JP2007169385A - Tire rubber composition and tire having sidewall using the same - Google Patents
Tire rubber composition and tire having sidewall using the same Download PDFInfo
- Publication number
- JP2007169385A JP2007169385A JP2005366701A JP2005366701A JP2007169385A JP 2007169385 A JP2007169385 A JP 2007169385A JP 2005366701 A JP2005366701 A JP 2005366701A JP 2005366701 A JP2005366701 A JP 2005366701A JP 2007169385 A JP2007169385 A JP 2007169385A
- Authority
- JP
- Japan
- Prior art keywords
- tire
- rubber
- rubber composition
- natural
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本発明は、タイヤ用ゴム組成物およびそれを用いたサイドウォールを有するタイヤに関する。 The present invention relates to a rubber composition for a tire and a tire having a sidewall using the same.
従来、タイヤのサイドウォール用ゴム組成物としては、引張強度および引き裂き強度(耐クラック性)に優れた天然ゴム(NR)、耐屈曲亀裂成長性に優れたブタジエンゴム(BR)を配合し、さらに、補強性および強度に優れたカーボンブラックが用いられてきた。しかし、BRなどの高不飽和ゴムの二重結合部分はオゾンと反応して解重合する性質があり、放置または走行により、ゴム表面におけるクラック発生の原因となることが知られている。 Conventional rubber compositions for tire sidewalls include natural rubber (NR) excellent in tensile strength and tear strength (crack resistance), butadiene rubber (BR) excellent in flex crack growth resistance, Carbon black having excellent reinforcement and strength has been used. However, it is known that a double bond portion of a highly unsaturated rubber such as BR has a property of depolymerization by reacting with ozone, and causes cracking on the rubber surface when left standing or running.
そこで、これを抑制するために、老化防止剤などの耐クラック性改良剤を増量する手法が知られているが、ブルームを引き起こし、タイヤ表面が茶褐色に変色するため、タイヤの美観を損ねるという問題がある。 Therefore, in order to suppress this, there is a known method of increasing the crack resistance improving agent such as an anti-aging agent, but this causes a bloom, and the tire surface changes to a brown color, thereby deteriorating the appearance of the tire. There is.
この問題を解決するために、エチレンプロピレンジエンゴム(EPDM)などをブレンドし、耐候性や耐クラック性を向上させられることが知られている。また、ブロモ化スチレンイソブチレン共重合体(BIMS)も同様な効果が期待されている。しかし、これらのゴムは耐久性に優れる反面、耐亀裂成長性に問題がある。 In order to solve this problem, it is known that ethylene propylene diene rubber (EPDM) or the like can be blended to improve weather resistance and crack resistance. A brominated styrene isobutylene copolymer (BIMS) is also expected to have the same effect. However, these rubbers are excellent in durability but have a problem in crack growth resistance.
また、近年、とくに自動車の低燃費化が要求されており、タイヤについても転がり抵抗の低減が求められている。さらに、環境問題が重視されるようになり、CO2排出抑制の規制が強化され、石油資源は有限であって、供給量が年々減少していることから、将来的に石油価格の高騰が予測され、カーボンブラックなどの石油資源を含む配合物の使用には限界がみられる。 In recent years, in particular, there has been a demand for lower fuel consumption of automobiles, and tires are also required to reduce rolling resistance. In addition, environmental issues have become more important, regulations on reducing CO 2 emissions have been tightened, oil resources are limited, and supply is decreasing year by year, so oil prices are expected to rise in the future. However, there are limits to the use of formulations containing petroleum resources such as carbon black.
そこで、たとえば、カーボンブラックの一部にかえて、シリカや炭酸カルシウム等の白色充填剤を用いて、タイヤ全体の転がり抵抗を低減させる試みがなされているが、ゴム強度を向上させることができないという問題がある。 Therefore, for example, an attempt has been made to reduce the rolling resistance of the entire tire by using a white filler such as silica or calcium carbonate instead of a part of carbon black, but the rubber strength cannot be improved. There's a problem.
特許文献1には、カーボンブラックおよび炭酸カルシウムを所定量配合することによって、耐変色性能および耐オゾン性を低下させることなく、転がり抵抗を低減させたサイドウォール用ゴム組成物が開示されているが、依然としてカーボンブラックを多量に配合しており、いまだ転がり抵抗の改善の余地がある。また、本発明のように、カーボンブラックを減量し、白色充填剤を増量した場合に発生する耐屈曲亀裂成長性などの耐屈曲疲労特性や引き裂き強度などが低下する問題についてはなんら考慮されておらず、この場合に低燃費性の改善をすることは困難であった。さらに、特許文献1では、ゴム成分中にBRを50重量%も含有しており、環境に配慮したものではなかった。 Patent Document 1 discloses a rubber composition for a sidewall in which rolling resistance is reduced without decreasing discoloration resistance and ozone resistance by blending predetermined amounts of carbon black and calcium carbonate. Still, it contains a large amount of carbon black, and there is still room for improvement in rolling resistance. Further, as in the present invention, no consideration is given to the problem that the bending fatigue resistance such as the bending crack growth resistance and the tearing strength, etc., which are generated when the carbon black is reduced and the white filler is increased, are reduced. In this case, it has been difficult to improve fuel efficiency. Furthermore, Patent Document 1 contains 50% by weight of BR in the rubber component, which is not environmentally friendly.
本発明は、転がり抵抗を低減させ、引き裂き強度および耐屈曲亀裂成長性を向上させることができるタイヤ用ゴム組成物ならびにそれを用いたサイドウォールを有するタイヤを提供することを目的とする。 An object of the present invention is to provide a rubber composition for a tire capable of reducing rolling resistance and improving tear strength and bending crack growth resistance, and a tire having a sidewall using the rubber composition.
本発明は、天然ポリイソプレノイドの水素添加物を含有するタイヤ用ゴム組成物に関する。 The present invention relates to a rubber composition for tires containing a hydrogenated natural polyisoprenoid.
前記タイヤ用ゴム組成物は、ジエン系ゴムを含有し、該ジエン系ゴムおよび天然ポリイソプレノイドの水素添加物中の天然ポリイソプレノイドの水素添加物の含有率が3〜40重量%であり、該ジエン系ゴムの含有率が60〜97重量%であることが好ましい。 The tire rubber composition contains a diene rubber, and the content of the hydrogenated product of natural polyisoprenoid in the hydrogenated product of the diene rubber and natural polyisoprenoid is 3 to 40% by weight. The content of the rubber is preferably 60 to 97% by weight.
前記天然ポリイソプレノイドの水素添加物は、天然ポリイソプレノイドを有機溶媒中で金属触媒の存在下で水素を加圧することにより得られ、水素添加率が10〜100%であることが好ましい。 The hydrogenated product of natural polyisoprenoid is obtained by pressurizing hydrogen in the presence of a metal catalyst in an organic solvent, and the hydrogenation rate is preferably 10 to 100%.
前記タイヤ用ゴム組成物は、連続相および1相以上の非連続相からなり、該連続相および1相以上の非連続相が海−島構造を呈することが好ましい。 The tire rubber composition is preferably composed of a continuous phase and one or more discontinuous phases, and the continuous phase and one or more discontinuous phases preferably have a sea-island structure.
また、本発明は、前記タイヤ用ゴム組成物を用いたサイドウォールを有するタイヤに関する。 The present invention also relates to a tire having a sidewall using the tire rubber composition.
本発明によれば、天然ポリイソプレノイドの水素添加物を含有することで、転がり抵抗を低減させ、引き裂き強度および耐屈曲亀裂成長性を向上させることができるタイヤ用ゴム組成物ならびにそれを用いたサイドウォールを有するタイヤを提供することができる。 According to the present invention, a rubber composition for a tire that can reduce rolling resistance and improve tear strength and resistance to flex crack growth by containing a hydrogenated natural polyisoprenoid, and a side using the same A tire having a wall can be provided.
本発明のタイヤ用ゴム組成物は、天然ポリイソプレノイドの水素添加物を含有する。 The rubber composition for tires of the present invention contains a natural polyisoprenoid hydrogenated product.
天然ポリイソプレノイドとは、ヘベアブラジリエンシス種(ヘベアゴム)の樹木から採取されるある種の植物やキノコが正合成により作り出すイソプレン単位(C5H8)で構成させる重合体の総称で、イソプレノイドが(共)重合した構造を有するポリマーのうち、天然に産出するものであり、たとえば、天然ゴム(NR)、テルペン、ヘベア種ゴム、インドゴム、トチュウ、またはラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合体などが上げられる。 Natural polyisoprenoid is a general term for polymers composed of isoprene units (C 5 H 8 ) produced by positive synthesis of certain plants and mushrooms collected from trees of Hevea brasiliensis species (Hevea gum). Is a naturally occurring polymer having a (co) polymerized structure, for example, natural rubber (NR), terpene, Hevea seed rubber, Indian rubber, eucommia, or Lactarius mushroom-derived isoprene units Polymer etc. are raised.
天然ポリイソプレノイドの水素添加物とは、天然ポリイソプレノイドに水素付加反応を起こさせた化合物をいい、たとえば、水素添加天然ゴム(H−NR)、水素添加テルペン、ヘベア種ゴムの木、インドゴムの木、トチュウまたはラクタリウス(Lactarius)属キノコ由来のイソプレン単位重合物の水素添加物などが上げられる。なかでも、タイヤ用ゴム組成物およびそれを用いたサイドウォールに適用でき、天然ゴム以外のポリイソプレノイドは工業的に利用されておらず、立体構造が天然ゴムと比較して規則的ではなく、重合度が小さく、多量に算出させることが経済的に不可であるという理由から、H−NRが好ましい。 The hydrogenated product of natural polyisoprenoid refers to a compound obtained by causing a hydrogenation reaction of natural polyisoprenoid, such as hydrogenated natural rubber (H-NR), hydrogenated terpene, Hevea seed rubber tree, Indian rubber tree , Hydrogenated products of isoprene unit polymers derived from Eucommia or Lactarius genus mushrooms. Among them, it can be applied to rubber compositions for tires and sidewalls using them, polyisoprenoids other than natural rubber are not industrially used, and the three-dimensional structure is not regular compared to natural rubber, and polymerization H-NR is preferable because the degree is small and it is economically impossible to calculate a large amount.
水素付加反応としては、たとえば、有機溶媒中で金属触媒の存在下で水素を加圧するなどの一般的な方法があげられる。 Examples of the hydrogenation reaction include a general method such as pressurizing hydrogen in the presence of a metal catalyst in an organic solvent.
天然ポリイソプレノイドの水素添加物の水素添加率は10%以上が好ましく、50%以上がより好ましい。天然ポリイソプレノイドの水素添加物の水素添加率が10%未満では、通常のNRと比較して大きな物性の差がみられず、さらに、耐オゾン性、耐屈曲性の向上効果が得られない傾向がある。また、天然ポリイソプレノイドの水素添加物の水素添加率は100%以下が好ましく、とくに、弾性力を大きくして硬度を下げ、ゴムとしての性質を示すことができるため、95%以下がより好ましく、90%以下がさらに好ましい。 The hydrogenation rate of the hydrogenated product of natural polyisoprenoid is preferably 10% or more, and more preferably 50% or more. When the hydrogenation rate of the natural polyisoprenoid hydrogenation is less than 10%, there is no significant difference in physical properties as compared with normal NR, and further, the effect of improving ozone resistance and flex resistance tends not to be obtained. There is. Further, the hydrogenation rate of the hydrogenated product of natural polyisoprenoid is preferably 100% or less, and particularly 95% or less is more preferable because it can increase the elastic force to lower the hardness and exhibit properties as rubber. 90% or less is more preferable.
前記ゴム組成物は、さらに、ジエン系ゴムを含むことが好ましい。 The rubber composition preferably further contains a diene rubber.
ジエン系ゴムとしては、たとえば、NR、エポキシ化天然ゴム(ENR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などの点塩ポリイソプレノイドの水素添加物以外のゴムがあげられるが、石油外資源であり、環境にやさしいため、NR、ENRおよびそれらの変性体が好ましく、NRがより好ましい。 Examples of the diene rubber include NR, epoxidized natural rubber (ENR), styrene butadiene rubber (SBR), butadiene rubber (BR), and other rubbers other than hydrogenated products of point salt polyisoprenoids. Since it is a resource and is environmentally friendly, NR, ENR and their modified products are preferred, and NR is more preferred.
天然ポリイソプレノイドの水素添加物およびジエン系ゴム中の天然ポリイソプレノイドの水素添加物の含有率は3重量%以上が好ましく、5重量%以上がより好ましく、10重量%以上がさらに好ましく、20重量%以上がとくに好ましい。天然ポリイソプレノイドの水素添加物の含有率が3重量%未満では、NR単独と比較し、充分な耐オゾン性、耐屈曲性を示さない傾向がある。また、天然ポリイソプレノイドの水素添加物の含有率は40重量%以下が好ましく、30重量%以下がより好ましい。天然ポリイソプレノイドの水素添加物の含有率が40重量%をこえると、ゴムの硬度が増大する傾向がある。 The content of the hydrogenated natural polyisoprenoid and the hydrogenated natural polyisoprenoid in the diene rubber is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and 20% by weight. The above is particularly preferable. When the content of the hydrogenated natural polyisoprenoid is less than 3% by weight, there is a tendency that sufficient ozone resistance and flex resistance are not exhibited as compared with NR alone. Further, the content of the hydrogenated product of natural polyisoprenoid is preferably 40% by weight or less, and more preferably 30% by weight or less. When the content of the hydrogenated natural polyisoprenoid exceeds 40% by weight, the hardness of the rubber tends to increase.
本発明のタイヤ用ゴム組成物は、耐熱性、耐薬品性および耐オゾン性を向上させ、さらに、繰り返し疲労に対する耐久性を向上させられることから、連続相および1以上の非連続相からなり、該連続相と1以上の非連続相とが海−島構造を呈することが好ましい。海−島構造とは、連続相を海、非連続相を島としたものをいい、NR相(海)にH−NR(島)が分散した構造である。破壊核が生じた場合、H−NR(島)層が破壊の伝達を遅らせるという理由から、連続相はジエン系ゴムで、非連続相は天然ポリイソプレノイドの水素添加物であることが好ましい。 The rubber composition for tires of the present invention improves heat resistance, chemical resistance and ozone resistance, and further improves durability against repeated fatigue, and therefore comprises a continuous phase and one or more discontinuous phases. The continuous phase and the one or more discontinuous phases preferably exhibit a sea-island structure. The sea-island structure is a structure in which the continuous phase is the sea and the discontinuous phase is the island, and the H-NR (island) is dispersed in the NR phase (sea). When fracture nuclei occur, it is preferable that the continuous phase is a diene rubber and the discontinuous phase is a hydrogenated natural polyisoprenoid because the H-NR (island) layer delays the propagation of the fracture.
本発明のタイヤ用ゴム組成物には、さらに、充填剤を含むことが好ましい。 The tire rubber composition of the present invention preferably further contains a filler.
充填剤としては、たとえば、カーボンブラック、シリカ、炭酸カルシウム、水酸化アルミニウム、クレー、マイカ、アルミナ、タルクなどがあげられ、これらの充填剤はとくに制限はなく、単独で用いても、2種以上を組み合わせて用いてもよい。なかでも、低コストであり、補強性および低燃費性を向上させられることから、シリカ、炭酸カルシウムおよび水酸化アルミニウムからなる群から選ばれる1種以上の充填剤が好ましく、シリカがより好ましい。 Examples of the filler include carbon black, silica, calcium carbonate, aluminum hydroxide, clay, mica, alumina, talc and the like. These fillers are not particularly limited, and two or more kinds can be used alone. May be used in combination. Among these, one or more fillers selected from the group consisting of silica, calcium carbonate, and aluminum hydroxide are preferable, and silica is more preferable because of low cost and improved reinforcing properties and low fuel consumption.
充填剤として炭酸カルシウムを使用する場合、天然ポリイソプレノイドの水素添加物と併用することで補強性を向上させられることから、脂肪酸処理などの表面処理することが好ましい。 When calcium carbonate is used as the filler, it is preferable to perform a surface treatment such as a fatty acid treatment because the reinforcing property can be improved by using it together with a hydrogenated product of natural polyisoprenoid.
充填剤の含有量は、ゴム成分100重量部に対して、5重量部以上が好ましく、30重量部以上がより好ましい。充填剤の含有量が5重量部未満では、充分な補強性が得られない傾向がある。また、充填剤の含有量は150重量部以下が好ましく、80重量部以下がより好ましい。充填剤の含有量が150重量部をこえると、硬度が過度に上昇し、実用上問題がある傾向がある。 The content of the filler is preferably 5 parts by weight or more, and more preferably 30 parts by weight or more with respect to 100 parts by weight of the rubber component. If the filler content is less than 5 parts by weight, sufficient reinforcing properties tend not to be obtained. Moreover, 150 weight part or less is preferable and, as for content of a filler, 80 weight part or less is more preferable. When the content of the filler exceeds 150 parts by weight, the hardness is excessively increased and there is a tendency to have a practical problem.
充填剤としてシリカを配合する場合、シランカップリング剤を併用することが好ましい。 When silica is blended as a filler, it is preferable to use a silane coupling agent in combination.
前記シランカップリング剤としては、たとえば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルプロピル)テトラスルフィド、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシランなどがあげられ、これらのシランカップリング剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylpropyl) tetrasulfide, and 3-mercaptopropyl. Examples include triethoxysilane and 2-mercaptoethyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
シリカおよびシランカップリング剤を配合する場合、シランカップリング剤の含有量は、シリカ100重量部に対して0.1重量部以上が好ましく、0.5重量部以上がより好ましく、1重量部以上がさらに好ましい。シランカップリング剤の含有量が0.1重量部未満では、シリカと充分に反応せず、補強性が向上しない傾向がある。 When silica and a silane coupling agent are blended, the content of the silane coupling agent is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of silica, and 1 part by weight or more. Is more preferable. When the content of the silane coupling agent is less than 0.1 parts by weight, the silica does not sufficiently react with silica and the reinforcing property tends not to be improved.
本発明のタイヤ用ゴム組成物には、天然ポリイソプレノイドの水素添加物、ジエン系ゴム、充填剤およびシランカップリング剤以外にも、従来タイヤ工業で使用される配合剤、たとえば、ステアリン酸、酸化亜鉛、各種老化防止剤、ワックスなどの軟化剤、硫黄などの加硫剤、各種加硫促進剤などを配合することができる。 In addition to natural polyisoprenoid hydrogenated products, diene rubbers, fillers and silane coupling agents, the rubber composition for tires of the present invention includes compounding agents conventionally used in the tire industry, such as stearic acid, oxidation Zinc, various anti-aging agents, softening agents such as wax, vulcanizing agents such as sulfur, various vulcanization accelerators and the like can be blended.
本発明のタイヤ用ゴム組成物は、ゴム成分としてBRを配合した従来のサイドウォールと比較して、耐オゾン性、耐屈曲亀裂成長性を向上させることができるという理由から、サイドウォール用ゴム組成物とすることが好ましい。 The rubber composition for tires of the present invention has a rubber composition for sidewalls because it can improve ozone resistance and flex crack growth resistance compared to conventional sidewalls containing BR as a rubber component. It is preferable to use a product.
本発明のタイヤは、本発明のタイヤ用ゴム組成物を用いて通常の方法で製造される。すなわち、必要に応じて前記配合剤を配合した本発明のタイヤ用ゴム組成物を、未加硫の段階でタイヤの各部材の形状にあわせて押し出し加工し、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することにより本発明のタイヤを得る。 The tire of the present invention is produced by a usual method using the tire rubber composition of the present invention. That is, if necessary, the rubber composition for tires of the present invention blended with the above compounding agent is extruded in accordance with the shape of each member of the tire at an unvulcanized stage, and is processed on a tire molding machine by a normal method. An unvulcanized tire is formed by molding with. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain the tire of the present invention.
実施例にもとづいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.
以下に、実施例および比較例で使用した薬品をまとめて示す。
天然ゴム(NR):RSS♯3
水素添加天然ゴム(H−NR):下記作製方法により作製(水素添加率:50%)
ブタジエンゴム(BR):宇部興産(株)製のBR150B
シリカ:デグッサ社製のウルトラジルVN3(BET比表面積:175m2/g)
シランカップリング剤:デグッサ社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
ステアリン酸:日本油脂(株)製のステアリン酸「桐」
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−1,3−ジメチルブチル−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精鑞(株)製のオゾエース0355
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The chemicals used in the examples and comparative examples are summarized below.
Natural rubber (NR): RSS # 3
Hydrogenated natural rubber (H-NR): produced by the following production method (hydrogenation rate: 50%)
Butadiene rubber (BR): BR150B manufactured by Ube Industries, Ltd.
Silica: Ultrazil VN3 manufactured by Degussa (BET specific surface area: 175 m 2 / g)
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Degussa
Stearic acid: Stearic acid “paulownia” manufactured by NOF Corporation
Zinc oxide: Zinc oxide type 2 anti-aging agent manufactured by Mitsui Mining & Smelting Co., Ltd .: NOCRACK 6C (N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine) manufactured by Ouchi Shinsei Chemical )
Wax: Ozoace 0355 manufactured by Nippon Seiki Co., Ltd.
Sulfur: Powder sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd .: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
(天然ポリイソプレノイドの水素添加物(H−NR)の作製)
マレーシア産の固形天然ゴム(SMR−CV60、重量平均分子量(Mw):130万)をトルエンに溶解させ、2重量%のトルエン溶液を作製した。充分に水素置換したオートクレーブ内で、耐熱容器に該トルエン溶液1kgおよび金属触媒RhCl(PPH3)3(クロロトリス(トリフェニルホスフィン)ロジウム)50gを添加し、水素ガスを圧入(圧力:8MPa)し、オートクレー部内の温度を70〜80℃に調整し、96時間撹拌しながら水素添加反応を行った。その後、撹拌しながら反応後のトルエン溶液にメタノールを少量ずつ、完全に固体ゴムが析出するまで添加した。得られた固形ゴムを60℃の条件下で24時間真空乾燥させ、H−NRを得た。
(Production of hydrogenated product of natural polyisoprenoid (H-NR))
Malaysian solid natural rubber (SMR-CV60, weight average molecular weight (Mw): 1.3 million) was dissolved in toluene to prepare a 2 wt% toluene solution. In a fully hydrogen-substituted autoclave, 1 kg of the toluene solution and 50 g of metal catalyst RhCl (PPH 3 ) 3 (chlorotris (triphenylphosphine) rhodium) are added to a heat-resistant container, and hydrogen gas is injected (pressure: 8 MPa). The temperature in the autoclay part was adjusted to 70 to 80 ° C., and a hydrogenation reaction was performed with stirring for 96 hours. Thereafter, methanol was gradually added to the toluene solution after the reaction while stirring until the solid rubber was completely precipitated. The obtained solid rubber was vacuum-dried at 60 ° C. for 24 hours to obtain H-NR.
実施例1〜4および比較例1〜5
表1の配合処方にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を充填率が58%になるように充填し、80rpmで140℃に到達するまで混練りして混練り物を得た。
Examples 1-4 and Comparative Examples 1-5
In accordance with the formulation of Table 1, using a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd., chemicals other than sulfur and a vulcanization accelerator were filled to a filling rate of 58%, and 140 rpm at 140 rpm. A kneaded product was obtained by kneading until reaching 0C.
次に、オープンロールを用いて、得られた混練り物に硫黄および加硫促進剤を添加して混練りし、未加硫ゴム組成物を得た。さらに、得られた未加硫ゴム組成物を所定のサイズに成形し、160℃の条件下で20分間プレス加硫することにより加硫ゴム組成物を得、約2mm×130mm×130mmの加硫ゴムスラブシート(粘弾性試験用)および加硫ゴムサンプル(デマチャ屈曲亀裂成長試験用)をそれぞれ作製した。 Next, using an open roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition. Further, the obtained unvulcanized rubber composition was molded into a predetermined size, and a vulcanized rubber composition was obtained by press vulcanization at 160 ° C. for 20 minutes, and a vulcanization of about 2 mm × 130 mm × 130 mm was obtained. A rubber slab sheet (for viscoelasticity test) and a vulcanized rubber sample (for demach flex crack growth test) were prepared.
(粘弾性試験)
(株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、初期歪10%、動歪2%および周波数10Hzの条件下で加硫ゴムスラブシートの損失正接(tanδ)を測定し、比較例1の転がり抵抗指数を100とし、下記計算式により、転がり抵抗を指数表示した。転がり抵抗指数が大きいほど、転がり抵抗が低減され、好ましいことを示す。
(転がり抵抗指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(Viscoelasticity test)
Using a viscoelastic spectrometer VES manufactured by Iwamoto Seisakusho, the loss tangent (tan δ) of the vulcanized rubber slab sheet was measured under conditions of a temperature of 70 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The rolling resistance index of Comparative Example 1 was set to 100, and the rolling resistance was indicated by an index according to the following formula. The larger the rolling resistance index, the lower the rolling resistance, which is preferable.
(Rolling resistance index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100
(引き裂き試験)
JIS K 6252「加硫ゴムおよび熱可塑性ゴム―引き裂き強さの求め方」に準じて、加硫ゴム組成物から成形した切り込み無しのアングル形試験片を用いることにより、引き裂き強度(N/mm)を測定し、比較例1の引き裂き強度指数を100とし、下記計算式により、引き裂き強度を指数表示した。引き裂き強度指数が大きいほど、引き裂き強度が大きく、好ましいことを示す。
(引き裂き強度指数)=(各配合の引き裂き強度)
÷(比較例1の引き裂き強度)×100
(Tear test)
In accordance with JIS K 6252 “Vulcanized Rubber and Thermoplastic Rubber-Determination of Tear Strength”, tear strength (N / mm) is obtained by using an angle-shaped test piece without a cut formed from a vulcanized rubber composition. The tear strength index of Comparative Example 1 was taken as 100, and the tear strength was expressed as an index by the following formula. The larger the tear strength index, the higher the tear strength, which is preferable.
(Tear strength index) = (Tear strength of each formulation)
÷ (Tear strength of Comparative Example 1) × 100
(デマチャ屈曲亀裂成長試験)
JIS K 6260「加硫ゴムおよび熱可塑性ゴムのデマチャ屈曲亀裂成長試験方法」に準じて、温度23℃、相対湿度55%の条件下で、加硫ゴムサンプルに対して、100万回の屈曲試験後の亀裂長さ、または1mmの亀裂に成長するまでの屈曲回数を測定した。そして、得られた亀裂長さおよび屈曲回数をもとに、加硫ゴムサンプルに亀裂が1mmの長さまで成長するまでの屈曲回数を対数で表した。数値が大きいほど亀裂が成長しにくく、耐屈曲亀裂成長性が優れていることを示す。なお、70%および110%とは、もとのゴム組成物サンプルの長さに対する伸び率を示す。
(Demach flex crack growth test)
In accordance with JIS K 6260 “Demach Bending Crack Growth Test Method for Vulcanized Rubber and Thermoplastic Rubber” 1 million bending tests on vulcanized rubber sample under conditions of temperature 23 ° C. and relative humidity 55% The subsequent crack length or the number of bends until it grew to a 1 mm crack was measured. Then, based on the obtained crack length and the number of bends, the number of bends until the crack grew to a length of 1 mm in the vulcanized rubber sample was expressed logarithmically. A larger value indicates that cracks are less likely to grow and that the resistance to flex crack growth is superior. Here, 70% and 110% indicate the elongation percentage with respect to the length of the original rubber composition sample.
上記試験結果を表1に示す。 The test results are shown in Table 1.
(ポリマー分散の評価)
透過型電子顕微鏡(TEM)により、実施例1〜4および比較例1の加硫ゴムサンプルについてのモルフォルジーを観測した。
(Evaluation of polymer dispersion)
Morphology of the vulcanized rubber samples of Examples 1 to 4 and Comparative Example 1 was observed with a transmission electron microscope (TEM).
ポリマー分散の評価結果を図1に示す。 The evaluation results of polymer dispersion are shown in FIG.
H−NRを添加した実施例1〜4では、転がり抵抗を低減させ、引き裂き強度および耐屈曲亀裂成長性を向上させることができる。とくに、NRとH−NRとの配合比を97/3〜40/60とした実施例4では、図1(b)に示すように、NR2中にH−NR1が含まれ、それらが島相を形成していることからもわかるように、NR相中にH−NR相を均一に分散させることができ、転がり抵抗を低減させ、引き裂き強度および耐屈曲亀裂成長性を向上させることができる。 In Examples 1 to 4 to which H-NR is added, the rolling resistance can be reduced, and the tear strength and the bending crack growth resistance can be improved. In particular, in Example 4 in which the blending ratio of NR and H-NR is 97/3 to 40/60, as shown in FIG. 1 (b), NR2 is contained in NR2, and these are the island phases. As can be seen from the formation of, the H-NR phase can be uniformly dispersed in the NR phase, the rolling resistance can be reduced, and the tear strength and flex crack growth resistance can be improved.
1 H−NR
2 NR
1 H-NR
2 NR
Claims (6)
天然ポリイソプレノイドの水素添加物および該ジエン系ゴム中の天然ポリイソプレノイドの水素添加物の含有率が3〜40重量%であり、該ジエン系ゴムの含有率が60〜97重量%である請求項1記載のタイヤ用ゴム組成物。 Contains diene rubber,
The content of the hydrogenated natural polyisoprenoid and the hydrogenated natural polyisoprenoid in the diene rubber is 3 to 40% by weight, and the content of the diene rubber is 60 to 97% by weight. The rubber composition for tires according to 1.
該天然ポリイソプレノイドの水素添加物の水素添加率が10〜100%である請求項1、2または3記載のタイヤ用ゴム組成物。 A natural polyisoprenoid hydrogenation product is obtained by pressurizing hydrogen in an organic solvent in the presence of a metal catalyst,
The rubber composition for tires according to claim 1, 2 or 3, wherein the hydrogenation rate of the hydrogenated product of natural polyisoprenoid is 10 to 100%.
該連続相および1相以上の非連続相が海−島構造を呈する請求項1、2、3または4記載のタイヤ用ゴム組成物。 Consisting of a continuous phase and one or more discontinuous phases,
The tire rubber composition according to claim 1, 2, 3 or 4, wherein the continuous phase and one or more discontinuous phases have a sea-island structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005366701A JP4895600B2 (en) | 2005-12-20 | 2005-12-20 | Rubber composition for tire and tire having sidewall using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005366701A JP4895600B2 (en) | 2005-12-20 | 2005-12-20 | Rubber composition for tire and tire having sidewall using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007169385A true JP2007169385A (en) | 2007-07-05 |
JP4895600B2 JP4895600B2 (en) | 2012-03-14 |
Family
ID=38296386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005366701A Expired - Fee Related JP4895600B2 (en) | 2005-12-20 | 2005-12-20 | Rubber composition for tire and tire having sidewall using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4895600B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277343A (en) * | 2006-04-04 | 2007-10-25 | Bridgestone Corp | Rubber composition and pneumatic tire using the same |
JP2008144069A (en) * | 2006-12-12 | 2008-06-26 | Sumitomo Rubber Ind Ltd | Rubber composition for tread and pneumatic tire having tread using the same |
JP2012021058A (en) * | 2010-07-13 | 2012-02-02 | Sumitomo Rubber Ind Ltd | Rubber composition for tire and pneumatic tire |
JP2012021091A (en) * | 2010-07-15 | 2012-02-02 | Sumitomo Rubber Ind Ltd | Rubber composition for tire, and pneumatic tire |
JP2012172082A (en) * | 2011-02-22 | 2012-09-10 | Sumitomo Rubber Ind Ltd | Rubber composition for sidewall, rubber composition for tread, and pneumatic tire |
JP2014231552A (en) * | 2013-05-28 | 2014-12-11 | 帝人株式会社 | Antibacterial polylactic acid resin composition |
JP2017137436A (en) * | 2016-02-04 | 2017-08-10 | 住友ゴム工業株式会社 | Pneumatic tire |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59161415A (en) * | 1983-02-22 | 1984-09-12 | ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− | Hydrogenation of carbon-carbon double bond in unsaturated polymer |
JPS62297345A (en) * | 1986-06-17 | 1987-12-24 | Bridgestone Corp | Rubber composition and pneumatic tire using same |
JPH0220505A (en) * | 1988-06-23 | 1990-01-24 | Hormoz Azizian | Deuteration of polymer |
WO1996005250A1 (en) * | 1994-08-08 | 1996-02-22 | Asahi Kasei Kogyo Kabushiki Kaisha | Hydrogenated rubber composition |
JP2004018760A (en) * | 2002-06-19 | 2004-01-22 | Bridgestone Corp | Tread rubber composition and tire produced by using the same |
JP2005170994A (en) * | 2003-12-08 | 2005-06-30 | Nitta Ind Corp | Rubbery elastic body and its manufacturing method |
JP2006063185A (en) * | 2004-08-26 | 2006-03-09 | Nitta Ind Corp | Resin modifier and resin composition containing the resin modifier |
JP2006131807A (en) * | 2004-11-08 | 2006-05-25 | Nitta Ind Corp | Modified latex, and product containing hydrogenated natural polyisoprenoid or its modification |
JP2007177209A (en) * | 2005-11-29 | 2007-07-12 | Sumitomo Rubber Ind Ltd | Rubber composition and pneumatic tire by using the same |
-
2005
- 2005-12-20 JP JP2005366701A patent/JP4895600B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59161415A (en) * | 1983-02-22 | 1984-09-12 | ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− | Hydrogenation of carbon-carbon double bond in unsaturated polymer |
JPS62297345A (en) * | 1986-06-17 | 1987-12-24 | Bridgestone Corp | Rubber composition and pneumatic tire using same |
JPH0220505A (en) * | 1988-06-23 | 1990-01-24 | Hormoz Azizian | Deuteration of polymer |
WO1996005250A1 (en) * | 1994-08-08 | 1996-02-22 | Asahi Kasei Kogyo Kabushiki Kaisha | Hydrogenated rubber composition |
JP2004018760A (en) * | 2002-06-19 | 2004-01-22 | Bridgestone Corp | Tread rubber composition and tire produced by using the same |
JP2005170994A (en) * | 2003-12-08 | 2005-06-30 | Nitta Ind Corp | Rubbery elastic body and its manufacturing method |
JP2006063185A (en) * | 2004-08-26 | 2006-03-09 | Nitta Ind Corp | Resin modifier and resin composition containing the resin modifier |
JP2006131807A (en) * | 2004-11-08 | 2006-05-25 | Nitta Ind Corp | Modified latex, and product containing hydrogenated natural polyisoprenoid or its modification |
JP2007177209A (en) * | 2005-11-29 | 2007-07-12 | Sumitomo Rubber Ind Ltd | Rubber composition and pneumatic tire by using the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277343A (en) * | 2006-04-04 | 2007-10-25 | Bridgestone Corp | Rubber composition and pneumatic tire using the same |
JP2008144069A (en) * | 2006-12-12 | 2008-06-26 | Sumitomo Rubber Ind Ltd | Rubber composition for tread and pneumatic tire having tread using the same |
JP2012021058A (en) * | 2010-07-13 | 2012-02-02 | Sumitomo Rubber Ind Ltd | Rubber composition for tire and pneumatic tire |
JP2012021091A (en) * | 2010-07-15 | 2012-02-02 | Sumitomo Rubber Ind Ltd | Rubber composition for tire, and pneumatic tire |
JP2012172082A (en) * | 2011-02-22 | 2012-09-10 | Sumitomo Rubber Ind Ltd | Rubber composition for sidewall, rubber composition for tread, and pneumatic tire |
JP2014231552A (en) * | 2013-05-28 | 2014-12-11 | 帝人株式会社 | Antibacterial polylactic acid resin composition |
JP2017137436A (en) * | 2016-02-04 | 2017-08-10 | 住友ゴム工業株式会社 | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
JP4895600B2 (en) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5198746B2 (en) | Rubber composition and pneumatic tire using the same | |
JP5503598B2 (en) | Sidewall rubber composition and pneumatic tire | |
JP7140212B2 (en) | pneumatic tire | |
JP2019131648A (en) | Tire rubber composition and tire | |
JP5662231B2 (en) | Rubber composition for tire and pneumatic tire | |
JP4895600B2 (en) | Rubber composition for tire and tire having sidewall using the same | |
JP6575464B2 (en) | Rubber composition | |
EP3912831B1 (en) | Rubber composition and tire | |
JP2011052146A (en) | Rubber composition for tire and pneumatic tire | |
JP2019131649A (en) | Tire rubber composition and tire | |
JP6962046B2 (en) | Rubber composition for tires | |
CN112867608B (en) | Rubber composition for tire | |
JP5003011B2 (en) | Rubber composition | |
JP2008308601A (en) | Rubber composition for tire and tire having tire member using the composition | |
WO2007077787A1 (en) | Rubber composition for sidewall | |
JP6686488B2 (en) | Pneumatic tire | |
JP5912935B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5078317B2 (en) | Rubber composition and pneumatic tire using the same | |
JP2019131647A (en) | Tire rubber composition and tire | |
JP5912930B2 (en) | Rubber composition for tire and pneumatic tire | |
JP5912936B2 (en) | Rubber composition for tire and studless tire | |
JP2007204734A (en) | Rubber composition for sidewall | |
JP5937443B2 (en) | Rubber composition for tire and pneumatic tire | |
JP6170270B1 (en) | Rubber composition and pneumatic tire | |
JP5898010B2 (en) | Rubber composition for pneumatic tread and pneumatic tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081216 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111213 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111220 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |