JP2007183116A - 光学式エンコーダ - Google Patents

光学式エンコーダ Download PDF

Info

Publication number
JP2007183116A
JP2007183116A JP2006000271A JP2006000271A JP2007183116A JP 2007183116 A JP2007183116 A JP 2007183116A JP 2006000271 A JP2006000271 A JP 2006000271A JP 2006000271 A JP2006000271 A JP 2006000271A JP 2007183116 A JP2007183116 A JP 2007183116A
Authority
JP
Japan
Prior art keywords
light receiving
slit
light
period
cell array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000271A
Other languages
English (en)
Inventor
Kazuhiro Koizumi
和裕 小泉
Yuji Matsuzoe
雄二 松添
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006000271A priority Critical patent/JP2007183116A/ja
Publication of JP2007183116A publication Critical patent/JP2007183116A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)

Abstract

【課題】位置検出誤差やS/Nの低下を生じることなくスケールと受光素子との間隔を広くすることができ、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げること。
【解決手段】光学式エンコーダにおいて、スケール板4と受光素子2との間隔Hを大きくすると共に受光素子1上に投影されるスケール板4のスリット投影像の周期に合わせて受光セルアレイの周期Pを設定し、スリット投影像の周期と受光セルアレイの周期Pとのずれに起因した位置検出誤差を排除する。
【選択図】図5

Description

本発明は、回転方向や直線方向の位置を検出する光学式エンコーダに関する。
図11(a)(b)は、従来の光学式リニアエンコーダの構成例を示す概略図である。同図に示す光学式リニアエンコーダは、LEDで構成された発光素子500と、この発光素子500から光が入射するスケール501と、このスケール501から反射して入射する光を検出する受光素子502と、この受光素子502を搭載したプリント基板503とを備えている。発光素子500及びプリント基板503(受光素子502を含む)からセンサヘッドを構成していて、センサヘッドとスケール501とが矢印504又は505方向へ相対移動可能になっている。
スケール501は、図12に示すように長方形をなす透明ガラス板511の表面にクロム512をガラス板幅方向にスリット状に形成し、透明ガラス板511の長手方向には同一形状のクロム512を所定周期で配列して構成されている。このように所定周期で配列したクロム512が位置情報パターンのスリット列となる。
受光素子502は、図13に示すようにスケール501のスリット列(位置情報パターン)の周期と略同一周期W100で一方向に配置された感帯部513(斜線部)を有する。感帯部513の幅W101は感帯部513の周期W100の1/2又はそれ以下となっている。第1感帯部列514と第2感帯部列515との間隔W102は電気角で90°位相がずれるように設定されている。
以上のように構成された光学式リニアエンコーダにおいて、発光素子500から出射された光線がスケール501の位置情報パターンで反射し、この反射光を受光素子502の感帯部513にて検出する。受光素子502からは図14に示す90°位相がずれた正弦波状の電流信号100,101が出力される。図15に示すように、電流信号100,101はI/V変換回路521で電圧信号110,111に変換された後、マイクロコンピュータユニット522に取り込まれる。そして、マイクロコンピュータユニット522において内挿処理することにより高い分解能を有する位置情報を取得している。
また、M系列を利用して直線位置又は回転角度の絶対変位量を計測する光学式絶対値エンコーダが開発されている。
特許文献1には、M系列スリット列、第1内挿倍スリット列及び第2内挿倍スリット列からなる検出用トラックを有するスケールを介して、発光素子(LED)から照射される照射光を受光素子が検出する光学式絶対値エンコーダが提案されている。受光素子を搭載するプリント基板にCPUを設け、該CPUにおいて受光素子からM系列スリット列、第1内挿倍スリット列及び第2内挿倍スリット列に対応して出力されるM系列信号、第1内挿倍信号、第2内挿倍信号を組み合わせて絶対値情報を得ている。
特開2001−194185号公報
しかしながら、上記従来の各光学式エンコーダは、スケールと受光素子との間隔を狭く設定する必要があることから、精密な組立て精度が要求され、要素部品にも高い寸法精度が要求され、組立てコスト及び部品コストが高くなるといった問題がある。
ここで、スケールと受光素子との間隔を広くすることができれば、組立ても容易となり、要素部品の寸法公差も緩和できることになる。ところが、発光素子に用いられる発光ダイオードは照明光が完全な平行光とはならない。スリットの周期と受光素子を構成する感帯部(又は受光セル)の周期とを同一周期に設定した従来の光学式エンコーダにおいて、スケールと受光素子との間の距離を長くすると、受光素子上に投影されるスリット投影像の周期と受光素子の感帯部(又は受光セル)の周期とが一致しなくなるため、検出誤差が発生する可能性がある。
例えば、光学式絶対値エンコーダでは、各受光セルが独立して検出信号を出力するため、離れた位置にある受光セル間に位相差が発生し、位置検出結果に誤差が生じる。また、内挿倍信号を出力する受光セルは並列に接続されていて各受光セルからの信号が合成されるため、受光セル間で位相差が発生すると信号のS/Nが低下し、内挿誤差により精度が低下することとなる。
本発明は、以上のような実情に鑑みてなされたもので、位置検出誤差やS/Nの低下を生じることなくスケール板又は回転板と受光素子との間隔を広くすることができ、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げることのできる光学式エンコーダを提供することを目的とする。
本発明の光学式エンコーダは、照射光を出射する発光素子と、前記発光素子から入射する照射光を反射又は透過するスリット列が形成されたスケール板と、前記スケール板に形成されたスリット列のスリット投影像が投影される受光素子と、前記スリット投影像が投影された前記受光素子から出力される検出信号に基づいて絶対位置又は相対位置を検出する制御手段と、を備えた光学式エンコーダであって、前記受光素子は、前記スケール板のスリット列と対向する位置に、前記スリット列の形成方向に沿って周期的に形成された複数の受光セルからなる受光セルアレイを備え、前記スケール板のスリット列の周期よりも前記受光素子上に投影されたスリット投影像の周期が大きくなるように前記スケール板と前記受光素子との間隔を設定し、かつ前記受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたことを特徴とする。
このように構成された光学式エンコーダによれば、スケール板のスリット列の周期よりも前記受光素子上に投影されたスリット投影像の周期が大きくなるように前記スケール板と前記受光素子との間隔を設定したので、スケール板と受光素子との間を広くすることができ、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げることができる。しかも、受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたので、受光セルアレイの周期とスリット投影像の周期との位相差に起因した位置検出誤差を排除できる。
また本発明の光学式エンコーダは、照射光を出射する発光素子と、前記発光素子から入射する照射光を反射又は透過するスリット列が周方向に沿って形成された回転板と、前記回転板に形成されたスリット列を反射又は透過した光で形成されるスリット投影像が投影される受光素子と、前記スリット投影像が投影された前記受光素子から出力される検出信号に基づいて絶対位置又は相対位置を検出する制御手段と、を備えた光学式エンコーダであって、前記受光素子は、前記回転板のスリット列と対向する位置に、前記スリット列の形成方向に沿って周期的に形成された複数の受光セルからなる受光セルアレイを備え、前記回転板のスリット列の周期よりも前記受光素子上に投影されたスリット投影像の周期が大きくなるように前記回転板と前記受光素子との間隔を設定し、かつ前記受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたことを特徴とする。
このように構成された光学式エンコーダによれば、ロータリエンコーダにおいても上記リニアエンコーダと同様に回転板と受光素子との間を広くすることができ、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げることができる。しかも、受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたので、受光セルアレイの周期とスリット投影像の周期との位相差に起因した位置検出誤差を排除できる
なお、前記受光セルアレイは、次式で表される周期Pで配置され、
P=f×P0
但し、Pは受光セルアレイの周期
P0はスリット列の周期
fは係数
係数fの値が1よりも大きくすることが望ましい。
係数fの値を1よりも大きくすることにより、受光セルアレイの周期がスリット列の周期よりも大きくなるように設定され、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げることができると共に受光セルアレイの周期とスリット投影像の周期との位相差に起因した位置検出誤差を排除できる。
なお、前記係数fは、前記スケール板又は前記回転板と前記受光素子との間の距離と、前記発光素子の照射角度との関数であることが望ましく、特に1.001から1.1の範囲に含まれることが望ましい。
本発明によれば、検出誤差やS/Nの低下を生じることなくスケール板又は回転板と受光素子との間隔を広くすることができ、組立て精度及び要素部品の寸法公差を緩和して組立てコスト及び部品コストを下げるこができる。
以下、本発明の一実施の形態について図面を参照しながら具体的に説明する。
図1(a)(b)は、本実施の形態に係る光学式絶対値リニアエンコーダの概略構成を示す構成図である。同図に示す光学式絶対値リニアエンコーダは、発光ダイオードからなる発光素子1、複数の受光セルアレイから構成される受光素子2、図示していない電子部品を搭載した回路基板3、スケール板4から構成される。スケール板4は、同図に示す矢印80及び81方向へ移動可能になっている。発光素子1から出射した照明光は、スケール板4の反射部で反射して受光素子2へ入射するように受光素子2とスケール板4とが対向配置されている。
図2は回路基板3側から眺めたスケール板4の全体構成図である。回路基板3に対向しているスケール板4のスリット形成面に、M系列に従ってスリットが形成されたM系列トラック5と、明暗格子からなり周期的に光を透過及び反射する内挿倍トラック6とが形成されている。M系列トラック5は、M系列規定に従って反射領域と透過領域とが繰り返すスリット列を形成している。透過領域とは反射領域よりも反射率が低いという意味であり、必ずしも光が全く反射しない(反射率0)ということに限定する趣旨ではない。内挿倍トラック6は、明暗格子による反射部と透過部とが周期的に繰り返されるスリット列を構成している。スケール板4上に形成されたM系列トラック5及び内挿倍トラック6は、ガラス板上にクロム膜を蒸着し、該クロム膜の一部をエッチングによって除去することにより得ることができる。
ここで、M系列とは、1周期あたり2個の1,0の組み合わせで構成され、簡単な規則によって作られる確定的系列であるが、概観上不規則な系列に似ている。このM系列の特定位置から連続するn個の1,0情報(パターン)は、系列内で1つしか存在しないため、2個の重複しない情報を持つことになる。上記M系列トラック5は、このM系列の「1」を反射領域(図2の斜線部12a)、「0」を非反射領域(図2の非斜線部12b)とする2個の反射領域12aを有する反射パターンで構成される。ここでは、n=8で2(=256)個の系列からなるものとして説明する。
図3はスケール板4側から回路基板3上の受光素子2を眺めた場合の受光素子2の受光セルアレイを示す平面図である。図中の斜線で示した領域は光を感じる感帯部を示し、その他の領域は光を検出しない不感帯部を示している。同図において、最上段に配置された8個の受光セルからM系列用の受光セルアレイA群43が構成され、上から2段目に配置された8個の受光セルからM系列用の受光セルアレイB群44が構成される。また、左下に配置された6個の受光セルから内挿倍用の受光セルアレイA’群45が構成され、右下に配置された6個の受光セルから内挿倍用の受光セルアレイB’群46が構成される。各受光セルはフォトダイオードで構成することができる。
なお、M系列用の受光セルアレイA群43の各受光セルの出力端が光電流を増幅するトランジスタに接続され、B群44の各受光セルの出力端が光電流を増幅する別のトランジスタに接続される。
受光セルアレイA群43,B群44の各受光セルは周期的に配置されるものであり、隣接する2つの受光セル間の距離である周期ピッチP1をM系列用周期ピッチ=Pというものとする。受光セルアレイA群43,B群44の位相差P5を電気角で180°とするため、位相差P5の距離はM系列用周期ピッチPの半分、つまり、P/2とする。
また、受光セルアレイA’群45、受光セルアレイB’群46の周期ピッチ(以下、内挿倍用周期ピッチという。)P2、P3はM系列検出用周期ピッチP1と同じ値、つまり、内挿倍用周期ピッチはPとなるように設けられている。内挿倍用周期ピッチP2,P3(=P)を電気角で360°とした場合に、受光セルアレイA’群45、受光セルアレイB’群46の位相差P4を90°もしくは270°の電気角の位相差に設定するためには、位相差P4となる距離を、P/4または3P/4とすることにより達成される。
また、M系列用の受光セルアレイB群44と内挿倍検出用の受光セルアレイA’群45とは適当な位相差にて配置されるが、本例では受光セルアレイB群44と受光セルアレイA’群45とが同位相となるように配置されている。
なお、受光セルアレイA群43,B群44及び受光セルアレイA’群45、B’群46のそれぞれのピッチP1、P2、P3、受光セルアレイA群43及びB群44との位相差P5、受光セルアレイA’群45及びB’群46との位相差P4については特開2001-194185号公報に詳述されている。
受光素子2の受光セルアレイA群43及びB群44は、スケール板4のM系列トラック5のスリット投影像が投影される位置に対向配置される。また受光素子2の受光セルアレイA’群45、B’群46は、スケール板4の内挿倍トラック6のスリット投影像が投影される位置に対向配置される。
図4は受光セルアレイA群43及びB群44、受光セルアレイA’群45及びB’群46及びその周辺回路の回路構成図である。受光セルアレイA群43,B群44,A’群45,B’群46の個々の受光セル(31−1〜31−8、32−1〜32−8、33−1〜33−6、34−1〜34−6)のカソード側に電源(Vcc)が接続されており、逆バイアス接続となっている。
M系列用の受光セルアレイA群43及びB群44の全ての受光セル31−1〜31−8及び32−1〜32−8のアノード側はトランジスタ401〜416のベース−エミッタ間を介してそれぞれ電流電圧変換用抵抗141−1〜141−8,142−1〜142−8が接続されており、CPU(Central Processing Unit)50がM系列検出信号を電圧信号として取り込めるようになされている。
内挿倍用の受光セルアレイA’群45及びB’群46の周辺回路構成は、内挿倍用の受光セルアレイA’群45及びB’群46の各受光セル33−1〜33−6、34−1〜34−6のアノード側を全て結合して電流電圧変換用抵抗143,144に接続され、また、これら電流電圧変換用抵抗143,144の他端はグランド接地されている。これによりI/V変換された内挿倍検出信号を電圧信号としてCPU50内のA/D変換器(図示せず)を介して取り込む。
これにより、M系列用の受光セルアレイA群43,B群44では個々の受光セル31−1〜31−8及び32−1〜32−8から出力される検出信号がそれぞれCPU50に入力されるのに対し、内挿倍用の受光セルアレイA’群45及びB’群46では、個々の受光セル33−1〜33−6、34−1〜34−6からの出力信号の総和が出力される。
ここで、スケール板4に形成した内挿倍トラック6のスリット列の周期P0(以下、適宜「スリット列の周期」という)と、受光素子2に設けた受光セルアレイA’群45、B’群46の受光セル(33−1〜33−6、34−1〜34−6)の周期P(以下、適宜「受光セルアレイの周期」という)との関係について説明する。
図5に本実施の形態に係る光学式絶対値エンコーダにおける光学系の拡大図を示す。本実施の形態は、スケール板4と受光素子2との間の距離Hを、組立てを容易にできて要素部品の寸法公差を緩和できる程度まで広げた値に設定している。同図に示すように、内挿倍トラック6のスリット列は反射部と透過部とが周期的に繰り返しており、ここに発光素子1から出射される完全な平行光ではない照明光が照射される。スリット列からの反射光は、スケール板4から遠ざかるに従い発散する。よって、スケール板4と受光素子2との間隔である距離Hが大きくなるのに従って、受光素子2上に投影されるスリット投影像は拡大されることとなる。
本実施の形態は、スリット投影像の拡大に伴う位置検出誤差の発生を防止するため、受光素子2における受光セルアレイA’群45、B’群46の受光セルアレイのピッチP(受光セルアレイA群43、B群44の受光セルアレイも同一ピッチ)を、次式に基づいて計算された値に設定している。
P=f(H,θ)×P0
但し、Pは受光セルアレイの周期、P0は内挿倍トラック6におけるスリット列の周期、f(H,θ)はスケール板4と受光素子2との間の距離Hと発光素子1の照射角度θの関数である。
距離H及び照射角度θは、受光素子2上に投影されるスリット投影像がどの程度拡大されるかを決めると共にスリット投影像の光強度を左右する変数(パラメータ)である。したがって、距離H及び照射角度θを変数とする関数f(H,θ)により、受光セルアレイの周期Pとスリット投影像の周期とを略同一周期とすると共に精度低下を招かない程度の光強度を実現し得る係数を決定することができる。ここで、本発明は受光セルアレイの周期Pとスリット投影像の周期とが必ず同一周期になる場合に限定されるものではない。従来の光学式絶対値エンコーダのようにスケール板と受光素子との距離Hを0に近い値まで近接させた場合における受光セルアレイの周期Pとスリット投影像の周期との関係を、スリット投影像が拡大された場合にも維持できることが重要である。距離Hを0に近い値まで近接させた場合の受光セルアレイ周期Pとスリット投影像周期とが同一周期であれば、関数f(H,θ)により、受光セルアレイ周期Pとスリット投影像の周期とが同一周期となる係数を決定することになる。
コスト低減の観点から、スケール板4と受光素子2との間隔を広げる場合、関数f(H,θ)の値は必ず1より大きな値をとることになる。距離Hを大きくし及び又は照射角度θを大きくし過ぎても光強度が低下するため検出精度は低下する。シミュレーションの結果、関数f(H,θ)の値は1.001〜1.1の範囲が望ましい範囲であることが確認された。
なお、以上の説明では、説明を簡素化するために内挿倍トラック6のスリット列(スリット投影像)と受光セルアレイA’群45、B’群46の受光セルアレイとの関係について説明したが、M系列トラック5のスリット投影像と受光セルアレイA群43、B群44の受光セルアレイとの関係についても同様のことが言える。したがって、受光セルアレイA群43、B群44の受光セルアレイの周期Pも上記計算式に基づいて設定する。
次に、以上のように構成された本実施の形態の動作について説明する。
図5に示すように、発光素子1から出射した照明光が照射角度θでスケール板4のM系列トラック5及び内挿倍トラック6に入射する。当該M系列トラック5及び内挿倍トラック6の透過部に入射した光はそのまま透過するが、反射部に入射した光は受光素子2の方向へ向けて反射する。スケール板4と受光素子2との間隔Hは、関数f(H,θ)の値が1.001〜1.1の値をとる範囲で広くなるように設定している。スケール板4と受光素子2との間隔Hを広くしたことにより、完全な平行光でない照明光は僅かに発散して受光素子2に入射する。その結果、M系列トラック5及び内挿倍トラック6の実際のスリット列よりも拡大されたスリット投影像が受光素子2の対応する受光セルアレイ上に投影される。
一方、受光素子2上においてスリット投影像が投影される受光セルアレイ(43〜46)は受光セルアレイの周期Pがスリット投影像の拡大率に応じて拡大されている。すなわち、受光セルアレイの周期Pは、関数f(H,θ)によって計算された係数をスリット投影像の拡大前の周期P0に掛け合わせて得られた値まで拡大されている。したがって、図6に示すような周期のスリット投影像が受光素子面上に投影されるが、スリット投影像の周期と受光セルアレイの周期Pとが略一致することとなり、スリット投影像が拡大したことによる位相差は生じない。
また、スケール板4と受光素子2との間隔Hを大きくし過ぎるとスリット投影像の光強度が低下してしまうが、関数f(H,θ)によって計算される係数の最大値を1.1以下に抑えているので、図6に示すように精度低下を招かない程度の光強度を維持することができている。
M系列用の受光セルアレイA群43及びB群44の全ての受光セル31−1〜31−8及び32−1〜32−8のアノード側はトランジスタ401〜416のベース−エミッタ間を介してそれぞれ電流電圧変換用抵抗141−1〜141−8,142−1〜142−8が接続されているので、M系列用の受光セルアレイA群43,B群44では個々の受光セル31−1〜31−8及び32−1〜32−8から出力されるM系列検出信号がそれぞれCPU50に入力される。また、内挿倍用の受光セルアレイA’群45及びB’群46では、個々の受光セル33−1〜33−6、34−1〜34−6からの出力信号の総和が内挿倍検出信号として出力される。
図7に示すM系列検出信号71及び72は受光セルアレイ群A43及びB群44の受光セル31−1及び31−2から出力された電流信号を電流電圧変換して得られた信号波形である。また、内挿倍検出信号75,76は内挿倍用の受光セルアレイ群A’313及びB’群314から出力された電流信号を加算し電流電圧変換して得られた信号波形である。
M系列検出信号及び内挿倍検出信号をCPU50に取り込み、M系列検出信号を絶対値位置情報に変換する。更に、M系列検出信号と同期して得られる内挿倍検出信号を電気的に内挿倍することによりM系列検出信号で得られた分解能を超える分解能を実現している。
また、内挿倍検出信号はA群43から出力されるM系列検出信号とB群44から出力されるM系列検出信号とを切り替える選択信号として用いることができる。例えば、図7に示すタイミングT1にてM系列検出信号を得る場合、M系列用の受光セルアレイA群43のM系列検出信号71はハイレベル側からローレベル側へ変化するタイミングであり、CPU50に取り込まれるM系列検出信号71の値が不安定になる。図8はM系列検出信号71、71の各変化領域がCPU50に取り込まれた場合のデジタル値の状況を示している。同図に示すように、M系列検出信号71、71の各変化領域ではデジタル値が不安定な状態となっている。
そこで、受光セルアレイA群43のM系列検出信号の状態が不安定な領域(タイミングT1など)において、信号状態が安定している受光セルアレイB群44のM系列検出信号(72等)を位置検出に用いるようにする。
以上のように本実施の形態によれば、スケール板4と受光素子2との間隔Hを大きくすると共に受光素子1上に投影されるスケール板4のスリット投影像の周期に合わせて受光セルアレイの周期Pを設定したので、スリット投影像の周期と受光セルアレイの周期Pとのずれに起因した位置検出誤差を排除でき、しかも組立て作業を容易化できてコストダウンを図ることもできる。
なお、上記光学式絶対値リニアエンコーダはスケール板4からの反射光を受光素子2で検出する方式であるが、発光素子と受光素子とをスケール板を挟んで対向配置し、スケール板にM系列トラック5及び内挿倍トラック6に相当するスリット列を形成し、スリット列を透過した光を受光素子で検出する方式もある。
上記実施の形態はリニアエンコーダに関するものであったが、本発明はリニアエンコーダに限らずロータリエンコーダにも同様に適用可能である。
図9は光学式絶対値ロータリエンコーダの概略的な構成例を示す図である。この光学式絶対値ロータリエンコーダは、エンコーダケース151、ベアリング152,153、中空軸154、回転板としてのスリット円板155、発光素子としてのLED(Light Emitting Diode)156、受光素子2、回路ユニットを搭載するプリント基板158を備えている。スリット円板155が取り付けられる中空軸154は回転角度の検出対象である回転体の回転中心となっている。
エンコーダケース151には、ベアリング152,153を介して中空軸154が回動自在となるように取り付けられている。この中空軸154には、スリット円板155が取り付けられている。このスリット円板155には、図10に示すように、複数のトラックで構成された検出用トラック159が設けられている。検出用トラック159は、M系列トラック5、内挿倍トラック6が同心円状に形成されたものである。M系列トラック5、内挿倍トラック6で照射光を強く反射する反射領域に相当する部分にスリットを設けて透過部となし、照射光を反射しない又は反射光量が少ない非反射領域に相当する部分をスリットの無い遮光部となしてスリット円板155を構成する。
なお、スリットは、図9で示すような貫通孔や、また、図示しない透明なスリット円板に明暗格子状に印刷したパターン(明は透明な透過部であり、暗は遮光部である)のうち透過部などを指すものとする。この検出用トラック159のうち一方のスリット列はM系列の規則に従って配置されたM系列スリットからなる円形トラックであり、他方のスリット列は特定の周期で交互に光を透過・遮光させるスリット列(内挿倍スリット列)からなる円形トラックである。すなわち、直線的なM系列トラック5、内挿倍トラック6を、スリット円板155に同心円状に配置するように円形にしたものである。
以上のように構成された光学式絶対値ロータリエンコーダによれば、LED156から出射された照射光がスリット円板155のM系列トラック5、内挿倍トラック6を透過して受光素子2に受光される。受光素子2から出力されるM系列検出信号、内挿倍検出信号がCPU50に取り込まれ、上記実施の形態と同様に処理されて回転方向変位情報が得られるものとなる。
なお、上記光学式絶対値ロータリエンコーダは、スリット円板を用いた透過型のロータリエンコーダであったが、反射型の光学式絶対値ロータリエンコーダを構成することもできる。
本発明は、スケール板のスリット投影像を受光素子上に投影させる光学式リニアエンコーダ又は光学式ローラリエンコーダに適用可能である。
(a)一実施の形態に係る光学式絶対値エンコーダの概略的な全体構成を示す側面図、(b)同図(a)の光学式絶対値エンコーダをスケール側から見た概略的な平面図 上記実施の形態に係る光学式絶対値エンコーダのスケール板の部分的な平面図 上記実施の形態に係る光学式絶対値エンコーダの受光素子の平面図 上記実施の形態に係る光学式絶対値エンコーダの受光素子及び回路基板の回路構成図 上記実施の形態に係る光学式絶対値エンコーダの光学系の拡大図 上記実施の形態における受光素子上でのスリット投影像の光強度を示す図 上記実施の形態におけるM系列検出信号及び内挿倍検出信号の波形図 上記実施の形態におけるM系列検出信号の切替えタイミングを説明するための波形図 変形例に係る光学式絶対値ロータリエンコーダの断面図 図9に示すスリット円板の構成図 (a)従来の光学式エンコーダの側面図、(b)同図(a)の光学式エンコーダをスケール側から見た概略的な平面図 図11に示す光学式エンコーダにおけるスケール板の平面図 図11に示す光学式エンコーダにおける受光素子の平面図 図11に示す光学式エンコーダの出力信号の波形図 図11に示す光学式エンコーダの処理過程を示す図
符号の説明
1 発光素子
2 受光素子
3 回路基板
4 スケール板
5 M系列トラック
6 内挿倍トラック
31−1〜31−8、32−1〜32−8 受光セル
33−1〜33−6、34−1〜34−6 受光セル
43 受光セルアレイA群
44 受光セルアレイB群
45 受光セルアレイA’群
46 受光セルアレイB’群
50 CPU

Claims (6)

  1. 照射光を出射する発光素子と、
    前記発光素子から入射する照射光を反射又は透過するスリット列が形成されたスケール板と、
    前記スケール板に形成されたスリット列のスリット投影像が投影される受光素子と、
    前記スリット投影像が投影された前記受光素子から出力される検出信号に基づいて絶対位置又は相対位置を検出する制御手段と、
    を備えた光学式エンコーダであって、
    前記受光素子は、前記スケール板のスリット列と対向する位置に、前記スリット列の形成方向に沿って周期的に形成された複数の受光セルからなる受光セルアレイを備え、
    前記スケール板のスリット列の周期よりも前記受光素子上に投影されたスリット投影像の周期が大きくなるように前記スケール板と前記受光素子との間隔を設定し、かつ前記受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたことを特徴とする光学式エンコーダ。
  2. 照射光を出射する発光素子と、
    前記発光素子から入射する照射光を反射又は透過するスリット列が周方向に沿って形成された回転板と、
    前記回転板に形成されたスリット列のスリット投影像が投影される受光素子と、
    前記スリット投影像が投影された前記受光素子から出力される検出信号に基づいて絶対位置又は相対位置を検出する制御手段と、
    を備えた光学式エンコーダであって、
    前記受光素子は、前記回転板のスリット列と対向する位置に、前記スリット列の形成方向に沿って周期的に形成された複数の受光セルからなる受光セルアレイを備え、
    前記回転板のスリット列の周期よりも前記受光素子上に投影されたスリット投影像の周期が大きくなるように前記回転板と前記受光素子との間隔を設定し、かつ前記受光セルアレイの周期を前記スリット投影像の周期に合わせてスリット列の周期よりも大きくしたことを特徴とする光学式エンコーダ。
  3. 前記受光セルアレイは、次式で表される周期Pで配置され、
    P=f×P0
    但し、Pは受光セルアレイの周期
    P0はスリット列の周期
    fは係数
    係数fの値が1よりも大きいことを特徴とする請求項1又は請求項2記載の光学式エンコーダ。
  4. 前記係数fは、前記スケール板又は前記回転板と前記受光素子との間の距離と、前記発光素子の照射角度との関数であることを特徴とする請求項3記載の光学式エンコーダ。
  5. 前記係数fは、1.001から1.1の範囲に含まれることを特徴とする請求項3又は請求項4記載の光学式エンコーダ。
  6. 前記スケール板又は前記回転板は、M系列規定に基づいて照射光を反射又は透過するM系列スリット列と、予め定められた周期で交互に照射光を反射又は透過する内挿倍スリットとを備え、
    前記受光セルアレイは、前記M系列スリット列と対向する位置に配置されたM系列用受光セルアレイと、内挿倍スリットと対向する位置に配置された内挿倍用受光セルアレイとを備え、
    前記制御手段は、前記M系列用受光セルアレイ及び前記内挿倍用受光セルアレイから出力された検出信号を組み合わせて絶対位置を検出することを特徴とする請求項1から請求項5の何れかに記載の光学式エンコーダ。
JP2006000271A 2006-01-04 2006-01-04 光学式エンコーダ Pending JP2007183116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000271A JP2007183116A (ja) 2006-01-04 2006-01-04 光学式エンコーダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000271A JP2007183116A (ja) 2006-01-04 2006-01-04 光学式エンコーダ

Publications (1)

Publication Number Publication Date
JP2007183116A true JP2007183116A (ja) 2007-07-19

Family

ID=38339351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000271A Pending JP2007183116A (ja) 2006-01-04 2006-01-04 光学式エンコーダ

Country Status (1)

Country Link
JP (1) JP2007183116A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636199A (zh) * 2011-02-10 2012-08-15 株式会社安川电机 编码器、光学模块以及伺服系统
JP2014134532A (ja) * 2012-12-10 2014-07-24 Dmg Mori Seiki Co Ltd 変位検出装置及びスケール
JP2015028428A (ja) * 2013-07-30 2015-02-12 パナソニック株式会社 アブソリュートエンコーダ
CN104613994A (zh) * 2013-11-05 2015-05-13 株式会社安川电机 编码器、具有编码器的电机、和伺服系统
US9417101B2 (en) 2011-02-28 2016-08-16 Canon Kabushiki Kaisha Optical encoder with a scale that has fine and coarse pitch patterns
WO2022230665A1 (ja) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 エンコーダ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636199B (zh) * 2011-02-10 2015-04-01 株式会社安川电机 编码器、光学模块以及伺服系统
US9080898B2 (en) 2011-02-10 2015-07-14 Kabushiki Kaisha Yaskawa Denki Encoder, optical module, and servo system with specific spacing between light source and light receiving array
CN103348219A (zh) * 2011-02-10 2013-10-09 株式会社安川电机 编码器、光学模块和伺服系统
JP5527637B2 (ja) * 2011-02-10 2014-06-18 株式会社安川電機 エンコーダ、光学モジュール及びサーボシステム
CN103348219B (zh) * 2011-02-10 2015-08-19 株式会社安川电机 编码器、光学模块和伺服系统
CN102636199A (zh) * 2011-02-10 2012-08-15 株式会社安川电机 编码器、光学模块以及伺服系统
WO2012108078A1 (ja) * 2011-02-10 2012-08-16 株式会社安川電機 エンコーダ、光学モジュール及びサーボシステム
US9417101B2 (en) 2011-02-28 2016-08-16 Canon Kabushiki Kaisha Optical encoder with a scale that has fine and coarse pitch patterns
JP2014134532A (ja) * 2012-12-10 2014-07-24 Dmg Mori Seiki Co Ltd 変位検出装置及びスケール
JP2015028428A (ja) * 2013-07-30 2015-02-12 パナソニック株式会社 アブソリュートエンコーダ
CN104613994A (zh) * 2013-11-05 2015-05-13 株式会社安川电机 编码器、具有编码器的电机、和伺服系统
US9436166B2 (en) 2013-11-05 2016-09-06 Kabushiki Kaisha Yaskawa Denki Encoder, motor with encoder, and servo system
CN104613994B (zh) * 2013-11-05 2017-05-24 株式会社安川电机 编码器、具有编码器的电机、和伺服系统
WO2022230665A1 (ja) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 エンコーダ

Similar Documents

Publication Publication Date Title
JP6312505B2 (ja) 光学式エンコーダおよびこれを備えた装置
US9347802B2 (en) Scale, vernier encoder and apparatus using the same
JP2007183116A (ja) 光学式エンコーダ
JP2011185806A (ja) 光学式エンコーダおよび変位計測装置
JP2016102708A (ja) 光学式エンコーダ
JP5200550B2 (ja) 検出ユニット及びエンコーダ
JP2008083019A (ja) 光電式エンコーダおよびそれを用いた電子機器
JP2007071732A (ja) 光学式絶対値エンコーダ
JP2011220864A (ja) 光学式基準位置検出型エンコーダ
JP4779517B2 (ja) 光学式絶対値エンコーダ
US6956200B2 (en) Phase-shift photoelectric encoder
JP5553669B2 (ja) 光学式絶対位置測長型エンコーダ
JP5979033B2 (ja) エンコーダ
JP3738742B2 (ja) 光学式絶対値エンコーダ及び移動装置
JP2013036945A (ja) 光学式エンコーダの原点検出方法
US6759647B2 (en) Projection encoder
JP6684087B2 (ja) 光エンコーダ
JP2014224745A (ja) 原点信号発生装置及び原点信号発生システム
JP4672542B2 (ja) 光電式エンコーダおよび電子機器
JP6091268B2 (ja) 位置検出装置、レンズ装置、撮像システム、工作装置、位置検出方法、および、プログラム
JP4945976B2 (ja) 光学式絶対値エンコーダ
JP2008116229A (ja) インクリメンタル型ロータリエンコーダ
JP2001194185A (ja) 光学式絶対値エンコーダ
JP2005265512A (ja) 光学式エンコーダ
JP2002139353A (ja) 光学式ロータリエンコーダ