JP5937443B2 - Rubber composition for tire and pneumatic tire - Google Patents

Rubber composition for tire and pneumatic tire Download PDF

Info

Publication number
JP5937443B2
JP5937443B2 JP2012152838A JP2012152838A JP5937443B2 JP 5937443 B2 JP5937443 B2 JP 5937443B2 JP 2012152838 A JP2012152838 A JP 2012152838A JP 2012152838 A JP2012152838 A JP 2012152838A JP 5937443 B2 JP5937443 B2 JP 5937443B2
Authority
JP
Japan
Prior art keywords
rubber
mass
cyclized
tire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012152838A
Other languages
Japanese (ja)
Other versions
JP2014015515A (en
Inventor
義規 中川
義規 中川
結香 横山
結香 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2012152838A priority Critical patent/JP5937443B2/en
Publication of JP2014015515A publication Critical patent/JP2014015515A/en
Application granted granted Critical
Publication of JP5937443B2 publication Critical patent/JP5937443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤに関する。 The present invention relates to a rubber composition for tires and a pneumatic tire using the same.

従来、タイヤ用ゴム組成物には、ゴム成分との相互作用が容易に得られ、補強効果に優れたカーボンブラックが充填剤として使用されてきたが、近年、低燃費化、環境保護の観点から、シリカなどの白色充填剤がカーボンブラックに代わって使用されるようになっている。 Conventionally, the rubber composition for tires has been used as a filler with carbon black, which can easily interact with the rubber component and has an excellent reinforcing effect. However, in recent years, from the viewpoint of low fuel consumption and environmental protection. White fillers such as silica are used in place of carbon black.

しかし、シリカなどの白色充填剤は、カーボンブラックに比べて、タイヤに汎用されている天然ゴム、ブタジエンゴム、スチレンブタジエンゴムなどとの親和性が低く、耐摩耗性や力学強度(引張強度や破断伸び)の点で劣ることが多い。 However, white fillers such as silica have a lower affinity with natural rubber, butadiene rubber, styrene butadiene rubber, etc., which are widely used for tires, compared to carbon black, and wear resistance and mechanical strength (tensile strength and fracture) Often inferior in terms of elongation.

この点を解決する方法として、ゴム成分やシリカなどの白色充填剤との反応性を持つシランカップリング剤を使用することが提案されているが、白色充填剤との反応を充分に進行させることが難しく、未反応の白色充填剤が分散不良のまま残存し、所望の性能が発揮されないことがある。さらにこれを防止するために、多量のシランカップリング剤を配合すると、残存シランカップリング剤に起因して、加工中のゴム焼け、加硫ゴムの耐摩耗性や力学強度の低下を招くこともある。 As a method for solving this problem, it has been proposed to use a silane coupling agent having reactivity with a white filler such as a rubber component or silica, but the reaction with the white filler should be sufficiently advanced. However, the unreacted white filler may remain poorly dispersed and the desired performance may not be exhibited. Furthermore, in order to prevent this, if a large amount of silane coupling agent is blended, due to the residual silane coupling agent, rubber burn during processing, wear resistance of vulcanized rubber and mechanical strength may be reduced. is there.

特許文献1には、シリカとゴムの相溶性を高める目的で、pHが8〜12の塩基性水溶液及びシリカを配合したタイヤ用ゴム組成物が開示されているが、ゴムとシリカとの相互作用が充分に得られず、低燃費性などの改善効果が充分満足いくものではない。したがって、低燃費性、耐摩耗性及び加工性をバランス良く改善できるシリカ配合ゴムの提供が望まれている。 Patent Document 1 discloses a tire rubber composition containing a basic aqueous solution having a pH of 8 to 12 and silica for the purpose of enhancing the compatibility between silica and rubber, but the interaction between rubber and silica is disclosed. Cannot be sufficiently obtained, and the improvement effect such as low fuel consumption is not satisfactory. Therefore, it is desired to provide a silica-containing rubber that can improve fuel economy, wear resistance, and processability in a well-balanced manner.

特開2000−219779号公報JP 2000-219779 A

本発明は、前記課題を解決し、低燃費性、耐摩耗性、及び加工性をバランス良く向上するタイヤ用ゴム組成物、及びそれを用いた空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above problems and provide a rubber composition for a tire that improves fuel economy, wear resistance, and processability in a well-balanced manner, and a pneumatic tire using the same.

本発明は、リン含有量が200ppm以下の改質天然ゴムを含むゴム成分と、白色充填剤と、環化ゴムとを含むタイヤ用ゴム組成物に関する。
前記ゴム成分100質量部に対して、前記白色充填剤を10〜200質量部、前記環化ゴムを0.1〜40質量部を含むことが好ましい。
The present invention relates to a tire rubber composition containing a rubber component containing a modified natural rubber having a phosphorus content of 200 ppm or less, a white filler, and a cyclized rubber.
It is preferable that 10 to 200 parts by mass of the white filler and 0.1 to 40 parts by mass of the cyclized rubber are included with respect to 100 parts by mass of the rubber component.

前記環化ゴムの環化率は、0.1〜40%であることが好ましい。
前記環化ゴムは、環化天然ゴム、環化イソプレンゴム及び環化ブタジエンゴムからなる群より選択される少なくとも1種であることが好ましい。
The cyclization rate of the cyclized rubber is preferably 0.1 to 40%.
The cyclized rubber is preferably at least one selected from the group consisting of cyclized natural rubber, cyclized isoprene rubber, and cyclized butadiene rubber.

前記白色充填剤は、シリカであることが好ましい。
前記改質天然ゴムの窒素含有量は、0.3質量%以下であることが好ましい。
本発明はまた、前記ゴム組成物を用いて作製した空気入りタイヤに関する。
The white filler is preferably silica.
The nitrogen content of the modified natural rubber is preferably 0.3% by mass or less.
The present invention also relates to a pneumatic tire produced using the rubber composition.

本発明によれば、リン含有量が200ppm以下の改質天然ゴムを含むゴム成分と、白色充填剤と、環化ゴムとを含むタイヤ用ゴム組成物であるので、低燃費性、耐摩耗性、及び加工性をバランス良く向上できる。 According to the present invention, since it is a rubber composition for a tire containing a rubber component containing a modified natural rubber having a phosphorus content of 200 ppm or less, a white filler, and a cyclized rubber, fuel efficiency and wear resistance are reduced. And processability can be improved in a well-balanced manner.

本発明のタイヤ用ゴム組成物は、リン含有量が200ppm以下の改質天然ゴムを含むゴム成分と、白色充填剤と、環化ゴムとを含むものである。 The tire rubber composition of the present invention includes a rubber component containing a modified natural rubber having a phosphorus content of 200 ppm or less, a white filler, and a cyclized rubber.

シリカなどの白色充填剤の配合ゴムは、一般に充填剤の分散性が低く、所望の性能を得ることが難しいが、本発明では、ゴム成分としてリン量が少ない改質天然ゴムを用いたシリカ配合ゴムにさらに環化ゴムを配合することにより、シリカなどと改質天然ゴムなどのゴム成分との相互作用が高められる。従って、白色充填剤の分散性が向上し、低燃費性及び耐摩耗性を両立できるとともに、良好な加工性も得られ、これらの性能バランスを相乗的に改善できる。 Rubber compounded with white fillers such as silica generally has low dispersibility of the filler and it is difficult to obtain the desired performance, but in the present invention, silica compounded with modified natural rubber with a low amount of phosphorus as the rubber component By further adding cyclized rubber to the rubber, the interaction between silica and the rubber component such as modified natural rubber can be enhanced. Accordingly, the dispersibility of the white filler is improved, and both low fuel consumption and wear resistance can be achieved, and good processability can be obtained, and the balance of these performances can be improved synergistically.

さらに、所定の環化率を持つ環化ゴムを使用することで、シリカなどの白色充填剤の分散性が劇的に向上し、前記性能バランスを顕著に改善することが可能になる。 Furthermore, by using a cyclized rubber having a predetermined cyclization rate, the dispersibility of a white filler such as silica is dramatically improved, and the performance balance can be remarkably improved.

本発明では、ゴム成分として、リン量が少ない改質天然ゴムが使用される。これにより、低燃費性、耐摩耗性、加工性の性能バランスを顕著に改善できる。 In the present invention, a modified natural rubber having a small amount of phosphorus is used as the rubber component. Thereby, the performance balance of low fuel consumption, abrasion resistance, and workability can be remarkably improved.

天然ゴム(NR)中に含まれるリン脂質を低減、除去した天然ゴム(改質天然ゴム)(好ましくはタンパク質やゲル分も除去した改質天然ゴム)は、発熱しにくい性質があるため、NRの使用に比べて、さらなる低燃費化を図ることができる。また、改質天然ゴムを配合した未加硫ゴム組成物は加工性に優れ、特段素練り工程を行わなくても充分な混練りが可能であるため、素練りに伴う天然ゴムの耐摩耗性、破壊強度などの低下も抑制でき、低燃費性、耐摩耗性などを効果的に高められる。 Natural rubber (modified natural rubber) from which phospholipids contained in natural rubber (NR) have been reduced and removed (modified natural rubber, preferably from which protein and gel content have also been removed) has the property of not generating heat. Compared with the use of, further reduction in fuel consumption can be achieved. In addition, the unvulcanized rubber composition containing the modified natural rubber is excellent in processability and can be sufficiently kneaded without any special mastication process. Further, it is possible to suppress a decrease in breaking strength and the like, and it is possible to effectively improve fuel efficiency and wear resistance.

改質天然ゴム(HPNR)は、リン含有量が200ppm以下である。200ppmを超えると、貯蔵中にゲル量が増加し、加硫ゴムのtanδが上昇して低燃費性が悪化したり、未加硫ゴムのムーニー粘度が上昇して加工性が悪化する傾向があり、低燃費性、耐摩耗性、加工性をバランス良く改善できないおそれがある。該リン含有量は、150ppm以下が好ましく、100ppm以下がより好ましい。ここで、リン含有量は、たとえばICP発光分析等、従来の方法で測定することができる。リンは、リン脂質(リン化合物)に由来するものである。 The modified natural rubber (HPNR) has a phosphorus content of 200 ppm or less. If it exceeds 200 ppm, the gel amount will increase during storage, and the tan δ of the vulcanized rubber will increase and the fuel efficiency will deteriorate, or the Mooney viscosity of the unvulcanized rubber will increase and the processability will tend to deteriorate. There is a possibility that low fuel consumption, wear resistance, and workability cannot be improved in a well-balanced manner. The phosphorus content is preferably 150 ppm or less, and more preferably 100 ppm or less. Here, the phosphorus content can be measured by a conventional method such as ICP emission analysis. Phosphorus is derived from phospholipids (phosphorus compounds).

改質天然ゴムにおいて、窒素含有量は0.3質量%以下が好ましく、0.15質量%以下がより好ましい。0.3質量%を超えると、貯蔵中にムーニー粘度が上昇して加工性が悪くなる傾向があり、低燃費性、耐摩耗性、加工性をバランス良く改善できないおそれがある。窒素含有量は、例えばケルダール法等、従来の方法で測定することができる。窒素は、蛋白質に由来するものである。 In the modified natural rubber, the nitrogen content is preferably 0.3% by mass or less, and more preferably 0.15% by mass or less. If it exceeds 0.3% by mass, the Mooney viscosity will increase during storage and the processability tends to deteriorate, and there is a possibility that the fuel economy, wear resistance and processability cannot be improved in a well-balanced manner. The nitrogen content can be measured by a conventional method such as Kjeldahl method. Nitrogen is derived from protein.

改質天然ゴム中のゲル含有率は、20質量%以下が好ましく、10質量%以下がより好ましく、7質量%以下がさらに好ましい。20質量%を超えると、ムーニー粘度が上昇して加工性が悪くなる傾向があり、低燃費性、耐摩耗性、加工性をバランス良く改善できないおそれがある。ゲル含有率とは、非極性溶媒であるトルエンに対する不溶分として測定した値を意味し、以下においては単に「ゲル分」と称することがある。ゲル含有率の測定方法は次のとおりである。まず、天然ゴム試料を脱水トルエンに浸し、暗所に遮光して1週間放置後、トルエン溶液を1.3×10rpmで30分間遠心分離して、不溶のゲル分とトルエン可溶分とを分離する。不溶のゲル分にメタノールを加えて固形化した後、乾燥し、ゲル分の質量と試料の元の質量との比からゲル含有率が求められる。 The gel content in the modified natural rubber is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less. If it exceeds 20% by mass, the Mooney viscosity tends to increase and the processability tends to deteriorate, and the fuel economy, wear resistance, and processability may not be improved in a well-balanced manner. The gel content means a value measured as an insoluble content with respect to toluene, which is a nonpolar solvent, and may be simply referred to as “gel content” below. The measuring method of gel content rate is as follows. First, a natural rubber sample is soaked in dehydrated toluene, light-shielded in the dark and left for 1 week, and then the toluene solution is centrifuged at 1.3 × 10 5 rpm for 30 minutes to obtain an insoluble gel content and a toluene soluble content. Isolate. Methanol is added to the insoluble gel and solidified, and then dried, and the gel content is determined from the ratio between the mass of the gel and the original mass of the sample.

改質天然ゴムは、実質的にリン脂質が存在しないことが好ましい。「実質的にリン脂質が存在しない」とは、天然ゴム試料をクロロホルムで抽出し、抽出物の31P−NMR測定において、−3ppm〜1ppmにリン脂質によるピークが存在しない状態を表す。−3ppm〜1ppmに存在するリンのピークとは、リン脂質におけるリンのリン酸エステル構造に由来するピークである。 The modified natural rubber is preferably substantially free of phospholipids. “Substantially free of phospholipid” represents a state in which a natural rubber sample is extracted with chloroform and a peak due to phospholipid does not exist at −3 ppm to 1 ppm in 31 P-NMR measurement of the extract. The peak of phosphorus present at -3 ppm to 1 ppm is a peak derived from the phosphate structure of phosphorus in the phospholipid.

改質天然ゴムの製造方法としては、例えば、特開2010−138359号公報に記載の製法、すなわち、天然ゴムラテックスをケン化処理し、ケン化天然ゴムラテックスを得る工程(A)、及び得られたケン化天然ゴムラテックスをゴム中に含まれるリン含有量が200ppm以下になるまで洗浄する工程(B)を含む製法などが挙げられる。具体的には、先ず天然ゴムラテックスをアルカリでケン化処理してケン化天然ゴムラテックスを調製し、次いで、該ケン化天然ゴムラテックスを凝集させて得られた凝集ゴムを、ゴム分に対するリン含有率が200ppm以下になるまで繰り返し水で洗浄し、乾燥する方法などにより改質天然ゴム(ケン化天然ゴム)を製造できる。 As a method for producing the modified natural rubber, for example, the production method described in JP 2010-138359 A, that is, the step (A) of obtaining a saponified natural rubber latex by saponifying the natural rubber latex, and the obtained Examples of the method include a step (B) of washing the saponified natural rubber latex until the phosphorus content in the rubber is 200 ppm or less. Specifically, first, a natural rubber latex is saponified with an alkali to prepare a saponified natural rubber latex, and then the agglomerated rubber obtained by agglomerating the saponified natural rubber latex contains phosphorus to the rubber content. A modified natural rubber (saponified natural rubber) can be produced by a method of repeatedly washing with water until the rate becomes 200 ppm or less and drying.

上記製造方法によれば、ケン化により分離したリン化合物が洗浄除去されるので、天然ゴムのリン含有量を抑えることができる。また、ケン化処理により、天然ゴム中の蛋白質が分解されるので、天然ゴムの窒素含有量を抑えることができる。 According to the above production method, the phosphorus compound separated by saponification is washed away, so that the phosphorus content of the natural rubber can be suppressed. Moreover, since the protein in natural rubber is decomposed by the saponification treatment, the nitrogen content of the natural rubber can be suppressed.

ゴム成分100質量%中の改質天然ゴムの含有量は、好ましくは5質量%以上、より好ましくは20質量%以上、さらに好ましくは40質量%以上である。5質量%未満であると、加工性、低燃費性、耐摩耗性をバランスよく改善できないおそれがある。改質天然ゴムの含有量は、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは80質量%以下である。95質量%を超えると、充分な加工性、低燃費性、耐摩耗性が得られないおそれがある。 The content of the modified natural rubber in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 20% by mass or more, and further preferably 40% by mass or more. If it is less than 5% by mass, the workability, fuel efficiency and wear resistance may not be improved in a well-balanced manner. The content of the modified natural rubber is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 80% by mass or less. If it exceeds 95% by mass, sufficient processability, fuel efficiency and wear resistance may not be obtained.

他のゴム成分としては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、ブタジエンイソプレンゴムなどのジエン系ゴム、塩素化ブチルゴムなどのブチル系ゴムなどが挙げられ、また、これらのゴムを縮合したもの、変性したものなども使用可能である。なかでも、前記性能バランスの観点から、他のゴム成分としてBRを使用することが好ましい。これらのゴム成分は、単独で用いても、2種以上を併用してもよい。 Other rubber components include natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), butadiene isoprene rubber and other diene rubbers, chlorine Examples include butyl rubbers such as butyl rubber, and those obtained by condensing or modifying these rubbers can also be used. Especially, it is preferable to use BR as another rubber component from a viewpoint of the said performance balance. These rubber components may be used alone or in combination of two or more.

BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなどの高シス含有量のBR、宇部興産(株)製のVCR412、VCR617などのシンジオタクチックポリブタジエン結晶を含有するBRなど、タイヤ工業において一般的なものを使用できる。 The BR is not particularly limited. For example, BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd. Commonly used in the tire industry such as BR containing syndiotactic polybutadiene crystals can be used.

本発明のゴム組成物がBRを含有する場合、ゴム成分100質量%中のBRの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは20質量%以上である。5質量%未満であると、耐摩耗性が低下する傾向がある。上記BRの含有量は、好ましくは80質量%以下、より好ましくは60質量%以下である。80質量%を超えると、加工性、低燃費性が低下する傾向がある。 When the rubber composition of the present invention contains BR, the content of BR in 100% by mass of the rubber component is preferably 5% by mass or more, more preferably 10% by mass or more, and further preferably 20% by mass or more. . If it is less than 5% by mass, the wear resistance tends to decrease. The BR content is preferably 80% by mass or less, more preferably 60% by mass or less. When it exceeds 80 mass%, there exists a tendency for workability and low fuel consumption to fall.

本発明において、前記性能バランスの観点から、ゴム成分100質量%中の改質天然ゴム及びBRの合計含有量は、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは100質量%である。 In the present invention, from the viewpoint of the performance balance, the total content of the modified natural rubber and BR in 100% by mass of the rubber component is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass. %.

白色充填剤としては特に限定されず、タイヤ分野で公知のものを使用でき、例えば、シリカ、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。なかでも、本発明の効果が充分に得られるという点から、シリカが好ましい。 It does not specifically limit as a white filler, A well-known thing can be used in the tire field | area, For example, a silica, a calcium carbonate, aluminum hydroxide etc. are mentioned. Among these, silica is preferable because the effects of the present invention can be sufficiently obtained.

前記シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。 Examples of the silica include, but are not limited to, dry process silica (anhydrous silicic acid), wet process silica (hydrous silicic acid), and wet process silica is preferable because it has many silanol groups.

前記シリカの窒素吸着比表面積(NSA)は、40m/g以上が好ましく、50m/g以上がより好ましく、100m/g以上がさらに好ましく、150m/g以上が特に好ましい。40m/g未満では、加硫後の破壊強度が低下する傾向がある。また、シリカのNSAは、500m/g以下が好ましく、300m/g以下がより好ましい。500m/gを超えると、低発熱性、ゴムの加工性が低下する傾向がある。
なお、シリカの窒素吸着比表面積は、ASTM D3037−81に準じてBET法で測定される値である。
Nitrogen adsorption specific surface area of the silica (N 2 SA) of preferably at least 40 m 2 / g, more preferably at least 50m 2 / g, 100m 2 / g or more, and particularly preferably equal to or greater than 150m 2 / g. If it is less than 40 m < 2 > / g, there exists a tendency for the fracture strength after vulcanization to fall. The N 2 SA of the silica is preferably not more than 500 meters 2 / g, more preferably at most 300m 2 / g. When it exceeds 500 m 2 / g, there is a tendency that low heat build-up and rubber processability are lowered.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

白色充填剤の含有量は、ゴム成分100質量部に対して、10質量部以上が好ましく、20質量部以上がより好ましく、30質量部以上がさらに好ましい。10質量部未満であると、低発熱性が不十分になるおそれがある。また、該含有量は、200質量部以下が好ましく、150質量部以下がより好ましく、100質量部以下がさらに好ましい。200質量部を超えると、充填剤のゴムへの分散が困難になり、ゴムの加工性が悪化する傾向がある。 10 mass parts or more are preferable with respect to 100 mass parts of rubber components, as for content of a white filler, 20 mass parts or more are more preferable, and 30 mass parts or more are further more preferable. If it is less than 10 parts by mass, the low heat build-up may be insufficient. The content is preferably 200 parts by mass or less, more preferably 150 parts by mass or less, and still more preferably 100 parts by mass or less. When it exceeds 200 parts by mass, it becomes difficult to disperse the filler into the rubber, and the processability of the rubber tends to deteriorate.

なお、本発明では、白色充填剤以外の他の補強用充填剤を配合してもよいが、補強用充填剤100質量%中の白色充填剤の含有率は、20質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。20質量%未満であると、低発熱性が不十分になる傾向がある。 In the present invention, a reinforcing filler other than the white filler may be blended, but the content of the white filler in 100% by mass of the reinforcing filler is preferably 20% by mass or more, and 50 More preferably, it is more preferably 70% by mass or more. If it is less than 20% by mass, the low heat build-up tends to be insufficient.

本発明のゴム組成物は、シランカップリング剤を配合してもよい。
シランカップリング剤としては特に限定されず、従来公知のものを使用でき、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィドなどのスルフィド系;3−メルカプトプロピルトリメトキシシランなどのメルカプト系;ビニルトリエトキシシランなどのビニル系;3−アミノプロピルトリエトキシシランなどのアミノ系;γ−グリシドキシプロピルトリエトキシシランなどのグリシドキシ系;3−ニトロプロピルトリメトキシシランなどのニトロ系;3−クロロプロピルトリメトキシシランなどのクロロ系などがあげられる。
The rubber composition of the present invention may contain a silane coupling agent.
The silane coupling agent is not particularly limited, and conventionally known silane coupling agents can be used. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-tri Methoxysilylpropyl) sulfide type such as tetrasulfide; mercapto type such as 3-mercaptopropyltrimethoxysilane; vinyl type such as vinyltriethoxysilane; amino type such as 3-aminopropyltriethoxysilane; γ-glycidoxypropyl Examples thereof include glycidoxy type such as triethoxysilane; nitro type such as 3-nitropropyltrimethoxysilane; chloro type such as 3-chloropropyltrimethoxysilane.

シランカップリング剤の含有量は、ゴム成分100質量部に対して、0〜20質量部が好ましい。20質量部を超えると、コストが上がる割に充填剤の分散効果が得られず、さらには、補強性、耐摩耗性がかえって低下する場合があり、また、未反応のシランカップリング剤が残存すると、加工中のゴム焼け、加硫後のゴムの破壊性能の低下を招くおそれもある。下限は、より好ましくは1質量部以上、さらに好ましくは3質量部以上であり、上限は、より好ましくは15質量部以下、さらに好ましくは10質量部以下である。 The content of the silane coupling agent is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If it exceeds 20 parts by mass, the effect of dispersing the filler cannot be obtained for an increase in cost, and further, the reinforcing property and wear resistance may be lowered, and unreacted silane coupling agent remains. As a result, there is a risk that the rubber will be burned during processing and the breaking performance of the rubber after vulcanization may be reduced. The lower limit is more preferably 1 part by mass or more, further preferably 3 parts by mass or more, and the upper limit is more preferably 15 parts by mass or less, and still more preferably 10 parts by mass or less.

本発明のゴム組成物には、上記他の補強用充填剤としてカーボンブラックを配合することが好ましい。これにより、優れた補強性が得られ、耐摩耗性が向上し、前記性能バランスを顕著に改善できる。カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、FF、GPFなどが挙げられる。 The rubber composition of the present invention preferably contains carbon black as the other reinforcing filler. Thereby, the outstanding reinforcement property is obtained, abrasion resistance improves, and the said performance balance can be improved notably. Carbon black is not particularly limited, and examples thereof include SAF, ISAF, HAF, FF, and GPF.

カーボンブラックとしては、平均粒子径が31nm以下及び/又はDBP吸油量が100ml/100g以上のものが好ましい。このようなカーボンブラックを配合することにより、必要な補強性を付与して耐摩耗性を確保し、本発明の効果が顕著に得られる。 Carbon black having an average particle size of 31 nm or less and / or a DBP oil absorption of 100 ml / 100 g or more is preferable. By blending such carbon black, necessary reinforcing properties are imparted to ensure wear resistance, and the effects of the present invention are remarkably obtained.

カーボンブラックの平均粒子径が31nmを超えると、耐摩耗性が悪化するおそれがある。該平均粒子径は、25nm以下がより好ましく、23nm以下がさらに好ましい。また、上記平均粒子径は、15nm以上が好ましく、19nm以上がより好ましい。15nm未満であると、配合したゴムの粘度が大幅に上昇し、加工性が悪化するおそれがある。本発明において平均粒子径は数平均粒子径であり、透過型電子顕微鏡により測定される。 If the average particle size of the carbon black exceeds 31 nm, the wear resistance may be deteriorated. The average particle diameter is more preferably 25 nm or less, and further preferably 23 nm or less. The average particle size is preferably 15 nm or more, and more preferably 19 nm or more. If it is less than 15 nm, the viscosity of the blended rubber is significantly increased, and the processability may be deteriorated. In the present invention, the average particle diameter is a number average particle diameter and is measured by a transmission electron microscope.

カーボンブラックのDBP吸油量(ジブチルフタレート吸油量)が100ml/100g未満であると、補強性が低く、耐摩耗性の確保が困難となるおそれがある。上記DBP吸油量は、105ml/100g以上がより好ましく、110ml/100g以上がさらに好ましい。また、上記DBP吸油量は、160ml/100g以下が好ましく、150ml/100g以下がより好ましい。160ml/100gを超えると、カーボンブラック自体の製造が困難である。なお、カーボンブラックのDBP吸油量は、JIS K6217−4:2001に準拠して測定される。 When the DBP oil absorption amount (dibutyl phthalate oil absorption amount) of carbon black is less than 100 ml / 100 g, the reinforcing property is low, and it may be difficult to ensure wear resistance. The DBP oil absorption is more preferably 105 ml / 100 g or more, and even more preferably 110 ml / 100 g or more. The DBP oil absorption is preferably 160 ml / 100 g or less, and more preferably 150 ml / 100 g or less. If it exceeds 160 ml / 100 g, it is difficult to produce carbon black itself. The DBP oil absorption of carbon black is measured according to JIS K6217-4: 2001.

カーボンブラックの含有量は、ゴム成分100質量部に対して、1質量部以上が好ましく、3質量部以上がより好ましい。1質量部未満では、補強性を確保し、所望の耐摩耗性が得られないおそれがある。また、該含有量は、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましい。50質量部を超えると、低燃費性が悪化する傾向がある。 The content of carbon black is preferably 1 part by mass or more and more preferably 3 parts by mass or more with respect to 100 parts by mass of the rubber component. If it is less than 1 part by mass, the reinforcing property is secured and the desired wear resistance may not be obtained. The content is preferably 50 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably 10 parts by mass or less. If it exceeds 50 parts by mass, the fuel efficiency tends to deteriorate.

環化ゴムは、種々の化学構造を有する化合物が提案されているが、本発明における環化ゴムは、そのいずれかに特定されるものではなく、任意の化合物を使用できる。
なお、本発明において、環化ゴムは、ゴム成分ではなく、シリカなどの白色充填剤とゴム成分の相溶性を向上し、シリカなどの白色充填剤の分散性を向上する作用を有する添加剤(白色充填剤分散向上剤)である。
As the cyclized rubber, compounds having various chemical structures have been proposed, but the cyclized rubber in the present invention is not limited to any of them, and any compound can be used.
In the present invention, the cyclized rubber is not a rubber component, but an additive having an action of improving the compatibility of the white filler such as silica and the rubber component and improving the dispersibility of the white filler such as silica ( White filler dispersion improver).

環化ゴムの環化率は、好ましくは0.1%以上、より好ましくは1%以上、さらに好ましくは3%以上である。0.1%未満であると、白色充填剤との相互作用が充分に得られず、低燃費性能が悪くなるおそれがある。該環化率は、好ましくは40%以下、より好ましくは35%以下、さらに好ましくは30%以下である。40%を超えると、環化ゴムがゲル化したり、混練機に接着するおそれがある。 The cyclization rate of the cyclized rubber is preferably 0.1% or more, more preferably 1% or more, and further preferably 3% or more. If it is less than 0.1%, sufficient interaction with the white filler cannot be obtained, and the fuel efficiency may be deteriorated. The cyclization rate is preferably 40% or less, more preferably 35% or less, and still more preferably 30% or less. If it exceeds 40%, the cyclized rubber may gel or adhere to the kneader.

なお、環化率とは、環化反応前の原料ゴム成分(共役ジエン重合体)の二重結合数に対して、環化反応により反応した二重結合の割合である。例えば、H−NMR分析により、原料として用いた共役ジエン重合体の環化反応前後における二重結合由来のプロトンのピーク面積をそれぞれ測定し、環化反応前を100としたときの環化反応後の環化物に残存する二重結合の割合を求め、計算式=(100−環化物中に残存する二重結合の割合)により表される値(%)として測定できる。 The cyclization rate is the ratio of double bonds reacted by the cyclization reaction to the number of double bonds of the raw rubber component (conjugated diene polymer) before the cyclization reaction. For example, by measuring the peak areas of protons derived from double bonds before and after the cyclization reaction of the conjugated diene polymer used as a raw material by 1 H-NMR analysis, the cyclization reaction when the pre-cyclization reaction is 100 The ratio of the double bond remaining in the subsequent cyclized product is obtained, and can be measured as a value (%) represented by the calculation formula = (100−the ratio of the double bond remaining in the cyclized product).

環化ゴムの数平均分子量(Mn)は、1,000〜1,000,000であることが好ましく、5,000〜500,000であることがより好ましく、10,000〜300,000であることがさらに好ましい。1,000未満であると、耐摩耗性や低燃費性が悪化するおそれがあり、1,000,000を超えると、粘度が上昇し、加工性が悪化するおそれがある。 The number average molecular weight (Mn) of the cyclized rubber is preferably 1,000 to 1,000,000, more preferably 5,000 to 500,000, and 10,000 to 300,000. More preferably. If it is less than 1,000, the wear resistance and fuel efficiency may be deteriorated, and if it exceeds 1,000,000, the viscosity increases and the workability may be deteriorated.

環化ゴムの分子量分布、すなわち重量平均分子量/数平均分子量(Mw/Mn)は、4以下であることが好ましい。
なお、Mw/Mnは、GPCによって測定される標準ポリスチレン換算値である。
The molecular weight distribution of the cyclized rubber, that is, the weight average molecular weight / number average molecular weight (Mw / Mn) is preferably 4 or less.
In addition, Mw / Mn is a standard polystyrene conversion value measured by GPC.

環化ゴムのガラス転移温度(Tg)は、特に限定されず、通常−100〜100℃であるが、本発明の効果の点から、好ましくは−90〜80℃、より好ましくは−90〜40℃、さらに好ましくは−90〜20℃、特に好ましくは−90〜5℃である。 The glass transition temperature (Tg) of the cyclized rubber is not particularly limited and is usually −100 to 100 ° C., but preferably −90 to 80 ° C., more preferably −90 to 40 from the viewpoint of the effect of the present invention. ° C, more preferably -90 to 20 ° C, particularly preferably -90 to 5 ° C.

環化ゴムのゲル量は、本発明の効果の点から、好ましくは10質量%以下、より好ましくは5質量%以下であり、実質的にゲルを有しないものがさらに好ましい。 The gel amount of the cyclized rubber is preferably 10% by mass or less, more preferably 5% by mass or less from the viewpoint of the effect of the present invention, and a gel having substantially no gel is more preferable.

環化ゴムとしては、共役ジエン重合体環化物を好適に使用できる。共役ジエン重合体環化物は、共役ジエン単量体、又は共役ジエン単量体及び該共役ジエン単量体と共重合可能な他の単量体を、公知の方法で(共)重合させて作製した共役ジエン重合体を、環化させて得られるものなどが挙げられる。 As the cyclized rubber, a conjugated diene polymer cyclized product can be preferably used. The conjugated diene polymer cyclized product is prepared by (co) polymerizing a conjugated diene monomer or a conjugated diene monomer and another monomer copolymerizable with the conjugated diene monomer by a known method. And the like obtained by cyclizing the conjugated diene polymer.

共役ジエン単量体としては、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1,3−ペンタジエン、2−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、4,5−ジエチル−1,3−オクタジエン、3−ブチル−1,3−オクタジエンなどが挙げられる。これらの単量体は、単独でも2種類以上を組み合わせて用いてもよい。 Examples of the conjugated diene monomer include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl- Examples include 1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene, and the like. These monomers may be used alone or in combination of two or more.

共役ジエン単量体と共重合可能な他の単量体としては、例えば、スチレン、o−メチルスチレン、p−メチルスチレン、m−メチルスチレン、2,4−ジメチルスチレン、エチルスチレン、p−tert−ブチルスチレン、α−メチルスチレン、α−メチル−p−メチルスチレン、o−クロルスチレン、m−クロルスチレン、p−クロルスチレン、p−ブロモスチレン、2−メチル−1,4−ジクロルスチレン、2,4−ジブロモスチレン、ビニルナフタレンなどの芳香族ビニル単量体;エチレン、プロピレン、1−ブテンなどの鎖状オレフィン単量体;シクロペンテン、2−ノルボルネンなどの環状オレフィン単量体;1,5−ヘキサジエン、1,6−ヘプタジエン、1,7−オクタジエン、ジシクロペンタジエン、5−エチリデン−2−ノルボルネンなどの非共役ジエン単量体;メチル(メタ)アクリレート、エチル(メタ)クリレートなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどが挙げられる。これらの単量体は、単独でも2種類以上を組み合わせて用いてもよい。 Examples of other monomers copolymerizable with the conjugated diene monomer include styrene, o-methylstyrene, p-methylstyrene, m-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, and p-tert. -Butylstyrene, α-methylstyrene, α-methyl-p-methylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2-methyl-1,4-dichlorostyrene, Aromatic vinyl monomers such as 2,4-dibromostyrene and vinylnaphthalene; Chain olefin monomers such as ethylene, propylene and 1-butene; Cyclic olefin monomers such as cyclopentene and 2-norbornene; 1,5 -Hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-no Non-conjugated diene monomers such as rubornene; (meth) acrylic acid esters such as methyl (meth) acrylate and ethyl (meth) acrylate; (meth) acrylonitrile, (meth) acrylamide and the like. These monomers may be used alone or in combination of two or more.

共役ジエン重合体中の共役ジエン単量体単位の含有量は、本発明の効果を損なわない範囲で適宜選択すればよいが、好ましくは40モル%以上、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。 The content of the conjugated diene monomer unit in the conjugated diene polymer may be appropriately selected within a range not impairing the effects of the present invention, but is preferably 40 mol% or more, more preferably 60 mol% or more, and even more preferably. Is 80 mol% or more.

環化ゴムとして、前述の共役ジエン重合体環化物を使用できるが、なかでも、本発明の効果の点から、環化天然ゴム、環化イソプレンゴム、環化ブタジエンゴムなどが特に好ましい。 As the cyclized rubber, the conjugated diene polymer cyclized product described above can be used. Among them, cyclized natural rubber, cyclized isoprene rubber, cyclized butadiene rubber and the like are particularly preferable from the viewpoint of the effect of the present invention.

前記のとおり、共役ジエン重合体環化物は、共役ジエン重合体を環化させて調製できるが、この環化反応は、公知の方法で実施でき、例えば、(共)重合反応後、そのままワンポット反応で環化触媒を添加し環化させる方法、(共)重合、さらに乾燥処理された共役ジエン重合体から再度溶液を作製した後に環化させる方法などが挙げられる。 As described above, the conjugated diene polymer cyclized product can be prepared by cyclizing the conjugated diene polymer, but this cyclization reaction can be carried out by a known method, for example, after the (co) polymerization reaction, one-pot reaction as it is. And a method of cyclization by adding a cyclization catalyst in (5), (co) polymerization, a method of re-creating a solution from a dried conjugated diene polymer, and the like.

ここで、環化反応は、例えば、公知の環化触媒を、直接生ゴムに作用させるか、又はゴム溶液に作用させ、ゴム分子中の鎖状分子の一部を環化して2重結合を減少させることにより実施でき、それにより、環化ゴムが得られる。環化触媒としては、硫酸、p−トルエンスルホン酸などの有機スルホン酸類、クロロスルホン酸などが挙げられる。 Here, in the cyclization reaction, for example, a known cyclization catalyst is allowed to act directly on raw rubber or on a rubber solution, and a part of chain molecules in the rubber molecule is cyclized to reduce double bonds. Thereby obtaining a cyclized rubber. Examples of the cyclization catalyst include organic sulfonic acids such as sulfuric acid and p-toluenesulfonic acid, and chlorosulfonic acid.

環化ゴムの含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは2質量部以上、さらに好ましくは5質量部以上である。また、該含有量は、好ましくは40質量部以下、より好ましくは30質量部以下である。0.1質量部未満であると、白色充填剤分散の効果が充分ではなく、40質量部を超えると、ゴム物性が低下する可能性がある。 The content of the cyclized rubber is preferably 0.1 parts by mass or more, more preferably 2 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component. Moreover, this content becomes like this. Preferably it is 40 mass parts or less, More preferably, it is 30 mass parts or less. If it is less than 0.1 part by mass, the effect of dispersing the white filler is not sufficient, and if it exceeds 40 parts by mass, the physical properties of the rubber may be lowered.

本発明のゴム組成物は、上記成分の他に、オイル、ワックス、老化防止剤、ステアリン酸、酸化亜鉛などの添加剤、硫黄などの加硫剤、加硫促進剤、加硫促進助剤などを適宜配合してもよい。 In addition to the above components, the rubber composition of the present invention includes oils, waxes, anti-aging agents, additives such as stearic acid and zinc oxide, vulcanizing agents such as sulfur, vulcanization accelerators, vulcanization acceleration aids, etc. May be appropriately blended.

本発明のゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサー、ニーダー、オープンロール等の混練機で上記各成分を混練りし、その後加硫する方法等により製造できる。該ゴム組成物は、タイヤの各部材に使用でき、配置も限定されないが、トレッド(特にトラック、バスなどの重荷重車のトレッド)、サイドウォールなどに好適に使用できる。 The rubber composition of the present invention is produced by a general method. That is, it can be produced by a method of kneading each of the above components with a kneader such as a Banbury mixer, a kneader, or an open roll, and then vulcanizing. The rubber composition can be used for each member of a tire, and the arrangement thereof is not limited.

本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法で製造される。すなわち、上記成分を配合したゴム組成物を、未加硫の段階でトレッド、サイドウォールなどの形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することにより、本発明の空気入りタイヤを製造できる。該空気入りタイヤは、乗用車用タイヤ、重荷重車用タイヤ、スタッドレスタイヤなどに好適である。 The pneumatic tire of the present invention is produced by a usual method using the rubber composition. That is, the rubber composition containing the above components is extruded in accordance with the shape of the tread, sidewall, etc. at the unvulcanized stage, and is molded together with other tire members by a normal method on a tire molding machine. Thus, an unvulcanized tire is formed. The pneumatic tire of the present invention can be manufactured by heating and pressurizing the unvulcanized tire in a vulcanizer. The pneumatic tire is suitable for passenger car tires, heavy duty tires, studless tires, and the like.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

(製造例1)
窒素置換した攪拌機付き耐圧反応器に、脱水トルエン1400g、n−ブチルリチウム18ミリモルを仕込み、内温を60℃に保持した。イソプレン487gを、15分間に亘り連続的に反応器に添加し、内温が75℃を超えないように制御した。その後70℃にて10.5時間反応させ、次いで、重合停止剤として、メタノールを1.4ミリモル添加して、重合反応を停止した。
重合反応を停止した後、80℃に昇温し、p−トルエンスルホン酸4.24gを添加し、80℃に維持した状態で、1時間環化反応を行った。続いて、炭酸ナトリウム1.70gを水5.1gに溶解した水溶液を添加して、環化反応を停止し、反応溶液をろ過して触媒残渣を除去した。この溶液に老化防止剤(イルガノックス1010:チバ・スペシャリティー・ケミカルズ社製)0.4gを添加した後、トルエンを留去し、減圧乾燥して環化ゴム1を得た。
(Production Example 1)
A pressure-resistant reactor equipped with a stirrer substituted with nitrogen was charged with 1400 g of dehydrated toluene and 18 mmol of n-butyllithium, and the internal temperature was maintained at 60 ° C. 487 g of isoprene was continuously added to the reactor over 15 minutes, and the internal temperature was controlled not to exceed 75 ° C. Thereafter, the mixture was reacted at 70 ° C. for 10.5 hours, and then 1.4 mmol of methanol was added as a polymerization terminator to terminate the polymerization reaction.
After stopping the polymerization reaction, the temperature was raised to 80 ° C., 4.24 g of p-toluenesulfonic acid was added, and the cyclization reaction was performed for 1 hour while maintaining the temperature at 80 ° C. Subsequently, an aqueous solution in which 1.70 g of sodium carbonate was dissolved in 5.1 g of water was added to stop the cyclization reaction, and the reaction solution was filtered to remove the catalyst residue. After adding 0.4 g of an anti-aging agent (Irganox 1010: manufactured by Ciba Specialty Chemicals) to this solution, toluene was distilled off and dried under reduced pressure to obtain a cyclized rubber 1.

(製造例2)
窒素置換した攪拌機付き耐圧容器に、液状ポリイソプレン(クラレ製 LIR−30:Mn=28,000)300g、トルエン700gを仕込んだ。その混合物を80℃に加温して、ポリイソプレンを完全に溶解した後、p−トルエンスルホン酸2gを添加し、内温を80℃に維持しながら環化反応を行った。1時間反応後、炭酸ナトリウム0.8gを含む炭酸ナトリウム25%水溶液を添加して反応を停止し、80℃で30分間攪拌後、ろ過して触媒残渣を除去した。この溶液に老化防止剤(イルガノックス1010:チバ・スペシャリティー・ケミカルズ社製)0.3gを添加した後、トルエンを留去し、減圧乾燥して環化ゴム2を得た。
(Production Example 2)
In a pressure vessel equipped with a stirrer substituted with nitrogen, 300 g of liquid polyisoprene (Kuraray LIR-30: Mn = 28,000) and 700 g of toluene were charged. The mixture was heated to 80 ° C. to completely dissolve polyisoprene, and then 2 g of p-toluenesulfonic acid was added to carry out a cyclization reaction while maintaining the internal temperature at 80 ° C. After reacting for 1 hour, a 25% aqueous solution of sodium carbonate containing 0.8 g of sodium carbonate was added to stop the reaction, stirred at 80 ° C. for 30 minutes, and then filtered to remove the catalyst residue. After adding 0.3 g of an anti-aging agent (Irganox 1010: manufactured by Ciba Specialty Chemicals) to this solution, toluene was distilled off and dried under reduced pressure to obtain a cyclized rubber 2.

(製造例3)
液状ポリイソプレンに代えて、液状ポリブタジエン(サートマー社製、ライコン150、Mn=5,200)を用いた以外は、製造例2と同様にして、環化ゴム3を得た。
(Production Example 3)
A cyclized rubber 3 was obtained in the same manner as in Production Example 2, except that liquid polybutadiene (manufactured by Sartomer, Rycon 150, Mn = 5,200) was used instead of liquid polyisoprene.

(製造例4)
液状ポリイソプレンに代えて、ポリブタジエン(宇部興産社製、UBEPOL 150L、Mn=250,000)を用い、環化反応時間を3時間に変更した以外は製造例2と同様にして環化ゴム4を得た。
(Production Example 4)
Instead of liquid polyisoprene, polybutadiene (Ube Industries, UBEPOL 150L, Mn = 250,000) was used, and the cyclized rubber 4 was prepared in the same manner as in Production Example 2 except that the cyclization reaction time was changed to 3 hours. Obtained.

得られた環化ゴムは、以下の方法で物性を測定し、結果を表1に示した。 The physical properties of the obtained cyclized rubber were measured by the following methods, and the results are shown in Table 1.

(環化ゴムの環化率)
環化ゴムの環化率は、BRUKER社製AV400のNMR装置、データー解析ソフトTOP SPIN2.1を用いてH−NMR測定により、環化反応前後におけるポリマー中のプロトンのピーク面積比により求めた。なお、詳しい環化率計算方法は、下記の文献に記載のとおりである。
Y.Tanaka and H.Sato,J.Polym.Sci: Poly.Chem.Ed.,17,3027(1979)
(Cyclization rate of cyclized rubber)
The cyclization rate of the cyclized rubber was determined by the peak area ratio of protons in the polymer before and after the cyclization reaction by 1 H-NMR measurement using an AV400 NMR apparatus manufactured by BRUKER, data analysis software TOP SPIN2.1. . In addition, the detailed cyclization rate calculation method is as having described in the following literature.
Y. Tanaka and H.M. Sato, J .; Polym. Sci: Poly. Chem. Ed. , 17, 3027 (1979)

(環化ゴムの数平均分子量(Mn)、重量平均分子量(Mw))
ポリスチレンを標準物質、テトラヒドロフランを溶媒とし、温度40℃において、環化ゴムのゲルパーミエーション(透過)クロマトグラフィー(GPC、東ソー株式会社製)を行い、得られた分子量分布曲線から求めた検量線を用いて計算し、Mn、Mwを求めた。
(Number average molecular weight (Mn) and weight average molecular weight (Mw) of cyclized rubber)
The calibration curve obtained from the molecular weight distribution curve obtained by performing gel permeation (permeation) chromatography of cyclized rubber (GPC, manufactured by Tosoh Corporation) using polystyrene as a standard substance and tetrahydrofuran as a solvent at a temperature of 40 ° C. Mn and Mw were calculated.

(環化ゴムのガラス転移温度Tg)
環化ゴムのガラス転移温度を、示差走査熱量計(セイコー電子工業(株)社製:SSC5200)を用いて、開始温度−100℃、昇温速度10℃/分の条件で測定した。
(Glass transition temperature Tg of cyclized rubber)
The glass transition temperature of the cyclized rubber was measured using a differential scanning calorimeter (manufactured by Seiko Denshi Kogyo Co., Ltd .: SSC5200) under the conditions of a starting temperature of −100 ° C. and a heating rate of 10 ° C./min.

(環化ゴムのゲル量)
2mm角に裁断した試料0.2gを、トルエン100mlに、48時間浸漬した後、80メッシュの金網上に残るゲル分の乾燥重量の割合を百分率で示した。
(Gel amount of cyclized rubber)
After 0.2 g of a sample cut to 2 mm square was immersed in 100 ml of toluene for 48 hours, the ratio of the dry weight of the gel remaining on the 80-mesh wire net was shown as a percentage.

Figure 0005937443
Figure 0005937443

以下、製造例5で使用した各種薬品について、まとめて説明する。
天然ゴムラテックス:Muhibbah Lateks社から入手したフィールドラテックス
界面活性剤:花王(株)製のEmal−E27C(ポリオキシエチレンラウリルエーテル硫酸ナトリウム)
NaOH:和光純薬工業(株)製のNaOH
Hereinafter, various chemicals used in Production Example 5 will be described together.
Natural rubber latex: Field latex surfactant obtained from Muhibah Lateks, Inc .: Emal-E27C (polyoxyethylene lauryl ether sodium sulfate) manufactured by Kao Corporation
NaOH: NaOH manufactured by Wako Pure Chemical Industries, Ltd.

(製造例5 ケン化天然ゴムの作製)
天然ゴムラテックスの固形分濃度(DRC)を30%(w/v)に調整した後、天然ゴムラテックス1000g(wet状態)に対し、10%Emal−E27C水溶液25gと40%NaOH水溶液50gを加え、室温で48時間ケン化反応を行い、ケン化天然ゴムラテックスを得た。このラテックスに水を添加してDRC15%(w/v)となるまで希釈した後、ゆっくり撹拌しながらギ酸を添加しpHを4.0に調整し、凝集させた。凝集したゴムを粉砕し、水1000mlで洗浄を繰り返し、その後90℃で4時間乾燥して固形ゴム(HPNR)を得た。
(Production Example 5 Production of Saponified Natural Rubber)
After adjusting solid content concentration (DRC) of natural rubber latex to 30% (w / v), 25 g of 10% Emal-E27C aqueous solution and 50 g of 40% NaOH aqueous solution are added to 1000 g of natural rubber latex (wet state), A saponification reaction was carried out at room temperature for 48 hours to obtain a saponified natural rubber latex. Water was added to the latex to dilute to DRC 15% (w / v), and then formic acid was added with slow stirring to adjust the pH to 4.0 for aggregation. The agglomerated rubber was pulverized, washed repeatedly with 1000 ml of water, and then dried at 90 ° C. for 4 hours to obtain a solid rubber (HPNR).

製造例5により得られた固形ゴム(HPNR)及びNR(RSS#3)について以下に示す方法により、窒素含有量、リン含有量、ゲル含有率を測定した。結果を表2に示す。 The solid content (HPNR) and NR (RSS # 3) obtained in Production Example 5 were measured for nitrogen content, phosphorus content, and gel content by the methods described below. The results are shown in Table 2.

(窒素含有量の測定)
窒素含有量は、CHN CORDER MT−5(ヤナコ分析工業(株)製)を用いて測定した。測定には、まずアンチピリンを標準物質として、窒素含有量を求めるための検量線を作製した。次いで、試料約10mgを秤量し、3回の測定結果から平均値を求めて、試料の窒素含有量とした。
(Measurement of nitrogen content)
The nitrogen content was measured using CHN CORDER MT-5 (manufactured by Yanaco Analytical Co., Ltd.). For the measurement, first, a calibration curve for determining the nitrogen content was prepared using antipyrine as a standard substance. Next, about 10 mg of the sample was weighed, and an average value was obtained from the measurement results of three times to obtain the nitrogen content of the sample.

(リン含有量の測定)
ICP発光分析装置(ICPS−8100、(株)島津製作所製)を使用して、試料のリン含有量を求めた。また、リンの31P−NMR測定は、NMR分析装置(400MHz、AV400M、日本ブルカー社製)を使用し、80%リン酸水溶液のP原子の測定ピークを基準点(0ppm)として、クロロホルムにより生ゴムより抽出した成分を精製し、CDClに溶解して測定した。
(Measurement of phosphorus content)
The phosphorus content of the sample was determined using an ICP emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation). In addition, 31 P-NMR measurement of phosphorus uses an NMR analyzer (400 MHz, AV400M, manufactured by Nippon Bruker Co., Ltd.), and uses a measurement peak of P atom in an 80% aqueous phosphoric acid solution as a reference point (0 ppm), and raw rubber with chloroform. More extracted components were purified, dissolved in CDCl 3 and measured.

(ゲル含有率の測定)
1mm×1mmに切断した生ゴムのサンプル70.00mgを計り取り、これに35mLのトルエンを加え1週間冷暗所に静置した。次いで、遠心分離に付してトルエンに不溶のゲル分を沈殿させ上澄みの可溶分を除去し、ゲル分のみをメタノールで固めた後、乾燥し質量を測定した。次の式によりゲル含有率(質量%)を求めた。
ゲル含有率(質量%)=[乾燥後の質量mg/最初のサンプル質量mg]×100
(Measurement of gel content)
A raw rubber sample 70.00 mg cut to 1 mm × 1 mm was weighed, 35 mL of toluene was added thereto, and the mixture was allowed to stand in a cool dark place for 1 week. Subsequently, centrifugation was performed to precipitate a gel component insoluble in toluene, the soluble component of the supernatant was removed, and only the gel component was solidified with methanol, and then dried and the mass was measured. The gel content (mass%) was determined by the following formula.
Gel content (mass%) = [mass mg after drying / mg of initial sample] × 100

Figure 0005937443
Figure 0005937443

表2に示すように、ケン化処理天然ゴム(HPNR)は、RSS#3に比べて、窒素含有量、リン含有量、ゲル含有率が低減していた。また、31P−NMR測定において、HPNRは、−3ppm〜1ppmにリン脂質によるピークが存在しなかった。 As shown in Table 2, the saponification natural rubber (HPNR) had a reduced nitrogen content, phosphorus content, and gel content as compared to RSS # 3. Further, in 31 P-NMR measurement, HPNR showed no peak due to phospholipid at -3 ppm to 1 ppm.

以下に、実施例および比較例で使用した薬品をまとめて示す。
NR:RSS#3
HPNR:製造例5により得られた改質天然ゴム
BR:宇部興産(株)製のUBEPOL BR150B
環化ゴム1〜4:製造例1〜4
シリカ:EVONIK−DEGUSSA社製のウルトラジルVN3(NSA:175m/g)
カーボンブラック:三菱化学(株)製のダイアブラックI(ISAFカーボン、平均粒子径23nm、DBP吸油量114ml/100g)
シランカップリング剤:EVONIK−DEGUSSA社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド)
オイル:(株)ジャパンエナジー製のプロセスX−140(芳香族系プロセスオイル)
ワックス:大内新興化学工業(株)製のサンノックN
ステアリン酸:日油(株)製のステアリン酸「桐」
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N−フェニル−p−フェニレンジアミン)
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
The chemicals used in the examples and comparative examples are summarized below.
NR: RSS # 3
HPNR: Modified natural rubber obtained in Production Example 5: UBEPOL BR150B manufactured by Ube Industries, Ltd.
Cyclized rubber 1-4: Production Examples 1-4
Silica: Ultrasil VN3 (N 2 SA: 175 m 2 / g) manufactured by EVONIK-DEGUSSA
Carbon black: Dia Black I manufactured by Mitsubishi Chemical Corporation (ISAF carbon, average particle size 23 nm, DBP oil absorption 114 ml / 100 g)
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by EVONIK-DEGUSSA
Oil: Process X-140 (aromatic process oil) manufactured by Japan Energy Co., Ltd.
Wax: Sunnock N manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Stearic acid: Stearic acid “paulownia” manufactured by NOF Corporation
Zinc oxide: Zinc oxide type 2 anti-aging agent manufactured by Mitsui Mining & Smelting Co., Ltd .: NOCRACK 6C (N- (1,3-dimethylbutyl) -N-phenyl-p-phenylene) manufactured by Ouchi Shinsei Chemical Diamine)
Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd .: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.

<実施例及び比較例>
表3の配合処方にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄および加硫促進剤以外の薬品を充填率が58%になるように充填し、80rpmで140℃に到達するまで混練りして混練り物を得た。次に、オープンロールを用いて、得られた混練り物に硫黄および加硫促進剤を添加して混練りし、未加硫ゴム組成物を得た。
さらに、得られた未加硫ゴム組成物を所定のサイズに成形し、150℃の条件下で20分間プレス加硫することにより加硫ゴム組成物を得、約2mm×130mm×130mmの加硫ゴムスラブシートを作製した。
<Examples and Comparative Examples>
In accordance with the formulation of Table 3, using a 1.7 L Banbury mixer manufactured by Kobe Steel Co., Ltd., chemicals other than sulfur and a vulcanization accelerator were filled to a filling rate of 58%, and 140 rpm at 140 rpm. A kneaded product was obtained by kneading until reaching 0C. Next, using an open roll, sulfur and a vulcanization accelerator were added to the obtained kneaded product and kneaded to obtain an unvulcanized rubber composition.
Further, the obtained unvulcanized rubber composition was molded into a predetermined size, and a vulcanized rubber composition was obtained by press vulcanization at 150 ° C. for 20 minutes, and a vulcanization of about 2 mm × 130 mm × 130 mm was obtained. A rubber slab sheet was prepared.

得られた未加硫ゴム組成物、加硫ゴムスラブシートについて下記の評価を行った。結果を表3に示す。 The following evaluation was performed about the obtained unvulcanized rubber composition and vulcanized rubber slab sheet. The results are shown in Table 3.

(加工性)
JIS K6300−1に基づいて、ムーニー粘度(ML1+4)を130℃で測定し、比較例1を100として、下記式から加工性指数を計算した。指数が大きいほど、未加硫時の加工性が良好であることを示す。
(加工性指数)=(比較例1のムーニー粘度)/(各配合のムーニー粘度)×100
(Processability)
Based on JIS K6300-1, Mooney viscosity (ML 1 + 4 ) was measured at 130 ° C., and Comparative Example 1 was taken as 100, and the workability index was calculated from the following formula. The larger the index, the better the processability when unvulcanized.
(Processability index) = (Mooney viscosity of Comparative Example 1) / (Mooney viscosity of each formulation) × 100

(粘弾性試験)
(株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、初期歪10%、動歪2%および周波数10Hzの条件下で加硫ゴムスラブシートの損失正接(tanδ)を測定し、比較例1の転がり抵抗指数を100とし、下記計算式により、指数表示した。転がり抵抗指数が大きいほど、転がり抵抗が低減され、好ましいことを示す。
(転がり抵抗指数)=(比較例1のtanδ)/(各配合のtanδ)×100
(Viscoelasticity test)
Using a viscoelastic spectrometer VES manufactured by Iwamoto Seisakusho, the loss tangent (tan δ) of the vulcanized rubber slab sheet was measured under conditions of a temperature of 70 ° C., an initial strain of 10%, a dynamic strain of 2%, and a frequency of 10 Hz. The rolling resistance index of Comparative Example 1 was set to 100, and the index was displayed by the following formula. The larger the rolling resistance index, the lower the rolling resistance, which is preferable.
(Rolling resistance index) = (tan δ of Comparative Example 1) / (tan δ of each formulation) × 100

(耐摩耗性)
(株)岩本製作所製のランボーン摩耗試験機を用い、表面回転速度50m/分、付加荷重3.0kg、落砂量15g/分でスリップ率20%にて摩耗量を測定し、それらの摩耗量の逆数をとった。そして、比較例1の摩耗量の逆数を100とし、他の配合の摩耗量の逆数を指数で表した。指数が大きいほど、耐摩耗性に優れることを示す。
(Abrasion resistance)
Using a Lambourne abrasion tester manufactured by Iwamoto Seisakusho, the amount of wear was measured at a surface rotation speed of 50 m / min, an additional load of 3.0 kg, a sandfall of 15 g / min and a slip rate of 20%. The inverse of was taken. And the reciprocal number of the wear amount of the comparative example 1 was set to 100, and the reciprocal number of the wear amount of the other composition was expressed as an index. It shows that it is excellent in abrasion resistance, so that an index | exponent is large.

Figure 0005937443
Figure 0005937443

HPNRや環化ゴムを用いていない比較例に比べて、ゴム成分としてHPNRを用いたシリカ配合ゴムに環化ゴムを添加した実施例1〜4では、加工性、低燃費性、耐摩耗性を同時に改善でき、これらの性能バランスを相乗的に向上できることが明らかとなった。また、環化ゴムの添加量を増量した実施例5〜6でも実用的に問題のない加工性指数「99」、「98」を維持しながら、低燃費性、耐摩耗性を顕著に改善できた。 Compared with the comparative example which does not use HPNR and cyclized rubber, in Examples 1-4 which added cyclized rubber to the silica compounded rubber which used HPNR as a rubber component, workability, low fuel consumption, and wear resistance are improved. It was clarified that the performance balance can be improved synergistically at the same time. Further, even in Examples 5 to 6 in which the addition amount of the cyclized rubber was increased, the fuel economy and wear resistance could be remarkably improved while maintaining the workability indexes “99” and “98” which are practically no problem. It was.

Claims (6)

リン含有量が200ppm以下の改質天然ゴムを含むゴム成分と、白色充填剤と、環化ゴムとを含み、
前記環化ゴムの環化率が0.1〜40%であるタイヤ用ゴム組成物。
Seen containing a rubber component phosphorus content comprises the following modified natural rubber 200 ppm, and the white filler, a cyclized rubber,
A tire rubber composition in which a cyclization rate of the cyclized rubber is 0.1 to 40% .
前記ゴム成分100質量部に対して、前記白色充填剤を10〜200質量部、前記環化ゴムを0.1〜40質量部含む請求項1記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 1, comprising 10 to 200 parts by mass of the white filler and 0.1 to 40 parts by mass of the cyclized rubber with respect to 100 parts by mass of the rubber component. 前記環化ゴムは、環化天然ゴム、環化イソプレンゴム及び環化ブタジエンゴムからなる群より選択される少なくとも1種である請求項1又は2記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 1 or 2, wherein the cyclized rubber is at least one selected from the group consisting of cyclized natural rubber, cyclized isoprene rubber, and cyclized butadiene rubber. 前記白色充填剤がシリカである請求項1〜のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 3 , wherein the white filler is silica. 前記改質天然ゴムの窒素含有量が0.3質量%以下である請求項1〜のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 4 , wherein the nitrogen content of the modified natural rubber is 0.3 mass% or less. 請求項1〜のいずれかに記載のゴム組成物を用いて作製した空気入りタイヤ。
The pneumatic tire produced using the rubber composition in any one of Claims 1-5 .
JP2012152838A 2012-07-06 2012-07-06 Rubber composition for tire and pneumatic tire Active JP5937443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152838A JP5937443B2 (en) 2012-07-06 2012-07-06 Rubber composition for tire and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152838A JP5937443B2 (en) 2012-07-06 2012-07-06 Rubber composition for tire and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2014015515A JP2014015515A (en) 2014-01-30
JP5937443B2 true JP5937443B2 (en) 2016-06-22

Family

ID=50110506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152838A Active JP5937443B2 (en) 2012-07-06 2012-07-06 Rubber composition for tire and pneumatic tire

Country Status (1)

Country Link
JP (1) JP5937443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345971B2 (en) * 2014-04-09 2018-06-20 住友ゴム工業株式会社 Pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207587B2 (en) * 2003-01-31 2009-01-14 日本ゼオン株式会社 Cyclized rubber and method for producing the same
CN102115554B (en) * 2010-01-04 2014-09-10 住友橡胶工业株式会社 Rubber composition for tire and studless tire
JP5503355B2 (en) * 2010-03-17 2014-05-28 住友ゴム工業株式会社 Tire rubber composition and heavy duty tire
JP2012122015A (en) * 2010-12-09 2012-06-28 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire

Also Published As

Publication number Publication date
JP2014015515A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5944764B2 (en) Tire rubber composition and heavy duty tire
WO2010071106A1 (en) Natural rubber and manufacturing method thereof, rubber composition and pneumatic tire utilizing the same, modified natural rubber and manufacturing method thereof, and rubber composite for covering threads or carcass cords and pneumatic tire utilizing the same
JP4750837B2 (en) Rubber composition for breaker topping
JP2018188567A (en) Tire tread and tire
JP6073144B2 (en) Rubber composition for tire and studless tire
US10533083B2 (en) Rubber composition and tire
JP5647172B2 (en) Sidewall rubber composition and pneumatic tire
JP2019131648A (en) Tire rubber composition and tire
JP5662231B2 (en) Rubber composition for tire and pneumatic tire
JP2019151743A (en) Rubber composition for tire
JP2019131649A (en) Tire rubber composition and tire
JPWO2018186458A1 (en) Rubber composition, method for producing rubber composition, and tire
JP6208428B2 (en) Rubber composition for tire and pneumatic tire
JP2016094561A (en) Vulcanized rubber composition and tire using the same
JP5638967B2 (en) Rubber composition for tire and pneumatic tire
JP5038040B2 (en) Rubber composition for tire tread and tire
JP6030104B2 (en) Manufacturing method of tire rubber composition and tire
JP2012107077A (en) Pneumatic tire
JP6790707B2 (en) Vulcanized rubber composition and tires using it
JP5937443B2 (en) Rubber composition for tire and pneumatic tire
JP5912934B2 (en) Rubber composition for tire and pneumatic tire
JP5912930B2 (en) Rubber composition for tire and pneumatic tire
JP5912936B2 (en) Rubber composition for tire and studless tire
JP5898007B2 (en) Rubber composition for bead apex and pneumatic tire
JP2019131647A (en) Tire rubber composition and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250