JP2007149939A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2007149939A
JP2007149939A JP2005341950A JP2005341950A JP2007149939A JP 2007149939 A JP2007149939 A JP 2007149939A JP 2005341950 A JP2005341950 A JP 2005341950A JP 2005341950 A JP2005341950 A JP 2005341950A JP 2007149939 A JP2007149939 A JP 2007149939A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
laser device
quantum well
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005341950A
Other languages
Japanese (ja)
Inventor
Koji Nakahara
宏治 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005341950A priority Critical patent/JP2007149939A/en
Publication of JP2007149939A publication Critical patent/JP2007149939A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor laser of which the manufacturing process has simplicity, a superior laser characteristic and high reliability. <P>SOLUTION: Al ions are implanted into an area 10 aside a mesa stripe 6 in a ridged laser wherein a GaInNAs quantum well layer 4 is an active layer. Since Al and N are strongly joined with each other after annealing, electric conductivity is lowered, and a band gap is increased because of the crystal mixing effect of guide layers 3 and 5 and the quantum well layer 4 so as to form a current block layer. Thus, a semiconductor laser of which the structure has a small threshold current and high reliability can be formed by nearly the same manufacturing step as that of the ridged laser. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体レーザ装置に関し、特に、光ファイバ通信の送信光源に適用して有効な技術に関する。   The present invention relates to a semiconductor laser device, and more particularly to a technique effective when applied to a transmission light source for optical fiber communication.

光通信や光記録等、各産業に幅広く使用されている半導体レーザは低コスト及び高性能化が求められている。GaAs基板上に結晶成長でき、光ファイバ通信に適合し1.3μm帯で発振するGaInNAs量子井戸レーザは、既に実用化されているInP基板上に形成したInGaAsPを用いたレーザに比べて理想的なバンド構造を有するため、高温でのレーザ特性が改善されることが期待されている(非特許文献1参照)。
さらに、Nが入らないGaInAs量子井戸レーザが高い緩和振動周波数を有することを反映して高速動作を実現できることから、Nがわずか数%導入されたGaInNAsも高速動作を期待することができる。
しかし、GaInNAsのようなGaAs基板上のレーザは一般的には活性層を切らずに上部のp型クラッド層の一部をストライプ形状にして電流狭窄化するリッジ型が用いられている。
Semiconductor lasers widely used in various industries such as optical communication and optical recording are required to be low in cost and high in performance. GaInNAs quantum well lasers that can grow crystals on GaAs substrates and oscillate in the 1.3 μm band suitable for optical fiber communications are ideal bands compared to lasers using InGaAsP already formed on InP substrates. Since it has a structure, it is expected that laser characteristics at high temperatures are improved (see Non-Patent Document 1).
Furthermore, since a high-speed operation can be realized reflecting that a GaInAs quantum well laser that does not contain N has a high relaxation oscillation frequency, GaInNAs in which only a few percent of N is introduced can be expected to operate at high speed.
However, a laser on a GaAs substrate such as GaInNAs generally uses a ridge type that narrows the current by forming a part of the upper p-type cladding layer in a stripe shape without cutting the active layer.

図3に、従来技術によるGaInNAs量子井戸レーザを示す。同図はGaAs基板1上にMBE法により結晶成長されたGaInNAs長波長帯レーザであり、厚さ1.5μmでキャリア濃度1×1018cm-3のn型GaInPクラッド層2、厚さ120nmでキャリア濃度1×1018cm-3のn型GaAsガイド層3、GaInNAs-3重量子井戸活性層4、厚さ120nmでキャリア濃度7×1017cm-3のp型GaAsガイド層5、厚さ1.5μmでキャリア濃度1×1018cm-3のp型GaInPクラッド層6、厚さ200nmでキャリア濃度5×1018cm-3のp型GaAsコンタクト層7が順に積層されている。 FIG. 3 shows a GaInNAs quantum well laser according to the prior art. This figure shows a GaInNAs long-wavelength laser crystal grown on a GaAs substrate 1 by the MBE method, an n-type GaInP cladding layer 2 having a thickness of 1.5 μm and a carrier concentration of 1 × 10 18 cm −3 and a carrier having a thickness of 120 nm. N-type GaAs guide layer 3 with a concentration of 1 × 10 18 cm −3 , GaInNAs-3 quantum well active layer 4, a p-type GaAs guide layer 5 with a thickness of 120 nm and a carrier concentration of 7 × 10 17 cm −3 , a thickness of 1.5 A p-type GaInP cladding layer 6 having a carrier concentration of 1 × 10 18 cm −3 at μm and a p-type GaAs contact layer 7 having a thickness of 200 nm and a carrier concentration of 5 × 10 18 cm −3 are sequentially stacked.

GaInNAs量子井戸活性層のGaInNAsの量子井戸層の幅は5nmであり、障壁層のGaAsの幅は30nmであり、量子井戸層と障壁層が交互に積層されている。この例ではGaAs基板はn型の導電型であり、n型の電極9が基板にオーミック接続されており、p型の電極8がGaAsコンタクト層7にオーミック接続されている。p型GaInPクラッド層は塩酸系のエッチング溶液により逆メサの台形上にエッチングされており、ストライプを形成している。このエッチング液はGaInPのみエッチングしてGaAsガイド層5はエッチングされない。   The width of the GaInNAs quantum well layer of the GaInNAs quantum well active layer is 5 nm, the width of the GaAs of the barrier layer is 30 nm, and the quantum well layers and the barrier layers are alternately stacked. In this example, the GaAs substrate is n-type conductivity, the n-type electrode 9 is ohmically connected to the substrate, and the p-type electrode 8 is ohmically connected to the GaAs contact layer 7. The p-type GaInP cladding layer is etched on the inverted mesa trapezoid with a hydrochloric acid-based etching solution to form stripes. This etching solution etches only GaInP, and the GaAs guide layer 5 is not etched.

図1においてメサ幅と呼ばれる幅、すなわちGaAsガイド層6と接しており、逆メサ上の台形の下の辺の長さは2μmである。メサ幅下のGaInNAs量子井戸活性層4の領域が実効的な活性層領域となる。しかし、リッジ型レーザは埋め込み型レーザに比較してしきい電流が大きいという欠点があった。   In FIG. 1, the width called the mesa width, that is, in contact with the GaAs guide layer 6, the length of the lower side of the trapezoid on the reverse mesa is 2 μm. The region of the GaInNAs quantum well active layer 4 below the mesa width becomes an effective active layer region. However, the ridge type laser has a drawback that the threshold current is larger than that of the buried type laser.

中原 宏治他、「不純物を抑制したMBE成長GaInNAs/GaAsレーザの特性」、電子情報通信学会技術研究報告Vol.104,ED2004-142,P.41-44,2004年10月Koji Nakahara et al., “Characteristics of MBE-grown GaInNAs / GaAs laser with suppressed impurities”, IEICE Technical Report Vol.104, ED2004-142, P.41-44, October 2004

上述したように、GaInNAsのようなGaAs基板上のレーザは一般的には活性層を切らずに上部のp型クラッド層の一部をストライプ形状にして電流狭窄化するリッジ型が用いられている。このようなリッジ型レーザは、図3に示す上部電極8から注入される電流が、リッジ構造の直下の電流注入領域以外の活性層4にまで拡がるために、埋め込み型レーザに比較して、しきい電流が大きくなるという欠点があった。   As described above, a laser on a GaAs substrate such as GaInNAs generally uses a ridge type in which a part of the upper p-type cladding layer is striped to narrow the current without cutting the active layer. . In such a ridge type laser, the current injected from the upper electrode 8 shown in FIG. 3 spreads to the active layer 4 other than the current injection region immediately below the ridge structure. There was a drawback that the threshold current increased.

本発明の目的は、GaInNAs量子井戸レ−ザにおいてしきい電流を小さくできる半導体レーザを提供することにある。さらに、製造コスト低減が可能な半導体レーザを提供することにある。   An object of the present invention is to provide a semiconductor laser capable of reducing a threshold current in a GaInNAs quantum well laser. Furthermore, it is providing the semiconductor laser which can reduce manufacturing cost.

本発明によれば、少なくとも2組の反射鏡あるいは分布帰還型の共振器構造を有し、半導体基板あるいは絶縁物基板上に、少なくとも第1のクラッド層、第1のガイド層、活性層、第2のガイド層、第2のクラッド層が順次積層される半導体レーザにおいて、該活性層がGaInNAsの量子井戸層で構成され、上部の第2のクラッド層がストライプ形状で構成されるリッジ構造を成し、該リッジ構造の直下の電流注入領域以外の該活性層、第1のガイド層、第1のクラッド層、第2のガイド層、第2のクラッド層で構成される多層膜の少なくとも1部の領域に、Alが導入された構造を有する半導体レーザ装置によって達成される。   According to the present invention, at least two sets of reflecting mirrors or distributed feedback type resonator structures are provided, and at least a first cladding layer, a first guide layer, an active layer, a first layer on a semiconductor substrate or an insulator substrate. In the semiconductor laser in which the two guide layers and the second cladding layer are sequentially stacked, the active layer is formed of a GaInNAs quantum well layer, and the upper second cladding layer is formed in a stripe shape. And at least a part of a multilayer film including the active layer, the first guide layer, the first cladding layer, the second guide layer, and the second cladding layer other than the current injection region immediately below the ridge structure. This is achieved by a semiconductor laser device having a structure in which Al is introduced in this region.

このようなイオン注入により、AlをGaInNAs量子井戸層に導入することで、フォトルミネッセンス強度が減少し電気伝導率が低減する。さらに、Alのイオン注入によりGaInNAs量子井戸層と障壁層が混晶化して井戸層のバンドギャップが増大する。以上の効果によりイオン注入した領域10には電流が流れにくくなり、イオン注入されていないメサストライプ下のみに電流を狭窄化することができる(非特許文献1を参照)。   By introducing Al into the GaInNAs quantum well layer by such ion implantation, the photoluminescence intensity is reduced and the electrical conductivity is reduced. Further, the GaInNAs quantum well layer and the barrier layer are mixed by Al ion implantation, and the band gap of the well layer is increased. Due to the above effects, it becomes difficult for current to flow in the ion-implanted region 10, and the current can be narrowed only under the mesa stripe where ions are not implanted (see Non-Patent Document 1).

本発明によれば、GaInNAs量子井戸レ−ザにおいてしきい電流を小さくでき、製造コスト低減が可能な半導体レーザを提供することができる。   According to the present invention, it is possible to provide a semiconductor laser capable of reducing the threshold current in a GaInNAs quantum well laser and reducing the manufacturing cost.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に、本発明を光通信用送信光源として用いる1.3μm帯半導体レーザに適用した実施例の断面構造を示す。同図は、GaAs基板1上にMBE法により結晶成長された1.3μm帯GaInNAs長波長帯レーザであり、厚さ1.5μmでキャリア濃度1×1018cm-3のn型GaInPクラッド層2、厚さ120nmでキャリア濃度1×1018cm-3のn型GaAsガイド層3、GaInNAs-3重量子井戸活性層4、厚さ120nmでキャリア濃度7×1017cm-3のp型GaAsガイド層5、厚さ1.5μmでキャリア濃度1×1018cm-3のp型GaInPクラッド層6が積層されており、GaInPクラッド層6の上には厚さ200nmでキャリア濃度5×1018cm-3のp型GaAsコンタクト層7が積層されている。 FIG. 1 shows a cross-sectional structure of an embodiment in which the present invention is applied to a 1.3 μm band semiconductor laser used as a transmission light source for optical communication. The figure shows a 1.3 μm-band GaInNAs long-wavelength laser crystal grown on the GaAs substrate 1 by the MBE method. The n-type GaInP cladding layer 2 has a thickness of 1.5 μm and a carrier concentration of 1 × 10 18 cm −3. N-type GaAs guide layer 3 with 120 nm thickness and carrier concentration 1 × 10 18 cm −3 , GaInNAs-3 quantum well active layer 4, p-type GaAs guide layer 5 with 120 nm thickness and carrier concentration 7 × 10 17 cm −3 A p-type GaInP cladding layer 6 having a thickness of 1.5 μm and a carrier concentration of 1 × 10 18 cm −3 is laminated. On the GaInP cladding layer 6, a thickness of 200 nm and a carrier concentration of 5 × 10 18 cm −3 is formed. A p-type GaAs contact layer 7 is laminated.

GaInNAs量子井戸活性層のGaInNAsの量子井戸層の幅は、5nmで障壁層のGaAsの幅は30nmであり、量子井戸層と障壁層が交互に積層されている。p型GaInPクラッド層6を塩酸系のエッチング溶液により逆メサの台形上にエッチングしメサ幅2μmのメサストライプ構造を形成する。さらにメサ脇のGaAsガイド層3,5とGaInNAs量子井戸活性層4にはAlをイオン注入した領域10が在る。Alのイオン注入は図2のようにメサストライプの斜面((111)A面)に平行に注入する。左右2回注入する必要がある。
なお、ここで、Alをイオン注入する注入角度は、図2のA面に平行な角度から、注入する基板に対して垂直な角度の間までの任意な角度で行なっても構わない。
また、Alの注入量は、1016cm-2オーダーの濃度であって、GaInNAs量子井戸活性層4に高抵抗層が形成される程度の量である。
The width of the GaInNAs quantum well layer of the GaInNAs quantum well active layer is 5 nm, the width of the GaAs of the barrier layer is 30 nm, and the quantum well layers and the barrier layers are alternately stacked. The p-type GaInP cladding layer 6 is etched on a reverse mesa trapezoid with a hydrochloric acid-based etching solution to form a mesa stripe structure having a mesa width of 2 μm. In addition, Al ion-implanted regions 10 exist in the GaAs guide layers 3 and 5 and the GaInNAs quantum well active layer 4 beside the mesa. As shown in FIG. 2, Al ions are implanted parallel to the slope of the mesa stripe ((111) A plane). It is necessary to inject twice on the left and right.
Here, the implantation angle for ion implantation of Al may be an arbitrary angle from an angle parallel to the A plane in FIG. 2 to an angle perpendicular to the substrate to be implanted.
Also, the amount of Al implanted is a concentration on the order of 10 16 cm −2 , which is such an amount that a high resistance layer is formed in the GaInNAs quantum well active layer 4.

ここで、AlをGaInNAs量子井戸活性層4に注入することによって生じる効果を述べる。GaInNAsは成長時に雰囲気中にAlが存在するとフォトルミネッセンス強度が劣化することが、T. TakeuchiらによりIEEE LEOS 2003, MD1の35から36ページに開示されている。これはAlとNが結合しやすいからと考えられる。イオン注入によりAlをGaInNAs量子井戸層に導入した場合も同様であり、フォトルミネッセンス強度が減少し電気伝導率が低減する。さらに、Alのイオン注入によりGaInNAs量子井戸層と障壁層が混晶化して井戸層のバンドギャップが増大する。以上の効果によりイオン注入した領域10には電流が流れにくくなり、イオン注入されていないメサストライプ下のみに電流を狭窄化することができる。   Here, effects produced by injecting Al into the GaInNAs quantum well active layer 4 will be described. It has been disclosed by T. Takeuchi et al. On pages 35 to 36 of IEEE LEOS 2003, MD1 that GaInNAs degrades the photoluminescence intensity when Al is present in the atmosphere during growth. This is presumably because Al and N are easy to bond. The same applies to the case where Al is introduced into the GaInNAs quantum well layer by ion implantation, in which the photoluminescence intensity decreases and the electrical conductivity decreases. Further, the GaInNAs quantum well layer and the barrier layer are mixed by Al ion implantation, and the band gap of the well layer is increased. Due to the above effects, it is difficult for current to flow in the ion-implanted region 10, and the current can be narrowed only under the mesa stripe where ions are not implanted.

イオン注入後は400℃、30分のアニールを行う。活性層にプロトン、即ちHを注入することにより高抵抗化する手法もあるが、この場合には半導体レーザの特性が急速に劣化するため実用化には適さない。Alのイオン注入ではアニール後にAlとNの結合が強く安定するため長期信頼性を有する。   After ion implantation, annealing is performed at 400 ° C. for 30 minutes. There is also a technique of increasing the resistance by injecting protons, ie, H, into the active layer. However, in this case, the characteristics of the semiconductor laser deteriorate rapidly, which is not suitable for practical use. Al ion implantation has long-term reliability because the bond between Al and N is strongly stabilized after annealing.

本実施例により作製されたGaInNAs半導体レーザは共振器長200μmで前面70%, 後面90%の反射鏡を施したFPレーザにおいて、25℃にて1.8mAの埋め込みレーザと同等の低しきい電流を得ることができた。また、85℃の高温においても3.9mAの低しきい電流であった。スロープ効率は25℃,85℃においてそれぞれ0.23W/A, 0.19 W/Aと良好であった。85℃, 10mW一定の光出力における信頼性試験を行ったところ180時間での動作電流劣化率は0.2%以下と良好な結果を得た。   The GaInNAs semiconductor laser fabricated in this example is a FP laser with a resonator length of 200μm and a front mirror of 70% and a rear mirror of 90%, and has a low threshold current equivalent to a 1.8mA buried laser at 25 ° C. I was able to get it. In addition, it was a low threshold current of 3.9 mA even at a high temperature of 85 ° C. The slope efficiencies were 0.23 W / A and 0.19 W / A at 25 ℃ and 85 ℃, respectively. A reliability test was performed at 85 ° C and a constant light output of 10 mW, and the operating current degradation rate after 180 hours was 0.2% or less.

尚、本実施例では活性層はGaInNAs量子井戸層であったが、GaInNAsにSbが導入されていても同様の効果が得られることは言うまでもない。   In this embodiment, the active layer is a GaInNAs quantum well layer, but it goes without saying that the same effect can be obtained even if Sb is introduced into GaInNAs.

図4に、本発明を光通信用送信光源として用いる1.3μm帯半導体レーザに適用した実施例の断面構造を示す。半導体の多層構造は実施例1と同じである。メサストライプの形成はp型GaInPクラッド層6を、塩素ガス(Cl2)を用いたドライエッチングにより形成し、p型GaInPクラッド層6の残し厚を100nmとした。メサ幅は1.8μmである。メサ脇のGaAsガイド層3,5とGaInNAs量子井戸活性層4にはAlをイオン注入した領域10が在る。本実施例ではメサストライプの側壁が基板に対して垂直なので1回のイオン注入で良い。 実施例1と同様にイオン注入後は400℃,30分のアニールを行う。 FIG. 4 shows a sectional structure of an embodiment in which the present invention is applied to a 1.3 μm band semiconductor laser used as a transmission light source for optical communication. The multilayer structure of the semiconductor is the same as that of the first embodiment. In forming the mesa stripe, the p-type GaInP cladding layer 6 was formed by dry etching using chlorine gas (Cl 2 ), and the remaining thickness of the p-type GaInP cladding layer 6 was set to 100 nm. The mesa width is 1.8 μm. In the GaAs guide layers 3 and 5 and the GaInNAs quantum well active layer 4 beside the mesa, there are regions 10 in which Al ions are implanted. In this embodiment, since the side walls of the mesa stripe are perpendicular to the substrate, one ion implantation is sufficient. As in Example 1, after ion implantation, annealing is performed at 400 ° C. for 30 minutes.

本実施例により作製されたGaInNAs半導体レーザは共振器長300μmで前面50%、 後面90%の反射鏡を施したFPレーザにおいて、25℃にて2.5mAの埋め込みレーザと同等の低しきい電流を得ることができた。また、85℃の高温においても5.3mAの低しきい電流であった。スロープ効率は25℃,85℃においてそれぞれ0.42W/A, 0.33 W/Aと良好であった。85℃, 10mW一定の光出力における信頼性試験を行ったところ360時間での動作電流劣化率は0.15%以下と良好な結果を得た。   The GaInNAs semiconductor laser fabricated according to this example is a FP laser with a resonator length of 300μm and a front mirror of 50% and a rear mirror of 90%, and has a low threshold current equivalent to a 2.5mA buried laser at 25 ° C. I was able to get it. In addition, it was a low threshold current of 5.3 mA even at a high temperature of 85 ° C. The slope efficiencies were 0.42 W / A and 0.33 W / A at 25 ℃ and 85 ℃, respectively. A reliability test was performed at 85 ° C and a constant light output of 10 mW, and the degradation rate of the operating current at 360 hours was 0.15% or less.

本発明の実施例を表す構造図である。It is a structural diagram showing the Example of this invention. 本発明の実施例の一部の工程の説明図である。It is explanatory drawing of the one part process of the Example of this invention. 従来例を示す構造図である。It is a structural diagram which shows a prior art example. 本発明の実施例を示す構造図である。1 is a structural diagram showing an embodiment of the present invention.

符号の説明Explanation of symbols

1…GaAs基板、
2…n型GaInPクラッド層、
3…n型GaAsガイド層、
4…GaInNAs 3重量子井戸活性層、
5…p型GaAsガイド層、
6…p型GaInPクラッド層、
7…p型GaAsコンタクト層、
8…上部電極、
9…下部電極、
10…Alイオン注入領域。
1 ... GaAs substrate,
2 ... n-type GaInP cladding layer,
3 ... n-type GaAs guide layer,
4 ... GaInNAs 3 quantum well active layer,
5 ... p-type GaAs guide layer,
6 ... p-type GaInP cladding layer,
7 ... p-type GaAs contact layer,
8… Upper electrode,
9 ... bottom electrode,
10… Al ion implantation area.

Claims (9)

少なくとも2組の反射鏡あるいは分布帰還型の共振器構造と、
半導体基板あるいは絶縁物基板上に、少なくとも第1のクラッド層、第1のガイド層、活性層、第2のガイド層、および第2のクラッド層がこの順に積層された多層膜とを有し、
前記活性層がGaInNAsの量子井戸層で構成されると共に、
前記第2のクラッド層がストライプ形状で構成されるリッジ構造を成し、
少なくとも前記活性層を含む領域であって、さらに前記活性層に注入される電流が通過する電流注入領域以外の領域にAlが導入された構造を有する半導体レーザ装置。
At least two sets of reflectors or distributed feedback resonator structures;
A multilayer film in which at least a first cladding layer, a first guide layer, an active layer, a second guide layer, and a second cladding layer are stacked in this order on a semiconductor substrate or an insulator substrate;
The active layer is composed of a GaInNAs quantum well layer,
Forming a ridge structure in which the second cladding layer is formed in a stripe shape;
A semiconductor laser device having a structure in which Al is introduced into a region including at least the active layer and further to a region other than a current injection region through which a current injected into the active layer passes.
前記活性層のGaInNAs量子井戸層に、Sbが導入されていることを特徴とする請求項1記載の半導体レーザ装置。   2. The semiconductor laser device according to claim 1, wherein Sb is introduced into the GaInNAs quantum well layer of the active layer. 前記第1、及び第2のクラッド層がGaInPで構成されていることを特徴とする請求項1記載の半導体レーザ装置。   2. The semiconductor laser device according to claim 1, wherein the first and second cladding layers are made of GaInP. 前記第1、及び第2のクラッド層がAlGaAsで構成されていることを特徴とする請求項2記載の半導体レーザ装置。   3. The semiconductor laser device according to claim 2, wherein the first and second cladding layers are made of AlGaAs. 第1、及び第2のガイド層がGaAsで構成されていることを特徴とする請求項1記載の半導体レーザ装置。   2. The semiconductor laser device according to claim 1, wherein the first and second guide layers are made of GaAs. 第1、及び第2のガイド層がGaAsで構成されていることを特徴とする請求項2記載の半導体レーザ装置。   3. The semiconductor laser device according to claim 2, wherein the first and second guide layers are made of GaAs. 前記ストライプ形状が逆メサ構造で構成されていることを特徴とする請求項3記載の半導体レーザ装置。   4. The semiconductor laser device according to claim 3, wherein the stripe shape is constituted by an inverted mesa structure. 前記ストライプ形状が垂直メサ構造で構成されていることを特徴とする請求項3記載の半導体レーザ装置。   4. The semiconductor laser device according to claim 3, wherein the stripe shape is a vertical mesa structure. 前記ストライプ形状が垂直メサ構造で構成されていることを特徴とする請求項4記載の半導体レーザ装置。
5. The semiconductor laser device according to claim 4, wherein the stripe shape is constituted by a vertical mesa structure.
JP2005341950A 2005-11-28 2005-11-28 Semiconductor laser device Pending JP2007149939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341950A JP2007149939A (en) 2005-11-28 2005-11-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341950A JP2007149939A (en) 2005-11-28 2005-11-28 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2007149939A true JP2007149939A (en) 2007-06-14

Family

ID=38210983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341950A Pending JP2007149939A (en) 2005-11-28 2005-11-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2007149939A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107253A (en) * 1994-08-12 1996-04-23 Mitsubishi Electric Corp Manufacturing method of photowaveguide, semiconductor, laser-waveguide integrated device, semiconductor laser-waveguide-photodiode integrated device, semiconductor laser-waveguide-mode matching integrated device, mode matching element
JP2000312051A (en) * 1999-04-28 2000-11-07 Hitachi Ltd Semiconductor laser
JP2004179657A (en) * 2002-11-22 2004-06-24 Agilent Technol Inc Iii-v semiconductor device
JP2005203804A (en) * 2005-02-22 2005-07-28 Nichia Chem Ind Ltd Laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107253A (en) * 1994-08-12 1996-04-23 Mitsubishi Electric Corp Manufacturing method of photowaveguide, semiconductor, laser-waveguide integrated device, semiconductor laser-waveguide-photodiode integrated device, semiconductor laser-waveguide-mode matching integrated device, mode matching element
JP2000312051A (en) * 1999-04-28 2000-11-07 Hitachi Ltd Semiconductor laser
JP2004179657A (en) * 2002-11-22 2004-06-24 Agilent Technol Inc Iii-v semiconductor device
JP2005203804A (en) * 2005-02-22 2005-07-28 Nichia Chem Ind Ltd Laser device

Similar Documents

Publication Publication Date Title
JP2011101039A (en) Nitride semiconductor laser device
Tsang et al. High‐power fundamental‐transverse‐mode strip buried heterostructure lasers with linear light‐current characteristics
JP2015015396A (en) Optical semiconductor element
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
JPH09283839A (en) Semiconductor laser device and manufacturing method thereof
JP2006229210A (en) Nitride semiconductor laser device and its manufacturing method
JP5367263B2 (en) Semiconductor laser element
JPH0856045A (en) Semiconductor laser device
JP4155664B2 (en) Semiconductor laser device
JPH10261835A (en) Semiconductor laser device and its manufacture
CN111937260B (en) Semiconductor laser and method for manufacturing the same
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JP2007149939A (en) Semiconductor laser device
JP2018006590A (en) Optical semiconductor element
JPS58207690A (en) Buried type semiconductor laser
KR20020007972A (en) Semiconductor laser apparatus and manufacturing method thereof
JP2013247210A (en) Semiconductor laser device
JPS614291A (en) Surface light-emission laser
JP2001053381A (en) Semiconductor laser and manufacture thereof
JPS60235484A (en) Semiconductor light-emitting device
JPH05167186A (en) Manufacture of semiconductor laser element
JP2000196190A (en) Semiconductor laser diode and manufacture thereof
JPH10163561A (en) Semiconductor laser element
JPH01161885A (en) Semiconductor laser
JPS6355878B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426