JP2007183429A - 波長可変フィルタおよび波長可変レーザ - Google Patents

波長可変フィルタおよび波長可変レーザ Download PDF

Info

Publication number
JP2007183429A
JP2007183429A JP2006001798A JP2006001798A JP2007183429A JP 2007183429 A JP2007183429 A JP 2007183429A JP 2006001798 A JP2006001798 A JP 2006001798A JP 2006001798 A JP2006001798 A JP 2006001798A JP 2007183429 A JP2007183429 A JP 2007183429A
Authority
JP
Japan
Prior art keywords
waveguide
wavelength
tunable filter
array waveguide
wavelength tunable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006001798A
Other languages
English (en)
Inventor
Seuk Hwan Chung
錫煥 鄭
Shinji Matsuo
慎治 松尾
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006001798A priority Critical patent/JP2007183429A/ja
Publication of JP2007183429A publication Critical patent/JP2007183429A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】チャーピングに伴う作製トレランスの低下を防ぎ、不要な透過帯域との消光比を増大することができるラダー干渉型フィルタおよびそれを用いた波長可変レーザを提供する。
【手段】波長可変フィルタ100は、一対の入力導波路102および出力導波路104と、入力導波路および出力導波路に一定の間隔で配置された光結合器130,132と、光結合器を介して入力導波路と出力導波路との間を接続するN本のアレー導波路140とからなるラダー干渉型フィルタと、入力導波路および出力導波路の屈折率を電流注入により変化させるための電極110,112とを備える。入力導波路の入射端側に接続された1段目からp段目(pは1<p<Nの自然数)のアレー導波路の順番に光路長差ΔSを有し、p+1段目からN段目のアレー導波路の順番に光路長差ΔSを有する。
【選択図】図1

Description

本発明は波長可変フィルタおよびそれを用いた波長可変レーザに関する。
近年、インターネットトラヒックの爆発的な増大に伴い、波長多重光伝送方式が導入されている。このような波長多重伝送において、光源として用いられる波長可変レーザおよび任意の波長成分を有する光信号を選択する波長可変フィルタは光ネットワークの柔軟性や拡張性のために欠かせないものである。ラダー干渉型フィルタは数十nmに及ぶ広帯域波長可変性および数ナノ秒程度の高速可変性を持っている(例えば、非特許文献1参照)。また、ラダー干渉型フィルタを発振モードセレクタとして用いた波長可変レーザ(例えば、非特許文献2参照)も報告されている。
図12に、ラダー干渉型フィルタを用いた波長可変レーザの構成を示す。波長可変レーザ1200はラダー干渉型波長フィルタ1230、リング共振器1210および半導体光増幅器(SOA;semiconductor optical amplifier)1208から構成され、それぞれ発振モードセレクタ、発振波長ロックフィルタおよび利得媒質として機能する。通常、ラダー干渉型フィルタの透過帯域は自由透過帯域(FSR;free-spectral range)ごとに周期的に現れるため、そのFSRがSOAの利得帯域より狭い場合はレーザが多モード発振することが危惧される。この問題はラダー干渉型フィルタをチャーピングし、単一透過帯域化することにより解消可能である(例えば、非特許文献3参照)。
図12に示す波長可変レーザ1200では、アレー導波路の光路長差を直線的に変調することにより、単一透過帯域化を達成することができる。
S.Matsuo et al, "A Widely Tunable Optical Filter Using Ladder-Type Structure", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL.15,NO.8, AUGUST 2003, pp.1114-1116 S.Matsuo et al, "Digitally Tunable Laser Using Ladder Filter and Ring Resonator", Proceedings ECOC 2003, September 2003, pp.884-885 S.-H. Jeong et al, "Chirped ladder-type interferometric filter for widely tunable laser diode", ELECTRONICS LETTERS, VOL.40,NO.16, 5th AUGUST 2004, pp.990-991
しかしながら、波長可変レーザ1200は、1段のラダー干渉計ごとに光路長差をチャーピングしているので、チャーピングを施していない素子に比べ、作製誤差に対するトレランス(以下、製作トレランスともいう。)が小さくなる欠点があった。これに対し、アレー導波路の光路長差の変調量を小さくすれば、作製トレランスを増大することができるが、そうすると所望の透過帯域とそのほかの不要な透過帯域との消光比が減少するトレードオフが発生する。
一方、図12に示す波長可変レーザ1200において、リング共振器1210は、発振波長をロックする役割を果たすだけでなく、単一モード発振のためにも必要不可欠である。しかし、ラダー干渉型フィルタ1230にリング共振器1210を直列接続することにより、レーザ共振器内部での挿入損失が増大する問題、すなわちレーザの出力パワーが低減される問題がある。発振波長ロックフィルタであるリング共振器1210を省略することにより、出力パワーに関する問題を解消することができるが、単一モード発振およびデジタル的波長可変動作が得られないという問題が発生する。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、チャーピングに伴う作製トレランスの低下を防ぎ、不要な透過帯域との消光比を増大することができるラダー干渉型の波長可変フィルタおよびそれを用いた波長可変レーザを提供することを目的とする。
本発明は、このような目的を達成するために、請求項1に記載の発明は、一対の入力導波路および出力導波路と、前記入力導波路および前記出力導波路に一定の間隔で配置された光結合器と、前記光結合器を介して入力導波路と出力導波路との間を接続するN本(N;3以上の自然数)のアレー導波路とからなるラダー干渉型フィルタと、前記入力導波路および前記出力導波路の屈折率を変化させる手段とを備えた波長可変フィルタであって、前記ラダー干渉型フィルタは、前記入力導波路の入射端側に接続された1段目のアレー導波路からp段目(pは1<p<Nの自然数)のアレー導波路の順番に第1の一定の光路長差を有し、前記入力導波路のp+1段目のアレー導波路からN段目のアレー導波路の順番に第2の一定の光路長差を有し、1段目のアレー導波路からp−1段目のアレー導波路までの第1の回折次数領域と、p段目のアレー導波路からN段目のアレー導波路までの第2の回折次数領域とが直列結合されたことを特徴とする。
この構成によれば、所望の波長のみの透過率を高くし、そのほかの透過理帯域での透過率を小さくすることができるラダー干渉型フィルタを提供することができる。
請求項2に記載の発明は、請求項1に記載の前記pは、自然数N/2またはN/2に最も近い自然数であることを特徴とする。
請求項3に記載の発明は、請求項1に記載の前記ラダー干渉型フィルタは、p+1段目のアレー導波路からq段目(qは、p<q<Nの自然数)のアレー導波路の順番に前記第2の一定の光路長差を有し、q+1段目のアレー導波路からN段目のアレー導波路の順番に第3の一定の光路長差を有し、前記第1の回折次数領域と、p段目のアレー導波路からq−1段目のアレー導波路までの第2の回折次数領域と、q段目のアレー導波路からN段目のアレー導波路までの第3の回折次数領域とが直列結合されたことを特徴とする。
この構成によれば、所望の透過帯域と不要な透過帯域との消光比を増大することができる。
請求項4に記載の発明は、請求項1に記載の前記第2の一定の光路長差は、前記第1の一定の光路長差のa倍(aは1<aの実数)であることを特徴とする。
この構成によれば、櫛状のスペクトル特性を有するラダー干渉型フィルタを提供することができる。
請求項5に記載の発明は、請求項4に記載の前記入力導波路および前記出力導波路の屈折率を変化させる手段は、前記第1の回折次数領域における前記入力導波路および前記出力導波路の屈折率を変化させることを特徴とする。
請求項6に記載の発明は、波長可変レーザであって、請求項4または5に記載の波長可変フィルタと、前記波長可変フィルタの入力ポートおよび第2の光結合器を介して前記波長可変フィルタの出力ポートに接続された半導体増幅器と、前記第2の光結合器に接続された2つの出力導波路とを備えたことを特徴とする。
この構成によれば、発振波長を一定周波数間隔で変化させることができる波長可変レーザを提供することができる。
本発明によれば波長可変フィルタにおいて、素子作製トレランスが劣化せずに、抑圧比の高い単一透過帯域化が可能になる。また、本発明の波長可変フィルタを発振モードセレクタだけでなく発振波長ロッカーとして使用できるため、フィルタ素子の低損失化が可能になり、波長可変レーザの発振波長安定化および高出力動作が実現する。
図面を参照しながら本発明の実施形態について詳細に説明する。
(実施形態1)
図1を参照して、本発明に係る波長可変フィルタの第1の実施形態を説明する。図1に示す波長可変フィルタ100は、一対の入力導波路102および出力導波路104と、入力導波路102および出力導波路104の各々に所定の間隔で配置された光結合器130−1〜130−Nおよび132−1〜132−Nと、光結合器130−1〜130−Nおよび132−1〜132−Nを介して入力導波路102と出力導波路104との間を接続するN本(N;3以上の自然数)のアレー導波路140−1から140−Nとから構成されたラダー干渉型フィルタを備える。波長可変フィルタ100は、入力導波路および出力導波路の屈折率変化させる手段としての電極110−1〜110−Nおよび112−1〜112−Nをさらに備える。
また、本実施形態の波長可変フィルタは、図11に示す構造を有する。図11に示すエピタキシャル基板の層構造を有する。n型InP基板1101上に、nドープInP層1102、ノンドープGaInAsP層1103(バンドギャップ波長λ=1.4μm)、pドープInP層1104、pドープInP層1105、およびpドープInGaAs層1106が順次成膜されている。
図11に示される部分のpドープInGaAs層1106上およびn型InP基板1101にそれぞれAuZnNi電極1107およびAuGeNi電極1108を形成している。図1の電極110−1〜110−Nおよび112−1〜112−Nは、図11のAuZnNi電極1107である。
ラダー干渉型フィルタにおいて、波長可変フィルタ100の入射端(入力ポート)から出射端(出力ポート)までの各光路長は、入射端側のアレー導波路140−1を経由する光路長を基準として、アレー導波路140−2を経由する光路からアレー導波路140−p(1<p<Nの自然数)を経由する光路の順番に一定の光路長差(ΔS)で増加し、また、入射端側のアレー導波路140−pを経由する光路長を基準として、アレー導波路140−p+1を経由する光路からアレー導波路140−Nを経由する光路の順番に一定の光路長差(ΔSと異なるΔS)で増加する。
本実施形態では、光結合器130−1〜130−pの各光結合器間の間隔および光結合器132−1〜132−pの各光結合器間の間隔をLとし、光結合器130−p〜130−Nの各光結合器間の間隔および光結合器132−p〜132−Nの各光結合器間の間隔をLとする。したがって、波長可変フィルタ100における入射端(入力ポート)から出射端(出力ポート)までの各光路長間の光路長差はアレー導波路の長さによってきまる。
ここで、波長可変フィルタ100における、アレー導波路の長さの差(ΔS)によって決まる回折次数がmとなる領域、すなわち、1段目のアレー導波路140−1からp−1段目のアレー導波路140−p−1までの領域をm領域122と定義する。また、アレー導波路の長さの差(ΔS)によって決まる回折次数がmとなる領域、すなわち、p段目のアレー導波路140−pからN段目のアレー導波路140−Nまでの領域をm領域124と定義する。
本実施形態の波長可変フィルタ100は、二種類の回折次数(mおよびm)がm領域とm領域において段階的に変化する構成が、1段のラダー干渉計ごとに回折次数が線形的に変化する従来のラダー干渉型フィルタ(例えば、非特許文献3参照)と異なる。
アレー導波路(140−1〜140−p)のアレー導波路長は、1段毎に順次ΔSずつ増大し、次式を満たす波長(λm1)で回折次数mの領域122における透過率が最大になる。
λm1=(neffΔS)/m ・・・(1)
また、アレー導波路(140−p〜140−N)のアレー導波路長は、1段毎に順次ΔSずつ増大し、次式を満たす波長(λm2)で回折次数mの領域124における透過率が最大になる。
λm2=(neffΔS)/m ・・・(2)
ここで、neffは光導波路の実効屈折率を表す。この場合、アレー導波路の光路長差ΔSは次式のように設定することにより、λm2とλm1とを一致させることができる。
ΔS=(m/m)ΔS ・・・(3)
図2に、図1の波長可変フィルタ100のスペクトル特性(実線)および従来の非チャーピング素子(例えば、非特許文献1参照)のスペクトル特性(破線)を示す。
アレー導波路の長さの差がΔSであるアレー導波路の数をN、アレー導波路の長さの差がΔSであるアレー導波路の数をNとすると、ラダー干渉型フィルタの平均回折次数mは次式で定義することができる。
m=(N×m+N×m)/(N−1) ・・・(4)
図2に示す波長可変フィルタ100のスペクトル特性は、アレー導波路本数Nを11、平均回折次数mを60、mを52、mを68、NおよびNを5(すなわちpを6)とした場合のスペクトル特性である。NおよびNを5とするのは、本発明は、回折次数が異なりかつ中心波長が一致する干渉計を組み合わせる際に、それぞれの干渉計における干渉段の数を同じにすることにより大きな効果が得られるからである。したがって、例えば、Nを3およびNを7とすることもできる。
図2に示すように、波長可変フィルタ100は不要な透過帯域が5dB以上抑圧できる。本実施形態の波長可変フィルタ100をレーザのフィルタ素子として用いることにより、レーザ発振を防ぐことができる。また、本発明のラダー干渉型フィルタは従来の線形チャーピング素子(例えば、非特許文献3参照)に比べ、5dBのチャーピング抑圧比を得るための回折次数の変調量が比較的小さいことおよび二種類の回折次数のみを用いていることから線形チャーピング素子に比べ、作製誤差に対するトレランスを向上することができる。
本発明の波長可変フィルタは、熱、電流注入および電圧引加などによりラダー干渉計の入出力導波路の屈折率を変化させる手段を有し、透過波長を変化させることができる。
本実施形態の波長可変フィルタ100は、電極110−1〜110−Nおよび112−1〜112−Nからの印加電圧または注入電流により、ラダー干渉計の入出力導波路の屈折率を変化させる例を示す。本実施形態の波長可変フィルタ100は、下部電極(図11のAuGeNi電極1108)に電流注入すると、ラダー干渉計の光路長差が減少し、ピーク透過率(λ)が短波長側にシフトし、上部電極(電極110−1〜110−Nおよび112−1〜112−N、AuZnNi電極1107)に電流注入すると、ラダー干渉計の光路長差が増大し、λが長波長側にシフトする。この場合、波長可変動作の際に安定なスペクトル特性を得るためにはmおよびm領域での電極長を最適化することが必要である。
およびm領域での電極長をそれぞれLおよびLとすると、電流注入によるλの波長変化量はそれぞれ以下のように決まる。すなわち、m領域に電流注入したときのλの波長変化量はΔλm1で決まり、m領域に電流注入したときのλの波長変化量はΔλm2できまる。
Δλm1=(Δneff)/m ・・・(5)
Δλm2=(Δneff)/m ・・・(6)
ここで、Δneffは電流注入に起因する屈折率変化量である。安定な波長可変動作を得るためにはΔλm1およびΔλm2が等しくなる必要があるので、以下の条件を満たすように電極長を設定すればいい。
=((m×N)/(m×N))L ・・・(7)
図3に、図1の波長可変フィルタ100の電極に電流を注入しない場合(実線)、下側電極に20mAの電流を注入した場合(破線)、および上側電極に20mAの電流を注入した場合(一点破線)の波長可変特性を示す。電極長を適正化することにより、安定な波長可変動作が30nmにおよぶ波長範囲で得られることを確認することできる。
なお、熱によりラダー干渉計の入出力導波路の屈折率を変化させる場合には、例えば、電極に代えて、ヒータなどを設けることにより、波長可変フィルタ100を制御してもよい。
(実施形態2)
図4を参照して本発明に係る可変波長フィルタの第2の実施形態を説明する。図4に示す波長可変フィルタ400は、一対の入力導波路102および出力導波路104と、入力導波路102および出力導波路104の各々に所定の間隔で配置された光結合器130−1〜130−Nおよび132−1〜132−Nと、光結合器130−1〜130−Nおよび132−1〜132−Nを介して入力導波路102と出力導波路104との間を接続するN本(N;4以上の自然数)のアレー導波路140−1から140−Nとから構成されたラダー干渉型フィルタを備える。波長可変フィルタ400は、入力導波路および出力導波路の屈折率変化させる手段としての電極をさらに備える。
また、本実施形態の波長可変フィルタは、第1の実施形態の波長可変フィルタと同様に図11に示す構造を有する。
本実施形態の波長可変フィルタ400は、m領域122およびm領域124の後段に回折次数がmとなる低回折領域(m領域という)126を有することを特徴とする。一般に、2つの回折次数を有する波長可変フィルタに比べ、3つの回折次数を有する波長可変フィルタの方が、チャーピングの効果は大きい。このとき、m領域の回折次数mをm領域およびm領域の回折次数(mおよびm)に比較して小さな値とすると、m領域に関連する次のピーク(メインとなるピークに隣接するピーク)はm領域およびm領域に関連するピークの外側(短波側および長波側)に現れる。したがって、m領域に関連するピークはm領域およびm領域の副ピークと一致しなくなり、必要な透過ピーク以外のピークを抑制することできる。
本実施形態では、波長可変フィルタ400のm領域は、p段目のアレー導波路140−pからq−1段目(1<p<q<Nの自然数)のアレー導波路140−q−1を含む領域をいう。また、m領域は、アレー導波路の長さの差(ΔS)によって決まる回折次数がmとなる領域であって、q段目のアレー導波路140−qからN段目のアレー導波路140−Nを含む領域と定義する。この場合、回折次数mは回折次数mおよびmに比べ1/3以下の比較的小さい値と有する。
波長可変フィルタ400のアレー導波路140−q+1〜140−Nは、ラダー干渉型フィルタ400の入射端(入力ポート)から出射端(出力ポート)までの各光路長が、入射端側のアレー導波路140−qを経由する光路長を基準として、アレー導波路140−q+1を経由する光路からアレー導波路140−N(qは1<p<q<Nの自然数)を経由する光路の順番に一定の光路差(ΔS)で増加する。
上記で説明したように、チャーピングは不要な波長領域でのレーザ発振を防ぐことを目的とするので、チャーピングによる消光比は大きければ大きいほど望ましい。通常、チャーピング消光比の有効性は主にSOAの利得スペクトルの波長依存性に依存する。従って、SOAの利得帯域の波長依存性を考慮すると、ラダー干渉型フィルタの中心波長から25nm程度離れた波長領域において、5dB程度のチャーピング消光比は有効であるが、50nm程度離れた波長領域においては5dB以上の高い消光比が必要となる。しかし、図1に示す構成の場合、アレー導波路本数あるいは回折次数を増大しない限り、チャーピングによる消光比は6dB近傍で飽和する。図4に示す本発明の構造では新たなフィルタを設ける必要がなく、アレー導波路本数を増大せずに、チャーピング消光比を増大することが可能である。
図5に、図4の波長フィルタ400のスペクトル特性(実線)および従来の非チャーピング素子(例えば、非特許文献1参照)のスペクトル特性(破線)を示す。
図5に示す波長可変フィルタ400のスペクトル特性は、アレー導波路本数Nを11、平均回折次数mを59.8、mを81、mを60、mを17、Nを4、Nを4、Nを2(すなわちpを5、qを9)とした場合のスペクトル特性である。
領域はmおよびm領域に比べて回折次数が小さいことから広い透過帯域幅を有する。この場合、mおよびm領域における階段的チャーピング効果がm領域のフィルタ帯域により重畳されるため、チャーピング消光比を増大することができる。図5に示すように、アレー導波路本数を増大せずにチャーピング消光比は7.5dB以上に増大し、25nmおよび50nm程度離れた波長領域においてそれぞれ8dBおよび9dB以上得られている。また、フィルタ全体の透過率はアレー導波路本数で決まるので、m領域を設けることによる過剰損失は生じない。従って、本実施形態の波長可変フィルタ400をレーザのフィルタ素子として用いることにより、レーザ発振モード安定化の向上が可能になる。
(実施形態3)
図6を参照して、本発明に係る波長可変フィルタの第3の実施形態を説明する。本実施形態の波長可変フィルタは、リング共振器と同じ機能を有する。図6に示す波長可変フィルタ600は、一対の入力導波路602および出力導波路604と、入力導波路602および出力導波路604の各々に所定の間隔で配置された光結合器630−1〜630−Nおよび632−1〜632−Nと、光結合器630−1〜630−Nおよび632−1〜632−Nを介して入力導波路102と出力導波路104との間を接続するN本(Nは3以上の自然数)のアレー導波路640−1から640−Nとから構成されたラダー干渉型フィルタを備える。波長可変フィルタ100は、入力導波路および出力導波路の屈折率変化させる手段としての電極610−1〜610−p−1および612−1〜612−p−1(pは1<p<Nを満たす自然数)をさらに備える。
また、本実施形態の波長可変フィルタは、第1の実施形態の波長可変フィルタと同様に図11に示す構造を有する。
波長可変フィルタ600の入射端(入力ポート)から出射端(出力ポート)までの各光路の長さは、入射端側の1段目のアレー導波路640−1を経由する光路長を基準として、2段目のアレー導波路640−2を経由する光路からp段目(pは1<p<Nの自然数)のアレー導波路640−pを経由する光路の順番に一定の光路長差(ΔS)で増加し、また、入射端側のアレー導波路640−pを経由する光路の長さを基準として、p+1段目のアレー導波路640−p+1を経由する光路からN段目のアレー導波路640−Nを経由する光路の順番に一定の光路長差a×ΔS(aは1<aを満たす実数)で増加する。
本実施形態では、光結合器630−1〜630−pの各光結合器間の間隔および光結合器632−1〜632−pの各光結合器間の間隔をLとし、光結合器630−p〜630−Nの各光結合器間の間隔および光結合器632−p〜632−Nの各光結合器間の間隔をLとする。
ここで、波長可変フィルタ600における、アレー導波路の長さの差(ΔS)によって決まる回折次数がmとなる低回折領域、すなわち、1段目のアレー導波路640−1からp−1段目のアレー導波路640−p−1を含む領域をm領域622と定義する。また、アレー導波路の長さの差(a×ΔS)によって決まる回折次数がmとなる高回折領域、すなわち、p段目のアレー導波路640−pからN段目のアレー導波路640−Nを含む領域をm領域624と定義する。
本実施形態の波長可変フィルタ600は、回折次数の異なる二つのラダー干渉計、つまり、従属接続された低回折次数領域(m)と高回折次数領域(m)とを有する構成が、各干渉計における回折次数を一定とする従来のラダー干渉型フィルタ(非特許文献1参照)と異なる。
アレー導波路(603−1〜603−p)のアレー導波路長は、1段毎に順次ΔSずつ増大し、次式を満たす波長(λ0)でm領域622における透過率が最大になる。
λ=(neffΔS)/m ・・・(8)
また、アレー導波路(603−p+1〜103−N)のアレー導波路長が1段ごとに順次a×ΔSずつ増大するとすれば、回折次数mはa×mとなり、またm領域624における透過率は、次式を満たす波長(λ)で最大になる。
λ=(neffaΔS)/m=(neffaΔS)/(a×m) ・・・(9)
上式から分かるように、m領域およびm領域のラダー干渉型フィルタの中心ピーク波長は一致する。従って、ラダー干渉型フィルタの透過ピーク間隔(FSR;free-spectral range)はm領域の光路長差で決まり、m領域のフィルタスペクトルの包絡線に従ってラダー干渉型フィルタ応答が決まる。この場合、m領域の光路長差をレーザの発振周波数グリッドに合わせることにより、ラダー干渉型フィルタ単体で発振波長ロックおよび発振波長選択機能を同時に果たすことができる。尚、発振波長ロック用フィルタを新たに設ける必要がないため、フィルタ素子の低損失化が可能になる。
図7に、本実施形態の波長可変フィルタ600の透過スペクトル特性(破線)および波長可変フィルタ600のm領域の透過スペクトル特性(実線)を示す。
図7に示す本実施形態の波長可変フィルタ600の透過スペクトル特性は、アレー導波路本数Nを13、mを60、aを29、Nを9、Nを3(すなわちpを10)とした場合のスペクトル特性である。但し、a値は100−GHz周波数間隔の透過ピークを得るためであり、mは1740となる。
図7の破線は、波長可変フィルタ600のm領域のみにより形成される波長ピークを示し、実線は波長可変フィルタ600全体のスペクトル特性を示す。波長可変フィルタ600全体のスペクトル特性における、1550nm付近の小さなピークは、m領域によるもので、m領域のアレー導波路の本数を多くするほどm領域とは独立に効果が大きくなる。一般的には、m領域のアレー導波路の本数を3段から4段あれば十分な効果を得ることができる。
図7に示すように、m領域における光路長差を適切に設定することにより、ラダー干渉型フィルタ単体で櫛状のスペクトル応答を得ることができる。この場合、中心透過ピークから10−GHzおよび100−GHz離れた周波数成分との抑圧比はmおよびm領域によって決まり、それぞれ1.45dBおよび1.5dBとなる。
一方、電極構造を設けることによって波長可変動作も可能である。この場合、図6に示すように、電極はm領域のみ形成される。従って、m領域により決まる櫛状のスペクトルは固定のまま、m領域における波長スペクトルのみをシフトさせることができ、m領域のFSRに相当する波長を離散的に選択することが可能になる。また、本発明の波長可変フィルタはm領域により周期的な透過帯域が現れるが、第1の実施形態で説明したように、m領域において階段的にチャーピングを行うことにより、すなわち、図6に示す領域622を回折次数の異なる複数の領域で構成することにより、不要なピークを抑圧することによって、単一透過帯域化が可能になる。
(実施形態4)
図8を参照して本発明の波長可変レーザの実施形態を説明する。本実施形態の波長可変レーザ800は、図6を参照して説明した第3の実施形態の波長可変フィルタ600を発振波長セレクタとして用いた波長可変レーザである。波長可変レーザ800は、波長可変フィルタ600と、波長可変フィルタ600入力ポートおよび光結合器806を介して波長可変フィルタ600出力ポートに接続された半導体増幅器808と、光結合器806に接続された2つの出力導波路802、804とを備える。
図8に示す波長可変レーザ800は、波長可変フィルタ600の出力光を増幅する半導体増幅器(以下、SOA;Semiconductor optical amplifierともいう)808が集積化されている。
半導体増幅器808と波長可変レーザ800は、レーザ共振器としての機能を果たす。また、本実施形態の波長可変レーザ800では、波長可変フィルタ600のm領域が従来の波長可変レーザのリング共振器の機能を果たすため、リング共振器が不要である。
半導体増幅器808から光は、波長可変フィルタ600の入力導波路602および出力導波路604へ入力され、波長可変フィルタ600の出力導波路604および入力導波路602から出力される。波長可変フィルタ600から出力された光は、半導体増幅器808へ入力される。このとき、半導体増幅器808において、透過率の異なる波長成分が受ける利得の差により、透過率の一番高い成分のみがレーザ共振器内部で一番強い光帰還を受け、レーザ発振に至る。すなわち、半導体光増幅器から出た光がレーザキャビティ内を何度も周回し、その際にキャビティ内の損失よりも半導体光増幅器の増幅作用(ゲイン)が大きければ、半導体増幅器808はレーザ発振する。波長可変フィルタ600がない場合には、いろいろな波長の同じような強度の光がフィードバックされるため、半導体増幅器808はマルチモード(種々の波長)で発振する。本実施形態の波長可変レーザ800は、波長可変フィルタ600を入れることにより選択的に一つの波長が半導体増幅器808へフィードバックされシングルモード発振することになる。
光結合器806は、レーザキャビティの時計回り、すなわち半導体増幅器808から波長可変フィルタ600の出力導波路604へ向かう光を、波長可変レーザの出力導波路804および波長可変フィルタ600の出力導波路604へ分岐する。また、光結合器806は、レーザキャビティの反時計回り、すなわち波長可変フィルタ600の出力導波路604から半導体増幅器808へ向かう光を、波長可変レーザの出力導波路802および半導体増幅器808に接続された導波路810へ分岐する。
波長可変レーザの出力導波路802から出力されるレーザ光は、出力導波路804から出力されるレーザ光と比べ、波長可変フィルタ600を通過してから分岐されることから、波長可変フィルタ600の損失分だけ光出力は小さくなるが、それぞれのレーザ光の波長は同一である。
図9に、本実施形態の波長可変レーザ800における発振モード抑圧比を示す。ここで、JおよびJthはそれぞれ電流密度およびしきい電流密度を表し、図9の横軸であるJ/Jthは規格化電流密度を表す。図9に示すように、レーザの電流密度がJthを越えると、レーザ共振器の縦モード(10−GHz間隔)およびm領域の周期的透過帯域(100−GHz間隔)でのレーザ発振モードが40dB以上抑圧され、安定な単一モード発振を得ることができる。
図10に、波長可変フィルタ600におけるラダー干渉型フィルタの電極領域の屈折率変化量と波長可変レーザ800の発振波長シフト量の関係を示す。屈折率が連続的に変化しているのに対し、発振波長はm領域のFSRに従って離散的に変化していることが分かる。従って、m領域のFSRを波長多重通信に関するITU−T勧告(例えば、G.694.2)の波長グリッドに合わせれば、発振波長制御を容易に行うことができる。本発明の波長可変レーザで用いるラダー干渉型フィルタに実施形態1および2で説明した階段チャーピングを施すことにより、不要な波長領域でレーザ発振が防げ、単一モード発振とともに発振波長安定化が可能になることを確認した。
本発明の第1の実施形態の波長可変フィルタの構成図である。 本発明の第1の実施形態の波長可変フィルタの波長スペクトル特性図である。 本発明の第1の実施形態の波長可変フィルタの波長可変特性図である。 本発明の本発明の第2の実施形態の波長可変フィルタの構成図である。 本発明の本発明の第2の実施形態の波長可変フィルタの波長スペクトル特性図である。 本発明の本発明の第3の実施形態の波長可変フィルタの構成図である。 本発明の本発明の第3の実施形態の波長可変フィルタの波長スペクトル特性図である。 本発明の第4の実施形態の波長可変レーザの構成図である。 本発明の第4の実施形態の波長可変レーザの抑圧比を示す図である。 本発明の第4の実施形態の波長可変レーザにおけるラダー干渉型フィルタの電極領域の屈折率変化量と波長可変レーザ800の発振波長シフト量の関係を示す図である。 一実施形態の波長可変フィルタの構造を示す図である。 従来技術に係わる波長可変レーザの構成図である。
符号の説明
100,400,600 波長可変フィルタ
102,602 入力導波路
104,604,802,804 出力導波路
130,132,630,632,806 光結合器
140,640 アレー導波路
110,112,610,612 電極

Claims (6)

  1. 一対の入力導波路および出力導波路と、前記入力導波路および前記出力導波路に一定の間隔で配置された光結合器と、前記光結合器を介して入力導波路と出力導波路との間を接続するN本(N;3以上の自然数)のアレー導波路とからなるラダー干渉型フィルタと、
    前記入力導波路および前記出力導波路の屈折率を変化させる手段とを備えた波長可変フィルタであって、
    前記ラダー干渉型フィルタは、
    前記入力導波路の入射端側に接続された1段目のアレー導波路からp段目(pは1<p<Nの自然数)のアレー導波路の順番に第1の一定の光路長差を有し、前記入力導波路のp+1段目のアレー導波路からN段目のアレー導波路の順番に第2の一定の光路長差を有し、
    1段目のアレー導波路からp−1段目のアレー導波路までの第1の回折次数領域と、
    p段目のアレー導波路からN段目のアレー導波路までの第2の回折次数領域とが直列結合されたことを特徴とする波長可変フィルタ。
  2. 前記pは、自然数N/2またはN/2に最も近い自然数であることを特徴とする請求項1に記載の波長可変フィルタ。
  3. 前記ラダー干渉型フィルタは、
    p+1段目のアレー導波路からq段目(qは、p<q<Nの自然数)のアレー導波路の順番に前記第2の一定の光路長差を有し、q+1段目のアレー導波路からN段目のアレー導波路の順番に第3の一定の光路長差を有し、
    前記第1の回折次数領域と、
    p段目のアレー導波路からq−1段目のアレー導波路までの第2の回折次数領域と、
    q段目のアレー導波路からN段目のアレー導波路までの第3の回折次数領域とが直列結合されたことを特徴とする請求項1に記載の波長可変フィルタ。
  4. 前記第2の一定の光路長差は、前記第1の一定の光路長差のa倍(aは1<aの実数)であることを特徴とする請求項1に記載の波長可変フィルタ。
  5. 前記入力導波路および前記出力導波路の屈折率を変化させる手段は、前記第1の回折次数領域における前記入力導波路および前記出力導波路の屈折率を変化させることを特徴とする請求項4に記載の波長可変フィルタ。
  6. 請求項4または5に記載の波長可変フィルタと、前記波長可変フィルタの入力ポートおよび第2の光結合器を介して前記波長可変フィルタの出力ポートに接続された半導体増幅器と、前記第2の光結合器に接続された2つの出力導波路とを備えたことを特徴とする波長可変レーザ。
JP2006001798A 2006-01-06 2006-01-06 波長可変フィルタおよび波長可変レーザ Pending JP2007183429A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001798A JP2007183429A (ja) 2006-01-06 2006-01-06 波長可変フィルタおよび波長可変レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001798A JP2007183429A (ja) 2006-01-06 2006-01-06 波長可変フィルタおよび波長可変レーザ

Publications (1)

Publication Number Publication Date
JP2007183429A true JP2007183429A (ja) 2007-07-19

Family

ID=38339587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001798A Pending JP2007183429A (ja) 2006-01-06 2006-01-06 波長可変フィルタおよび波長可変レーザ

Country Status (1)

Country Link
JP (1) JP2007183429A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050162A (ja) * 2008-08-19 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335037A (ja) * 2001-03-07 2002-11-22 Nippon Telegr & Teleph Corp <Ntt> 波長可変光源および波長可変方法
JP2004144963A (ja) * 2002-10-24 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長フィルタおよび波長可変フィルタ
JP2005045048A (ja) * 2003-07-23 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザおよび波長可変レーザモジュール
JP2005300679A (ja) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> 波長フィルタ及び波長可変フィルタ
JP2006053436A (ja) * 2004-08-13 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> 波長可変フィルタ、波長可変フィルタ特性制御方法および波長可変レーザ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335037A (ja) * 2001-03-07 2002-11-22 Nippon Telegr & Teleph Corp <Ntt> 波長可変光源および波長可変方法
JP2004144963A (ja) * 2002-10-24 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長フィルタおよび波長可変フィルタ
JP2005045048A (ja) * 2003-07-23 2005-02-17 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザおよび波長可変レーザモジュール
JP2005300679A (ja) * 2004-04-07 2005-10-27 Nippon Telegr & Teleph Corp <Ntt> 波長フィルタ及び波長可変フィルタ
JP2006053436A (ja) * 2004-08-13 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> 波長可変フィルタ、波長可変フィルタ特性制御方法および波長可変レーザ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050162A (ja) * 2008-08-19 2010-03-04 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザ

Similar Documents

Publication Publication Date Title
US9728933B2 (en) Tunable laser source
EP1281221B1 (en) Improved mirror and cavity designs for sampled-grating distributed bragg reflector lasers
KR100916311B1 (ko) 이중 결합 링 공진기를 이용한 파장 가변 레이저 다이오드
JP2016102926A (ja) 波長可変レーザ及び波長可変レーザモジュール
JP4359252B2 (ja) 波長可変半導体レーザ装置
WO2016082541A1 (zh) 一种大范围调谐激光器及其调谐方法
WO2014048003A1 (zh) 具有灵活波长栅格调谐功能的外腔可调激光器
JP2007115900A (ja) 波長可変光源、波長可変光源モジュール、および波長可変光源の駆動方法
JP4469759B2 (ja) 波長可変レーザ
JP5001239B2 (ja) 半導体波長可変レーザ
US9871344B2 (en) Tunable laser and method for tuning a lasing mode
JP2011086714A (ja) 波長可変レーザ
JP6245656B2 (ja) 半導体レーザ素子
US6931036B2 (en) Digitally tunable laser
JP2007183429A (ja) 波長可変フィルタおよび波長可変レーザ
JP6452089B2 (ja) 半導体レーザ装置
JP2012156414A (ja) 半導体レーザ素子および半導体レーザ装置
JP4625285B2 (ja) 波長フィルタ、波長可変フィルタ、波長可変フィルタ特性制御方法および波長可変レーザ
JP2009088192A (ja) 半導体レーザ
JP2009188262A (ja) 半導体レーザ素子及び半導体光集積素子
JP2009252905A (ja) 半導体発光素子及び半導体光源
WO2022137330A1 (ja) 波長可変レーザ
Babaud et al. First integrated continuously tunable AWG-based laser using electro-optical phase shifters
JP2004273644A (ja) 半導体レーザ
JP2007248901A (ja) 光トランシーバ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100513

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619