JP2007171488A - 双方向通信用光導波路及び光送受信器 - Google Patents

双方向通信用光導波路及び光送受信器 Download PDF

Info

Publication number
JP2007171488A
JP2007171488A JP2005368151A JP2005368151A JP2007171488A JP 2007171488 A JP2007171488 A JP 2007171488A JP 2005368151 A JP2005368151 A JP 2005368151A JP 2005368151 A JP2005368151 A JP 2005368151A JP 2007171488 A JP2007171488 A JP 2007171488A
Authority
JP
Japan
Prior art keywords
optical waveguide
core
optical
light
bidirectional communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005368151A
Other languages
English (en)
Inventor
Kazutoshi Tanida
和敏 谷田
Toru Fujii
徹 藤居
Toshihiko Suzuki
俊彦 鈴木
Takashi Shimizu
敬司 清水
Shigemi Otsu
茂美 大津
Hidekazu Akutsu
英一 圷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005368151A priority Critical patent/JP2007171488A/ja
Publication of JP2007171488A publication Critical patent/JP2007171488A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 双方向通信を実現するための小型でかつ低コストの双方向通信用光導波路及び光送受信器を提供する。
【解決手段】 本双方向通信用光導波路は、コアを有する第一光導波路11及び第二光導波路21を備える。第一光導波路11の一端と第二光導波路21の一端が対向して配置され、第一光導波路の一端及び第二光導波路の一端のコア11b、21bの対向面がそれぞれコア軸に対して傾斜端面15,25を形成している。第一光導波路11の他端から伝搬される受信光16は第一光導波路のコア傾斜端面15で全反射させることにより取り出し可能とされる。また、第二光導波路21の他端から伝搬される送信光26は第二光導波路のコア傾斜端面25で屈折され、第一光導波路のコア傾斜端面15を介して第一光導波路11へ伝搬される。
【選択図】 図1

Description

本発明は、双方向に光信号を伝搬するための双方向通信用光導波路及び光送受信器に関する。
従来、光通信における信号は、1方向に通信する光を受光したり、途中で溝などを形成しそこからの漏れ光を検出する方法がとられていた(例えば、特許文献1)。この方式では、光信号送受信のためには、2本の通信線が必要となる。近年、電気基板などの機器内光通信への応用が検討されている光インターコネクションの普及には、小型化・低価格化において不利であるため、1本の光ファイバまたは光導波路を利用して双方向に光信号を送受信する構成が有力である。
このような方法として、送信と受信に異なる波長の光を用いて、光が伝搬する経路途中に波長選択性のある反射板やフィルタを挿入・配置して、送信と受信の光信号を分離する方法がよく用いられている(例えば、特許文献2)。しかしこのような方法では、波長選択性の反射板やフィルタなどの追加と組立てでコストが高くなってしまう。また送受信で波長を変える必要があるため、対向する送受信器と共通な構成とならないなど、システムごとの設計の変更が必要になり、汎用性が低くコスト低減が困難である。そこで、汎用性向上のために、送受信光の波長を同一にすると、上記反射板やフィルタが機能せずに発光源に光が到達してしまう。一般的な光通信における信号の発光源としては、半導体レーザーが使用されており、光通信システムにおける光学系からの反射戻り光によってもレーザー発振が不安定になることから、送受信器として成り立たないことになる。それら信号光や反射戻り光を、発光源に入射させないために、光アイソレート機能を有する素子構成を追加し組み立てると、送受信部としてのコストが高くなってしまう。また近年の大容量通信のための多芯化・アレイ化においても光送受信部が大きくなってしまう。そのためサイズの制約が検討される機器内等の光インターコネクションでは不利である。
特開2001−13339号公報 特開平11−352341号公報
このように、簡易な構成の同一波長の光信号を用いた双方向通信を可能とする小型の光送受信器を実現するには、送信光が安定して伝搬され、かつ受信光が送信光源に伝搬しない構成が必要であり、かつ部品構成が少なく高密度化が可能であることが求められる。即ち、送信光及び受信光に同一波長の光源を用いても、発光素子や受光素子の双方に迷光が入力せず、かつ小型かつアレイ化が可能なような双方向通信用光送受信器の実現が望まれている。
従って本発明の目的は、上記のような従来技術の問題点を解決し、双方向通信を実現するための小型でかつ低コストの双方向通信用光導波路及び光送受信器を提供することにある。
上記目的は、コアを有する第一光導波路及び第二光導波路を備え、光信号を双方向に伝搬するための双方向通信用光導波路であって、前記第一光導波路の一端と第二光導波路の一端が対向して配置され、前記第一光導波路の一端及び第二光導波路の一端のコア対向面がそれぞれコア軸に対して傾斜端面を形成し、前記第一光導波路の他端から伝搬される光信号を前記第一光導波路の一端のコア傾斜端面で全反射させることにより取り出し可能とし、かつ前記第二光導波路の他端から伝搬される光信号を前記第二光導波路の一端のコア傾斜端面で屈折させて前記第一光導波路の一端のコア傾斜端面を介して前記第一光導波路へ伝搬可能とした双方向通信用光導波路により、達成される。
ここで、前記第二光導波路のコア径は、前記第一光導波路のコア径よりも小さいことが好ましく、また前記第二光導波路のコアの屈折率は、前記第一光導波路のコアの屈折率よりも小さいことが好ましい。さらに、前記第一光導波路の一端のコア傾斜端面はコア軸に対して43゜〜48゜の傾斜角を有することが好ましく、また前記第二光導波路の一端のコア傾斜端面がコア軸に対して50゜〜65゜の傾斜角を有することが好ましい。
また、本発明に係る双方向通信用光送受信器は、上記の双方向通信用光導波路を備えたものであって、前記第一光導波路の一端のコア傾斜端面で全反射した光信号の進む方向に配置された受光素子と、前記第二光導波路の他端に配置された発光素子とを備えるものである。ここで、双方向通信用光送受信器は、前記第一光導波路及び第二光導波路を配置する支持台を備え、前記支持台が、前記受光素子を配置するための貫通孔と、前記発光素子を配置するための段部とを有することができる。
前記第二光導波路の他端のコア端面は、コア軸に対して傾斜面を有することができる。この場合、前記第二光導波路の他端の傾斜面を有するコア端面で光信号が全反射して前記第二光導波路に入力するように前記発光素子を配置することが好ましい。また、前記第一光導波路及び第二光導波路を配置する支持台を備え、前記支持台が、前記受光素子を配置するための貫通孔と、前記発光素子を配置するための貫通孔とを有することができる。
さらに、前記第二光導波路の一端のコア傾斜端面から出た光信号の一部が前記第一光導波路の一端のコア傾斜端面でフレネル反射される方向にモニター用受光素子を備えることができる。
本発明によれば、発光素子への戻り光を最小にして安定した発光状態を保ち、かつ、同一波長の送信光及び受信光を用いた双方向通信システムにも適用できることから、安定性や汎用性に富む。また、その構成として波長選択性の反射板やフィルタ等の構造が複雑な光学素子を必要としないことから、その部品構成が簡易となると共に、コスト抑制が可能となる。さらに、光導波路をアレイ化した場合に、光の偏向がアレイ面に対し上下となるため、多芯の双方向通信用光送受信器を小型化できる。
以下、本発明の実施の形態について、添付の図面を参照して詳細に説明する。
<双方向通信用光導波路>
図1は、本発明に係る双方向通信用光導波路の一実施形態を示す図である。本実施形態では、傾斜端面を有する2つの光導波路が備えられており、その傾斜端面同士が、空気を介して相対(対向)して配置される。一方の光導波路の他端には、例えばコネクタなどを介して、図示しない他の光学素子が配置され、他方の光導波路の他端には、例えば半導体レーザー等の発光素子が配置され、上記傾斜端面近傍には受光素子が配置される。
本実施形態は、図示のように、光を導波する第一光導波路11と第二光導波路21とを備え、第一光導波路11の一端と第二光導波路21の一端が対向して配置される。第一光導波路11は、コア11bとそれを覆うクラッド11a、11cとを有し、第二光導波路21は、コア21bとそれを覆うクラッド21a、21cとを有する。第一光導波路11のコア11bの端面は、当該コア軸(コア長手方向の中心軸)に対して傾斜して(傾斜角=θ)形成されている。また、第二光導波路21も、上記第一光導波路と同様に、光を導波する第二光導波路21のコア21bの端面が、当該コア軸(コア長手方向の中心軸)に対して傾斜して(傾斜角=θ)形成されている。即ち、第一光導波路の一端及び第二光導波路の一端のコア対向面がそれぞれコア軸に対して傾斜端面を形成している。第一光導波路11のコア軸と第二光導波路21のコア軸とは略平行に配置される。
そして、上記の構成になる光導波路によれば、図に矢印で示すように、第一光導波路11のコア11bを伝搬してきた受信光16は、第一光導波路11のコア軸に対し傾斜角度θを持つ傾斜端面15で全反射する。これにより、この受信光16は、第二光導波路コア21bに伝搬することなく、即ち、光導波路の外へ導かれる。なお、この第一光導波路11(又は、そのコア)の傾斜端面の傾斜角度θは、上述したように受信光16を全反射させるため、43°〜48°に設定することが好ましい。それは、この傾斜角度θが48°を超える場合には、受信光16の反射率が低下し、その漏れ光が第一光導波路11へ伝搬してしまい、場合によっては、その一部が送信光の発光源まで到達し、例えば、発光源を構成する半導体レーザーでの発振を不安定にしてしまうからである。また、この傾斜角度θが43°より小さい場合には、第二光導波路21から第一光導波路11のコア11bに入射する光(図に符号26で示す送信光)の入射角度が大きくなり、第一光導波路のコア11b内に閉じ込められる光量が減少してしまい、送信光26による信号の伝送が困難となる場合が生じるからである。
一方、第二光導波路21のコア21bを伝搬してきた送信光26は、第二光導波路21のコア軸に対し傾斜角度θを持つ傾斜端面25において、コア21bと空気との間の屈折率の差、及び、その傾斜角度θにより屈折し偏向する。その後、第一光導波路のコア11bの傾斜端面15に達する。この第一光導波路のコア11bの傾斜端面15では、空気とコア11bと間の屈折率の差、及び、コア11bへの入射角度から、送信光26は屈折して、第一光導波路コア11bに入射され、当該コア11bを伝搬して送信される。この第二光導波路21のコア21bの傾斜端面における傾斜角度θは、送信光26を第一の光導波路のコア11bに入射させるため、50°〜65°に設定することが好ましい。それは、当該傾斜角度θが50°より小さい場合には、第二光導波路のコア21bから出射する送信光26と、第二光導波路のコア21bの傾斜面とにより形成する角度が小さくなり、第一光導波路のコア11bに到達する光量が減少してしまい、信号光の伝搬が不充分となる恐れが生じるからである。また、この傾斜角度θが65°を超えると、第二光導波路のコア21bから出射する送信光26と第二光導波路のコア21bの傾斜面とが形成する角度が大きくなり、第一光導波路のコア11bに到達する光量は増えるが、第一光導波路のコア11bに入射した光の角度が大きくなり過ぎて、第一光導波路のコア11b内に閉じ込められる光量が減少してしまい、やはり、送信光26による信号の伝送が困難となる場合が生じるからである。なお、受信光16と送信光26の光の波長は同一波長とすることができるが、別波長でもよい。
上述した第二光導波路のコア21bを出射する光は、出射の際に屈折することから、当該屈折角に見合う位置に、前記第一光導波路のコア11bが配置されるように、夫々、その高さが(図の例では、第一光導波路のコア11bが第二光導波路のコア21bの位置よりも高く)設定される。すなわち、第一光導波路のコア軸と第二光導波路のコア軸は、一直線上に設定することも可能であるが、必要に応じて上下方向にずらせて設定することができる。
そして、上述した光導波路のコア内の光は、既知のように、導波路のコアとクラッドとの間の屈折率の差により、その界面で全反射しながら伝搬する。そのため、送信光26は、第二光導波路のコア21bの傾斜端面25を出射する際、コア21bとクラッド21a、21cの屈折率から求められる開口数の広がり角を有することから、第二光導波路コア21bの傾斜端面25と第一光導波路のコア11bの傾斜端面15とを近づけて、第一光導波路のコア11bに入射する光量を多くすることが好ましい。
そこで、図2に示すように、第一光導波路11の傾斜端面15を形成するクラッド11aの一部を除去することにより、第二光導波路のコア21bの傾斜端面25に対する第一光導波路のコア11bの傾斜端面15を近づけて、第一光導波路のコア11bに入射できる送信光26の光量を増やすことが好ましい。また、第二光導波路21の傾斜端面25を形成するクラッド21cの一部を除去することにより、後述するモニター用受光素子に送信光26の一部が届きやすくすることが好ましい。
また、第二光導波路のコア21bの径(コア径)を、第一光導波路のコア11bの径(コア径)より小さくすることにより、第一光導波路11の傾斜端面15のクラッド11a、11cに達する送信光26の光量を減らし、結果として、第一光導波路のコア11bに入射する送信光16の光量を増大することも可能である。なお、この第二光導波路のコア21bの傾斜端面25から出射する送信光26の広がり角は、第二光導波路21のコア21b及びクラッド21a、21cの屈折率から求められる開口数により決まるのことから、当該第二光導波路21のコア21bの径は、第一光導波路11のコア11bの径に入射する光量が最大となるよう、適宜、設定される。
また、第二光導波路のコア21bの屈折率を、第一光導波路のコア11bの屈折率よりも小さいものとすることで、第二光導波路のコア21bの傾斜端面から出射する送信光26の広がり角を狭め、もって、第一光導波路のコア11bヘ入射する光量を増やすことも可能である。この第二光導波路のコア21bの屈折率は、送信光26が当該コアを伝搬するように、クラッド21a、21cよりもその屈折率が0.005程度大きければよく、そのため、適宜、選択することが可能である。なお、これらの材料の屈折率は、例えば、プリズムカップラーやエリプソメータ、又は、アッペ屈折率計等を用いて測定することが出来る。
更に、第一光導波路のコア11bの傾斜端面15と第二光導波路のコア21bの傾斜端面25とを、前述の角度に形成する方法としては、例えば、各光導波路に前述の角度となるように楔状に切込みを入れる方法、又は、第一光導波路と第二光導波路を前述の角度に加工して組み立てる方法が利用可能であり、光導波路の傾斜端面の加工法に応じて、適宜、選択可能である。
光導波路の傾斜端面の加工法としては、例えば、レーザーやルータ、又はダイシングソーなどによる方法が利用でき、形成される光導波路のコアの傾斜端面が平滑であり、かつ、所望の傾斜角度に加工されればよく、特に、制限されることはない。この光導波路のコアの傾斜端面は、その平滑性が低下すると当該界面での乱反射量が多くなり、所定の角へ偏向する光量が低減してしまうことから、その表面の粗さは小さい程、好ましい。実用的には、算術平均粗さ(Ra)で、通信に用いる光波長の1/10以下、より好ましくは1/15以下程度であることが望まれる。なお、この粗さは、例えば、触針式計測器、共焦点式計測器等を用いて測定される。
図2に示した第一光導波路のコア11bの傾斜端面15と第二光導波路のコア21bの傾斜端面25を加工する場合には、例えば、それぞれ、先端断面が所望の傾斜角度と同様の傾斜をもつダイシングブレードを備えたダインングソーでダイシングして加工した後、組み立てる方法が可能であり簡便である。このダイシングソーとしては、例えば、(株)ディスコ製DAD321などを用いることができる。ダイシングソーを用いることにより、例えば、実質的な角度誤差を±0.3°程度に抑えることが可能である。
<双方向通信用光送受信器>
図3(a)〜(d)は、それぞれ本発明に係る双方向通信用光送受信器の一実施形態を示す図である。本実施形態では、上記双方向通信用光導波路の第一光導波路11の傾斜端面の反対側の端部において他の素子(例えば光ファイバ)が接続され双方向の光信号(受信光及び送信光)の入出力が行われ、また第一光導波路11の傾斜端面を介して受信光の出力が行われ、そして、第二光導波路21の傾斜端面の反対側の端部において送信光の入力が行われる。
図示のように、光信号の入出力を行う第一光導波路11の端部は、例えば、光ファイバと接続する入出射端を形成しており、例えば、市販のMTコネクタ30と互換性のあるコネクタと結合されて接続部としている。このように接続部をコネクタ構造とすることにより、光信号の入出力に際しての調芯作業を不要としている。
図3において、この双方向通信用光送受信器は、第一光導波路11、第二光導波路21、受光素子40及び発光素子41を備えている。また、図の符号31は、例えばセラミックパッケージ(基板)であり、その上には受光素子40が搭載されている。また、セラミックパッケージ31の上には、更に、これら光導波路などを配置する支持台としてのサブマウント32が配置されている。サブマウント32には受光素子40用の貫通孔321が設けられている。発光素子41はサブマウント32の段部323または貫通孔324に配置される。図示のように、受光素子40は、第一光導波路11の一端と第二光導波路21の一端との対向部に近接して配置され、そして、発光素子41は、第二光導波路21の他端に近接して配置されている。図中の符号33は、受光素子40及び発光素子41と接続される電気信号の入出力用あるいは電力供給用のピンを示している。また、図中において、前記図1と同じ符号は、同様の構成要素を示している。
上述のように、第一光導波路11を伝搬した受信光は、そのコア11bの傾斜端面15で全反射されて偏向されるので、当該偏向した受信光が到達する位置に上記受光素子40の受光点を配置して、受信光を検出する。即ち、受光素子40は第一光導波路11のコア傾斜端面15で全反射した光信号の進む方向に配置される。受光素子40としては、第一光導波路11とセラミックパッケージ31との間に配置されることから、特に、平面型の受光素子が好ましく用いられる。また、この受光素子の電極は、素子が稼動できるよう結線されていればよく、またセラミックパッケージ31との間でワイヤーボンディング等によって結線が可能な位置にあればよいので、例えば、第一光導波路11の外側に位置するように設計されても良いが、これに代え、その受光面の裏面に電極を配した平面受光型素子を利用する構造によれば、結線スペースを省くこともでき、実装面積を低減できることから、送受信器のサイズを小さくできる利点があり、特に、好ましい。それらの受光素子の例としては、例えば、Pinフォトダイ才一ド、アバランシェフォトダイオード等が挙げられる。
また、第二光導波路21には、光信号の入力を行うための端面17が形成されており、一方、端面発光型の発光素子41が、その発光点が第二光導波路21のコア21bと一致する位置に配置されており、これにより、送信光の入力を行う。発光素子41は、第二光導波路のコア21bに光を入力すれば良く、例えば、図3(a)に示すように、第二光導波路21へ光を入力する端面17を、第二光導波路21のコア21bの軸に対して略垂直方向になるように形成した場合には、当該端面発光型の発光素子41を、その発光点と第二光導波路21の光入力側の端面17におけるコア21bとが、互いに相対(対向)する位置になるよう配置する。これにより、発光素子41から第二光導波路21のコア21bへ光入力を行うことが可能となる。
また、図3(b)に示すように、第二光導波路21の光入力側の端面18を略45°の傾斜で形成した場合、当該端面18で光が全反射することから、入力光の光路を90°屈曲することが可能となり、図示のように、発光素子41を第二光導波路21の下面(下方)に配置することが可能になる。この場合、発光素子41としては、平面型の発光素子を用いることが好ましく、これによれば、前述した受光素子の場合と同様に平面実装が可能となり、また、実装における加工効率を向上することによるコスト低減も可能となるという利点もある。平面型発光素子としては、例えば、VCSELやLED等が挙げられる。
ここで、VCSEL等のレーザー素子は、例えば、外部温度によりその光出力が変動することから、安定した光出力を得るには、その光出力をモニターしてその変化量を観測し、その出力が一定になるようにレーザー素子の駆動電流を変化させる、所謂、フィードバック制御を行うことが好ましい。
そこで、本発明に係る双方向通信用送受信器には、図3(c)及び図3(d)に示すように、第二光導波路21の傾斜端面25、又は、第一光導波路11の傾斜端面15においてフレネル反射して漏れ出た光、即ち、第二光導波路21のコア21bを伝搬した送信光の極一部を検出してフィードバックするためのモニター用受光素子42を備えることが好ましい。これによれば、導波路に新たな形状等を加えることなく、送信光の一部を検出でき、発光源であるレーザー素子(発光素子41)のフィードバック制御が可能となる。なお、このモニター用受光素子42は、上述したように、フレネル反射した漏れ光が到達する位置にその受光点が位置するように配置されるが、その受光面が光導波路面となるので、他の受発光素子40、41と結線(実装)方向が同一となるように、裏面電極をもつ平面型受光素子を用いることが好ましい。このモニター用受光素子42としては、例えば前述したPinフォトダイオード、アバランシェフォトダイオード等が挙げられる。
本双方向通信用送受信器において、第一光導波路11、第二光導波路21、受信光16を検出する受光素子40、及び、送信光26を発生する発光素子41は、それぞれ、その相対的高さ及び位置を合わせることが必要となるが、一般的に、セラミックパッケージ31は、平面状に作製されている。そこで、これら光導波路や素子を、それぞれ、その所定の位置に配置するため、その高さに加工した支持台又は固定台(以下、単に支持台という)を備えることにより、この支持台に上記受発光素子や光導波路を接着・固定するだけで、その相対的高さ及び位置を合わせることが可能になる。
上述した支持台は、光導波路や素子を配置する部位の高さや配置用溝等がμオーダーの高精度に形成されていればよい。そして、この支持台には、素子の駆動用配線の自由度を向上することを目的として、受発光素子の配線回路を敷設する必要があること、更には、高精度な形状の作製が可能である等の点から、特に、上述のサブマウントを用いることが好ましい。このサブマウントの加工精度は、実質的に±3μm以下であるので、光を入出力するコアと受発光点とが充分に近接した相対配置を実現することが出来る。また、上述の加工精度によれば、マルチモード光導波路において常用されるコアサイズ50μmに対し、±10%以下のレベルであり、実用上問題は生じない。このサブマウント材としては、例えば、Si−SiC、窒化アルミニウムセラミックス(AlN)、焼結アルミシリコンカーバイト(Sintered Al−SiC)、アルミシリコンカーバイト(Al−SiC)、銅タングステン合金(Cu−W)、銅モリブデン合金等が挙げられる。
以下、上記に述べた双方向通信用光導波路及び双方向通信用光送受信器について、実施例を示し本発明を更に具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<光導波路の準備>
コアが4本並んだ、4チャンネルマルチモード光導波路を用意した。コアのサイズは50μm×50μmであり、その屈折率は1.546であった。また、コアを覆うクラッドの上下方向の厚みは50μmであり、クラッドの屈折率は1.512であった。
<第一光導波路の形成>
(株)ディスコ製ダイシングソーに、先端の半頂角が45゜であるブレードを取り付け、上記光導波路に対し、4本のコアの並び(コアアレイ)に垂直に、所謂、法線方向に研削し、光導波路の端面に、そのコア軸に対しθ=45゜の傾斜端面を形成した。その後、上記ダイシングソーに取り付けたブレードを、先端に角度のないブレードに交換し、上記45゜の傾斜端面を形成したコア11bの下側にあるクラッド11aを、その境界面の位置から研削し、上記図2に示した形状の傾斜端面15をもつ第一光導波路11を形成した。
<第二の光導波路の形成>
上記ダイシングソーに、先端の半頂角が35゜であるブレードを取り付け、上記と同様に、光導波路を構成する4本のコアの並び(コアアレイ)に垂直に、所謂、法線方向に研削し、光導波路の端面に、そのコア軸に対しθ=55゜の傾斜端面を形成した。次いで、上記光導波路を上下反転し、一方、ダイシングソーには先端に角度のないブレードをセット(交換)し、上記55゜の傾斜端面を形成したコア21bの下側にあるクラッド21aを、その境界面の位置から研削し、上記図2に示した形状の傾斜端面25をもつ第二光導波路21を形成した。
また、同一の先端に角度のないブレードを、上記光導波路に対して、4本のコアの並び(コアアレイ)に平行な方向に移動させ、再度、研削して、光導波路のコア軸に対し90゜をなし、かつ、4本のコアの並び(コアアレイ)に垂直な光入力用端面17(図3参照)を形成し、第二光導波路21を得た。
<受光素子の実装>
セラミックパッケージ31(図3参照)を用意した。このセラミックパッケージ31の上には、サブマウント32を接着した。このサブマウント32は、その一部に、4チャンネルPinフォトダイオードアレイ(以下、4ch−PinPDアレイ)を格納するための貫通孔321が形成されており、かつ、当該4chPinPDアレイの厚みよりも僅かに(例えば、5μm程度)高い位置に、第一光導波路11及び第二光導波路21を固定するための面322を形成した。このサブマウント32では、更に、端面発光型のレーザーダイオード41(以下、LD)を配置するための面を有する段部323を形成する。段部323は、当該LD41の発光点が前記第一及び第二光導波路11、21を固定する面322よりも例えば75μmだけ高くなる平行な面を有する。サブマウント32の材料は例えばAlNである。
そして、上記サブマウント32の4ch−PinPDアレイ用の貫通孔321内には、波長850nmに感度のある4ch−PinPDアレイを、半田バンプにより、裏面電極でセラミックパッケージで導通するように実装した。
<光導波路の固定>
上記で用意した第一光導波路11を、コア11bの傾斜端面15の位置が前記4ch−PinPDアレイの各々の受光面に対して直上になる位置に配置し、接着して固定した。
次いで、第二光導波路21を、その傾斜端面25を下向きとし、さらに、第一光導波路11のコア11bの並び(コアアレイ)と第二光導波路21のコア21bの並び(コアアレイ)が直線上に配置されるように、接着し固定した。
<発光素子の実装>
発光素子41として、発振波長が850nmであるLDを用意し、上記サブマウント32の段部323上にLDを配置し、その発光点、又は、その発光面に対する法線と第二光導波路21のコア21bが直線上に配置されるように固定し、その電極をワイヤーボンディングで導通して実装した。
以上により、通信波長850nmの双方向通信用送受信器を完成させた。そして、この完成した双方向通信用送受信器に、波長850nmの信号光を入射したところ、その挿入損失は、入射した受信光を基準として0.6dBであり、また、各チャンネルでのバラツキは、0.2dBに収まった。
また、この双方向通信用送受信器に使用した発光素子41であるLDと同型のLDによる発光を基準として、送受信器から出射した送信光の挿入損失は、1.7dBであり、また、各チャンネルでのバラツキは、0.5dBであった。
第二光導波路21として、コア21bのサイズが40μm×40μmであるものを用いたこと以外は、上記実施例1と同様にして、双方向通信用光送受信器を作製した。
この作製した双方向通信用送受信器に、上記と同様、波長850nmの信号光を入射したところ、やはり、その挿入損失は、入射した受信光を基準として0.6dBであり、また、各チャンネルでのバラツキは、0.2dBに収まった。
また、この双方向通信用送受信器に使用した発光素子41であるLDと同型のLDによる発光を基準として、送受信器から出射した送信光の挿入損失は、1.1dBであり、また、各チャンネルでのバラツキは、0.5dBであった。
第二光導波路21として、コアの屈折率が1.531の材料を用いたこと以外は、上記実施例2と同様にして、双方向通信用光送受信器を作製した。
この作製した双方向通信用送受信器に、上記と同様、波長850nmの信号光を入射したところ、やはり、その挿入損失は、入射した受信光を基準として0.6dBであり、また、各チャンネルでのバラツキは、0.2dBに収まった。
また、この双方向通信用送受信器に使用した発光素子41であるLDと同型のLDによる発光を基準として、送受信器から出射した送信光の挿入損失は、1.0dBであり、また、各チャンネルでのバラツキは、0.5dBであった。
第一光導波路11及び第二光導波路21の傾斜端面15、25を、上記図2に示した形状に形成した。第二光導波路21としては、上記の実施例3に用いた第二光導波路を用いた。
更に、第二光導波路21の形成において、コア軸に対しθ=55゜の傾斜端面25を形成した後、当該光導波路を上下反転させ、先端の半頂角が45゜であるブレードによって研削して、図3(b)に示したような光入力用端面(傾斜面)18を形成した。
一方、サブマウント32としては、AlNを材料とし、PinPD40及びVCSEL41よりも5μmだけ高くなる厚さとし、かつ、図3(b)に示すように、上記した4ch−PinPDが納まる貫通孔321を設け、また発光素子41である4チャンネルVCSELアレイが納まる貫通孔324を形成して用意した。
次いで、セラミックパッケージ31の表面に、上記サブマウント32と4ch−PinPD40とを実装し、更に、第一光導波路11をサブマウント32上に接着して固定した後、発振波長850nmの4チャンネルVCSEL41を、サブマウント32の4チャンネルVCSELアレイ用の貫通孔324内に挿入して実装した。その際、第一光導波路11のコアアレイ(4つのコア11b)と該VCSELの4つの発光点を結ぶ線が法線を成すと共に、それぞれの発光点が対応するコアの直線上に位置するようにVCSELアレイが固定される。そして、ワイヤーボンディングにより、その電極を駆動回路に導通するよう実装した。
そして、第一光導波路11と相対(対向)する第二光導波路21のコア傾斜端面25が下向きで、45゜の傾斜面からなる送信光入力用端面18が上向きとなるように配置し、第一光導波路11の4本のコア11bと第二光導波路21の4本のコア21bが直線上に配置され、かつ、第二光導波路21の45゜傾斜した送信光入力用端面18におけるコア21bが、それぞれ、発光素子41を構成するVCSELアレイの発光点の直上に位置するように配置しサブマウント32上に接着して、双方向通信用光送受信器を作製した。VCSEL(発光素子)41からの光信号は第二光導波路21の他端のコア傾斜面18で反射され第二光導波路21に入力されるようになる。
このようにして製作された双方向通信用送受信器に対し、波長850nmの信号光を入射したところ、その挿入損失は、入射した受信光を基準として0.6dBであり、また、各チャンネルでのバラツキも、0.2dBに収まった。
また、この双方向通信用送受信器に使用した発光素子41であるLDと同型のLDによる発光を基準として、送受信器から出射した送信光の挿入損失は、1.3dBであり、また、各チャンネルでのバラツキは、0.5dBであった。
上記実施例4で作製した双方向通信用送受信器において、受信光を検出するのに用いるものと同様の4ch−PinPDを、更に、モニター用受光素子42として、上記第一及び第二光導波路11、21の上面に、その受光面を向けて配置し、接着剤で固定する。これにより、発光素子41を構成するVCSELアレイから送信される信号光(送信光)26の一部が、第二光導波路21に相対(対向)する第一光導波路11のコア11bの傾斜端面15で反射され、それぞれ、対応する受光面に入射する。このモニター用受光素子42としての4ch−PinPDも、上記と同様に、ワイヤーボンディングにより、その裏面電極が駆動回路と導通するように、実装されている。以上により、送信光がモニターできる双方向通信用光送受信器を作製した。
このようにして製作された双方向通信用送受信器に対し、波長850nmの信号光を入射したところ、その挿入損失は、入射した受信光を基準として0.6dBであり、また、各チャンネルでのバラツキも、0.2dBに収まった。
また、この双方向通信用送受信器に使用した発光素子41であるLDと同型のLDによる発光を基準として、送受信器から出射した送信光の挿入損失は、1.3dBであった。そして、上述したように、送信光26の一部を受光した検出値からVCSELの駆動電流を変化させるフィードバック制御を行ったところ、各チャンネルのバラツキは、0.2dBであった。
本発明は、双方向に光信号を伝搬するための双方向通信用光導波路及び光送受信器に関するものであり、産業上の利用可能性がある。
本発明に係る双方向通信用光導波路の一実施形態を示す図である。 本発明に係る双方向通信用光導波路の他の実施形態を示す図である。 (a)〜(d)はそれぞれ本発明に係る双方向通信用光送受信器の一実施形態を示す図である。
符号の説明
11…第一光導波路
11a,11c…第一光導波路のクラッド
11b…第一光導波路のコア
15…第一光導波路の傾斜端面
16…送受信器への受信光
21…第二光導波路
21a,21c…第二光導波路のクラッド
21b…第二光導波路のコア
25…第二光導波路の傾斜端面
16…送受信器への受信光
26…送受信器からの送信光
30…MTコネクタ
31…セラミックパッケージ
32…サブマウント
40…受光素子
41…発光素子
42…モニター用受光素子

Claims (11)

  1. コアを有する第一光導波路及び第二光導波路を備え、光信号を双方向に伝搬するための双方向通信用光導波路であって、前記第一光導波路の一端と第二光導波路の一端が対向して配置され、前記第一光導波路の一端及び第二光導波路の一端のコア対向面がそれぞれコア軸に対して傾斜端面を形成し、前記第一光導波路の他端から伝搬される光信号を前記第一光導波路の一端のコア傾斜端面で全反射させることにより取り出し可能とし、かつ前記第二光導波路の他端から伝搬される光信号を前記第二光導波路の一端のコア傾斜端面で屈折させて前記第一光導波路の一端のコア傾斜端面を介して前記第一光導波路へ伝搬可能としたことを特徴とする双方向通信用光導波路。
  2. 前記第二光導波路のコア径が、前記第一光導波路のコア径よりも小さいことを特徴とする請求項1に記載の双方向通信用光導波路。
  3. 前記第二光導波路のコアの屈折率が、前記第一光導波路のコアの屈折率よりも小さいことを特徴とする請求項1または2に記載の双方向通信用光導波路。
  4. 前記第一光導波路の一端のコア傾斜端面がコア軸に対して43゜〜48゜の傾斜角を有することを特徴とする請求項1〜3のいずれかに記載の双方向通信用光導波路。
  5. 前記第二光導波路の一端のコア傾斜端面がコア軸に対して50゜〜65゜の傾斜角を有することを特徴とする請求項1〜4のいずれかに記載の双方向通信用光導波路。
  6. 請求項1〜5のいずれかに記載の双方向通信用光導波路を備えた双方向通信用光送受信器であって、前記第一光導波路の一端のコア傾斜端面で全反射した光信号の進む方向に配置された受光素子と、前記第二光導波路の他端に配置された発光素子とを備えたことを特徴とする双方向通信用光送受信器。
  7. 前記第一光導波路及び第二光導波路を配置する支持台を備え、前記支持台が、前記受光素子を配置するための貫通孔と、前記発光素子を配置するための段部とを有することを特徴とする請求項6に記載の双方向通信用光送受信器。
  8. 前記第二光導波路の他端のコア端面が、コア軸に対して傾斜面を有することを特徴とする請求項6に記載の双方向通信用光送受信器。
  9. 前記第二光導波路の他端の傾斜面を有するコア端面で光信号が全反射して前記第二光導波路に入力するように前記発光素子を配置したことを特徴とする請求項8に記載の双方向通信用光送受信器。
  10. 前記第一光導波路及び第二光導波路を配置する支持台を備え、前記支持台が、前記受光素子を配置するための貫通孔と、前記発光素子を配置するための貫通孔とを有することを特徴とする請求項9に記載の双方向通信用光送受信器。
  11. 前記第二光導波路の一端のコア傾斜端面から出た光信号の一部が前記第一光導波路の一端のコア傾斜端面でフレネル反射される方向にモニター用受光素子を備えたことを特徴とする請求項6〜10のいずれかに記載の双方向通信用光送受信器。
JP2005368151A 2005-12-21 2005-12-21 双方向通信用光導波路及び光送受信器 Pending JP2007171488A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005368151A JP2007171488A (ja) 2005-12-21 2005-12-21 双方向通信用光導波路及び光送受信器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005368151A JP2007171488A (ja) 2005-12-21 2005-12-21 双方向通信用光導波路及び光送受信器

Publications (1)

Publication Number Publication Date
JP2007171488A true JP2007171488A (ja) 2007-07-05

Family

ID=38298148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005368151A Pending JP2007171488A (ja) 2005-12-21 2005-12-21 双方向通信用光導波路及び光送受信器

Country Status (1)

Country Link
JP (1) JP2007171488A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016594A (ja) * 2007-07-05 2009-01-22 Nec Corp 半導体光素子の実装構造
JP2016004859A (ja) * 2014-06-16 2016-01-12 日東電工株式会社 光学式センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016594A (ja) * 2007-07-05 2009-01-22 Nec Corp 半導体光素子の実装構造
JP2016004859A (ja) * 2014-06-16 2016-01-12 日東電工株式会社 光学式センサ
US10446709B2 (en) 2014-06-16 2019-10-15 Nitto Denko Corporation Optical sensor

Similar Documents

Publication Publication Date Title
US6406196B1 (en) Optical device and method for producing the same
US7654750B2 (en) Bidirectional optical fiber link systems component couplers
KR101448574B1 (ko) 포인트 투 포인트 통신을 위한 광학 엔진
US7106980B2 (en) Optical receiver
US7526156B2 (en) Optical fiber for out-coupling optical signal and apparatus for detecting optical signal using the same optical fiber
US20120241600A1 (en) Optical electrical module
WO2013140922A1 (ja) 光レセプタクルおよびこれを備えた光モジュール
US20180372966A1 (en) Optical device, optical processing device, and method of producing the optical device
US6792178B1 (en) Fiber optic header with integrated power monitor
JP2002169043A (ja) 光モジュール
US6637947B2 (en) Optical coupling configuration
US20040190833A1 (en) Optical monitor module
JP2007171488A (ja) 双方向通信用光導波路及び光送受信器
JP2008020721A (ja) 並列光送受信装置
JP2008020720A (ja) 光導波路及び並列光送受信装置
JP5158039B2 (ja) レンズ付き光路変換光ブロックを用いた光トランシーバ並びに光アクティブケーブル
JP2007133160A (ja) 光モジュール
JP2007187870A (ja) 光素子の基板埋め込み構造を有する光モジュール
JP2008134444A (ja) 光モジュール及び光導波路構造体
JP4118747B2 (ja) 光モジュール、光送受信システム
JP2010122308A (ja) 光伝送装置及び光導波路
JP2007193049A (ja) 光導波路及び光モジュール
JP2004317630A (ja) 光送信モジュール
KR20100074704A (ko) 다파장 분리용 광모듈
JP2011053303A (ja) 光素子モジュール、光トランシーバ及び光アクティブケーブル