JP2007170718A - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
JP2007170718A
JP2007170718A JP2005366300A JP2005366300A JP2007170718A JP 2007170718 A JP2007170718 A JP 2007170718A JP 2005366300 A JP2005366300 A JP 2005366300A JP 2005366300 A JP2005366300 A JP 2005366300A JP 2007170718 A JP2007170718 A JP 2007170718A
Authority
JP
Japan
Prior art keywords
core
heat exchanger
flat tube
flat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366300A
Other languages
English (en)
Inventor
Toshihisa Naito
壽久 内藤
Masaaki Kawakubo
昌章 川久保
Etsuo Hasegawa
恵津夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005366300A priority Critical patent/JP2007170718A/ja
Publication of JP2007170718A publication Critical patent/JP2007170718A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】チューブ内流路のつぶれを防止でき、チューブ外周肉厚を確保できると共に、フィン高さを小さくでき、性能を向上できるコンパクトな熱交換器を提供する。
【解決手段】本発明の熱交換器は、一対のヘッダタンク3A,3B間に曲げられて配設された複数の扁平チューブ1が、チューブ断面の短辺方向に積層されてコア4を形成していて、該コアが通風方向に対して複数のコア列4A,4Bを有しており、また扁平チューブは、曲げることにより1つのコア列4Aから別のコア列4Bに移動すると共に、扁平チューブは曲げ前後で段差dが生じ、1つのコア列と別のコア列とで上下方向に位置が変わるようにしている。
【選択図】図1

Description

本発明は熱交換器に関し、特に二酸化炭素(CO2)冷媒を用いた冷凍回路を利用した車両用空調装置に用いられる熱交換器に関する。
車両用空調装置において、高圧側放熱器(コンデンサ、ガスクーラ等の熱交換器)は一般に車両の前方に設置され、車両走行時の風や冷却ファンの風により熱交換器内部の冷媒が冷却される。
現行のR134aを冷媒として使用した冷凍サイクルにおいては、図7(a)に示すように高圧側放熱器であるコンデンサでは、内部の冷媒が凝縮域にあり、前面風の温度は40〜50℃、入口冷媒温度は90〜80℃、出口冷媒温度は75〜65℃程度である。なお、R134a冷媒を使用した冷凍サイクルにおいては、高圧側放熱器では、その内部冷媒が凝縮域にあるため、コンデンサと称している。
一方、CO2を冷媒として使用した冷凍サイクルにおいては、図7(b)に示すように高圧側放熱器であるガスクーラでは、内部の冷媒は一般に超臨界状態であり、前面風の温度は40〜50℃、入口冷媒温度は120〜150℃、出口冷媒温度は45〜55℃程度である。なお、CO2冷媒を使用した冷凍サイクルにおいては、高圧側放熱器では、その内部冷媒が凝縮せず、気体域にあるため、ガスクーラと称している。このように、CO2を冷媒として使用した冷凍サイクルのガスクーラでは、出口冷媒温度は前面風の温度に近い温度まで冷却される。
このように、CO2冷媒のガスクーラのように熱交換器内部での冷媒の温度変化が大きい場合、R134a冷媒のコンデンサで多く採用されている、図9(a)に示すような直交流タイプ(冷媒は上下Uターン)の熱交換器よりも、図9(b)に示すような通風方向に2つのコア列を配置した直交対向流タイプ(冷媒は前後Uターン)の熱交換器にした方が、熱交換効率がよくなることは一般に知られている(特許文献1参照)。更に、この直交対向流タイプの熱交換器の中でも、部品点数削減を狙って、図9(c)に示すようにチューブをひねってターンした熱交換器が、特許文献2乃至5等により従来から提案されている。
特開平10−288476号公報 特許第3141044号公報 特表2005−512009号公報 特許第3305460号公報 米国特許第6,546,999号明細書
これら特許文献1乃至5に示されるチューブをひねってターンした直交対向流タイプの熱交換器(ガスクーラ)は、図10(a)に示すような平面構造をしている。このようなひねりチューブ1を有するガスクーラにおいて、ターン部11における曲げ度及びひねり度が大きいことから、チューブ1の流路つぶれによる流体圧損失の増大やチューブ1の外周肉厚の減少によるチューブ強度の低下等の第1の問題がある。
また、チューブ1のターン部11で、図10(b)に示すようにチューブ高さ方向に曲げスペース(ひねりスペース)S1が必要となるため、フィンの高さを曲げスペース以上と高くしなければならず、熱交換性能向上の妨げになるという第2の問題もある。
更に、図10(a)に示すようにチューブ1のターン部11で曲げ及びひねりのためのスペースS2が必要となり、熱交換しないデッドスペースが増えるという第3の問題もある。
本発明は、上記問題に鑑みてなされたものであり、その目的は、機器の大型化を招くことなく比較的に簡素な構造で、曲げ度を小さくしてチューブ内流路のつぶれを防止でき、かつチューブ外周肉厚を確保できると共に、フィン高さを小さくでき、熱交換性能を向上できる熱交換器を提供することである。
本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載の熱交換器を提供する。
請求項1に記載の熱交換器は、一対のヘッダタンク3A,3B間に曲げられて配設された複数の扁平チューブ1が、チューブ断面の短辺方向に積層されてコア4を形成していて、このコア4が通風方向に対して複数のコア列4A,4B,4Cを有しており、また扁平チューブ1は、曲げることにより1つのコア列4A,4Bから別のコア列4B,4Cに移動すると共に、扁平チューブ1は曲げ前後で段差dが生じ、1つのコア列と別のコア列とで上下方向に位置が変わるようにしているものである。これにより、従来の前後にひねったチューブよりも省スペース化が可能となる。
請求項2の熱交換器は、コア4の周囲に剛性部材5を配置することで、コアの剛性を高めたものである。
請求項3の熱交換器は、扁平チューブ間にコルゲートフィン2を配置したものであり、これにより、伝熱面積を増大させることができ、熱交換効率が向上する。
請求項4の熱交換器は、扁平チューブ1の曲げ前後の段差dを、コア列間で略フィン高さに相当する一段分ずれたものにしており、これにより、コア4を扁平チューブ1とコルゲートフィン2とを交互に積層したコンパクトなものにすることができる。
請求項5の熱交換器は、扁平チューブ1を再度曲げると共に、コア列4B,4C間で再度上下方向に位置を変えて、上方から見たときに前後S字状に扁平チューブが曲げられているものである。これにより、3列のコア列4A,4B,4Cをもつコアを形成することができる。
請求項6の熱交換器は、扁平チューブ1を積層された多数のプレートフィン7に挿通したものであり、本発明の熱交換器は、コルゲートフィン2の外にプレートフィン7でも使用可能であることを示している。
請求項7の熱交換器は、通風方向に沿って複数の扁平チューブ1を千鳥状に配列したものであり、このように、プレートフィン7を採用したものでは、複数の扁平チューブ1を千鳥状に配列することで、熱交換効率を向上させることができる。
請求項8の熱交換器は、高圧側が超臨界となる冷媒が流れる車両用冷凍サイクルの放熱器として使用したものであり、これにより、図7(b)に示す冷凍サイクルのCO2を冷媒として使用することができ、CO2は大気中から取得することができるので、CO2冷媒が大気中に漏れ出したとしても、大気中のCO2を実質的に増加させる心配がなく、オゾン層に影響を与えず、温室効果を増大させることもない。
以下、図面に従って本発明の実施の形態の熱交換器について説明する。この説明においては、本発明の熱交換器が、高圧側が超臨界となるCO2等の冷媒が流れる車両用冷凍サイクルの放熱器(ガスクーラ)として使用されるものとして説明するが、本発明の熱交換器はこれに限定されるものではない。図1(a)は、本発明の第1実施形態の熱交換器の斜視図であり、図1(b)は、第1実施形態の熱交換器のコアの断面図であり、図1(c)は、第1実施形態の熱交換器の扁平チューブの詳細図である。熱交換器は、複数の扁平チューブ1、この扁平チューブ1間に配置されるコルゲートフィン(波形フィン)2及び一対のヘッダタンク3とから基本的に構成されている。
扁平チューブ1は、横断面外周形状が長円状をなし、内部にはチューブの軸方向に延在する複数の仕切壁1aで仕切られた流通路1bが形成されている。この扁平チューブ1は、一般にはアルミニウム製の押出材からなる。扁平チューブ1は、図1(c)に示されるように扁平断面の短辺方向に曲げられてU字形状に形成されると共に、U字形状に曲げられた扁平チューブ1の往路側の扁平チューブ部1Aと復路(戻り)側の扁平チューブ部1Bとは、横方向に扁平チューブ1の略長辺長さ分だけずれてUターンしている。
また、Uターンした扁平チューブ1の往路側の扁平チューブ部1Aと復路側の扁平チューブ部1Bとは、上下方向にコルゲートフィン2の略高さ分に相当する段差dが形成される。複数の扁平チューブ1はチューブ断面の短辺方向に積層されてコア4を形成しており、このコア4が、冷却風の流れ方向にコア列4Bとコア列4Aと有している。即ち、U字形状の複数の扁平チューブ1の往路側の扁平チューブ部1Aが積層されて、コア列4Aを形成し、復路側の扁平チューブ部1Bが積層されて、コア列4Bを形成している。本実施形態では、図1(b)に示すように扁平チューブ1間にはコルゲートフィン2が配置されており、扁平チューブ1とコルゲートフィン2とが交互に積み重ねられてコア4を形成している。
U字形状に曲げられた複数の扁平チューブ1の各端部は、それぞれ冷媒入口側ヘッダタンク3Aと冷媒出口側ヘッダタンク3Bとに接続していて、一対のヘッダタンク1は、コア4に対して同じ側に配置されている。このようにして、コンプレッサ(図示せず)から入口側ヘッダタンク3Aに導入された高温高圧の冷媒は、冷却風流れの下流側に配置された往路側の扁平チューブ部1Aを通り、Uターンして冷却風流れの上流側に配置された復路側の扁平チューブ部1Bを通り、出口部ヘッダタンク3Bから、図示しない内部熱交換器又は膨張弁へと排出される。この間、冷却風と冷媒とは熱交換が行われ、入口側ヘッダタンク3Aに導入された略150℃だった冷媒の温度が、出口側ヘッダタンク3Bでは、略50℃にまで冷却される。
図2(a)は、第2実施形態の熱交換器の概略斜視図であり、図2(b),(c)はサイドプレートとコアとの合体の仕方を説明する2つの実施例を示している。第1実施形態の熱交換器は、コア4は剥き出しのままであり、何ら剛性が付与されていない。そこで、第2実施形態では、熱交換器の要部の構成は第1実施形態と同じにし、コア4全体の剛性を上げるために、剛性部材としてサイドプレート5を設置したものである。サイドプレート5は、コア4の上下及びヘッダタンク3の反対側の3ヶ所に設けられる。サイドプレート5は、断面がコ字形をしており、コア4の上下に配置されたサイドプレート5A,5Bは、コア4と合体されており、ヘッダタンク3の反対側に配置されたサイドプレート5Cは、複数の扁平チューブ1のターン部(曲げ部)11を支持している。また、一対のヘッダタンク3は、コア4の上下に配置されたサイドプレート5A,5Bによって挟持されるようにして固定されている。このようにして、熱交換器のコアは、周囲を3つのサイドプレート5A,5B,5Cと一対のヘッダタンク3によって囲むことによって保護されている。
図2(b)は、サイドプレート5とコア4との合体の仕方の1実施例を示している。U字形状に曲げた扁平チューブ1では、往路側の扁平チューブ部1Aと復路側の扁平チューブ部1Bとは上下方向に段差dが形成されている。したがって、往路側の扁平チューブ部1Aを積層したコア列4Aと復路側の扁平チューブ部1Bを積層したコア列4Bとでは、上下方向に扁平チューブ1の略短辺長さ分だけのずれが生じている。そこで、本実施例では、図2(b)に示すように積層されたコア列4Bの上に扁平チューブ1と同じ断面形状の直線状のダミーチューブ6を配置することでコア列4Aとコア列4Bとの上部高さを揃えた上で、上側のサイドプレート5Aと合体している。図では示していないが、下側のサイドプレート5Bとコア4との合体も同様に行われる。即ち、往路側の扁平チューブ部1Aを積層したコア列4Aの下側にダミーチューブ6を補充配置することで、コア列4Aとコア列4Bとの下部高さを揃えた上で、下側のサイドプレート5Bと合体している。
図2(c)は、サイドプレート5とコア4との合体の仕方の別の実施例を示している。この実施例では、ダミーチューブ6を設ける代りにサイドプレート5A,5Bを変形することで対応している。上側に配置されるサイドプレート5Aでは、コア列4Bに当接する側をコア列4Aに当接する側に対して、扁平チューブ1の略短辺長さ分だけ凹ますことで、サイドプレート5Aがコア列4Aとコア列4Bの両者に等しく当接して合体できるようにしている。この場合、サイドプレート5Aは、コア列4Aとは扁平チューブ1Aと当接し、コア列4Bとはコルゲートフィン2に当接し、合体している。図では示していないが、下側のサイドプレート5Bとコア4との合体も同様に行われる。この場合、サイドプレート5Bはコア列4Aと当接する側が凹んでいる。
図3は、第3実施形態の熱交換器を示している。第3実施形態の熱交換器では、コルゲートフィン2に代えてプレートフィン7を使用している。即ち、多数のプレートフィン7が積層配置(平行に多数並べられて配置)されており、先に述べたように、ずれ及び段差をもってU字状に曲げられた複数の扁平チューブ1が、これらのプレートフィン7を挿通することで、コア4を形成している。図3(a)は、第3実施形態の熱交換器の1つの実施例を示している。この実施例では、プレートフィン7を挿通するU字形状の扁平チューブ1の往路側の扁平チューブ部1Aと復路側の扁平チューブ部1Bとが、上下方向に1段分(積層配置される各扁平チューブ間の間隔分)だけずれてプレートフィン7に挿通されている。したがって、上から1番目のU字形の扁平チューブ1の復路側の扁平チューブ部1B1と2番目のU字形の扁平チューブ1の往路側の扁平チューブ部1A2とが、冷却風流れの流れ方向に沿って重なって配置されている。同様に2番目のU字形扁平チューブ1の復路側の扁平チューブ部1B2と3番目のU字形扁平チューブ1の往路側の扁平チューブ部1A3とが、冷却風流れの流れ方向に沿って重なって配置されている。このように、図3(a)に示される実施例では、往路側の扁平チューブ部1Aと復路側の扁平チューブ部1Bとが、最上段と最下段を除いて、冷却風の流れ方向に沿って重なって配置されている。
これに対して、第3実施形態の熱交換器の別の実施例を示している図3(b)では、プレートフィン7を挿通するU字形状の扁平チューブ1の往路側の扁平チューブ部1Aと復路側の扁平チューブ部1Bとは、上下方向に1段分の半分だけずれてプレートフィン7に挿通されている。したがって、この場合は図3(b)に示されるように、プレートフィン7に挿通されている、複数の往路側の扁平チューブ部1Aと複数の復路側の扁平チューブ部1Bとは、冷却風の流れ方向に対して重なることなく千鳥状に配列されている。
図3(c)は、第3実施形態の熱交換器における冷媒の流れと冷却風の流れを説明する図である。図3(a)の実施例と図3(b)の別の実施例とを比較した場合、図3(a)の実施例では、扁平チューブ1をコンパクトに配置することができるが、扁平チューブ部1Aと1Bとが冷却風の流れ方向で重なるために、熱交換効率の面では図3(b)の千鳥状に配置した実施例に劣る。
図4は、第4実施形態の熱交換器を示しており、(a)はその斜視図であり、(b)はコアの断面図であり、(c)は扁平チューブの曲げ状況を説明する図である。先に説明した第1実施形態では、扁平チューブ1を1回だけ曲げていたのに対し、第4実施形態では、扁平チューブ1を2回曲げている。即ち、扁平チューブ1は、図4(c)に示すようにまず第1実施形態と同様に、扁平断面の短辺方向に、横方向で扁平チューブ1の略長辺長さ分だけずれ、かつ上下方向でコルゲートフィン2の略高さ分に相当する段差dが形成されるように、下方に曲げられると共に、この扁平チューブ1を、再度横方向に更に上記ずれ分だけずれるように、かつ上記段差dを修復するように、扁平断面の短辺方向に上方に曲げている。このように、コア4の対角線に配置された入口側ヘッダタンク3Aと出口側ヘッダタンク3B間に接続される扁平チューブ1を、最初は下方に折り曲げ、次に上方に折り曲げることで、上方から見て前後S字形(即ち、3次元のS字形)になるようにしている。この3次元のS字形状をした扁平チューブを上下方向に複数積層させてコア4を形成している。また扁平チューブ1間には、コルゲートフィン2が設置されている。
したがって、第4実施形態では、扁平チューブ1は、第1往路側の扁平チューブ部1A、復路側の扁平チューブ部1B、第2往路側の扁平チューブ部1C及び2つのターン部11とを有している(なお、この場合往路側とは、コア部分を入口ヘッダタンク側から出口ヘッダタンク側に向かう方向に冷媒が流れていることを意味し、復路側とは、コア部分を出口ヘッダタンク側から入口ヘッダタンク側に向かう方向に冷媒が流れていることを意味している)。コア4は、第1往路側の扁平チューブ部1Aが積層されて形成されたコア列4A、復路側の扁平チューブ部1Bが積層されて形成されたコア列4B及び第2往路側の扁平チューブ部1Cが積層されて形成されたコア列4Cの3つのコア列からなる。冷却風の流れ方向に沿って順にコア列4C,4B,4Aが配置されている。
図4(b)に示されるように、3次元のS字形状をした1番目の扁平チューブ1においては、第1往路側の扁平チューブ部1A1と第2往路側の扁平チューブ部1C1とが上下方向で同じ高さ位置にあるのに対し、復路側の扁平チューブ部1B1は、扁平チューブ部1A1,1C1よりも上下方向で1段分(コルゲートフィン高さ相当分)だけ下がった位置にある。従って、複数の扁平チューブ1を積層した場合、上から1番目の扁平チューブ1の復路側の扁平チューブ部1B1は、2番目の扁平チューブ1の第1往路側の扁平チューブ部1A2と第2往路側の扁平チューブ部1C2と上下方向で同じ高さ位置にあり、冷却風の流れに沿って重ねられて配置されている。同様に2番目の扁平チューブ1の復路側の扁平チューブ部1B2は、3番目の扁平チューブ1の第1往路側の扁平チューブ部1A3と第2往路側の扁平チューブ部1C3と上下方向で同じ高さ位置にある。このようにして、図4(b)では扁平チューブ1とコルゲートフィン2とが交互に積層されている。したがって、コア4の最上部では、復路側の扁平チューブ部の部分が空所Sとして残り、またコア4の最下部では、第1往路側の扁平チューブ部の部分と第2往路側の扁平チューブ部の部分とが空所として残ることになる。これらの空所部分は、図2(b)に示すようにダミーチューブ6で充填するか、又は図2(c)に示すように、サイドプレート5を変形することによって充填するようにする。
図5は、扁平チューブの第1の曲げ加工の手順を説明する図である。図5(a)に示す内部に複数の流通路を有する扁平チューブ1を押出し加工によって得る。図5(b)に示すように扁平チューブ1を扁平断面の短辺方向にかつ曲げ部を揃えるように曲げて蛇行状に成形する。次に、蛇行状の扁平チューブ1を上下二分するように切断して、多数のU字形状の扁平チューブ1を得る。次いで、図5(c)に示すようにU字形扁平チューブ1の一端を固定した状態で、他端の扁平断面の長辺側の一方から、扁平チューブ1に対して直交する方向に力を加えて、U字形扁平チューブ1の両端を扁平断面の略長辺長さ分だけずらす。このようにして、両端が偏倚したU字形扁平チューブ1が図(d)に示されている。
図6は、扁平チューブの第2の曲げ加工の手順を説明する図である。押出し加工等によって得られた、内部に複数の流通路を有する扁平チューブ1を、図6(b)に示すようにローラRに扁平チューブ1を巻き付けるようにしながら、曲げとずらしを実行して蛇行状に形成する。次に蛇行状の扁平チューブ1を上下二分するように切断する。これにより、多数のV字形状の扁平チューブ1が得られる。次いでV字形状の扁平チューブ1の両端部を側面から押して、互いの端部が接近してU字形状の扁平チューブ1になるようにする。この場合、互いの端部の向き合う側面a,bが、同じ平面上にあるようにする。このように、本実施形態の両端が偏倚したU字形状扁平チューブ1が得られる。
以上説明したように、従来の曲げ部を有する扁平チューブを用いた熱交換器では、扁平チューブを1回ひねった後に曲げてUターンさせ、再度ひねることによって熱交換コアを形成しているのに対し、本発明では、基本的に1回の曲げで形成しているので、曲げを少なくでき、チューブ内流路のつぶれがなく、外周肉厚も確保できる。また、本発明では、チューブが曲げ前後で上下方向に一段下がるから、従来のひねり+曲げ+ひねりを加えたチューブよりも曲げ度が少ないので、フィン高さも小さくすることができ、曲げにより熱交換性能の低下を懸念することがなくなる。
本発明の第1実施形態の熱交換器を示しており、(a)はその斜視図であり、(b)は、その熱交換コアの断面図であり、(c)は、扁平チューブの詳細図である。 本発明の第2実施形態の熱交換器を示しており、(a)は、その概略の斜視図であり、(b)及び(c)は、サイドプレートと熱交換コアとの合体の仕方を説明する2つの実施例を示している。 本発明の第3実施形態の熱交換器を示しており、(a),(b)はその場合の扁平チューブの配列の仕方の2つの実施例を示しており、(c)は冷媒の流れを説明する図である。 本発明の第4実施形態の熱交換器を示しており、(a)はその斜視図であり、(b)は熱交換コアの断面図であり、(c)は扁平チューブの詳細図である。 扁平チューブの第1の曲げ加工の手順(a)〜(d)を説明する図である。 扁平チューブの第2の曲げ加工の手順(a)〜(c)を説明する図である。 (a)は、R134a冷媒の冷凍サイクル図であり、(b)はCO2冷媒の冷凍サイクル図である。 ガスクーラ内の冷媒温度の変化を示すグラフである。 従来の熱交換器を示しており、(a)は直交流型熱交換器を、(b)は直交対向流型熱交換器を、(c)は扁平チューブにひねりと曲げを加えてS字形状にした熱交換器を、それぞれ示している。 従来の扁平チューブにひねりと曲げを加えてS字形状にした熱交換器の問題を説明する図である。
符号の説明
1 扁平チューブ
1A 往路側扁平チューブ部(第1往路側)
1B 復路側扁平チューブ部
1C 第2往路側扁平チューブ部
11 ターン部(曲げ部)
2 コルゲートフィン
3 ヘッダタンク
3A 入口側ヘッダタンク
3B 出口側ヘッダタンク
4 コア
4A,4B,4C コア列
5,5A,5B,5C サイドプレート
6 ダミーチューブ
7 プレートフィン
d 段差

Claims (8)

  1. 一対のヘッダタンク(3A,3B)と、前記一対のヘッダタンク間に曲げられて配設された複数の扁平チューブ(1)とからなる熱交換器において、
    前記複数の扁平チューブ(1)が、チューブ断面の短辺方向に積層されてコア(4)を形成していて、前記コア(4)が通風方向に対して複数のコア列(4A,4B,4C)を有しており、
    前記扁平チューブ(1)は、曲げることにより、1つのコア列(4A,4B)から別のコア列(4B,4C)に移動すると共に、前記扁平チューブ(1)は曲げ前後で段差(d)が生じ、前記1つのコア列と前記別のコア列とで上下方向に位置が変わることを特徴とする熱交換器。
  2. 前記コア(4)の剛性を増すために、前記コアの周囲に剛性部材(5)を配置することを特徴とする請求項1に記載の熱交換器。
  3. 前記扁平チューブ間にコルゲートフィン(2)を配置することを特徴とする請求項1又は2に記載の熱交換器。
  4. 前記段差(d)が、コア列間で略フィン高さに相当する一段分ずれたものであることを特徴とする請求項1,2又は3に記載の熱交換器。
  5. 前記扁平チューブ(1)を再度曲げると共に、コア列(4B,4C)間で再度上下方向に位置を変えて、上方から見たときに前後S字状に前記扁平チューブ(1)が曲げられていることを特徴とする請求項1〜4のいずれか一項に記載の熱交換器。
  6. 前記扁平チューブ(1)を、積層された多数のプレートフィン(7)に挿通することを特徴とする請求項1又は2に記載の熱交換器。
  7. 通風方向に沿って前記複数の扁平チューブ(1)を千鳥状に配列することを特徴とする請求項6に記載の熱交換器。
  8. 前記熱交換器を高圧側が超臨界となる冷媒が流れる車両用冷凍サイクルの放熱器として使用することを特徴とする請求項1〜7のいずれか一項に記載の熱交換器。
JP2005366300A 2005-12-20 2005-12-20 熱交換器 Pending JP2007170718A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366300A JP2007170718A (ja) 2005-12-20 2005-12-20 熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366300A JP2007170718A (ja) 2005-12-20 2005-12-20 熱交換器

Publications (1)

Publication Number Publication Date
JP2007170718A true JP2007170718A (ja) 2007-07-05

Family

ID=38297503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366300A Pending JP2007170718A (ja) 2005-12-20 2005-12-20 熱交換器

Country Status (1)

Country Link
JP (1) JP2007170718A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008893A2 (en) 2007-06-28 2008-12-31 Nissan Motor Co., Ltd. Lane deviation prevention device
WO2009089460A2 (en) * 2008-01-09 2009-07-16 International Mezzo Technologies, Inc. Corrugated micro tube heat exchanger
JP2009274088A (ja) * 2008-05-13 2009-11-26 Showa Denko Kk 熱交換チューブの製造方法
JP2011220674A (ja) * 2010-04-13 2011-11-04 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co Ltd 熱交換器
JP2015055401A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器の製造方法及び熱交換器
JP2015078829A (ja) * 2013-09-11 2015-04-23 ダイキン工業株式会社 熱交換器、空気調和機及び熱交換器の製造方法
JP2016070566A (ja) * 2014-09-29 2016-05-09 三菱重工業株式会社 放熱器および冷凍サイクル装置
CN107869930A (zh) * 2016-09-28 2018-04-03 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的换热组件、换热器和模具
CN110260566A (zh) * 2018-03-12 2019-09-20 郑州宇通客车股份有限公司 一种车用空调冷凝器总成及车辆
CN114746706A (zh) * 2019-12-05 2022-07-12 科唯怡株式会社 用于净水器的冷凝器及其制造方法、具有冷凝器的净水器
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008893A2 (en) 2007-06-28 2008-12-31 Nissan Motor Co., Ltd. Lane deviation prevention device
WO2009089460A2 (en) * 2008-01-09 2009-07-16 International Mezzo Technologies, Inc. Corrugated micro tube heat exchanger
WO2009089460A3 (en) * 2008-01-09 2009-10-08 International Mezzo Technologies, Inc. Corrugated micro tube heat exchanger
JP2009274088A (ja) * 2008-05-13 2009-11-26 Showa Denko Kk 熱交換チューブの製造方法
US9528770B2 (en) 2010-04-13 2016-12-27 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co. Heat exchanger
JP2011220674A (ja) * 2010-04-13 2011-11-04 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co Ltd 熱交換器
JP2015055401A (ja) * 2013-09-11 2015-03-23 ダイキン工業株式会社 熱交換器の製造方法及び熱交換器
JP2015078829A (ja) * 2013-09-11 2015-04-23 ダイキン工業株式会社 熱交換器、空気調和機及び熱交換器の製造方法
JP2016070566A (ja) * 2014-09-29 2016-05-09 三菱重工業株式会社 放熱器および冷凍サイクル装置
CN107869930A (zh) * 2016-09-28 2018-04-03 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的换热组件、换热器和模具
WO2018059443A1 (zh) * 2016-09-28 2018-04-05 丹佛斯微通道换热器(嘉兴)有限公司 用于换热器的换热组件、换热器和模具
US11118839B2 (en) 2016-09-28 2021-09-14 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchange assembly for heat exchanger, heat exchanger, and mold
CN110260566A (zh) * 2018-03-12 2019-09-20 郑州宇通客车股份有限公司 一种车用空调冷凝器总成及车辆
CN114746706A (zh) * 2019-12-05 2022-07-12 科唯怡株式会社 用于净水器的冷凝器及其制造方法、具有冷凝器的净水器
CN114746706B (zh) * 2019-12-05 2024-01-12 科唯怡株式会社 用于净水器的冷凝器及其制造方法、具有冷凝器的净水器
WO2023032155A1 (ja) * 2021-09-03 2023-03-09 三菱電機株式会社 熱交換器、冷凍サイクル装置及び熱交換器の製造方法

Similar Documents

Publication Publication Date Title
JP2007170718A (ja) 熱交換器
JP6017047B2 (ja) 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
US9651317B2 (en) Heat exchanger and air conditioner
JP5385589B2 (ja) 空気調和機の室外機
RU2319094C2 (ru) Теплообменник для сверхкритического охлаждения рабочей среды в транскритическом холодильном цикле (варианты)
JP5394405B2 (ja) 熱交換器
WO2014091782A1 (ja) 扁平管熱交換器、及びそれを備えた空気調和機の室外機
AU3781600A (en) Heat exchanger
KR101977817B1 (ko) 열교환기
JP2006329511A (ja) 熱交換器
US20160054075A1 (en) Folded tube multiple bank heat exchange unit
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP2007192474A (ja) 熱交換器
WO2013084508A1 (ja) フィンチューブ型熱交換器
JP2006078163A (ja) 偏平管、偏平管製造用板状体および熱交換器
JP6160385B2 (ja) 積層型熱交換器
JP6413760B2 (ja) 熱交換器及びそれを用いた熱交換器ユニット
JP2007040605A (ja) 多段圧縮式冷凍サイクル装置用熱交換器
JP2013127341A (ja) 熱交換器
WO2021210428A1 (ja) 熱交換器
JP5641945B2 (ja) 熱交換器及びこの熱交換器を用いた空気調和機
KR100471593B1 (ko) 열교환장치
JP2010230300A (ja) 熱交換器、及びこの熱交換器を備えた空気調和機
KR100666927B1 (ko) 헤더형 열교환기
KR100606332B1 (ko) 공조기기의 열교환기용 납작튜브