JP5912936B2 - Rubber composition for tire and studless tire - Google Patents

Rubber composition for tire and studless tire Download PDF

Info

Publication number
JP5912936B2
JP5912936B2 JP2012151546A JP2012151546A JP5912936B2 JP 5912936 B2 JP5912936 B2 JP 5912936B2 JP 2012151546 A JP2012151546 A JP 2012151546A JP 2012151546 A JP2012151546 A JP 2012151546A JP 5912936 B2 JP5912936 B2 JP 5912936B2
Authority
JP
Japan
Prior art keywords
rubber
mass
parts
cyclized
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012151546A
Other languages
Japanese (ja)
Other versions
JP2014012801A (en
Inventor
結香 横山
結香 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012151546A priority Critical patent/JP5912936B2/en
Publication of JP2014012801A publication Critical patent/JP2014012801A/en
Application granted granted Critical
Publication of JP5912936B2 publication Critical patent/JP5912936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、タイヤ用ゴム組成物及びそれを用いて作製したスタッドレスタイヤに関する。 The present invention relates to a rubber composition for a tire and a studless tire produced using the same.

近年、燃料代の高騰や環境規制の導入により、車の低燃費化への要求が強くなり、氷雪路走行に使用されるスタッドレスタイヤにおいても、雪氷上性能と共に、優れた低燃費性が要求されている。従来から、ゴム成分との相互作用が容易に得られ、補強効果に優れたカーボンブラックがタイヤ用ゴム組成物の充填剤として使用されてきたが、低燃費性を高めるため、これに代わってシリカを使用することが検討されている。 In recent years, due to soaring fuel costs and the introduction of environmental regulations, the demand for lower fuel consumption of vehicles has become stronger, and even for studless tires used on icy and snowy roads, excellent fuel efficiency is required along with performance on snow and ice. ing. Conventionally, carbon black, which can easily interact with the rubber component and has an excellent reinforcing effect, has been used as a filler for tire rubber compositions. Is being considered for use.

しかし、シリカは、カーボンブラックに比べて、タイヤに汎用されている天然ゴム、ブタジエンゴム、スチレンブタジエンゴムなどとの親和性が低く、力学強度(引張強度や破断伸び)などの点で劣ることが多い。 However, silica has lower affinity with natural rubber, butadiene rubber, styrene butadiene rubber, etc., which are widely used for tires, and is inferior to carbon black in terms of mechanical strength (tensile strength and elongation at break). Many.

この点を解決する方法として、ゴム成分やシリカとの反応性を持つシランカップリング剤を使用することが提案されているが、シリカとの反応を充分に進行させることが難しく、未反応のシリカが分散不良のまま残存し、所望の性能が発揮されないことがある。更にこれを防止するために、多量のシランカップリング剤を配合すると、残存シランカップリング剤に起因して、加工中のゴム焼け、加硫ゴムの破壊性能の低下などを招くこともある。 As a method for solving this problem, it has been proposed to use a silane coupling agent having reactivity with a rubber component or silica, but it is difficult to sufficiently advance the reaction with silica, and unreacted silica. May remain poorly dispersed and the desired performance may not be exhibited. Further, in order to prevent this, if a large amount of silane coupling agent is blended, due to the residual silane coupling agent, rubber burning during processing, degradation performance of vulcanized rubber, and the like may be caused.

特許文献1には、シリカとゴムの相溶性を高める目的で、pHが8〜12の塩基性水溶液及びシリカを配合したタイヤ用ゴム組成物が開示されているが、ゴムとシリカとの相互作用が充分に得られず、低燃費性などの改善効果が充分満足いくものではない。 Patent Document 1 discloses a tire rubber composition containing a basic aqueous solution having a pH of 8 to 12 and silica for the purpose of enhancing the compatibility between silica and rubber, but the interaction between rubber and silica is disclosed. Cannot be sufficiently obtained, and the improvement effect such as low fuel consumption is not satisfactory.

また、スタッドレスタイヤの場合、雪氷上性能(低温性能)を確保する目的でオイル等の可塑剤を多量に配合する傾向があるが、これに起因して、耐摩耗性が低下する傾向もある。したがって、低燃費性、雪氷上性能、耐摩耗性及び加工性をバランス良く改善できるシリカ配合ゴムの提供が望まれている。 In addition, in the case of a studless tire, there is a tendency to add a large amount of plasticizer such as oil for the purpose of ensuring performance on snow and ice (low temperature performance), but this also tends to reduce wear resistance. Accordingly, it is desired to provide a silica-containing rubber that can improve fuel economy, snow and ice performance, wear resistance, and processability in a well-balanced manner.

特開2000−219779号公報JP 2000-219779 A

本発明は、前記課題を解決し、低燃費性、雪氷上性能、耐摩耗性及び加工性をバランス良く向上するタイヤ用ゴム組成物、及びそれを用いたスタッドレスタイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and provide a rubber composition for tires that improves fuel efficiency, performance on snow and ice, wear resistance, and processability in a well-balanced manner, and a studless tire using the same. .

本発明は、ゴム成分100質量部に対して、シリカを5〜200質量部、環化ゴムを0.1〜40質量部含み、前記ゴム成分100質量%中のブタジエンゴムの含有量が10〜80質量%であるタイヤ用ゴム組成物に関する。 The present invention comprises 5 to 200 parts by mass of silica and 0.1 to 40 parts by mass of cyclized rubber with respect to 100 parts by mass of the rubber component, and the content of butadiene rubber in 100% by mass of the rubber component is 10 to 10 parts by mass. It is related with the rubber composition for tires which is 80 mass%.

前記環化ゴムの環化率は、0.1〜40%であることが好ましい。
前記環化ゴムは、環化天然ゴム、環化イソプレンゴム及び環化ブタジエンゴムからなる群より選択される少なくとも1種であることが好ましい。
The cyclization rate of the cyclized rubber is preferably 0.1 to 40%.
The cyclized rubber is preferably at least one selected from the group consisting of cyclized natural rubber, cyclized isoprene rubber, and cyclized butadiene rubber.

前記ゴム成分100質量部に対して、カーボンブラックを1〜50質量部含むことが好ましい。
本発明は、前記ゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤに関する。
It is preferable that 1-50 mass parts of carbon black is included with respect to 100 mass parts of the rubber component.
The present invention relates to a studless tire having a tread produced using the rubber composition.

本発明によれば、ゴム成分100質量部に対して、シリカを5〜200質量部、環化ゴムを0.1〜40質量部含み、前記ゴム成分100質量%中のブタジエンゴムの含有量が10〜80質量%であるタイヤ用ゴム組成物であるので、低燃費性、雪氷上性能、耐摩耗性及び加工性をバランスよく向上できる。 According to the present invention, 5 to 200 parts by mass of silica and 0.1 to 40 parts by mass of cyclized rubber are included with respect to 100 parts by mass of the rubber component, and the content of butadiene rubber in 100% by mass of the rubber component is Since it is a 10-80 mass% rubber composition for tires, low fuel consumption, performance on snow and ice, wear resistance and processability can be improved in a well-balanced manner.

本発明のタイヤ用ゴム組成物は、所定量のブタジエンゴムを含むゴム成分に対して、シリカ及び環化ゴムを所定量配合したものである。 The rubber composition for tires of the present invention is obtained by blending a predetermined amount of silica and cyclized rubber with a rubber component containing a predetermined amount of butadiene rubber.

ブタジエンゴムにシリカを配合した配合ゴムは、一般にシリカの分散性が低く、所望の性能を得ることが難しいが、本発明では、環化ゴムを配合することにより、シリカとブタジエンゴムなどのゴム成分との相互作用が高められる。従って、シリカの分散性が向上し、低燃費性、雪氷上性能、耐摩耗性を改善できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。 A compounded rubber in which silica is compounded with butadiene rubber generally has low dispersibility of silica and it is difficult to obtain desired performance. However, in the present invention, a rubber component such as silica and butadiene rubber can be obtained by compounding cyclized rubber. Interaction with is increased. Accordingly, the dispersibility of the silica is improved, the fuel efficiency, the performance on snow and ice, and the wear resistance can be improved, and good processability can be obtained, and the balance between these performances can be improved synergistically.

さらに、所定の環化率を持つ環化ゴムを使用することで、シリカの分散性が劇的に向上し、前記性能バランスを顕著に改善することが可能になる。 Further, by using a cyclized rubber having a predetermined cyclization rate, the dispersibility of silica is dramatically improved, and the performance balance can be remarkably improved.

ブタジエンゴム(BR)としては特に限定されず、タイヤ工業において一般的なものを使用できる。低温特性を充分に確保するという理由から、BRのシス含有量は70質量%以上が好ましく、90質量%以上がより好ましく、97質量%以上がさらに好ましい。 The butadiene rubber (BR) is not particularly limited, and those that are common in the tire industry can be used. For the reason of sufficiently ensuring low temperature characteristics, the cis content of BR is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 97% by mass or more.

BRのムーニー粘度(ML1+4(100℃))は、好ましくは10以上、より好ましくは30以上である。10未満であると、フィラーの分散性が低下する傾向がある。該ムーニー粘度は、好ましくは120以下、より好ましくは80以下である。120を超えると、押し出し加工時のゴム焼け(変色)の発生が懸念される。 The Mooney viscosity (ML 1 + 4 (100 ° C.)) of BR is preferably 10 or more, more preferably 30 or more. If it is less than 10, the dispersibility of the filler tends to decrease. The Mooney viscosity is preferably 120 or less, more preferably 80 or less. If it exceeds 120, there is a concern about the occurrence of rubber burn (discoloration) during extrusion processing.

BRの分子量分布(Mw/Mn)は、好ましくは1.5以上、より好ましくは2.0以上である。1.5未満であると、加工性が悪化するおそれがある。BRのMw/Mnは、好ましくは5.0以下、より好ましくは4.0以下である。5.0を超えると、耐摩耗性が悪化する傾向がある。なお、本発明において、Mn、Mwは、GPCを用い、標準ポリスチレンより換算した値である。 The molecular weight distribution (Mw / Mn) of BR is preferably 1.5 or more, more preferably 2.0 or more. If it is less than 1.5, workability may be deteriorated. The Mw / Mn of BR is preferably 5.0 or less, more preferably 4.0 or less. If it exceeds 5.0, the wear resistance tends to deteriorate. In the present invention, Mn and Mw are values converted from standard polystyrene using GPC.

ゴム成分100質量%中のBR含有量は、必要な雪氷上性能を発揮させる観点から、10質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上である。また、該BRの含有量は、加工性の観点から、80質量%以下、好ましくは70質量%以下、より好ましくは65質量%以下である。 The BR content in 100% by mass of the rubber component is 10% by mass or more, preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass or more, from the viewpoint of exerting necessary snow and ice performance. It is. The BR content is 80% by mass or less, preferably 70% by mass or less, and more preferably 65% by mass or less from the viewpoint of workability.

本発明で使用できる他のゴム成分としては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、スチレンブタジエンゴム(SBR)、ブタジエンイソプレンゴムなどのジエン系ゴム、塩素化ブチルゴムなどのブチル系ゴムなどが挙げられ、また、これらのゴムを縮合したもの、変性したものなども使用可能である。なかでも、環境への配慮、将来の石油供給量の減少に備えることもでき、更に耐摩耗性を向上し、前記性能バランスを改善できるという理由から、NR及び/又はENRを使用することが好ましく、NRを使用することがより好ましい。これらのゴム成分は、単独で用いても、2種以上を併用してもよい。 Other rubber components that can be used in the present invention include natural rubber (NR), epoxidized natural rubber (ENR), styrene butadiene rubber (SBR), diene rubber such as butadiene isoprene rubber, and butyl rubber such as chlorinated butyl rubber. Moreover, what condensed these rubber | gum, the modified thing, etc. can be used. Among them, it is preferable to use NR and / or ENR because it is environmentally friendly, can be prepared for a future decrease in oil supply, and can further improve wear resistance and improve the performance balance. More preferably, NR is used. These rubber components may be used alone or in combination of two or more.

NRとしては特に限定されず、例えば、SIR20、RSS#3、TSR20、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(HPNR)等、タイヤ工業において一般的なものを使用できる。 The NR is not particularly limited. For example, SIR20, RSS # 3, TSR20, deproteinized natural rubber (DPNR), high-purity natural rubber (HPNR), etc., which are common in the tire industry can be used.

ゴム成分100質量%中のNRの含有量は、好ましくは10質量%以上、より好ましくは30質量%以上、更に好ましくは40質量%以上である。10質量%未満であると、低燃費性が低下する傾向がある。上記NRの含有量は、好ましくは80質量%以下、より好ましくは65質量%である。80質量%を超えると、加工性が低下し、前記性能バランスが悪化する傾向がある。 The content of NR in 100% by mass of the rubber component is preferably 10% by mass or more, more preferably 30% by mass or more, and further preferably 40% by mass or more. If it is less than 10% by mass, the fuel efficiency tends to decrease. The NR content is preferably 80% by mass or less, and more preferably 65% by mass. When it exceeds 80 mass%, workability will fall and the said performance balance tends to deteriorate.

本発明において、前記性能バランスの観点から、ゴム成分100質量%中のBR及びNRの合計含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、更に好ましくは100質量%である。 In the present invention, from the viewpoint of the performance balance, the total content of BR and NR in 100% by mass of the rubber component is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. .

本発明で使用されるシリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。 The silica used in the present invention is not particularly limited, and examples thereof include dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid) and the like, but because of the large number of silanol groups, wet process silica. Is preferred.

前記シリカのチッ素吸着比表面積(NSA)は、40m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上がさらに好ましく、150m/g以上が特に好ましい。40m/g未満では、加硫後の破壊強度が低下する傾向がある。また、シリカのNSAは、500m/g以下が好ましく、300m/g以下がより好ましい。500m/gを超えると、低発熱性、ゴムの加工性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
Nitrogen adsorption specific surface area of the silica (N 2 SA) of preferably at least 40 m 2 / g, more preferably at least 50m 2 / g, 100m 2 / g or more, and particularly preferably equal to or greater than 150m 2 / g. If it is less than 40 m < 2 > / g, there exists a tendency for the fracture strength after vulcanization to fall. The N 2 SA of the silica is preferably not more than 500 meters 2 / g, more preferably at most 300m 2 / g. When it exceeds 500 m 2 / g, there is a tendency that low heat build-up and rubber processability are lowered.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

シリカの含有量は、ゴム成分100質量部に対して、5質量部以上、好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは20質量部以上、最も好ましくは30質量部以上である。5質量部未満であると、低発熱性が不十分になるおそれがある。また、該含有量は、200質量部以下、好ましくは120質量部以下、より好ましくは80質量部以下である。200質量部を超えると、充填剤のゴムへの分散が困難になり、ゴムの加工性が悪化する傾向がある。 The content of silica is 5 parts by mass or more, preferably 10 parts by mass or more, more preferably 15 parts by mass or more, particularly preferably 20 parts by mass or more, and most preferably 30 parts by mass or more with respect to 100 parts by mass of the rubber component. It is. If it is less than 5 parts by mass, the low heat build-up may be insufficient. Moreover, this content is 200 mass parts or less, Preferably it is 120 mass parts or less, More preferably, it is 80 mass parts or less. When it exceeds 200 parts by mass, it becomes difficult to disperse the filler into the rubber, and the processability of the rubber tends to deteriorate.

本発明のゴム組成物は、シランカップリング剤を配合してもよい。
シランカップリング剤としては特に限定されず、従来公知のものを使用でき、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィドなどのスルフィド系;3−メルカプトプロピルトリメトキシシランなどのメルカプト系;ビニルトリエトキシシランなどのビニル系;3−アミノプロピルトリエトキシシランなどのアミノ系;γ−グリシドキシプロピルトリエトキシシランなどのグリシドキシ系;3−ニトロプロピルトリメトキシシランなどのニトロ系;3−クロロプロピルトリメトキシシランなどのクロロ系などがあげられる。
The rubber composition of the present invention may contain a silane coupling agent.
The silane coupling agent is not particularly limited, and conventionally known silane coupling agents can be used. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-tri Methoxysilylpropyl) sulfide type such as tetrasulfide; mercapto type such as 3-mercaptopropyltrimethoxysilane; vinyl type such as vinyltriethoxysilane; amino type such as 3-aminopropyltriethoxysilane; γ-glycidoxypropyl Examples thereof include glycidoxy type such as triethoxysilane; nitro type such as 3-nitropropyltrimethoxysilane; chloro type such as 3-chloropropyltrimethoxysilane.

シランカップリング剤の含有量は、ゴム成分100質量部に対して、0〜20質量部が好ましい。20質量部を超えると、コストが上がる割に充填剤の分散効果が得られず、更には、補強性、耐摩耗性がかえって低下する場合があり、また、未反応のシランカップリング剤が残存すると、加工中のゴム焼け、加硫後のゴムの破壊強度の低下を招くおそれもある。下限は、より好ましくは0.5質量部以上、更に好ましくは3質量部以上であり、上限は、より好ましくは15質量部以下である。 The content of the silane coupling agent is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the amount exceeds 20 parts by mass, the effect of dispersing the filler cannot be obtained for an increase in cost, and further, the reinforcing property and wear resistance may be lowered, and unreacted silane coupling agent remains. Then, there is a possibility that the rubber may be burned during processing and the breaking strength of the rubber after vulcanization may be reduced. The lower limit is more preferably 0.5 parts by mass or more, still more preferably 3 parts by mass or more, and the upper limit is more preferably 15 parts by mass or less.

本発明のゴム組成物には、カーボンブラックが配合されることが好ましい。これにより、補強性、耐摩耗性、雪氷上性能を向上し、前記性能バランスを顕著に改善できる。カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、FF、GPFなどが挙げられる。 It is preferable that carbon black is blended in the rubber composition of the present invention. Thereby, reinforcing property, abrasion resistance, and performance on snow and ice can be improved, and the performance balance can be remarkably improved. Carbon black is not particularly limited, and examples thereof include SAF, ISAF, HAF, FF, and GPF.

カーボンブラックとしては、平均粒子径が31nm以下及び/又はDBP吸油量が100ml/100g以上のものが好ましい。このようなカーボンブラックを配合することにより、必要な補強性を付与し、ブロック剛性、耐偏摩耗性、破壊強度を確保し、また、本発明の効果も顕著に得られる。 Carbon black having an average particle size of 31 nm or less and / or a DBP oil absorption of 100 ml / 100 g or more is preferable. By blending such carbon black, necessary reinforcing properties are imparted, block rigidity, uneven wear resistance, and fracture strength are ensured, and the effects of the present invention are also remarkably obtained.

カーボンブラックの平均粒子径が31nmを超えると、耐摩耗性が大幅に悪化するおそれがある。該平均粒子径は、25nm以下がより好ましく、23nm以下がさらに好ましい。また、上記平均粒子径は、15nm以上が好ましく、19nm以上がより好ましい。15nm未満であると、配合したゴムの粘度が大幅に上昇し、加工性が悪化するおそれがある。本発明において平均粒子径は数平均粒子径であり、透過型電子顕微鏡により測定される。 If the average particle size of the carbon black exceeds 31 nm, the wear resistance may be significantly deteriorated. The average particle diameter is more preferably 25 nm or less, and further preferably 23 nm or less. The average particle size is preferably 15 nm or more, and more preferably 19 nm or more. If it is less than 15 nm, the viscosity of the blended rubber is significantly increased, and the processability may be deteriorated. In the present invention, the average particle diameter is a number average particle diameter and is measured by a transmission electron microscope.

カーボンブラックのDBP吸油量(ジブチルフタレート吸油量)が100ml/100g未満であると、補強性が低く、耐摩耗性の確保が困難となるおそれがある。上記DBP吸油量は、105ml/100g以上がより好ましく、110ml/100g以上がさらに好ましい。また、上記DBP吸油量は、160ml/100g以下が好ましく、150ml/100g以下がより好ましい。160ml/100gを超えると、カーボンブラック自体の製造が困難である。なお、カーボンブラックのDBP吸油量は、JIS K6217−4:2001に準拠して測定される。 When the DBP oil absorption amount (dibutyl phthalate oil absorption amount) of carbon black is less than 100 ml / 100 g, the reinforcing property is low, and it may be difficult to ensure wear resistance. The DBP oil absorption is more preferably 105 ml / 100 g or more, and even more preferably 110 ml / 100 g or more. The DBP oil absorption is preferably 160 ml / 100 g or less, and more preferably 150 ml / 100 g or less. If it exceeds 160 ml / 100 g, it is difficult to produce carbon black itself. The DBP oil absorption of carbon black is measured according to JIS K6217-4: 2001.

カーボンブラックのチッ素吸着比表面積(NSA)は、80m/g以上が好ましく、110m/g以上がより好ましい。80m/g未満であると、破断強度が悪化し、耐摩耗性の確保が困難になるおそれがある。また、該カーボンブラックのNSAは、200m/g以下が好ましく、150m/g以下がより好ましい。200m/gを超えると、配合したゴムの粘度が大幅に上昇し、加工性が悪化するおそれがある。なお、カーボンブラックのNSAは、JIS K 6217−2:2001に準拠して測定される。 The nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 80 m 2 / g or more, and more preferably 110 m 2 / g or more. If it is less than 80 m 2 / g, the breaking strength may be deteriorated and it may be difficult to ensure wear resistance. Also, N 2 SA of the carbon black is preferably not more than 200 meters 2 / g, more preferably at most 150m 2 / g. When it exceeds 200 m 2 / g, the viscosity of the blended rubber is significantly increased, and the processability may be deteriorated. The N 2 SA of carbon black is measured according to JIS K 6217-2: 2001.

カーボンブラックの含有量は、ゴム成分100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。1質量部未満では、補強性に劣るおそれがある。また、該含有量は、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が更に好ましい。50質量部を超えると、低燃費性が悪化する傾向がある。 The content of carbon black is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 1 part by mass, the reinforcing property may be inferior. The content is preferably 50 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 10 parts by mass or less. If it exceeds 50 parts by mass, the fuel efficiency tends to deteriorate.

シリカ及びカーボンブラックの合計100質量%中のシリカ含有量(含有率)は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が更に好ましい。50質量%未満であると、雪氷上性能と耐摩耗性を両立できず、本発明の効果が発揮されないおそれがある。また、該含有量は、95質量%以下が好ましく、93質量%以下がより好ましい。95質量%を超えると、耐候性、耐オゾン性が大幅に劣るおそれがある。 50 mass% or more is preferable, as for the silica content (content rate) in a total of 100 mass% of a silica and carbon black, 60 mass% or more is more preferable, and 70 mass% or more is still more preferable. If it is less than 50% by mass, both the performance on snow and ice and the wear resistance cannot be achieved, and the effects of the present invention may not be exhibited. In addition, the content is preferably 95% by mass or less, and more preferably 93% by mass or less. If it exceeds 95% by mass, the weather resistance and ozone resistance may be significantly inferior.

本発明のゴム組成物は、他の充填剤を配合してもよく、例えば、炭酸カルシウム、水酸化アルミニウム、モンモリロナイト、セルロース、各種短繊維、ガラスバルーン、卵殻等が挙げられるが、これらに限定されるものではない。 The rubber composition of the present invention may contain other fillers, and examples include, but are not limited to, calcium carbonate, aluminum hydroxide, montmorillonite, cellulose, various short fibers, glass balloons and eggshells. It is not something.

環化ゴムは、種々の化学構造を有する化合物が提案されているが、本発明における環化ゴムは、そのいずれかに特定されるものではなく、任意の化合物を使用できる。なお、本発明において、環化ゴムは、ゴム成分ではなく、シリカとゴム成分の相溶性を向上し、シリカ分散性を向上する作用を有する添加剤(シリカ分散向上剤)である。 As the cyclized rubber, compounds having various chemical structures have been proposed, but the cyclized rubber in the present invention is not limited to any of them, and any compound can be used. In the present invention, the cyclized rubber is not a rubber component but an additive (silica dispersion improver) having an action of improving the compatibility between silica and the rubber component and improving the silica dispersibility.

環化ゴムの環化率は、好ましくは0.1%以上、より好ましくは1%以上、更に好ましくは3%以上である。0.1%未満であると、シリカとの相互作用が充分に得られず、低燃費性能が悪くなるおそれがある。該環化率は、好ましくは40%以下、より好ましくは35%以下、更に好ましくは30%以下である。40%を超えると、環化ゴムがゲル化したり、混練機に接着するおそれがある。 The cyclization rate of the cyclized rubber is preferably 0.1% or more, more preferably 1% or more, and further preferably 3% or more. If it is less than 0.1%, sufficient interaction with silica cannot be obtained, and the fuel efficiency may be deteriorated. The cyclization rate is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less. If it exceeds 40%, the cyclized rubber may gel or adhere to the kneader.

なお、環化率とは、環化反応前の原料ゴム成分(共役ジエン重合体)の二重結合数に対して、環化反応により反応した二重結合の割合である。例えば、H−NMR分析により、原料として用いた共役ジエン重合体の環化反応前後における二重結合由来のプロトンのピーク面積をそれぞれ測定し、環化反応前を100としたときの環化反応後の環化物に残存する二重結合の割合を求め、計算式=(100−環化物中に残存する二重結合の割合)により表される値(%)として測定できる。 The cyclization rate is the ratio of double bonds reacted by the cyclization reaction to the number of double bonds of the raw rubber component (conjugated diene polymer) before the cyclization reaction. For example, by measuring the peak areas of protons derived from double bonds before and after the cyclization reaction of the conjugated diene polymer used as a raw material by 1 H-NMR analysis, the cyclization reaction when the pre-cyclization reaction is 100 The ratio of the double bond remaining in the subsequent cyclized product can be obtained and measured as a value (%) represented by the formula: (100−the ratio of the double bond remaining in the cyclized product).

環化ゴムの数平均分子量(Mn)は、1,000〜1,000,000であることが好ましく、5,000〜500,000であることがより好ましく、10,000〜300,000であることが更に好ましい。1,000未満であると、耐摩耗性や低燃費性が悪化するおそれがあり、1,000,000を超えると、粘度が上昇し、加工性が悪化するおそれがある。 The number average molecular weight (Mn) of the cyclized rubber is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and 10,000 to 300,000. More preferably. If it is less than 1,000, the wear resistance and fuel efficiency may be deteriorated, and if it exceeds 1,000,000, the viscosity increases and the workability may be deteriorated.

環化ゴムの分子量分布、すなわち重量平均分子量/数平均分子量(Mw/Mn)は、4以下であることが好ましい。
なお、Mw/Mnは、GPCによって測定される標準ポリスチレン換算値である。
The molecular weight distribution of the cyclized rubber, that is, the weight average molecular weight / number average molecular weight (Mw / Mn) is preferably 4 or less.
In addition, Mw / Mn is a standard polystyrene conversion value measured by GPC.

環化ゴムのガラス転移温度(Tg)は、特に限定されず、通常−100〜100℃であるが、本発明の効果の点から、好ましくは−90〜80℃、より好ましくは−90〜40℃、特に好ましくは−90〜20℃、最も好ましくは−90〜5℃である。 The glass transition temperature (Tg) of the cyclized rubber is not particularly limited and is usually −100 to 100 ° C., but preferably −90 to 80 ° C., more preferably −90 to 40 from the viewpoint of the effect of the present invention. ° C, particularly preferably -90 to 20 ° C, most preferably -90 to 5 ° C.

環化ゴムのゲル量は、本発明の効果の点から、好ましくは10質量%以下、より好ましくは5質量%以下であり、実質的にゲルを有しないものが特に好ましい。 The gel amount of the cyclized rubber is preferably 10% by mass or less, more preferably 5% by mass or less from the viewpoint of the effect of the present invention, and a gel having substantially no gel is particularly preferable.

環化ゴムとしては、共役ジエン重合体環化物を好適に使用できる。共役ジエン重合体環化物は、共役ジエン単量体、又は共役ジエン単量体及び該共役ジエン単量体と共重合可能な他の単量体を、公知の方法で(共)重合させて作製した共役ジエン重合体を、環化させて得られるものなどが挙げられる。 As the cyclized rubber, a conjugated diene polymer cyclized product can be preferably used. The conjugated diene polymer cyclized product is prepared by (co) polymerizing a conjugated diene monomer or a conjugated diene monomer and another monomer copolymerizable with the conjugated diene monomer by a known method. And the like obtained by cyclizing the conjugated diene polymer.

共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、4,5−ジエチル−1,3−オクタジエン、3−ブチル−1,3−オクタジエンなどが挙げられる。これらの単量体は、単独でも2種類以上を組み合わせて用いてもよい。 Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl- Examples include 1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, and the like. These monomers may be used alone or in combination of two or more.

共役ジエン単量体と共重合可能な他の単量体としては、例えば、スチレン、o−メチルスチレン、p−メチルスチレン、m−メチルスチレン、2,4−ジメチルスチレン、エチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン、o−クロルスチレン、m−クロルスチレン、p−クロルスチレン、p−ブロモスチレン、2−メチル−1,4−ジクロルスチレン、2,4−ジブロモスチレン、ビニルナフタレンなどの芳香族ビニル単量体;エチレン、プロピレン、1−ブテンなどの鎖状オレフィン単量体;シクロペンテン、2−ノルボルネンなどの環状オレフィン単量体;1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネンなどの非共役ジエン単量体;メチル(メタ)アクリレート、エチル(メタ)クリレートなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどが挙げられる。これらの単量体は、単独でも2種類以上を組み合わせて用いてもよい。 Examples of other monomers copolymerizable with the conjugated diene monomer include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, and p-tert. -Butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2-methyl-1,4-dichlorostyrene, Aromatic vinyl monomers such as 2,4-dibromostyrene and vinylnaphthalene; Chain olefin monomers such as ethylene, propylene and 1-butene; Cyclic olefin monomers such as cyclopentene and 2-norbornene; 1,5 -Hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-no Non-conjugated diene monomers such as rubornene; (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate; (meth) acrylonitrile, (meth) acrylamide and the like. These monomers may be used alone or in combination of two or more.

共役ジエン重合体中の共役ジエン単量体単位の含有量は、本発明の効果を損なわない範囲で適宜選択すればよいが、好ましくは40モル%以上、より好ましくは60モル%以上、更に好ましくは80モル%以上である。 The content of the conjugated diene monomer unit in the conjugated diene polymer may be appropriately selected within a range not impairing the effects of the present invention, but is preferably 40 mol% or more, more preferably 60 mol% or more, and still more preferably. Is 80 mol% or more.

環化ゴムとして、前述の共役ジエン重合体環化物を使用できるが、なかでも、本発明の効果の点から、環化天然ゴム、環化イソプレンゴム、環化ブタジエンゴムなどが特に好ましい。 As the cyclized rubber, the conjugated diene polymer cyclized product described above can be used. Among them, cyclized natural rubber, cyclized isoprene rubber, cyclized butadiene rubber and the like are particularly preferable from the viewpoint of the effect of the present invention.

前記のとおり、共役ジエン重合体環化物は、共役ジエン重合体を環化させて調製できるが、この環化反応は、公知の方法で実施でき、例えば、(共)重合反応後、そのままワンポット反応で環化触媒を添加し環化させる方法、(共)重合、更に乾燥処理された共役ジエン重合体から再度溶液を作製した後に環化させる方法などが挙げられる。 As described above, the conjugated diene polymer cyclized product can be prepared by cyclizing the conjugated diene polymer, but this cyclization reaction can be carried out by a known method, for example, after the (co) polymerization reaction, one-pot reaction as it is. And a method of cyclization by adding a cyclization catalyst in (3), (co) polymerization, a method of re-creating a solution from a dried conjugated diene polymer, and the like.

ここで、環化反応は、例えば、公知の環化触媒を、直接生ゴムに作用させるか、又はゴム溶液に作用させ、ゴム分子中の鎖状分子の一部を環化して2重結合を減少させることにより実施でき、それにより、環化ゴムが得られる。環化触媒としては、硫酸、p−トルエンスルホン酸などの有機スルホン酸類、クロロスルホン酸などが挙げられる。 Here, in the cyclization reaction, for example, a known cyclization catalyst is allowed to act directly on raw rubber or on a rubber solution, and a part of chain molecules in the rubber molecule is cyclized to reduce double bonds. Thereby obtaining a cyclized rubber. Examples of the cyclization catalyst include organic sulfonic acids such as sulfuric acid and p-toluenesulfonic acid, and chlorosulfonic acid.

環化ゴムの含有量は、ゴム成分100質量部に対して、0.1質量部以上、好ましくは2質量部以上、より好ましくは5質量部以上である。また、該含有量は、40質量部以下、好ましくは30質量部以下である。0.1質量部未満であると、シリカ分散の効果が充分ではなく、低燃費性の改善効果が得られにくい傾向がある。40質量部を超えると、ゴム物性が低下するおそれがある。 The content of the cyclized rubber is 0.1 parts by mass or more, preferably 2 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. Moreover, this content is 40 mass parts or less, Preferably it is 30 mass parts or less. If the amount is less than 0.1 parts by mass, the effect of silica dispersion is not sufficient, and the effect of improving fuel economy tends to be difficult to obtain. If it exceeds 40 parts by mass, the rubber physical properties may be deteriorated.

本発明のゴム組成物は、上記成分の他に、オイル、ワックス、老化防止剤、ステアリン酸、酸化亜鉛などの添加剤、硫黄などの加硫剤、加硫促進剤、加硫促進助剤などを適宜配合してもよい。 In addition to the above components, the rubber composition of the present invention includes oils, waxes, anti-aging agents, additives such as stearic acid and zinc oxide, vulcanizing agents such as sulfur, vulcanization accelerators, vulcanization acceleration aids, etc. May be appropriately blended.

オイル含有量は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは20質量部以上である。10質量部未満であると、雪氷上性能、加工性が低下する傾向がある。該含有量は、好ましくは100質量部以下、より好ましくは80質量部以下である。100質量部を超えると、耐摩耗性が低下する傾向がある。 The oil content is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and still more preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 10 parts by mass, the performance on snow and ice and the workability tend to decrease. The content is preferably 100 parts by mass or less, more preferably 80 parts by mass or less. When it exceeds 100 parts by mass, the wear resistance tends to decrease.

本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサー、ニーダー、オープンロール等の混練機で上記各成分を混練りしその後加硫する方法等により製造できる。該ゴム組成物は、スタッドレスタイヤのトレッドに好適に使用できる。 The rubber composition of the present invention is produced by a general method. That is, it can be produced by a method of kneading the above components with a kneader such as a Banbury mixer, a kneader, or an open roll and then vulcanizing. The rubber composition can be suitably used for a tread of a studless tire.

本発明のスタッドレスタイヤは、上記ゴム組成物を用いて通常の方法で製造される。すなわち、上記成分を配合したゴム組成物を、未加硫の段階でトレッドの形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することにより、本発明のスタッドレスタイヤを製造できる。 The studless tire of the present invention is manufactured by a usual method using the rubber composition. That is, the rubber composition containing the above components is extruded in accordance with the shape of the tread at an unvulcanized stage and molded together with other tire members by a normal method on a tire molding machine. Form a vulcanized tire. By heating and pressing the unvulcanized tire in a vulcanizer, the studless tire of the present invention can be manufactured.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

(製造例1)
窒素置換した攪拌機付き耐圧反応器に、脱水トルエン1400g、n−ブチルリチウム18ミリモルを仕込み、内温を60℃に保持した。イソプレン487gを、15分間に亘り連続的に反応器に添加し、内温が75℃を超えないように制御した。その後70℃にて10.5時間反応させ、次いで、重合停止剤として、メタノールを1.4ミリモル添加して、重合反応を停止した。
重合反応を停止した後、80℃に昇温し、p−トルエンスルホン酸4.24gを添加し、80℃に維持した状態で、1時間環化反応を行った。続いて、炭酸ナトリウム1.70gを水5.1gに溶解した水溶液を添加して、環化反応を停止し、反応溶液をろ過して触媒残渣を除去した。この溶液に老化防止剤(イルガノックス1010:チバ・スペシャリティー・ケミカルズ社製)0.4gを添加した後、トルエンを留去し、減圧乾燥して環化ゴム1を得た。
(Production Example 1)
A pressure-resistant reactor equipped with a stirrer substituted with nitrogen was charged with 1400 g of dehydrated toluene and 18 mmol of n-butyllithium, and the internal temperature was maintained at 60 ° C. 487 g of isoprene was continuously added to the reactor over 15 minutes, and the internal temperature was controlled not to exceed 75 ° C. Thereafter, the mixture was reacted at 70 ° C. for 10.5 hours, and then 1.4 mmol of methanol was added as a polymerization terminator to terminate the polymerization reaction.
After stopping the polymerization reaction, the temperature was raised to 80 ° C., 4.24 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 1 hour while maintaining the temperature at 80 ° C. Subsequently, an aqueous solution in which 1.70 g of sodium carbonate was dissolved in 5.1 g of water was added to stop the cyclization reaction, and the reaction solution was filtered to remove the catalyst residue. After adding 0.4 g of an anti-aging agent (Irganox 1010: manufactured by Ciba Specialty Chemicals) to this solution, toluene was distilled off and dried under reduced pressure to obtain a cyclized rubber 1.

(製造例2)
窒素置換した攪拌機付き耐圧容器に、液状ポリイソプレン(クラレ社製 LIR−30:Mn=28,000)300g、トルエン700gを仕込んだ。その混合物を80℃に加温して、ポリイソプレンを完全に溶解した後、p−トルエンスルホン酸2gを添加し、内温を80℃に維持しながら環化反応を行った。1時間反応後、炭酸ナトリウム0.8gを含む炭酸ナトリウム25%水溶液を添加して反応を停止し、80℃で30分間攪拌後、ろ過して触媒残渣を除去した。この溶液に老化防止剤(イルガノックス1010:チバ・スペシャリティー・ケミカルズ社製)0.3gを添加した後、トルエンを留去し、減圧乾燥して環化ゴム2を得た。
(Production Example 2)
In a pressure vessel equipped with a stirrer purged with nitrogen, 300 g of liquid polyisoprene (Kuraray LIR-30: Mn = 28,000) and 700 g of toluene were charged. The mixture was heated to 80 ° C. to completely dissolve polyisoprene, and then 2 g of p-toluenesulfonic acid was added to carry out a cyclization reaction while maintaining the internal temperature at 80 ° C. After reacting for 1 hour, a 25% aqueous solution of sodium carbonate containing 0.8 g of sodium carbonate was added to stop the reaction, stirred at 80 ° C. for 30 minutes, and then filtered to remove the catalyst residue. After adding 0.3 g of an anti-aging agent (Irganox 1010: manufactured by Ciba Specialty Chemicals) to this solution, toluene was distilled off and dried under reduced pressure to obtain a cyclized rubber 2.

(製造例3)
液状ポリイソプレンに代えて、液状ポリブタジエン(サートマー社製、ライコン150、Mn=5,200)を用いた以外は、製造例2と同様にして、環化ゴム3を得た。
(Production Example 3)
A cyclized rubber 3 was obtained in the same manner as in Production Example 2, except that liquid polybutadiene (manufactured by Sartomer, Rycon 150, Mn = 5,200) was used instead of liquid polyisoprene.

(製造例4)
液状ポリイソプレンに代えて、ポリブタジエン(宇部興産社製、UBEPOL 150L、Mn=250,000)を用い、環化反応時間を3時間に変更した以外は製造例2と同様にして環化ゴム4を得た。
(Production Example 4)
Instead of liquid polyisoprene, polybutadiene (Ube Industries, UBEPOL 150L, Mn = 250,000) was used, and the cyclized rubber 4 was prepared in the same manner as in Production Example 2 except that the cyclization reaction time was changed to 3 hours. Obtained.

得られた環化ゴムは、以下の方法で物性を測定し、結果を表1に示した。 The physical properties of the obtained cyclized rubber were measured by the following methods, and the results are shown in Table 1.

(環化ゴムの環化率)
環化ゴムの環化率は、BRUKER社製AV400のNMR装置、データー解析ソフトTOP SPIN2.1を用いてH−NMR測定により、環化反応前後におけるポリマー中のプロトンのピーク面積比により求めた。なお、詳しい環化率計算方法は、下記の文献に記載のとおりである。
Y.Tanaka and H.Sato,J.Polym.Sci: Poly.Chem.Ed.,17,3027(1979)
(Cyclization rate of cyclized rubber)
The cyclization rate of the cyclized rubber was determined from the peak area ratio of protons in the polymer before and after the cyclization reaction by 1 H-NMR measurement using an NMR apparatus of AV400 manufactured by BRUKER, data analysis software TOP SPIN2.1. . In addition, the detailed cyclization rate calculation method is as having described in the following literature.
Y. Tanaka and H.M. Sato, J .; Polym. Sci: Poly. Chem. Ed. , 17, 3027 (1979)

(環化ゴムの数平均分子量(Mn)、重量平均分子量(Mw))
ポリスチレンを標準物質、テトラヒドロフランを溶媒とし、温度40℃において、環化ゴムのゲルパーミエーション(透過)クロマトグラフィー(GPC、東ソー株式会社製)を行い、得られた分子量分布曲線から求めた検量線を用いて計算し、Mn、Mwを求めた。
(Number average molecular weight (Mn) and weight average molecular weight (Mw) of cyclized rubber)
The calibration curve obtained from the molecular weight distribution curve obtained by performing gel permeation (permeation) chromatography of cyclized rubber (GPC, manufactured by Tosoh Corporation) using polystyrene as a standard substance and tetrahydrofuran as a solvent at a temperature of 40 ° C. Mn and Mw were calculated.

(環化ゴムのガラス転移温度Tg)
環化ゴムのガラス転移温度を、示差走査熱量計(セイコー電子工業(株)製:SSC5200)を用いて、開始温度−100℃、昇温速度10℃/分の条件で測定した。
(Glass transition temperature Tg of cyclized rubber)
The glass transition temperature of the cyclized rubber was measured using a differential scanning calorimeter (manufactured by Seiko Denshi Kogyo Co., Ltd .: SSC5200) under the conditions of a starting temperature of −100 ° C. and a heating rate of 10 ° C./min.

(環化ゴムのゲル量)
2mm角に裁断した試料0.2gを、トルエン100mlに、48時間浸漬した後、80メッシュの金網上に残るゲル分の乾燥重量の割合を百分率で示した。
(Gel amount of cyclized rubber)
After 0.2 g of a sample cut to 2 mm square was immersed in 100 ml of toluene for 48 hours, the ratio of the dry weight of the gel remaining on the 80-mesh wire net was shown as a percentage.

Figure 0005912936
Figure 0005912936

以下に、実施例および比較例で使用した薬品をまとめて示す。
NR:RSS#3
BR:宇部興産(株)製のUBEPOL BR150B(シス1,4結合量97%、ML1+4(100℃)40、Mw/Mn3.3)
環化ゴム1〜4:製造例1〜4
シリカ:EVONIK−DEGUSSA社製のウルトラジルVN3(NSA:175m/g)
カーボンブラック:三菱化学(株)製のダイアブラックI(ISAFカーボン、平均粒子径23nm、DBP吸油量114ml/100g)
シランカップリング剤:EVONIK−DEGUSSA社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
プロセスオイル:(株)ジャパンエナジー製のプロセスX−140(芳香族系プロセスオイル)
ワックス:大内新興化学工業(株)製のサンノックN
ステアリン酸:日油(株)製のステアリン酸「桐」
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N−フェニル−p−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The chemicals used in the examples and comparative examples are summarized below.
NR: RSS # 3
BR: UBEPOL BR150B manufactured by Ube Industries, Ltd. (cis 1,4 bond amount 97%, ML 1 + 4 (100 ° C.) 40, Mw / Mn 3.3)
Cyclized rubber 1-4: Production Examples 1-4
Silica: Ultrasil VN3 (N 2 SA: 175 m 2 / g) manufactured by EVONIK-DEGUSSA
Carbon black: Dia Black I manufactured by Mitsubishi Chemical Corporation (ISAF carbon, average particle size 23 nm, DBP oil absorption 114 ml / 100 g)
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by EVONIK-DEGUSSA
Process oil: Process X-140 (aromatic process oil) manufactured by Japan Energy Co., Ltd.
Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Stearic acid: Stearic acid “paulownia” manufactured by NOF Corporation
Zinc oxide: 2 types of anti-aging of zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd .: NOCRACK 6C (N- (1,3-dimethylbutyl) -N-phenyl-p-phenylene manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) Diamine)
Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd .: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

<実施例及び比較例>
表2の配合処方にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を充填率が58%になるように充填し、80rpmで140℃に到達するまで混練りして混練り物を得た。次に、オープンロールを用いて、得られた混練り物に硫黄および加硫促進剤を添加して混練りし、未加硫ゴム組成物を得た。
さらに、得られた未加硫ゴム組成物を所定のサイズに成形し、150℃の条件下で20分間プレス加硫することにより加硫ゴム組成物を得、約2mm×130mm×130mmの加硫ゴムスラブシートを作製した。
<Examples and Comparative Examples>
In accordance with the formulation of Table 2, using a 1.7L Banbury mixer manufactured by Kobe Steel Co., Ltd., chemicals other than sulfur and a vulcanization accelerator were filled to a filling rate of 58%, and 140 rpm at 140 rpm. A kneaded product was obtained by kneading until reaching 0C. Next, using an open roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition.
Further, the obtained unvulcanized rubber composition was molded into a predetermined size, and a vulcanized rubber composition was obtained by press vulcanization at 150 ° C. for 20 minutes, and a vulcanization of about 2 mm × 130 mm × 130 mm was obtained. A rubber slab sheet was prepared.

また、得られた未加硫ゴム組成物をトレッド形状に成形して、他のタイヤ部材と貼り合わせ、170℃で15分間加硫することにより、試験用スタッドレスタイヤ(タイヤサイズ:195/65R15)を作製した。 Further, the obtained unvulcanized rubber composition is formed into a tread shape, bonded to another tire member, and vulcanized at 170 ° C. for 15 minutes, so that a test studless tire (tire size: 195 / 65R15) is obtained. Was made.

得られた未加硫ゴム組成物、加硫ゴムスラブシート、試験用スタッドレスタイヤについて下記の評価を行った。結果を表2に示す。 The following evaluation was performed about the obtained unvulcanized rubber composition, a vulcanized rubber slab sheet, and the studless tire for a test. The results are shown in Table 2.

(加工性)
JIS K6300−1に基づいて、ムーニー粘度(ML1+4)を130℃で測定し、比較例1を100として、下記式から加工性指数を計算した。指数が大きいほど、未加硫時の加工性が良好であることを示す。
(加工性指数)=(比較例1のムーニー粘度)/(各配合のムーニー粘度)×100
(Processability)
Based on JIS K6300-1, Mooney viscosity (ML 1 + 4 ) was measured at 130 ° C., and Comparative Example 1 was taken as 100, and the workability index was calculated from the following formula. The larger the index, the better the processability when unvulcanized.
(Processability index) = (Mooney viscosity of Comparative Example 1) / (Mooney viscosity of each formulation) × 100

(粘弾性試験)
(株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、初期歪10%、動歪2%および周波数10Hzの条件下で加硫ゴムスラブシートの損失正接(tanδ)を測定し、比較例1の転がり抵抗指数を100とし、下記計算式により、指数表示した。指数が大きいほど、転がり抵抗が低減され、好ましいことを示す。
(転がり抵抗指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(Viscoelasticity test)
Using a viscoelastic spectrometer VES manufactured by Iwamoto Seisakusho, the loss tangent (tan δ) of the vulcanized rubber slab sheet was measured under conditions of a temperature of 70 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The rolling resistance index of Comparative Example 1 was set to 100, and the index was displayed by the following formula. A larger index indicates that rolling resistance is reduced, which is preferable.
(Rolling resistance index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100

(雪氷上性能)
前記試験用スタッドレスタイヤを用いて、下記の条件で雪氷上で実車性能を評価した。なお、スタッドレスタイヤとして、195/65R15サイズのDS−2パターンの乗用車用スタッドレスタイヤを製造し、これらのタイヤを国産2000ccのFR車に装着した。試験場所は住友ゴム工業(株)の北海道名寄テストコースで行い、氷上気温は−1〜−6℃、雪上気温は−2〜−10℃であった。
制動性能(氷上制動停止距離):時速30km/hでロックブレーキを踏み停止させるまでに要した氷上の停止距離を測定した。比較例1をリファレンスとして、下記式により指数表示した。指数が大きいほど、制動性能が良好であることを示す。
(制動性能指数)=(比較例1の制動停止距離)/(各配合の停止距離)×100
(Performance on snow and ice)
Using the test studless tire, the actual vehicle performance was evaluated on snow and ice under the following conditions. In addition, 195 / 65R15 size DS-2 pattern studless tires for passenger cars were manufactured as studless tires, and these tires were mounted on domestic 2000cc FR cars. The test place was the Hokkaido Nayoro Test Course of Sumitomo Rubber Industries, Ltd., the temperature on ice was -1 to -6 ° C, and the temperature on snow was -2 to -10 ° C.
Braking performance (on-ice braking stop distance): The stop distance on ice required to depress and stop the lock brake at a speed of 30 km / h was measured. Using Comparative Example 1 as a reference, the index was expressed by the following formula. The larger the index, the better the braking performance.
(Braking performance index) = (braking stop distance of comparative example 1) / (stop distance of each formulation) × 100

(耐摩耗性能)
前記試験用スタッドレスタイヤを国産FF車に装着し、走行距離8000km後のタイヤトレッド部の溝探さを測定した。測定値からタイヤ溝深さが1mm減るときの走行距離を算出し、下記式により指数化した。指数が大きいほど、耐摩耗性が良好であることを示す。
(耐摩耗性指数)=(1mm溝深さが減るときの走行距離)/(比較例1のタイヤ溝が1mm減るときの走行距離)×100
(Abrasion resistance)
The test studless tire was mounted on a domestic FF vehicle, and the groove search of the tire tread portion after a running distance of 8000 km was measured. The travel distance when the tire groove depth was reduced by 1 mm was calculated from the measured value, and indexed by the following formula. It shows that abrasion resistance is so favorable that an index | exponent is large.
(Abrasion resistance index) = (travel distance when 1 mm groove depth decreases) / (travel distance when tire groove of Comparative Example 1 decreases by 1 mm) × 100

Figure 0005912936
Figure 0005912936

比較例1に対し、オイルを増量した比較例2では、加工性、雪氷上性能は改善されるものの、耐摩耗性が大きく悪化し、性能バランスの良好な改善は見られなかった。一方、シリカ配合ゴムに環化ゴムを10部添加した実施例1〜4では、加工性、低燃費性、雪氷上性能、耐摩耗性を同時に改善でき、これらの性能バランスを相乗的に向上できることが明らかとなった。また、環化ゴムの添加量を増量した実施例5〜6でも実用的に問題のない加工性指数「99」、「98」、雪氷上性能指数「99」を維持しながら、低燃費性、耐摩耗性を顕著に改善できた。 In Comparative Example 2 in which the amount of oil was increased compared to Comparative Example 1, the workability and the performance on snow and ice were improved, but the wear resistance was greatly deteriorated, and a good improvement in performance balance was not observed. On the other hand, in Examples 1 to 4 in which 10 parts of cyclized rubber is added to silica compounded rubber, processability, fuel efficiency, performance on snow and ice, and wear resistance can be improved at the same time, and these performance balances can be synergistically improved. Became clear. Further, even in Examples 5 to 6 in which the addition amount of the cyclized rubber was increased, while maintaining the workability indexes “99” and “98” and the performance index on snow and ice “99” which are practically no problem, low fuel consumption, The wear resistance can be remarkably improved.

Claims (4)

ゴム成分100質量部に対して、シリカを5〜200質量部、環化ゴム(ただし、環化ゴムがエポキシ化ジエン系ゴムの場合を除く)を0.1〜40質量部含み、
前記ゴム成分100質量%中のブタジエンゴムの含有量が10〜80質量%であり、
前記環化ゴムの環化率が0.1〜40%である
タイヤ用ゴム組成物。
5 to 200 parts by mass of silica, and 0.1 to 40 parts by mass of cyclized rubber (except when the cyclized rubber is an epoxidized diene rubber) with respect to 100 parts by mass of the rubber component,
The content of the butadiene rubber 100% by mass of the rubber component is Ri 10-80% by mass,
A tire rubber composition, wherein the cyclized rubber has a cyclization rate of 0.1 to 40% .
前記環化ゴムは、環化天然ゴム、環化イソプレンゴム及び環化ブタジエンゴムからなる群より選択される少なくとも1種である請求項1記載のタイヤ用ゴム組成物。 The cyclized rubber, cyclized natural rubber, cyclized isoprene rubber and cyclizing at least one kind of claim 1 Symbol placement tire rubber composition is selected from the group consisting of butadiene rubber. 前記ゴム成分100質量部に対して、カーボンブラックを1〜50質量部含む請求項1又は2記載のタイヤ用ゴム組成物。 The rubber composition for tires according to claim 1 or 2 containing 1-50 mass parts of carbon black with respect to 100 mass parts of said rubber components. 請求項1〜のいずれかに記載のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤ。
The studless tire which has a tread produced using the rubber composition in any one of Claims 1-3 .
JP2012151546A 2012-07-05 2012-07-05 Rubber composition for tire and studless tire Active JP5912936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151546A JP5912936B2 (en) 2012-07-05 2012-07-05 Rubber composition for tire and studless tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151546A JP5912936B2 (en) 2012-07-05 2012-07-05 Rubber composition for tire and studless tire

Publications (2)

Publication Number Publication Date
JP2014012801A JP2014012801A (en) 2014-01-23
JP5912936B2 true JP5912936B2 (en) 2016-04-27

Family

ID=50108683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151546A Active JP5912936B2 (en) 2012-07-05 2012-07-05 Rubber composition for tire and studless tire

Country Status (1)

Country Link
JP (1) JP5912936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6338400B2 (en) * 2014-02-28 2018-06-06 住友ゴム工業株式会社 studless tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004341B2 (en) * 1990-10-12 2000-01-31 東洋ゴム工業株式会社 Manufacturing method for pneumatic tires with coded product information displayed on the inside
JP2004059890A (en) * 2002-07-31 2004-02-26 Yamashita Rubber Co Ltd Adhesive rubber composition
JP5437765B2 (en) * 2009-10-08 2014-03-12 住友ゴム工業株式会社 Rubber composition for tire and studless tire

Also Published As

Publication number Publication date
JP2014012801A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP6627512B2 (en) Pneumatic tire
JP5134592B2 (en) Rubber composition for cap tread and tire having cap tread comprising the same
JP5944764B2 (en) Tire rubber composition and heavy duty tire
US9663639B2 (en) Rubber composition for tire treads
JP2019131648A (en) Tire rubber composition and tire
WO2016098505A1 (en) Pneumatic tire
JP4895583B2 (en) Rubber composition for covering carcass cord and tire having carcass using the same
US10533083B2 (en) Rubber composition and tire
JP6329187B2 (en) Tire and manufacturing method thereof
JP2011012161A (en) Rubber composition for tire and pneumatic tire
JP2012219224A (en) Rubber composition for tire, and pneumatic tire
JP2019131649A (en) Tire rubber composition and tire
JP2014105293A (en) Rubber composition for tire and pneumatic tire
JP6824813B2 (en) Pneumatic tires
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
JP7533559B2 (en) Rubber composition for tires and tires
JP6790707B2 (en) Vulcanized rubber composition and tires using it
JP5912934B2 (en) Rubber composition for tire and pneumatic tire
JP5912936B2 (en) Rubber composition for tire and studless tire
JP5912930B2 (en) Rubber composition for tire and pneumatic tire
JP2009197237A (en) Modified diene-based rubber composition
JP5937443B2 (en) Rubber composition for tire and pneumatic tire
JP5898010B2 (en) Rubber composition for pneumatic tread and pneumatic tire
JP5898007B2 (en) Rubber composition for bead apex and pneumatic tire
JP7435718B2 (en) Rubber composition for tires and tires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250