750℃を超えた場合は、結晶粒径が粗大になり、その後の工程をいかに工
夫しても所望のプレス加工性が得られない。特に1≦SRD<3、1≦STD<3
であることが必要である。
The fourth step is a heat treatment step for making the crystal grain size of the material uniform and fine,
In order to orient the crystal orientation of the cross section of the material to {111} after the fifth step, this is a step for making a non-orientation state once. The heat treatment temperature is 350 to 750 ° C. When the temperature is less than 350 ° C., the above heat treatment effect cannot be sufficiently exhibited,
When the temperature exceeds 750 ° C., the crystal grain size becomes coarse, and the desired press workability cannot be obtained no matter how the subsequent steps are devised. In particular, 1 ≦ S RD <3, 1 ≦ S TD <3
It is necessary to be.

第5の工程は、冷間圧延工程、第6の工程は、低温焼鈍工程である。第5の工
程で重要なことは、この工程が最終圧延工程の場合、圧延加工率を30%以上に
するということである。この工程で材料断面の結晶方位{111}の集合度合い
を高め、材料断面の結晶方位{200}の集合度合いを抑えている。圧延加工率
が30%未満の場合には、投入される加工歪が小さいために、材料断面の結晶方
位を{111}に配向せしめることが困難である。好ましくは50%以上、さら
に好ましくは80%以上である。
The fifth step is a cold rolling step, and the sixth step is a low temperature annealing step. What is important in the fifth step is that when this step is the final rolling step, the rolling rate is 30% or more. In this step, the degree of aggregation of the crystal orientation {111} of the material cross section is increased, and the degree of aggregation of the crystal orientation {200} of the material cross section is suppressed. When the rolling processing rate is less than 30%, since the processing strain to be input is small, it is difficult to orient the crystal orientation of the material cross section to {111}. Preferably it is 50% or more, more preferably 80% or more.

第6の工程は、熱処理により第5の工程で生じた過剰な加工歪を除去してやる
工程で、材料の曲げ加工性等を向上することができる。この工程での熱処理温度
は、各材料の再結晶温度未満、好ましくは熱処理温度が200〜400℃である。
本発明に関わる銅基合金としては、例えばCu−Ni−Sn−P系合金、Cu
−Sn−P系合金、Cu−Ni−Si系合金、Cu−Mg−P系合金、Cu−Z
n−Sn−Fe系合金等の銅基合金が挙げられる。
The sixth step is a step of removing excessive processing strain generated in the fifth step by heat treatment, and can improve the bending workability of the material. The heat treatment temperature in this step is less than the recrystallization temperature of each material, preferably the heat treatment temperature is 200 to 400 ° C.
Examples of the copper-based alloy related to the present invention include Cu-Ni-Sn-P alloys, Cu
-Sn-P alloy, Cu-Ni-Si alloy, Cu-Mg-P alloy, Cu-Z
Examples thereof include copper-based alloys such as n-Sn-Fe alloys.

本発明に係る銅基合金の成分範囲を、Sn、Ni、P、Si、Zn、Fe、M
g、Alのうちから選ばれた1種または2種以上を総量で0.01〜35wt%含み、
残部Cuおよび不可避的不純物からなると規定したのは、材料の導電率、引張強
さ、ばね限界値および曲げ加工性のバランスを維持し、さらにまたプレス加工性
を向上させるためである。
The component range of the copper-based alloy according to the present invention is Sn, Ni, P, Si, Zn, Fe, M.
g, including one or two or more selected from Al in a total amount of 0.01 to 35 wt%,
The reason why it is defined that it consists of the balance Cu and inevitable impurities is to maintain the balance of the electrical conductivity, tensile strength, spring limit value and bending workability of the material, and to further improve the press workability.

Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから選ばれた1種また
は2種以上の総量が0.01 wt%未満のときは、導電率が高くなるが、引張強さ
とばね限界値およびプレス加工性、耐熱性等の特性が得られにくい。また、圧延
加工率を上げて引張強さとばね限界値およびプレス加工性を向上させると、曲げ
加工性が劣化する。一方、Sn、Ni、P、Si、Zn、Fe、Mg、Alのう
ちから選ばれた1種または2種以上の総量が35wt%を越えたときは、引張強
さとばね限界値は高くなるが、導電率が低くなり、さらにまた曲げ加工性が劣化
する。
When the total amount of one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al is less than 0.01 wt%, the electrical conductivity increases, but the tensile strength and spring limit It is difficult to obtain properties such as value and press workability and heat resistance. Further, when the rolling process rate is increased to improve the tensile strength, spring limit value, and press workability, the bending workability deteriorates. On the other hand, when the total amount of one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al exceeds 35 wt%, the tensile strength and the spring limit value increase. Further, the conductivity is lowered, and the bending workability is deteriorated again.

したがって、本発明に係る銅基合金の成分範囲について、Sn、Ni、P、S
i、Zn、Fe、Mg、Alのうちから選ばれた1種または2種以上を総量で0.
01〜35wt%含み、残部Cuおよび不可避的不純物からなる銅基合金と規定し
た。なお、本発明で規定した添加元素以外の元素、例えば、Ag、Au、Bi、
Co、Cr、In、Mn、La、Pd、Pb、Sb、Se、Te、Ti、Y、Z
rの元素のうちから選ばれた1種または2種以上を総量で5wt%以下であれば、
本発明で規定した添加元素に加えても得られる効果を阻害しない。
Therefore, Sn, Ni, P, S about the component range of the copper-based alloy according to the present invention.
The total amount of one or more selected from i, Zn, Fe, Mg, and Al is 0.
It was defined as a copper-based alloy containing 01 to 35 wt% and comprising the balance Cu and inevitable impurities. Note that elements other than the additive elements defined in the present invention, such as Ag, Au, Bi,
Co, Cr, In, Mn, La, Pd, Pb, Sb, Se, Te, Ti, Y, Z
If the total amount of one or more selected from the elements of r is 5 wt% or less,
Even if it is added to the additive element defined in the present invention, the obtained effect is not inhibited.

次に本発明の実施の形態を実施例により説明する。   Next, embodiments of the present invention will be described by way of examples.

上記のように、本発明によれば、プレス加工性に優れたコネクタやスイッチ、
リレー用等の銅基合金を得ることができ、近年の家電製品、情報通信機器や自動
車用部品の高密度実装化に伴った材料の薄肉化、細線化と、プレスの金型寿命向
上により、コストダウンを大幅に実現できるのである。
As described above, according to the present invention, connectors and switches excellent in press workability,
Copper-based alloys for relays can be obtained, and due to the thinning and thinning of materials and the improvement of die life of presses due to the recent high-density mounting of home appliances, information communication equipment and automotive parts, The cost can be greatly reduced.

実施例1
表1にその化学成分値(wt%)を示す銅基合金No.1〜16を高周波溶解
炉を用いてAr雰囲気で溶解し、40×40×150(mm)のインゴットに鋳
造した。得られたNo.1〜16のインゴットから10×40×40(mm)の
試験片を切り出し、850℃で1h均質化熱処理を実施(第2の工程)した後、
No.1〜3,No.9,10は冷間圧延により、板厚10mmから2.0mmまで圧延
し、No.4〜8,No.11〜16は熱間圧延により板厚10mmから5mmまで圧
延した後に、冷間圧延により板厚5mmから2.0mmまで圧延した(第3の工程)。
Example 1
Copper base alloys Nos. 1 to 16 whose chemical component values (wt%) are shown in Table 1 were melted in an Ar atmosphere using a high frequency melting furnace and cast into a 40 × 40 × 150 (mm) ingot. After cutting out a test piece of 10 t × 40 w × 40 l (mm) from the obtained ingots of No. 1 to No. 16 and carrying out a homogenization heat treatment at 850 ° C. for 1 h (second step),
No. 1 to 3, No. 9 and 10 are rolled from 10 mm to 2.0 mm by cold rolling, and No. 4 to 8 and No. 11 to 16 are rolled from 10 to 5 mm by hot rolling. After that, the sheet thickness was rolled from 5 mm to 2.0 mm by cold rolling (third step).

Figure 2007186799
Figure 2007186799

次に、得られたNo.1〜16の試験片のうち、No.1〜11,No.13につ
いては500℃×1hの熱処理を実施し、No.12,No.14〜16につい
ては、600℃×1hの熱処理を実施した(第4の工程)。得られた試験片の
RD面,TD面についてX線回折を行い、SRDとSTDを測定した。
X線回折強度の測定条件は、以下の通りである。
管球:Cu、管電圧:40KV、管電流:30mA、サンプリング幅:0.0
02°をクロメーター使用、試料ホルダー:AL
その結果、No.1〜11,No.13は、
1≦SRD<3、1≦STD<3を満足したが、No.12,No.14〜16は、
1≦SRD<3、1≦STD<3を満足しなかった。
なお、X線回折測定条件は、上記条件に限定されるものではなく、試料の種類
に応じて適宜変更される。
Next, among No. 1 to 16 obtained test pieces, No. 1 to 11 and No. 13 were subjected to heat treatment at 500 ° C. × 1 h, and No. 12 and No. 14 to 16 were A heat treatment at 600 ° C. × 1 h was performed (fourth step). X-ray diffraction was performed on the RD surface and TD surface of the obtained test piece, and SRD and STD were measured.
The measurement conditions for the X-ray diffraction intensity are as follows.
Tube: Cu, tube voltage: 40 KV, tube current: 30 mA, sampling width: 0.0
02 ° using chromometer, sample holder: AL
As a result, No.1-11 and No.13 are
Although 1 ≦ S RD <3 and 1 ≦ S TD <3 were satisfied, No. 12 and No. 14 to 16 were
1 ≦ S RD <3 and 1 ≦ S TD <3 were not satisfied.
Note that the X-ray diffraction measurement conditions are not limited to the above conditions, and are appropriately changed according to the type of the sample.

このようにして得られたNo.1〜16について冷間圧延(第5の工程)と場
合によっては熱処理(第4の工程)を実施し、No.1〜8、No.12について
は、熱処理(第4の工程)後の圧延加工率が30%以上になるように、No.9
〜11、No.13〜16については熱処理(第4の工程)後の圧延加工率が3
0%未満になるように圧延加工を実施して、0.20mmの板厚に仕上げた。
For No. 1 to 16 thus obtained, cold rolling (fifth step) and optionally heat treatment (fourth step) were carried out, and for No. 1 to 8 and No. 12, heat treatment was performed. (Fourth step) No. 9 so that the rolling rate after 30% or more.
-11 and Nos. 13 to 16 have a rolling rate of 3 after the heat treatment (fourth step).
Rolling was performed so that the thickness was less than 0%, and a sheet thickness of 0.20 mm was finished.

最後に、300℃×1hの熱処理(第6の工程)を実施して、評価用のサン
プルとした。
このようにして得られたサンプルについて、SRD,STD,SRD×STDを測定
した。さらに、これらのサンプルについて端子形状の連続プレス加工を実施し、
材料のバリ高さが25μmを越えた段階でプレス加工を止めて、ここまでのショ
ット数を最大ショット数とした。
Finally, a heat treatment (sixth step) at 300 ° C. × 1 h was performed to obtain a sample for evaluation.
S RD , S TD , S RD × S TD were measured for the samples thus obtained. In addition, terminal samples were continuously pressed for these samples,
The press work was stopped when the burr height of the material exceeded 25 μm, and the number of shots so far was set as the maximum number of shots.

表1の結果から、次のことが明らかである。
本発明によるNo.1〜8の合金は、SRD≧2かつSTD≧4かつSRD×STD
≧16を満足しており、最大プレスショット数で200万ショットを越えており、
プレス加工性に優れた銅基合金材料である。
From the results in Table 1, the following is clear.
No. 1-8 alloys according to the present invention have S RD ≧ 2 and S TD ≧ 4 and S RD × S TD
≧ 16 is satisfied, the maximum number of press shots exceeds 2 million shots,
It is a copper-based alloy material with excellent press workability.

一方、第4の工程で、1≦SRD<3、1≦STD<3を満足しないNo.12は、
TD≧2とSRD×STD≧16を満足しておらず、150万ショットを越えると
RD面のバリが30μmになった。第5の工程で圧延加工率が30%未満である
No.9〜11,No.13のうち、No.9,10はSTD≧4とSRD×STD≧1
6を満足しておらず、各最大ショット数を越えるとTD面のバリが25μmを越
え、No.11,13は、SRD≧2,STD≧4,SRD×STD≧16のすべてを
満足しておらず、100万ショットに満たないうちにRD面,TD面のバリが2
5μmを越えた。
On the other hand, No. 12 which does not satisfy 1 ≦ S RD <3, 1 ≦ S TD <3 in the fourth step is
S TD ≧ 2 and S RD × S TD ≧ 16 were not satisfied, and burrs on the RD surface became 30 μm after 1.5 million shots. Among No. 9 to 11 and No. 13 in which the rolling process rate is less than 30% in the fifth step, No. 9 and 10 are S TD ≧ 4 and S RD × S TD ≧ 1.
No. 6 is not satisfied, and when the maximum number of shots is exceeded, the burr on the TD surface exceeds 25 μm, and Nos. 11 and 13 are all of S RD ≧ 2, S TD ≧ 4, S RD × S TD ≧ 16 Is not satisfied, and burrs on the RD and TD surfaces are 2 before less than 1 million shots.
It exceeded 5 μm.

第4の工程で、1≦SRD<3かつ1≦SRD<3を満足せず、なおかつ第5の
工程で圧延加工率が30%未満であるNo.14〜16のうち、No.14と15
は、STD≧2とSRD×STD≧16を満足しておらず、100万ショットに達し
たところで、RD面のバリが25μmを越えた。また、No.16は、STD≧4
を満足しておらず、100万ショット程度でTD面のバリが25μmを越えて、
材料のカスがパンチとダイの間に付着して、プレスの継続ができなくなった。
Of No. 14 to No. 16 in which No. 14 to No. 16 are satisfied in the fourth step, which does not satisfy 1 ≦ S RD <3 and 1 ≦ S RD <3, and the rolling process rate is less than 30% in the fifth step. And 15
Does not satisfy S TD ≧ 2 and S RD × S TD ≧ 16, and when 1 million shots were reached, the burr on the RD surface exceeded 25 μm. In addition, No. 16 is S TD ≧ 4
Is not satisfied, the burr on the TD surface exceeds 25 μm in about 1 million shots,
Material residue stuck between the punch and die, making it impossible to continue pressing.

実施例2
実施例1の表1中に示す本発明合金No.4と市販のりん青銅合金(C519
1 質別H:6.5wt%Sn、0.2wt%P、残部Cu)及び銅基合金(C702
5 質別H:3.2wt%NI、0.70wt%SI、0.15wt%Mg、残部Cu)につい
て、ビッカース硬さ、引張強さ、ばね限界値、導電率、プレス加工性及び曲げ加
工性を評価した。
Example 2
Invention alloy No. 4 shown in Table 1 of Example 1 and commercially available phosphor bronze alloy (C519
1 Quality H: 6.5 wt% Sn, 0.2 wt% P, balance Cu) and copper base alloy (C702)
5 Grade H: 3.2 wt% NI, 0.70 wt% SI, 0.15 wt% Mg, balance Cu), Vickers hardness, tensile strength, spring limit, conductivity, press workability and bending workability were evaluated. .

ビッカース硬さ、引張強さ、ばね限界値、導電率の測定は、各々、JIS Z
2244、JIS Z 2241、JIS H 3130、JIS H 050
5に準拠して行った。プレス加工性は、実施例1と同じ方法で、最大プレスショ
ット数を測定し、評価した。曲げ加工性は、90°W曲げ試験(JIS H
3110に準拠)にて、内曲げ半径Rを0.08mm、曲げ半径Rと板厚tの比R/t
を0.4として中央部の凸部表面が良好なものに○印、シワの発生したものには△
印、割れが発生したものには×印として評価した。結果を表2に示す。
Vickers hardness, tensile strength, spring limit value, and conductivity measurement are JIS Z
2244, JIS Z 2241, JIS H 3130, JIS H 050
5 was carried out. The press workability was evaluated by measuring the maximum number of press shots in the same manner as in Example 1. Bending workability is 90 ° W bending test (JIS H
3110), the inner bending radius R is 0.08 mm, the ratio R / t of the bending radius R and the thickness t
0.4 for those with a good convex surface at the center, and △ for wrinkles
Those with marks and cracks were evaluated as x marks. The results are shown in Table 2.

Figure 2007186799
Figure 2007186799

表2に示す結果から、本発明の銅基合金は、従来の代表的なコネクタ、スイッ
チ、リレー用の銅基合金C5191、C7025と比較して、ビカース硬さ、引
張強さ、ばね限界値、導電率、プレス加工性、曲げ加工性のバランスに優れてい
ることが分かる。
以上のように、本発明はプレス加工性に優れたコネクタ、スイッチ、リレー用
の銅または銅基合金を得たものであり、近年の家電製品、情報通信機器や自動車
用部品の高密度実装化に伴った材料の薄肉化、細線化と、プレスの金型寿命向上
により、コストダウンを大幅に実現できる銅または銅基合金を提供するものであ
る。
From the results shown in Table 2, the copper-based alloy of the present invention has a Vickers hardness, tensile strength, spring limit value, as compared with conventional copper-based alloys C5191, C7025 for typical connectors, switches, and relays. It turns out that it is excellent in the balance of electrical conductivity, press workability, and bending workability.
As described above, the present invention has obtained copper or a copper-based alloy for connectors, switches, and relays excellent in press workability, and has achieved high-density mounting of recent home appliances, information communication equipment, and automotive parts. Accordingly, the present invention provides a copper or copper-based alloy that can realize a significant cost reduction by reducing the thickness of the material, making the wire thinner, and improving the press die life.

Claims (5)

材料の断面のX線回折強度においてS≧2であることを特徴
とするプレス加工性に優れた銅または銅基合金。
ただし、
Figure 2007186799
I{111}は{111}の回折強度,I{222}は{222}の回折強度,
I{200}は{200}の回折強度である。
A copper or copper-based alloy excellent in press workability, wherein S ≧ 2 in the X-ray diffraction intensity of the cross section of the material.
However,
Figure 2007186799
I {111} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222},
I {200} is the diffraction intensity of {200}.
材料の加工方向に垂直な断面のX線回折強度においてSRD
≧2 かつ 材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD
×STD≧16であることを特徴とするプレス加工性に優れた銅または銅基合金。
ただし、
Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。
S RD in X-ray diffraction intensity of a cross-section perpendicular to the working direction of the material
≧ 2 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material is S TD ≧ 4, and S RD
XS TD ≧ 16 Copper or copper-based alloy excellent in press workability.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.
Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから
選ばれる1種または2種以上を総量で0.01〜35wt%含み、残部Cuおよび不
可避的不純物からなる銅基合金で、かつ材料の加工方向に垂直な断面のX線回折
強度においてSRD≧2 かつ 材料の加工方向に平行な断面のX線回折強度でSTD
≧4であり、SRD×STD≧16であることを特徴とするプレス加工性に優れた
銅または銅基合金。
ただし、
Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。
A copper-based alloy containing one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt%, and the balance being Cu and inevitable impurities, and material S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction, and S TD in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material.
≧ 4 and S RD × S TD ≧ 16 A copper or copper-based alloy having excellent press workability.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.
Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから
選ばれる1種または2種以上を総量で0.01〜35wt%含み、残部Cuおよび不
可避的不純物からなる銅基合金のインゴットを圧延、または熱間圧延と熱処理を
繰り返すことで所定の板厚にした材料を350〜750℃の温度で熱処理を施し
て、材料の加工方向に垂直な断面のX線回折強度において1≦SRD≦3かつ材
料の加工方向に平行な断面のX線回折強度で1≦STD≦3として、しかる後に
圧延加工率30%以上または50%以上の冷間圧延と、再結晶温度未満の低温焼
鈍を組み合わせることで、材料の加工方向に垂直な断面のX線回折強度において
RD≧2 かつ 材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、
RD×STD≧16であることを特徴とするプレス加工性に優れた銅または銅基
合金。
ただし、
Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STD
材料の加工方向に平行な断面のX線回折強度について測定した値で、I{11
1}は{111}の回折強度、I{222}は{222}の回折強度、I{20
0}は{200}の回折強度である。
Rolling an ingot of a copper-based alloy containing one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt%, and the balance Cu and inevitable impurities Alternatively, a material having a predetermined plate thickness by repeating hot rolling and heat treatment is subjected to heat treatment at a temperature of 350 to 750 ° C., and the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material is 1 ≦ S RD ≦ 3 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, 1 ≦ S TD ≦ 3, and then cold rolling with a rolling rate of 30% or more or 50% or more and low temperature annealing below the recrystallization temperature. In combination, S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material and S TD ≧ 4 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material,
A copper or copper-based alloy having excellent press workability, wherein S RD × S TD ≧ 16.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, and S TD is a value measured for the X-ray diffraction intensity of a cross section parallel to the processing direction of the material, I {11
1} is the diffraction intensity of {111}, I {222} is the diffraction intensity of {222}, and I {20
0} is the diffraction intensity of {200}.
Sn、Ni、P、Si、Zn、Fe、Mg、Alのうちから選ばれる1種または2種以上を総量で0.01〜35wt%含み、残部Cuおよび不可避的不純物からなる銅基合金のインゴットを圧延、または熱間圧延と熱処理を繰り返すことで所定の板厚にした材料を350〜750℃の温度で熱処理を施して、材料の加工方向に垂直な断面のX線回折強度において1≦SRD≦3かつ材料の加工方向に平行な断面のX線回折強度で1≦STD≦3として、しかる後に圧延加工率30%以上または50%以上の冷間圧延と、再結晶温度未満の低温焼鈍を組み合わせることで、材料の加工方向に垂直な断面のX線回折強度においてSRD≧2 かつ材料の加工方向に平行な断面のX線回折強度でSTD≧4であり、SRD×STD≧16であることを特徴とするプレス加工性に優れた銅または銅基合金の製造方法。
ただし、
Figure 2007186799
ここで、SRDは材料の加工方向に垂直な断面のX線回折強度について、STDは材料の加工方向に平行な断面のX線回折強度について測定した値で、I{111}は{111}の回折強度、I{222}は{222}の回折強度、I{200}は{200}の回折強度である。
Rolling an ingot of a copper-based alloy containing one or more selected from Sn, Ni, P, Si, Zn, Fe, Mg, and Al in a total amount of 0.01 to 35 wt%, and the balance Cu and inevitable impurities Alternatively, a material having a predetermined plate thickness by repeating hot rolling and heat treatment is subjected to heat treatment at a temperature of 350 to 750 ° C., and the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material is 1 ≦ S RD ≦ 3 and the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, 1 ≦ S TD ≦ 3, and then cold rolling with a rolling rate of 30% or more or 50% or more and low temperature annealing below the recrystallization temperature. In combination, S RD ≧ 2 in the X-ray diffraction intensity of the cross section perpendicular to the processing direction of the material, and S TD ≧ 4 in the X-ray diffraction intensity of the cross section parallel to the processing direction of the material, and S RD × S TD ≧ This is 16 A method for producing copper or a copper-based alloy having excellent press workability.
However,
Figure 2007186799
Here, S RD is a value measured for the X-ray diffraction intensity of a cross section perpendicular to the processing direction of the material, S TD is a value measured for an X-ray diffraction intensity of a cross section parallel to the processing direction of the material, and I {111} is {111} }, I {222} is the diffraction intensity of {222}, and I {200} is the diffraction intensity of {200}.
JP2007073983A 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same Expired - Lifetime JP5017719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073983A JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007073983A JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33806999A Division JP4009981B2 (en) 1999-11-29 1999-11-29 Copper-based alloy plate with excellent press workability

Publications (2)

Publication Number Publication Date
JP2007186799A true JP2007186799A (en) 2007-07-26
JP5017719B2 JP5017719B2 (en) 2012-09-05

Family

ID=38342156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073983A Expired - Lifetime JP5017719B2 (en) 2007-03-22 2007-03-22 Copper-based alloy plate excellent in press workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5017719B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228013A (en) * 2008-03-19 2009-10-08 Dowa Metaltech Kk Copper alloy sheet and manufacturing method therefor
JP2011214088A (en) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
WO2013105475A1 (en) * 2012-01-11 2013-07-18 住友電気工業株式会社 Copper alloy and copper alloy wire
JP2020158837A (en) * 2019-03-27 2020-10-01 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE ABRASION

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
JPH11293367A (en) * 1998-04-13 1999-10-26 Kobe Steel Ltd Copper alloy excellent in property of proof stress relaxation, and its production
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331363A (en) * 1994-06-01 1995-12-19 Nikko Kinzoku Kk High strength and high conductivity copper alloy
JPH11293367A (en) * 1998-04-13 1999-10-26 Kobe Steel Ltd Copper alloy excellent in property of proof stress relaxation, and its production
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228013A (en) * 2008-03-19 2009-10-08 Dowa Metaltech Kk Copper alloy sheet and manufacturing method therefor
JP2011214088A (en) * 2010-03-31 2011-10-27 Jx Nippon Mining & Metals Corp Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
WO2013105475A1 (en) * 2012-01-11 2013-07-18 住友電気工業株式会社 Copper alloy and copper alloy wire
JP2020158837A (en) * 2019-03-27 2020-10-01 Jx金属株式会社 Cu-Ni-Si BASED COPPER ALLOY STRIP EXCELLENT IN DIE ABRASION

Also Published As

Publication number Publication date
JP5017719B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
US10392680B2 (en) Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
TWI387657B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
CN101535511A (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP2003306732A (en) Copper alloy for electric and electronic parts
JP6088741B2 (en) Copper alloy material excellent in mold wear resistance during pressing and manufacturing method thereof
TWI429764B (en) Cu-Co-Si alloy for electronic materials
TWI502084B (en) Copper alloy for electronic/electric device, component for electronic/electric device, and terminal
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP2008208466A (en) Copper alloy for connector, and method for producing the same
JP6355672B2 (en) Cu-Ni-Si based copper alloy and method for producing the same
JP4009981B2 (en) Copper-based alloy plate with excellent press workability
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP4177221B2 (en) Copper alloy for electronic equipment
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JPH0978162A (en) Copper alloy for electronic equipment and its production
JP2008248352A (en) High-strength and high-electric conductivity copper alloy having excellent hot workability
JP4154131B2 (en) High-strength phosphor bronze for fork-type contacts and method for producing the same
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

R150 Certificate of patent or registration of utility model

Ref document number: 5017719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term