JP2007129115A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2007129115A
JP2007129115A JP2005321724A JP2005321724A JP2007129115A JP 2007129115 A JP2007129115 A JP 2007129115A JP 2005321724 A JP2005321724 A JP 2005321724A JP 2005321724 A JP2005321724 A JP 2005321724A JP 2007129115 A JP2007129115 A JP 2007129115A
Authority
JP
Japan
Prior art keywords
polishing
manufacturing
semiconductor device
semiconductor
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005321724A
Other languages
Japanese (ja)
Inventor
Shinji Fujikake
伸二 藤掛
Susumu Iwamoto
進 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005321724A priority Critical patent/JP2007129115A/en
Publication of JP2007129115A publication Critical patent/JP2007129115A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a semiconductor device containing a method polishing the flattening of the surface of a super junction structure for forming a drift layer for a super junction semiconductor device, by a flatness at a higher degree without deteriorating the precision of an alignment marker by a simplified process. <P>SOLUTION: In a first polishing process, parallel insulating films for forming trenches, parallel trenches formed while using the parallel insulating films as masks, and markers are formed on the surface of a semiconductor substrate laminating one conductivity type semiconductor layer on a low-resistance semiconductor substrate; the parallel trenches are filled inside the parallel trenches with the other conductivity type semiconductor layers; and the projections of the filling are removed. In a second polishing process, the semiconductor layers as lower layers are polished after polishing the parallel insulating films and the other conductivity type semiconductor layer. In the manufacturing method for a semiconductor element, the first polishing process and the second polishing process are conducted continuously. The manufacturing method for the semiconductor element uses polishing slurry having different polishing rates to the insulating films and the semiconductor layers respectively in the first and second polishing processes. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体基板の製造方法に関し、特に第一導電型の半導体基板の主面に垂直に形成された複数のトレンチ内に第二導電型の半導体をエピタキシャル成長させることにより、前記第一導電型半導体基板の残りの領域と前記エピタキシャル成長で形成された第二導電型半導体領域とがそれぞれ前記主面に垂直であって交互に並列に接するようにして、その結果、前記主面に垂直で互いに並列な複数のpn接合面を有する、いわゆる超接合構造を効率よく形成できるように改良された半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor substrate, and more particularly, by epitaxially growing a second conductivity type semiconductor in a plurality of trenches formed perpendicular to the main surface of the first conductivity type semiconductor substrate, the first conductivity type. The remaining regions of the semiconductor substrate and the second conductivity type semiconductor regions formed by the epitaxial growth are perpendicular to the main surface and are alternately in parallel with each other, so that the main surface is perpendicular to the main surface and parallel to each other. The present invention relates to a method for manufacturing a semiconductor device improved so as to efficiently form a so-called superjunction structure having a plurality of pn junction surfaces.

一般に、半導体素子は、電極が半導体基板の片面に形成された横型の素子と、両面に電極を有する縦型の素子に分類される。縦型半導体素子は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦型MOSFET(絶縁ゲート型電界効果トランジスタ)では、高抵抗のnドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。したがって、このnドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので、MOSFETの実質的なオン抵抗が下がるという効果が得られる。
その一方で、高抵抗のnドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。したがって、nドリフト層が薄くなると、Pベース領域とドリフト領域との間のpn接合から進行するドレイン−ベース間空乏層が広がる幅が狭くなり、シリコンの臨界電界強度に速く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体素子では、nドリフト層が厚いため、オン抵抗が大きくなり、損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。このトレードオフ関係は、IGBT(絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタやダイオード等の半導体素子においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの空乏層の伸びる方向とが異なる横型半導体素子にも共通である。上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型ドリフト領域とp型仕切領域とを交互に繰り返し接合した構成の並列pn層構造とした超接合半導体素子が公知である(特許文献1、2、3、4)。このような構造の半導体素子では、並列pn層構造の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn層構造の縦方向に伸びる各pn接合から横方向に広がり、ドリフト領域全体を空乏化するため、高耐圧化を図ることができる。
Generally, semiconductor elements are classified into a horizontal element in which electrodes are formed on one side of a semiconductor substrate and a vertical element having electrodes on both sides. In the vertical semiconductor element, the direction in which the drift current flows in the on state is the same as the direction in which the depletion layer due to the reverse bias voltage extends in the off state. In a normal planar n-channel vertical MOSFET (insulated gate field effect transistor), the high-resistance n drift layer portion functions as a region in which a drift current flows in the vertical direction when in the on state. Therefore, if the current path of the n drift layer is shortened, the drift resistance is lowered, so that the effect of reducing the substantial on-resistance of the MOSFET can be obtained.
On the other hand, the portion of the high resistance n drift layer is depleted in the off state to increase the breakdown voltage. Therefore, when the n drift layer is thinned, the width of the drain-base depletion layer proceeding from the pn junction between the P base region and the drift region is narrowed, and the critical electric field strength of silicon is reached quickly. It will decline. On the contrary, in a semiconductor device with a high breakdown voltage, since the n drift layer is thick, the on-resistance increases and the loss increases. Thus, there is a trade-off relationship between on-resistance and breakdown voltage. This trade-off relationship is also known to hold in semiconductor devices such as IGBTs (insulated gate bipolar transistors), bipolar transistors, and diodes. This trade-off relationship is also common to lateral semiconductor elements in which the direction in which the drift current flows in the on state and the direction in which the depletion layer extends in the off state are different. As a solution to the above-described problem due to the trade-off relationship, a super junction semiconductor element having a parallel pn layer structure in which an n-type drift region and a p-type partition region having a high impurity concentration are alternately and repeatedly joined is used as a drift layer. Known (Patent Documents 1, 2, 3, 4). In the semiconductor element having such a structure, even when the impurity concentration of the parallel pn layer structure is high, the depletion layer spreads laterally from each pn junction extending in the vertical direction of the parallel pn layer structure in the off state, and drifts. Since the entire region is depleted, a high breakdown voltage can be achieved.

前述のような超接合半導体素子は、その超接合構造が複雑であり、半導体基板に超接合構造を安価に作成することが難しい。そのような並列pn層構造を有する半導体基板を低コストで、かつ高良品率で量産する方法として、n型シリコン半導体基板に並列トレンチを形成し、そのトレンチの内部をp型シリコン半導体よりなるエピタキシャル成長層で埋め込むことにより超接合構造を形成する方法が公知である(特許文献5、6、7、8)。
この方法では、図9に示すように、n++型シリコン半導体基板1上にn型シリコンエピタキシャル層2を形成したウエハについて、ウエハ表面に設けられた酸化膜4をエッチングマスクとしてトレンチ2−2を形成後、このトレンチ2−2内にp型シリコン半導体2−1をエピタキシャル成長により充填すると、ウエハ表面には、1〜数μmの段差や、酸化膜4およびp型エピタキシャルシリコン層2−1などの突出部が存在して平坦でないため、半導体基板の表面をCMP(ケミカルメカニカルポリッシュ)装置等により研磨して、酸化膜4やp型エピタキシャルシリコン層2−1を除去するとともに平坦化する必要がある。
The superjunction semiconductor element as described above has a complicated superjunction structure, and it is difficult to produce the superjunction structure on a semiconductor substrate at low cost. As a method for mass-producing a semiconductor substrate having such a parallel pn layer structure at a low cost and with a high yield rate, a parallel trench is formed in an n-type silicon semiconductor substrate, and the inside of the trench is epitaxially grown of a p-type silicon semiconductor. A method of forming a superjunction structure by embedding with a layer is known (Patent Documents 5, 6, 7, and 8).
In this method, as shown in FIG. 9, for a wafer in which an n-type silicon epitaxial layer 2 is formed on an n ++ type silicon semiconductor substrate 1, trenches 2-2 are formed using an oxide film 4 provided on the wafer surface as an etching mask. After the formation, when the p-type silicon semiconductor 2-1 is filled in the trench 2-2 by epitaxial growth, a step of 1 to several μm, the oxide film 4, the p-type epitaxial silicon layer 2-1, etc. are formed on the wafer surface. Since the protrusion is present and is not flat, the surface of the semiconductor substrate needs to be polished by a CMP (Chemical Mechanical Polishing) apparatus or the like to remove the oxide film 4 and the p-type epitaxial silicon layer 2-1 and planarize it. .

また、変形例として図10(a)に示すように、ウエハ表面をトレンチエッチングの際にマスクとして使用した酸化膜4をストッパー膜としてCMP装置により研磨して平坦化し、その後、図10(b)に示すようにフッ酸エッチングに浸漬して酸化膜4を除去した後に、再度前記CMP装置により表面のn型エピタキシャルシリコン層2−1の突出部を研磨し、さらに点線2−3に示す深さまでウエハを研磨して鏡面にする方法が知られている(特許文献13)。しかし、この種の半導体基板(ウエハ)の製造では、研磨後のウエハ表面は完全な鏡面となってしまい、光学的なpn接合構造の確認が不可能になるため、図10にも示すように予め幅10〜20μm、深さ1〜50μmの位置合わせ用のマーカー(アライメントマーカー)3を形成し、ウエハ完成後まで残す技術が公知である(特許文献9)。   As a modification, as shown in FIG. 10A, the wafer surface is polished and planarized by a CMP apparatus using the oxide film 4 used as a mask during trench etching as a stopper film, and thereafter, FIG. After removing the oxide film 4 by immersing in hydrofluoric acid etching as shown in FIG. 3, the surface of the n-type epitaxial silicon layer 2-1 on the surface is polished again by the CMP apparatus, and further to the depth shown by the dotted line 2-3. A method of polishing a wafer to a mirror surface is known (Patent Document 13). However, in the manufacture of this type of semiconductor substrate (wafer), the polished wafer surface becomes a perfect mirror surface, making it impossible to confirm the optical pn junction structure. As shown in FIG. A technique is known in which an alignment marker (alignment marker) 3 having a width of 10 to 20 μm and a depth of 1 to 50 μm is formed in advance and left until after the wafer is completed (Patent Document 9).

CMP装置による研磨の際における終点検出技術として、研磨中に、研磨速度の遅いストッパ膜に到達したことを、その際に現われる、CMP装置の支持台の回転に用いられるモータの負荷電流の増加を検出して研磨終点とする技術が知られている(特許文献10)。
また、透光性ののぞき窓を設けた研磨パッドを用い、研磨中のウエハに白色あるいは単色のプローブ光を照射して、その反射スペクトルから終点を検出する技術が知られている(特許文献11、特許文献12)。
欧州特許出願第0053854号公報 米国特許第5216275号 米国特許第5438215号 特開平9−266311号公報 特開2002−124474号公報 特開2001−127289号公報 特開2001−196573号公報 特開2004―63894号公報 特開2004−63894号公報 特開2002−9031号公報 特開2000−186918号公報 特開2000−183001号公報 特開2005−57142号公報
As an end point detection technique during polishing by a CMP apparatus, the fact that a stopper film having a low polishing speed has been reached during polishing, an increase in the load current of the motor used to rotate the support base of the CMP apparatus, which appears at that time, is shown. A technique for detecting and setting a polishing end point is known (Patent Document 10).
In addition, a technique is known in which a polishing pad provided with a light-transmitting observation window is used to irradiate a wafer being polished with white or monochromatic probe light and detect the end point from the reflection spectrum (Patent Document 11). Patent Document 12).
European Patent Application No. 0053854 US Pat. No. 5,216,275 US Pat. No. 5,438,215 JP-A-9-266611 JP 2002-124474 A JP 2001-127289 A JP 2001-196573 A Japanese Patent Laid-Open No. 2004-63894 JP 2004-63894 A JP 2002-9031 A JP 2000-186918 A JP 2000-183001 A JP-A-2005-57142

しかしながら、前記特許文献13に示すように、トレンチにエピタキシャル層を埋め込んだ後に、フッ酸による酸化膜のエッチング除去、CMP研磨の順に行って平坦化を行う場合には、次に示す四つの問題がある。
第一の問題は、図9(a)に示すように、p型エピタキシャル層2−1がウエハ表面の酸化膜4から上にせり出して突出しているので、部分的にp型エピタキシャル層同士が接触しているところでは酸化膜4がエッチングされずに残ることがあるため、その影響でCMP装置による平坦化が正常に行えなくなり、平坦化に支障がでる場合がある。
第二の問題は、酸化膜4が全て除去されたとしても、せり出したp型エピタキシャル層2−1を研磨する際に、p型エピタキシャル層2−1に割れなどが生じ、それが大きな削りカスとなって表面に残り、その削りカスがウエハ表面に多量のスクラッチ傷をつくる原因になる。
However, as shown in the above-mentioned Patent Document 13, when an epitaxial layer is buried in a trench and then the oxide film is removed by etching with hydrofluoric acid and then planarized by CMP polishing, there are the following four problems. is there.
The first problem is that, as shown in FIG. 9A, the p-type epitaxial layer 2-1 protrudes upward from the oxide film 4 on the wafer surface, so that the p-type epitaxial layers are partially in contact with each other. However, since the oxide film 4 may remain without being etched, the planarization by the CMP apparatus cannot be normally performed due to the influence, and the planarization may be hindered.
The second problem is that even if the oxide film 4 is completely removed, when the protruding p-type epitaxial layer 2-1 is polished, cracks or the like occur in the p-type epitaxial layer 2-1, And remains on the surface, and the shavings cause a large amount of scratches on the wafer surface.

第三の問題は、数μm程度突出したp型エピタキシャル層2−1を研磨するには、ディッシングの影響で最低でもウエハ表面を余分に数μm程度削りこまないと平坦化されない。通常、ウエハ表面を5〜10μm程度余分に研磨する必要があると考えられ、研磨時間が長くなって、スラリーや研磨パッドの消耗品コストが増加し、コストアップにつながる。
第四の問題は、前述のようにウエハ表面を5〜10μm程度余分に研磨すると、10μm以下の浅いアライメントマーカー3では研磨中にマーカー3が消失してしまい、深いアライメントマーカー3では、研磨時の削りカスをマーカーの凹部に取り込みパーティクル発生の原因になり、いずれの場合でも問題となる。特に、アライメントマーカー3の表面は酸化膜4が除去されて疎水性のシリコン面が露出している。このため、CMP装置内で行われる洗浄工程でもマーカー部3に入り込んだゴミが十分に排出されず残ってしまうことである。
The third problem is that in order to polish the p-type epitaxial layer 2-1 protruding about several μm, the surface of the wafer cannot be flattened unless the wafer surface is further removed by about several μm at least due to the influence of dishing. In general, it is considered that the surface of the wafer needs to be polished by about 5 to 10 μm, which increases the polishing time, increases the cost of consumables for the slurry and polishing pad, and increases the cost.
The fourth problem is that if the wafer surface is polished excessively by about 5 to 10 μm as described above, the marker 3 disappears during polishing with the shallow alignment marker 3 of 10 μm or less, and the deep alignment marker 3 does not have the same during polishing. The scraps are taken into the recesses of the marker and cause particles, and in either case, it becomes a problem. In particular, on the surface of the alignment marker 3, the oxide film 4 is removed and the hydrophobic silicon surface is exposed. For this reason, even if the cleaning process is performed in the CMP apparatus, the dust that has entered the marker unit 3 is not sufficiently discharged and remains.

前記の問題点に対する対策として、図10(a)のように、酸化膜4をストッパー膜として用いてCMP措置により平坦化し、続いて図10(b)のようにフッ酸によって酸化膜4を除去し、最後にCMP装置で再度平坦化する方法も考えられている。しかし、この方法にはウエハ表面へのスクラッチ傷抑制、シリコン研磨量の抑制には有効であるが、次に説明するような2つの問題がある。
第一は、最後のCMP工程においてアライメントマーカー部3は疎水性のシリコン面が露出しているため、洗浄工程でゴミが除去しにくいという問題であり、第二の問題は、1μm程度の厚い酸化膜4をエッチングする工程をCMP装置の中で行うことは困難なため、平坦化工程がCMP工程、酸化膜エッチング工程、CMP工程と3工程に分けて行う必要があることである。
As a countermeasure against the above-mentioned problem, as shown in FIG. 10A, the oxide film 4 is used as a stopper film and is flattened by CMP, and then the oxide film 4 is removed by hydrofluoric acid as shown in FIG. 10B. Finally, a method of planarizing again with a CMP apparatus is also considered. However, this method is effective in suppressing scratches on the wafer surface and the amount of silicon polishing, but has the following two problems.
The first problem is that it is difficult to remove dust in the cleaning process because the hydrophobic silicon surface is exposed in the alignment marker portion 3 in the last CMP process, and the second problem is a thick oxidation of about 1 μm. Since it is difficult to perform the process of etching the film 4 in the CMP apparatus, it is necessary to perform the planarization process in three steps: a CMP process, an oxide film etching process, and a CMP process.

このため、半導体基板製造のコストアップにつながる。また、酸化膜4をハードマスクにして50μm程度の深いトレンチ2−2を形成する場合、トレンチエッチング後の酸化膜の膜厚がウエハの外周部と中央部とで、0.5μm程度の高低差の凸形膜厚分布(外周部で薄く、中央で厚い酸化残膜分布)を有することが一般的に知られている。このため、酸化膜研磨とシリコン層鏡面研磨をCMPで連続的に行うと、中央部と外周部との間の高低差が酸化膜の研磨後のシリコン層の研磨後にも維持され、アライメントマーカー3の深さにも分布を生じ、マーカー精度が劣化するという問題がある。
さらに、通常、酸化膜の研磨レートに比べてシリコン層の研磨レートは大きいため、シリコン層鏡面研磨後の高低差は選択比(シリコン研磨レート/酸化膜研磨レート)を倍率にして研磨前の高低差にかけ合わせた程度に増長される。例えば、初期の酸化膜厚段差0.5μmの場合、選択比2の条件で研磨するとシリコン層の高低差は1μm程度に拡大する。さらに、シリコンの研磨量を一定値に制御するための終点検出技術も確立されていない。
For this reason, it leads to the cost increase of semiconductor substrate manufacture. Further, when forming a deep trench 2-2 having a thickness of about 50 μm using the oxide film 4 as a hard mask, the film thickness of the oxide film after the trench etching is about 0.5 μm between the outer peripheral portion and the central portion of the wafer. It is generally known that the film has a convex film thickness distribution (thick oxide residue film distribution at the outer periphery and thin at the center). Therefore, when the oxide film polishing and the silicon layer mirror polishing are continuously performed by CMP, the height difference between the central portion and the outer peripheral portion is maintained even after polishing the silicon layer after polishing the oxide film, and the alignment marker 3 There is a problem that the distribution of the depth of the marker is also distributed, and the marker accuracy deteriorates.
Furthermore, since the polishing rate of the silicon layer is usually larger than the polishing rate of the oxide film, the difference in height after mirror polishing of the silicon layer is higher or lower than the polishing ratio by multiplying the selection ratio (silicon polishing rate / oxide polishing rate). Increased to the extent of the difference. For example, in the case of an initial oxide film thickness difference of 0.5 μm, when polished under the condition of a selection ratio of 2, the height difference of the silicon layer expands to about 1 μm. Furthermore, an end point detection technique for controlling the silicon polishing amount to a constant value has not been established.

本発明は、以上述べた点に鑑みてなされたものであり、本発明の目的は、超接合半導体装置のドリフト層形成のために、半導体基板表面に垂直な並列トレンチと、該トレンチをエッチング形成するためのマスク酸化膜パターンと、アライメントマーカーとを前記半導体基板表面に形成し、前記トレンチ内にエピタキシャル層を充填した後に、簡略化された工程で、前記アライメントマーカーの精度を劣化させることなく、前記半導体基板表面をいっそう高度の平坦度で研磨する方法を含む半導体装置の製造方法の提供である。   The present invention has been made in view of the above points, and an object of the present invention is to form a parallel trench perpendicular to the surface of a semiconductor substrate and etch the trench in order to form a drift layer of a superjunction semiconductor device. After forming a mask oxide film pattern and an alignment marker on the surface of the semiconductor substrate and filling the trench with an epitaxial layer, without reducing the accuracy of the alignment marker in a simplified process, The present invention provides a method for manufacturing a semiconductor device, including a method for polishing the surface of the semiconductor substrate with a higher degree of flatness.

特許請求の範囲の請求項1記載の本発明によれば、低抵抗半導体基板に一導電型半導体層が積層された半導体基板の前記一導電型半導体層表面に、トレンチ形成用並列絶縁膜パターンと、該並列絶縁膜パターンをマスクにエッチングされる前記半導体表面に垂直な並列トレンチと、アライメントマーカーとをそれぞれ形成し、前記並列トレンチ内に他導電型半導体層を充填した後、突出した部分の他導電型半導体層を除去する第一研磨工程と、前記並列絶縁膜パターンと前記他導電型半導体層との研磨を同時に行い、続いて下層の半導体層の研磨を行う第二研磨工程とを連続的に行う半導体素子の製造方法において、前記第一および第二研磨工程ではそれぞれ前記絶縁膜と半導体層に対する研磨レートが異なる研磨スラリーを用いる半導体素子の製造方法とすることにより、前記本発明の目的は達成される。   According to the first aspect of the present invention, the trench forming parallel insulating film pattern is formed on the surface of the one conductive semiconductor layer of the semiconductor substrate in which the one conductive semiconductor layer is laminated on the low resistance semiconductor substrate. Then, a parallel trench perpendicular to the semiconductor surface etched with the parallel insulating film pattern as a mask and an alignment marker are formed, and another parallel conductive semiconductor layer is filled in the parallel trench, and then the protruding portion A first polishing step for removing the conductive semiconductor layer and a second polishing step for simultaneously polishing the parallel insulating film pattern and the other conductive type semiconductor layer and subsequently polishing the lower semiconductor layer are continuously performed. In the method of manufacturing a semiconductor device, the first and second polishing steps use a semiconductor element that uses a polishing slurry having different polishing rates for the insulating film and the semiconductor layer, respectively. With the method of manufacturing, the object of the present invention can be achieved.

特許請求の範囲の請求項2記載の本発明によれば、前記研磨が、回転テーブル上に保持された研磨パッドを回転させながら研磨スラリーを供給し、研磨ヘッドに保持された半導体基板を回転させながら前記研磨パッド上面に押圧して研磨するCMP装置を用いて行われる半導体素子の製造方法とすることが好ましい。
特許請求の範囲の請求項3記載の本発明によれば、前記第二研磨工程における並列絶縁膜パターンに対する、前記半導体基板面内の研磨レート分布を、前記並列絶縁層パターンの半導体基板面内における膜厚分布を補正して平坦化されるように、半導体基板の中央部で大きく、外周部に向かって次第に小さくなるように研磨条件を設定する請求項1または2記載の半導体素子の製造方法とすることがより好ましい。
特許請求の範囲の請求項4記載の本発明によれば、前記第一研磨工程には、半導体層の研磨レート/絶縁膜の研磨レートで表される選択比が30以上、好ましくは60以上の高選択比スラリーを用い、第二研磨工程には、前記選択比が3以下、好ましくは2以下の低選択比スラリーを用いる請求項1乃至3のいずれか一項に記載の半導体装置の製造方法とすることがいっそう好ましい。
According to the second aspect of the present invention, the polishing supplies the polishing slurry while rotating the polishing pad held on the rotary table, and rotates the semiconductor substrate held by the polishing head. However, it is preferable to use a method of manufacturing a semiconductor element that is performed using a CMP apparatus that presses and polishes the upper surface of the polishing pad.
According to the third aspect of the present invention, the polishing rate distribution in the semiconductor substrate surface with respect to the parallel insulating film pattern in the second polishing step is determined in the semiconductor substrate surface of the parallel insulating layer pattern. 3. The method of manufacturing a semiconductor element according to claim 1, wherein polishing conditions are set so as to be large at the center portion of the semiconductor substrate and gradually become smaller toward the outer peripheral portion so as to be flattened by correcting the film thickness distribution. More preferably.
According to the present invention as set forth in claim 4, in the first polishing step, the selectivity expressed by the polishing rate of the semiconductor layer / the polishing rate of the insulating film is 30 or more, preferably 60 or more. 4. The method of manufacturing a semiconductor device according to claim 1, wherein a high selectivity slurry is used, and a low selectivity slurry having a selectivity of 3 or less, preferably 2 or less is used in the second polishing step. 5. Is more preferable.

特許請求の範囲の請求項5記載の本発明によれば、前記第二研磨工程では、格子状の溝を設けた研磨パッドを用いる請求項2乃至4のいずれか一項に記載の半導体装置の製造方法とすることも好ましい。
特許請求の範囲の請求項6記載の本発明によれば、前記第二研磨工程では、前記CMP装置における回転テーブルの回転数が42回転以上で行われる請求項2乃至5のいずれか一項に記載の半導体装置の製造方法とすることが好適である。
特許請求の範囲の請求項7記載の本発明によれば、前記絶縁膜が熱酸化膜あるいは熱CVDまたはプラズマCVDによる酸化膜である請求項1乃至6のいずれか一項に記載の半導体装置の製造方法とすることがより好適である。
特許請求の範囲の請求項8記載の本発明によれば、前記熱CVDあるいはプラズマCVDによる酸化膜がBPSG酸化膜である請求項7記載の半導体装置の製造方法とすることがいっそう好適である。
According to the present invention of claim 5, the semiconductor device according to claim 2, wherein a polishing pad provided with a lattice-like groove is used in the second polishing step. A manufacturing method is also preferred.
According to the present invention as set forth in claim 6, in the second polishing step, the number of rotations of the rotary table in the CMP apparatus is performed at 42 or more rotations. The manufacturing method of the semiconductor device described is preferable.
The semiconductor device according to claim 1, wherein the insulating film is a thermal oxide film or an oxide film formed by thermal CVD or plasma CVD. It is more preferable to use a manufacturing method.
According to the present invention as set forth in claim 8, it is more preferable that the oxide film formed by thermal CVD or plasma CVD is a BPSG oxide film.

特許請求の範囲の請求項9記載の本発明によれば、前記第二研磨工程では、半導体基板の中央部の受ける前記押圧力が外周部に比べて高くなるような圧力分布で研磨される請求項3乃至8のいずれか一項に記載の半導体装置の製造方法とすることも好適である。
特許請求の範囲の請求項10記載の本発明によれば、前記第二研磨工程における研磨終点検出に研磨ヘッドあるいは回転テーブルの負荷電流の変化を用いる請求項2乃至9のいずれか一項に記載の半導体装置の製造方法とすることが望ましい。
特許請求の範囲の請求項11記載の本発明によれば、前記第二研磨工程で、研磨中の絶縁膜の膜厚を監視するために絶縁膜に対する単色あるいは白色光による光学反射スペクトルを測定する請求項1乃至10のいずれか一項に記載の半導体装置の製造方法とすることも望ましい。
According to the present invention of claim 9, in the second polishing step, the polishing is performed with such a pressure distribution that the pressing force received by the central portion of the semiconductor substrate is higher than that of the outer peripheral portion. It is also preferable to adopt the method for manufacturing a semiconductor device according to any one of Items 3 to 8.
According to the tenth aspect of the present invention, the change in load current of the polishing head or the rotary table is used for detecting the polishing end point in the second polishing step. It is desirable to use the method for manufacturing the semiconductor device.
According to the present invention of claim 11, in the second polishing step, in order to monitor the film thickness of the insulating film being polished, an optical reflection spectrum by monochromatic or white light with respect to the insulating film is measured. It is also desirable to adopt a method for manufacturing a semiconductor device according to any one of claims 1 to 10.

特許請求の範囲の請求項12記載の本発明によれば、前記絶縁膜の研磨終点検出をリファレンス反射スペクトルとの比較から検出する請求項11記載の半導体装置の製造方法とすることもできる。
特許請求の範囲の請求項13記載の本発明によれば、絶縁膜の膜厚を薄膜の光学フィッティングから導出する請求項11または12記載の半導体装置の製造方法とすることもよい。
特許請求の範囲の請求項14記載の本発明によれば、前記絶縁膜を完全に除去した後に、さらに半導体層を0.2〜2μmの厚さの範囲で研磨する請求項1乃至13のいずれか一項に記載の半導体装置の製造方法とすることがいっそう望ましい。
特許請求の範囲の請求項15記載の本発明によれば、前記第二研磨工程後の研磨面を基準としたアライメントマーカーの凹部の深さが0.5μmから8μmの範囲にある請求項1乃至14のいずれか一項に記載の半導体装置の製造方法とすることが薦められる。
According to the twelfth aspect of the present invention, it is also possible to use the semiconductor device manufacturing method according to the eleventh aspect in which the polishing end point detection of the insulating film is detected by comparison with a reference reflection spectrum.
According to the present invention as set forth in claim 13, the method of manufacturing a semiconductor device according to claim 11 or 12, wherein the film thickness of the insulating film is derived from the optical fitting of the thin film.
According to the present invention of claim 14, after the insulating film is completely removed, the semiconductor layer is further polished in a thickness range of 0.2 to 2 μm. It is more desirable to use the method for manufacturing a semiconductor device according to any one of the above.
According to the present invention as set forth in claim 15, the depth of the concave portion of the alignment marker is in the range of 0.5 μm to 8 μm based on the polished surface after the second polishing step. It is recommended to use the method for manufacturing a semiconductor device according to any one of 14 above.

特許請求の範囲の請求項16記載の本発明によれば、前記第二研磨工程後のアライメントマーカーが絶縁膜で覆われている半導体装置の製造方法とすることがよりいっそう望ましい。
さらに本発明は、具体化して要約すると、CMP研磨を2工程に分け、高選択比スラリーを用いる第一研磨工程と低選択比スラリーを用いる第二研磨工程を連続的に行うものとする。第一研磨工程では、酸化膜をストッパーとして半導体基板表面を平坦化し、第二研磨工程で酸化膜とp型半導体層とを同時に研磨除去し、その下側の半導体層を0.5〜2μm程度、さらに研磨して平坦な鏡面になった時点で研磨工程を終了する。
これら2つの工程は、その際、第一研磨工程の選択比は30以上、さらには60以上が望ましく、第二研磨工程の選択比は3以下、さらには2以下が望ましい。なお、第一研磨工程および第二研磨工程は1台のCMP装置で連続処理する場合は、実質的に1工程とすることもできる。また、アライメントマーカーからのゴミの発生を防ぐには、研磨プロセス途中も含めてアライメントマーカーの深さを10μm以下にする、第二研磨工程後においてアライメントマーカー表面が酸化膜で覆われていることが必要である。
According to the sixteenth aspect of the present invention, it is even more desirable to provide a method for manufacturing a semiconductor device in which the alignment marker after the second polishing step is covered with an insulating film.
Further, in summary, the present invention divides CMP polishing into two steps, and sequentially performs a first polishing step using a high selection ratio slurry and a second polishing step using a low selection ratio slurry. In the first polishing step, the surface of the semiconductor substrate is flattened using the oxide film as a stopper, and in the second polishing step, the oxide film and the p-type semiconductor layer are simultaneously polished and removed, and the lower semiconductor layer is about 0.5 to 2 μm. Further, when the surface is further polished to obtain a flat mirror surface, the polishing process is finished.
In these two steps, the selection ratio in the first polishing step is preferably 30 or more, more preferably 60 or more, and the selection ratio in the second polishing step is preferably 3 or less, more preferably 2 or less. In addition, the first polishing step and the second polishing step can be substantially one step when continuous processing is performed with one CMP apparatus. Further, in order to prevent generation of dust from the alignment marker, the alignment marker surface is covered with an oxide film after the second polishing step, in which the depth of the alignment marker is 10 μm or less including during the polishing process. is necessary.

トレンチエッチングによって生じる凸型の酸化膜厚の半導体基板内分布(半導体基板内の中央部の酸化膜厚が外周部の酸化膜厚より大きい分布)に対応するため、第二研磨工程の研磨レート分布が凸形(半導体基板の中央部の研磨レートが外周部より大きい研磨レート分布)になるようにして酸化膜の凸形膜厚分布が平坦化されるように補正する。そのためには、格子溝のついた研磨パッドを用いること、研磨テーブルの回転数を42rpm以上にすることが有効である。さらには、酸化膜にBPSG膜を用いること、CMP研磨の際に、半導体基板の中心部における研磨パッドの押圧力が外周部に比べて高くなるような圧力分布をもたせることが有効である。
第二研磨工程において、研磨終点を適正に決定するには以下2つの終点検出技術のどちらかを用いることが有効である。まず、第一の方法として、研磨テーブルまたは研磨ヘッドのモーター負荷電流を用いることがあげられる。第二研磨工程において、酸化膜を完全に除去した後はモーター負荷電流が安定するので、その長さから半導体層の研磨時間を決める方法。第二の方法として、研磨中のウエハの反射スペクトルを計測する方法があげられる。その方法としては、ベアシリコンウエハをリファレンスにして比較する方法、計算による反射スペクトルとの光学フィッティングから研磨中の酸化膜厚を導出する方法がある。
Polishing rate distribution in the second polishing process to correspond to the distribution in the semiconductor substrate of the convex oxide film thickness generated by the trench etching (the distribution of the oxide film in the central part in the semiconductor substrate is larger than the oxide film thickness in the outer peripheral part) Is corrected so that the convex film thickness distribution of the oxide film is flattened so as to be convex (the polishing rate distribution in the central portion of the semiconductor substrate is larger than the outer peripheral portion). For this purpose, it is effective to use a polishing pad with a lattice groove and to set the number of rotations of the polishing table to 42 rpm or more. Furthermore, it is effective to use a BPSG film as the oxide film, and to have a pressure distribution such that the pressing force of the polishing pad at the center of the semiconductor substrate is higher than that of the outer periphery during CMP polishing.
In the second polishing step, it is effective to use one of the following two end point detection techniques in order to appropriately determine the polishing end point. First, as a first method, a motor load current of a polishing table or a polishing head is used. In the second polishing step, after the oxide film is completely removed, the motor load current is stabilized, so the polishing time of the semiconductor layer is determined from the length. As a second method, there is a method of measuring a reflection spectrum of a wafer being polished. As the method, there are a method of comparing with a bare silicon wafer as a reference, and a method of deriving an oxide film thickness during polishing from optical fitting with a calculated reflection spectrum.

本発明によれば、アライメントマーカーの認識性を劣化させず、一連の研磨工程が位置工程で済むため、工程を簡略化でき、超接合半導体素子の製造に必要な半導体基板表面の平坦化のための研磨工程における膜厚バラツキが小さく、且つスクラッチ傷やアライメントマークからのゴミの発生がなく、高い良品率が得られる半導体装置の製造方法を提供することができる。   According to the present invention, since a series of polishing steps can be performed without deteriorating alignment marker recognizability, the steps can be simplified, and the surface of a semiconductor substrate necessary for manufacturing a superjunction semiconductor element can be planarized. Thus, it is possible to provide a method for manufacturing a semiconductor device in which the variation in film thickness in the polishing step is small and there is no generation of scratches or dust from alignment marks, and a high yield rate can be obtained.

以下、本発明の半導体装置の製造方法にかかる実施例について、図面に基づいて詳細に説明する。ただし、本発明は、その要旨を超えない限り、以下の実施例の記載に限定されるものではない。
図1−1〜図1−4は、本発明の半導体装置の製造方法にかかる実施例1に記載の製造工程ごとに示した半導体基板の要部断面図、図2は、本発明にかかるトレンチエッチング後の酸化膜厚分布図、図3は、本発明にかかる酸化膜表面研磨後の半導体基板の断面図、図4は、本発明にかかる研磨パッドおよび研磨テーブルの回転数をパラメータとしたときの半導体基板の半径方向研磨レート分布図、図5は、本発明にかかる第二研磨工程におけるモーター負荷電流と研磨時間との関係図、図6は、本発明にかかる3種類の酸化膜(熱酸化膜、LP−TEOS膜、BPSG膜)に対する半導体基板半径方向研磨レート分布図、図7は、本発明にかかる研磨中の反射スペクトルを評価するための光学計測システム概略図、図8は、本発明にかかる半導体基板の研磨中における反射スペクトル図である。
Embodiments of a method for manufacturing a semiconductor device according to the present invention will be described below in detail with reference to the drawings. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.
FIGS. 1-1 to 1-4 are cross-sectional views of main parts of a semiconductor substrate shown for each manufacturing process described in the first embodiment according to the method for manufacturing a semiconductor device of the present invention, and FIG. FIG. 3 is a cross-sectional view of the semiconductor substrate after the oxide film surface polishing according to the present invention, and FIG. 4 is a graph in which the rotational speeds of the polishing pad and the polishing table according to the present invention are used as parameters. FIG. 5 is a relationship diagram between the motor load current and the polishing time in the second polishing step according to the present invention, and FIG. 6 shows three types of oxide films (heats) according to the present invention. FIG. 7 is a schematic diagram of an optical measurement system for evaluating a reflection spectrum during polishing according to the present invention, and FIG. Invention Is a reflection spectrum diagram during the polishing of the conductive substrate.

図1は縦型の超接合MOSFETの超接合構造部分の製造方法を説明するための半導体基板の製造工程毎の要部断面図である。まずアンチモンドープ、砒素ドープなどによるn++型で高不純物濃度の低抵抗シリコン基板1を準備する。この結晶の面方位は主面が(100)であり、オリエンテーションフラットが(100)面となっている。また前記n++型低抵抗基板1の不純物濃度は2×1018cm−3程度である。この低抵抗基板1に厚さが50μm程度、リンドープで不純物濃度が6×1015cm−3程度のエピタキシャルシリコン層2成長を行なう(図1(a))。
その後、アライメントマーカー3を前記リンドープによるn型エピタキシャル成長層2の表面に形成する。このとき、アライメントマーカー3の深さは1〜10μm程度である。なお実施例1ではアライメントマーカー3の深さは3μmとした(図1(b))。アライメントマーカーはフォトリソグラフィ工程において、マスク合わせ精度を高めるために用いられる。このアライメントマーカー3の形成はドライエッチングで行ない、異方性、等方性のいずれのエッチングでもよい。
FIG. 1 is a cross-sectional view of a principal part for each manufacturing process of a semiconductor substrate for explaining a method of manufacturing a superjunction structure portion of a vertical superjunction MOSFET. First, an n ++ type high-impurity concentration low-resistance silicon substrate 1 prepared by antimony doping, arsenic doping, or the like is prepared. The crystal plane orientation is (100) on the principal plane and (100) on the orientation flat. The impurity concentration of the n ++ type low resistance substrate 1 is about 2 × 10 18 cm −3 . An epitaxial silicon layer 2 having a thickness of about 50 μm and an impurity concentration of about 6 × 10 15 cm −3 is grown on the low-resistance substrate 1 (FIG. 1A).
After that, the alignment marker 3 is formed on the surface of the phosphorus-doped n-type epitaxial growth layer 2. At this time, the depth of the alignment marker 3 is about 1 to 10 μm. In Example 1, the depth of the alignment marker 3 was 3 μm (FIG. 1B). The alignment marker is used to increase mask alignment accuracy in the photolithography process. This alignment marker 3 is formed by dry etching, and any of anisotropic and isotropic etching may be used.

異方性エッチングの場合、後に述べるトレンチ形成時にハードマスクとなる絶縁膜の厚さを厚くする必要があるが、マスク合わせでのアライメント精度を確保できる。また等方性エッチングの場合には、アライメント精度は異方性エッチングの場合よりも悪くなるが、トレンチ形成時のハードマスクとなる絶縁膜の厚さを薄くできる。
以下では異方性エッチングでターゲットを形成した例について説明する。アライメントマーカー3をドライエッチングによって形成した後、トレンチ形成時のハードマスクとなる絶縁膜4を形成する。実施例1ではアライメントマーカー3を形成した後の半導体基板に、約2.4μmの膜厚で熱酸化膜4を形成した。この絶縁膜は熱酸化膜以外でもよく、熱CVDあるいはプラズマCVDによるHTO(High Temperature Oxide)、TEOS(Tetra Ethyl Ortho Silicate)等の酸化膜でもよい。
In the case of anisotropic etching, it is necessary to increase the thickness of the insulating film serving as a hard mask when forming a trench, which will be described later, but it is possible to ensure alignment accuracy in mask alignment. In the case of isotropic etching, the alignment accuracy is worse than that in the case of anisotropic etching, but the thickness of the insulating film serving as a hard mask during trench formation can be reduced.
Below, the example which formed the target by anisotropic etching is demonstrated. After the alignment marker 3 is formed by dry etching, an insulating film 4 serving as a hard mask when forming the trench is formed. In Example 1, the thermal oxide film 4 having a thickness of about 2.4 μm was formed on the semiconductor substrate after the alignment marker 3 was formed. This insulating film may be other than the thermal oxide film, and may be an oxide film such as HTO (High Temperature Oxide) or TEOS (Tetra Ethyl Ortho Silicate) by thermal CVD or plasma CVD.

その後、この酸化膜4をパターニングによりトレンチエッチングを行なう箇所を選択的に開口部4−1を形成する(図1(c))。実施例1では、前記酸化膜4に形成した開口部4−1の幅は約5μm、酸化膜4を残した部分の幅は約5μmである。これにより、5μm間隔で5μm幅のトレンチが形成可能となる。次にこの選択的に開口した酸化膜4をハードマスクとし、トレンチ5を形成する。実施例1では深さが50μm程度のトレンチ5を形成した。この際、トレンチ5形成時のマスクとなっている酸化膜4も約1.4μmエッチングされ、酸化膜4の残り膜厚は約1μm程度となる(図1(d))。
図2はトレンチエッチング後の酸化膜4について、半導体基板内の残膜厚分布を示す。横軸に直径150mmの半導体基板の位置、縦軸にトレンチエッチング後の酸化膜4の残膜厚(オングストロームの単位)をとった。図2に示すように、トレンチエッチング後の酸化膜4は半導体基板の外周部と中央部との間で0.4μm程度の幅をもった中央部の酸化膜厚が厚い凸型の分布となっている。
Thereafter, an opening 4-1 is selectively formed at a portion where trench etching is performed on the oxide film 4 by patterning (FIG. 1C). In Example 1, the width of the opening 4-1 formed in the oxide film 4 is about 5 μm, and the width of the portion where the oxide film 4 is left is about 5 μm. As a result, trenches having a width of 5 μm can be formed at intervals of 5 μm. Next, the trench 5 is formed using the selectively opened oxide film 4 as a hard mask. In Example 1, the trench 5 having a depth of about 50 μm was formed. At this time, the oxide film 4 serving as a mask when forming the trench 5 is also etched by about 1.4 μm, and the remaining film thickness of the oxide film 4 becomes about 1 μm (FIG. 1D).
FIG. 2 shows the remaining film thickness distribution in the semiconductor substrate for the oxide film 4 after trench etching. The horizontal axis represents the position of the semiconductor substrate having a diameter of 150 mm, and the vertical axis represents the remaining film thickness (unit of angstrom) of the oxide film 4 after the trench etching. As shown in FIG. 2, the oxide film 4 after the trench etching has a convex distribution with a thick oxide film in the central portion having a width of about 0.4 μm between the outer peripheral portion and the central portion of the semiconductor substrate. ing.

次に50μm深さのトレンチ5にボロンドープのp型エピタキシャル成長を行ない、p型シリコンエピタキシャル層2−1を充填する。トレンチ5へのエピタキシャル成長は常圧で行なうが、それに先立ち常圧の水素雰囲気で自然酸化膜を除去することが好ましい。トレンチ5への前記p型エピタキシャル層2−1の成長を行なうと、図1(e)に示すように、前記p型エピタキシャル層2−1中心部表面が凹の形状となるが、その凹部の底部の高さが、残ったハードマスクの酸化膜4の表面よりも高くなるようにエピタキシャル層を成長させる必要がある。
また図示しないが、幅が異なる2種類のトレンチを形成した場合には、最も幅の広いトレンチを埋め込んだ凹部の底部の高さが、残った酸化膜の表面よりも高くなるようにエピタキシャル成長層で充填するとよい。このときのエピタキシャル成長層2−1の不純物濃度はボロンドープで6×1015cm−3程度である。この不純物濃度は低抵抗基板1上に形成したn型エピタキシャル成長層2と導電型が逆ではあるが、不純物濃度としては同じである。
Next, boron-doped p-type epitaxial growth is performed in the trench 5 having a depth of 50 μm to fill the p-type silicon epitaxial layer 2-1. Epitaxial growth in the trench 5 is performed at normal pressure, but it is preferable to remove the natural oxide film in a hydrogen atmosphere at normal pressure prior to that. When the p-type epitaxial layer 2-1 is grown in the trench 5, the surface of the central portion of the p-type epitaxial layer 2-1 has a concave shape as shown in FIG. It is necessary to grow the epitaxial layer so that the height of the bottom becomes higher than the surface of the remaining oxide film 4 of the hard mask.
Although not shown, when two types of trenches having different widths are formed, the epitaxial growth layer is formed so that the bottom of the concave portion in which the widest trench is buried is higher than the surface of the remaining oxide film. It is good to fill. At this time, the impurity concentration of the epitaxial growth layer 2-1 is about 6 × 10 15 cm −3 by boron doping. The impurity concentration is the same as the impurity concentration although the conductivity type is opposite to that of the n-type epitaxial growth layer 2 formed on the low-resistance substrate 1.

このようにすることにより、超接合半導体素子のドリフト層に超接合構造として不純物濃度を同じにした並列pn層を形成できる。なお、アライメントマーカー3は酸化膜4で覆われているため、n型エピタキシャル層2−1はほとんどアライメントマーカー部3には成長しない(図1(e))。この半導体基板をCMP(Chemical Mechanical Polish)装置に搬入し、熱酸化膜4をストッパーとして、酸化膜よりシリコンに対するエッチングレートの大きい研磨液(スラリー)を用いてトレンチ5の上方に突出したp型エピタキシャル層2−1を矢印2−4に示す酸化膜表面まで研磨し、平坦化する(CMP装置に搬入後、ここまでを第一研磨工程とする)(図1(f))。
次に、酸化膜4と酸化膜4間に位置するp型エピタキシャル層2−1の同時研磨と、その終了後、続いて鏡面処理を目的とした研磨を点線2−5までを連続して行うと、図1(g)に示すように、アライメントマーカー3の凹部は適正に残ったまま、並列pn層の表面は鏡面処理にすることができる(ここまでを第二研磨工程とする)。ここでは、CMP装置としての荏原製作所製のEPO−113Dを用いた。この装置の研磨圧力制御方式はバッキングフィルムタイプである。第一および第二研磨工程における各研磨条件を下記表1に示す。
By doing so, a parallel pn layer having the same impurity concentration as the superjunction structure can be formed in the drift layer of the superjunction semiconductor element. Since the alignment marker 3 is covered with the oxide film 4, the n-type epitaxial layer 2-1 hardly grows on the alignment marker portion 3 (FIG. 1 (e)). This semiconductor substrate is carried into a CMP (Chemical Mechanical Polish) apparatus, and a p-type epitaxial layer protruding above the trench 5 by using a polishing liquid (slurry) having a higher etching rate with respect to silicon than the oxide film using the thermal oxide film 4 as a stopper. The layer 2-1 is polished to the surface of the oxide film indicated by the arrow 2-4 and flattened (this is the first polishing step after being loaded into the CMP apparatus) (FIG. 1 (f)).
Next, simultaneous polishing of the p-type epitaxial layer 2-1 located between the oxide film 4 and the oxide film 4, and after that, polishing for the purpose of mirror finishing is continuously performed up to the dotted line 2-5. Then, as shown in FIG. 1 (g), the surface of the parallel pn layer can be mirror-finished while the recesses of the alignment marker 3 remain properly (this is the second polishing step). Here, EPO-113D manufactured by Ebara Seisakusho as a CMP apparatus was used. The polishing pressure control system of this apparatus is a backing film type. Table 1 below shows each polishing condition in the first and second polishing steps.

Figure 2007129115
まず、CMP装置において、エッチング選択比(シリコン研磨レート/酸化膜研磨レート)が30以上の高選択比スラリーを供給しながら、研磨ヘッドを研磨パッドに押し当て第一研磨工程を行った。研磨スラリーには代表的な高選択比スラリーであるフジミ社製のPlanerlite 6101を用い、研磨パッドにはロデール社製のIC1000/suba400複合パッドを用いた。なお、研磨パッドには、通常、研磨スラリーの供給や排出を促進するために、穴や格子状あるいは同心円上の溝が設けられている。これらの形状により研磨レート分布に若干の相違が見られるが、第一研磨工程では酸化膜4が良好なストッパーになるため、どの研磨パッドを用いてもよい。ここでは、後述の穴と格子状の溝の双方を設けた研磨パッドを用いた。前記表1に示すように、第一研磨工程におけるエッチング選択比は120と高いため、突出したp型エピタキシャル層2−1を選択的に除去し、平坦になった時点で研磨を止めることは容易にできる。
Figure 2007129115
First, in the CMP apparatus, the first polishing step was performed by pressing the polishing head against the polishing pad while supplying a high selection ratio slurry having an etching selection ratio (silicon polishing rate / oxide polishing rate) of 30 or more. As the polishing slurry, Planlite 6101 manufactured by Fujimi, which is a typical high selectivity slurry, was used. As the polishing pad, an IC1000 / suba400 composite pad manufactured by Rodel was used. Note that the polishing pad is usually provided with holes, grids or concentric grooves in order to promote the supply and discharge of the polishing slurry. Although the polishing rate distribution is slightly different depending on these shapes, any polishing pad may be used because the oxide film 4 serves as a good stopper in the first polishing step. Here, a polishing pad provided with both holes and lattice-like grooves described later was used. As shown in Table 1, since the etching selectivity in the first polishing step is as high as 120, it is easy to selectively remove the protruding p-type epitaxial layer 2-1 and stop polishing when it becomes flat. Can be.

研磨時間については、一定時間研磨または終点信号を用いる方法が有効である。前者の一定時間研磨法としては、p型エピタキシャル層2−1を完全に除去するまでの時間を基準とし、それに1.1〜1.3程度の係数を掛けた一定時間研磨により良好な形状が得られる。後者の終点信号法としては、研磨ヘッドあるいは研磨テーブルの負荷電流の変化を終点検知に利用することが有効である(研磨テーブルという場合は回転テーブルと研磨パッドを合わせたものをいう)。p型エピタキシャル層2−1が除去され酸化膜4が現われると負荷電流が変化するため終点として検出することができる。
第一研磨工程が終了した後に、同一の研磨パッドで第二研磨工程を行った。なお、第一研磨工程と第二研磨工程の間には研磨スラリーが混じらないように5〜30秒程度の純水置換を行った。第二研磨工程には選択比3以下の低選択比スラリーを用い、酸化膜を有する層の研磨除去とその下層のp層とn層との並列エピタキシャル成長層のミラー(鏡面)研磨を連続的に行った。
As for the polishing time, a method using polishing for a fixed time or an end point signal is effective. As the former fixed time polishing method, a good shape is obtained by polishing for a fixed time based on the time until the p-type epitaxial layer 2-1 is completely removed and multiplied by a coefficient of about 1.1 to 1.3. can get. As the latter end point signal method, it is effective to use a change in the load current of the polishing head or the polishing table for end point detection (in the case of a polishing table, it means a combination of a rotary table and a polishing pad). When the p-type epitaxial layer 2-1 is removed and the oxide film 4 appears, the load current changes and can be detected as an end point.
After the first polishing step was completed, the second polishing step was performed with the same polishing pad. In addition, the pure water substitution for about 5 to 30 seconds was performed between the 1st grinding | polishing process and the 2nd grinding | polishing process so that polishing slurry might not mix. In the second polishing step, a low selection ratio slurry having a selection ratio of 3 or less is used, and the polishing removal of the layer having the oxide film and the mirror (mirror surface) polishing of the parallel epitaxial growth layer of the underlying p layer and n layer are continuously performed. went.

理想的な第二研磨工程の半導体基板のイメージを図3に模式的に示す。第二研磨工程の直前の酸化膜4は、前述のトレンチ5形成の影響で、半導体基板内で凸型の膜厚分布(半導体基板の中央部の酸化膜厚が外周部より大きい膜厚分布)をもっており、そのまま酸化膜4を研磨すると、凸型の膜厚分布は酸化膜4が完全に研磨除去された後も、鎖線6−1に示すようにそのまま凸型形状を維持する。(図3(a))。したがって、図3(b)に示すように、これを補正するように凸型の研磨レート(凸型の研磨レートとは、中心部の研磨レートが外周部より高い研磨レートのこと)で研磨し、連続して鎖線6−2で示すようにp型とn型との並列シリコンエピタキシャル層の研磨終了ラインまで研磨して平坦になった時点で停止するのが理想である。これを実現するには以下の2つの条件が必要である。   An image of an ideal semiconductor substrate in the second polishing step is schematically shown in FIG. The oxide film 4 immediately before the second polishing step has a convex film thickness distribution in the semiconductor substrate due to the above-described formation of the trench 5 (the film thickness distribution in which the oxide film thickness in the central portion of the semiconductor substrate is larger than the outer peripheral portion). When the oxide film 4 is polished as it is, the convex film thickness distribution maintains the convex shape as shown by a chain line 6-1 even after the oxide film 4 is completely polished and removed. (FIG. 3A). Therefore, as shown in FIG. 3B, polishing is performed at a convex polishing rate (a convex polishing rate is a polishing rate in which the polishing rate at the center is higher than that at the outer periphery) so as to correct this. Ideally, it is ideal to stop when the polishing is continued until the polishing end line of the p-type and n-type parallel silicon epitaxial layers is flattened as indicated by the chain line 6-2. In order to realize this, the following two conditions are necessary.

第一の条件は、酸化膜4とシリコンエピタキシャル層の研磨レートを極力1に近づける。第二の条件は、半導体基板の外周の研磨レートを中心部よりも15〜30%低くした凸型の研磨レートで酸化膜を研磨する。まず、前記第一の条件に関して述べる。一般に、シリコンの研磨レートは酸化膜に比べて大きく選択比は1よりも大きくなる。今回、極力1に近い研磨スラリーとしてキャボット社SS−25Eを用いた。今回の研磨条件での選択比は約2.3である。つぎに、前記第二の条件に関しては、凸型の研磨レート分布を実現する条件を鋭意検討した結果、研磨パッドの形状と回転テーブルの回転数の選択が重要であることを見出した。
図4に3種類の研磨パッドによる研磨レート分布を示す(図4(a)、図4(b)、図4(c))。3種類の研磨パッドは(a)穴パッド、(b)XY(格子)溝パッド、(c)XY(格子)溝+穴パッドである。それぞれ、回転テーブルの回転数(21rpmを◆印、42rpmを□、63rpmを△、84rpmを×、120rpmを*印)をパラメータとした。規格化研磨レートを縦軸、横軸にウエハ中心からの距離(mm)をとり、研磨レートは49ポイントサークルスキャン(12方向に原点(ウエハ中心)からの距離が12.5、25.27.5、52.5、70mmの点の膜厚を計測)から導出し、同心円ごとに平均化して相対値としてプロットした。この結果から、図4(b)、図4(c)に示すように、格子溝(XY溝)または格子溝と穴の双方をそれぞれ設けた研磨パッドを用い、極力回転テーブルの回転数を高回転数(63rpm以上)で研磨することにより凸型の研磨レート分布を実現できることが分かった。図4(a)は120rpmの高速回転を除いて中心部の研磨レートが低い凹型の研磨レートを示す傾向が強く、図4(b)および図4(c)でも、低速の21rpm回転になると、必ずしも中心の研磨レートが最も高いとは言えないことを示している。
The first condition is to make the polishing rate of the oxide film 4 and the silicon epitaxial layer as close to 1 as possible. The second condition is to polish the oxide film at a convex polishing rate in which the polishing rate on the outer periphery of the semiconductor substrate is 15 to 30% lower than the central portion. First, the first condition will be described. In general, the polishing rate of silicon is larger than that of an oxide film, and the selection ratio is larger than 1. This time, Cabot SS-25E was used as a polishing slurry as close to 1 as possible. The selection ratio under the current polishing conditions is about 2.3. Next, with regard to the second condition, as a result of intensive studies on conditions for realizing a convex polishing rate distribution, it was found that selection of the shape of the polishing pad and the number of rotations of the rotary table is important.
FIG. 4 shows polishing rate distributions by three types of polishing pads (FIGS. 4A, 4B, and 4C). The three types of polishing pads are (a) hole pad, (b) XY (grating) groove pad, and (c) XY (grating) groove + hole pad. The number of rotations of the rotary table (21 rpm for ♦, 42 rpm for □, 63 rpm for Δ, 84 rpm for x, 120 rpm for *) was used as a parameter. The normalized polishing rate is the vertical axis, the horizontal axis is the distance (mm) from the wafer center, and the polishing rate is 49-point circle scan (the distance from the origin (wafer center) in 12 directions is 12.5, 25.27. The film thickness at points of 5, 52.5, and 70 mm was derived from measurement), averaged for each concentric circle, and plotted as a relative value. From this result, as shown in FIGS. 4 (b) and 4 (c), the rotational speed of the rotary table is increased as much as possible by using a polishing pad provided with lattice grooves (XY grooves) or both lattice grooves and holes. It was found that a convex polishing rate distribution can be realized by polishing at a rotational speed (63 rpm or more). FIG. 4 (a) has a strong tendency to show a concave polishing rate with a low polishing rate at the center except for high-speed rotation of 120 rpm. FIG. 4 (b) and FIG. This indicates that the center polishing rate is not necessarily the highest.

研磨パッドは格子溝(溝ピッチ15mm)だけのもの(図4(b))と格子溝と穴の双方を設けたもの(溝ピッチ40mm、穴径1.5mm)(図4(c))のどちらでもよいが、前者の方が若干良好である。そこで、前記表1に示すように格子溝パッドを用い、回転テーブルの回転数120rpmとした。なお、この研磨条件で凸型の研磨レート分布(ウエハ中心部の研磨レートが外周部より大)を実現できる理由としては以下の三つが考えられる。
(理由1)穴パッドを用いると、ウエハ外周から中心部への研磨スラリーの流入が悪く結果として凹型分布になり易い。溝パッドを用いると研磨スラリーの流入が多くなるため、凸型の方向に働く。(理由2)回転テーブルの回転数を上げると研磨スラリーの流入がさらに改善される。(理由3)回転テーブルの回転数を上げるとウエハ面の平均温度が上昇する。また、研磨ヘッドの外周部は研磨スラリーや空気等により冷却されるため、凸型の温度分布になる。結果として、回転数を上げると中心部と外周部の温度差が大きくなり凸型の研磨レート分布になる。
The polishing pad has only a lattice groove (groove pitch of 15 mm) (FIG. 4B) and one provided with both lattice grooves and holes (groove pitch 40 mm, hole diameter 1.5 mm) (FIG. 4C). Either is acceptable, but the former is slightly better. Therefore, as shown in Table 1, a lattice groove pad was used, and the rotation speed of the rotary table was 120 rpm. There are three possible reasons why a convex polishing rate distribution (the polishing rate at the center of the wafer is larger than the outer peripheral portion) can be realized under these polishing conditions.
(Reason 1) When a hole pad is used, the flow of the polishing slurry from the outer periphery of the wafer to the center is poor, and as a result, a concave distribution tends to occur. When the groove pad is used, the polishing slurry flows in more, so that it works in the convex direction. (Reason 2) Increasing the rotational speed of the rotary table further improves the inflow of the polishing slurry. (Reason 3) The average temperature of the wafer surface increases when the number of rotations of the rotary table is increased. Further, since the outer peripheral portion of the polishing head is cooled by polishing slurry, air, or the like, a convex temperature distribution is obtained. As a result, when the rotational speed is increased, the temperature difference between the central portion and the outer peripheral portion is increased, and a convex polishing rate distribution is obtained.

第二研磨時間は、第一研磨工程と同様に一定時間研磨または終点信号の検出による研磨時間の決定法のどちらを用いてもよい。ただし、第二研磨工程には第一研磨工程のときのような研磨終点を決めるための基準となるストッパー膜(酸化膜)が存在しないため、より精密な制御が必要であり、何らかの終点信号を用いることが望ましい。一例として、研磨テーブル、研磨ヘッドあるいは回転テーブルのモーター負荷電流を用いることが有効である。
図5に、半導体基板の研磨中におけるモーター負荷電流の時間変化の概念図を示す。負荷電流は、A領域:酸化膜全面被覆、B領域:酸化膜部分除去、C領域:酸化膜完全除去というように連続的に変化する。酸化膜が完全に除去されると負荷電流がほぼ一定値になるので、シリコン層だけを研磨する場合の終点の決定は、領域Cの時間とシリコンの研磨レートの積を所定の値にすることで、所定の位置でシリコン研磨を停止することができる。シリコン層の研磨膜厚は0.5〜5μmとすることが有効であるが、ここでは1μmとした。
As the second polishing time, either a fixed time polishing or a polishing time determination method by detecting an end point signal may be used as in the first polishing step. However, since there is no stopper film (oxide film) as a reference for determining the polishing end point as in the first polishing step in the second polishing step, more precise control is required, and any end point signal is output. It is desirable to use it. As an example, it is effective to use a motor load current of a polishing table, a polishing head, or a rotary table.
FIG. 5 shows a conceptual diagram of the time change of the motor load current during polishing of the semiconductor substrate. The load current continuously changes such as A region: oxide film covering, B region: oxide film partial removal, and C region: oxide film complete removal. Since the load current becomes a substantially constant value when the oxide film is completely removed, the end point in the case of polishing only the silicon layer is determined by setting the product of the time in region C and the polishing rate of silicon to a predetermined value. Thus, silicon polishing can be stopped at a predetermined position. The polishing film thickness of the silicon layer is effectively 0.5 to 5 μm, but here it is 1 μm.

図1(g)に示すように、アライメントマーカー部3に酸化膜4が残った状態で工程完了となる。アライメントマーカー部3のシリコンの段差を調べるため、アライメントマーカー部3に残った酸化膜4をふっ酸でエッチングした後に表面粗さ計で評価した。6インチウエハ面内に形成した50個のマーカーの段差は3.0±0.12μmに小さくなっていることが分かった。トレンチエッチング後の酸化膜厚分布は±0.2〜0.25と大きいため、狙いどおりの効果で段差が半減していることが確認できた。以上の工程により、安定した、精度高い形状のアライメントマーカー部3を残しつつ平坦な表面形状を持った超接合半導体装置用の超接合構造を形成するための半導体結晶基板の製造工程が完了する。
なお、実施例1では第一研磨工程と第二研磨工程を1組の研磨ヘッドおよび研磨パッドで連続して行ったが、2個以上の研磨ヘッドや研磨パッドをもつCMP装置で研磨する場合は、それぞれ別の研磨ヘッドや研磨パッドで行ってもよい。また、実施例1ではバッキングフィルムタイプの研磨ヘッドを用いたが、より均一な圧力制御が可能なエアバックタイプあるいはエアフロータイプの装置を用いてもよい。さらには、中心部に比べて外周部の圧力を小さくするような圧力分布をもたせることが可能な研磨ヘッドを用いるとよい。
As shown in FIG. 1G, the process is completed with the oxide film 4 remaining in the alignment marker portion 3. In order to examine the level difference of silicon in the alignment marker portion 3, the oxide film 4 remaining on the alignment marker portion 3 was etched with hydrofluoric acid and then evaluated with a surface roughness meter. It was found that the step difference of 50 markers formed on the 6-inch wafer surface was as small as 3.0 ± 0.12 μm. Since the oxide film thickness distribution after the trench etching was as large as ± 0.2 to 0.25, it was confirmed that the step was halved by the intended effect. Through the above steps, the manufacturing process of the semiconductor crystal substrate for forming the superjunction structure for the superjunction semiconductor device having the flat surface shape while leaving the stable and highly accurate alignment marker portion 3 is completed.
In Example 1, the first polishing step and the second polishing step were continuously performed with one set of polishing head and polishing pad. However, when polishing with a CMP apparatus having two or more polishing heads and polishing pads, These may be carried out using different polishing heads or polishing pads. Further, although the backing film type polishing head is used in Embodiment 1, an air bag type or air flow type apparatus capable of more uniform pressure control may be used. Furthermore, it is preferable to use a polishing head that can have a pressure distribution that makes the pressure at the outer peripheral portion smaller than the central portion.

実施例2は、トレンチ形成用のハードマスクとして、ボロンおよびリンをそれぞれ数%添加した酸化膜いわゆるBPSG(ボロフォスホシリケートガラス)膜を用いる方法である。この場合、前記実施例1における酸化膜形成の工程をBPSG成膜に置き換えればよい。BPSGの成膜方法は熱CVDあるいはプラズマCVDのどちらでもよい。BPSGを用いた場合のトレンチエッチングの際のエッチング選択比は前記実施例1の熱酸化膜よりも1〜2割程度低下する。この点を考慮してBPSG膜厚は熱酸化膜の場合に比べ若干厚く設定する必要がある。実施例2でのBPSG膜厚は2.6μmとした。また、実施例2による研磨条件を表2に示す。   Example 2 is a method using an oxide film so-called BPSG (borophosphosilicate glass) film added with several percent of boron and phosphorus as a hard mask for trench formation. In this case, the oxide film formation step in the first embodiment may be replaced with BPSG film formation. The film forming method of BPSG may be either thermal CVD or plasma CVD. When BPSG is used, the etching selectivity at the time of trench etching is about 10 to 20% lower than that of the thermal oxide film of the first embodiment. In consideration of this point, it is necessary to set the BPSG film thickness slightly thicker than that in the case of the thermal oxide film. The BPSG film thickness in Example 2 was 2.6 μm. Table 2 shows the polishing conditions according to Example 2.

Figure 2007129115
BPSG膜を用いると、二つのメリットが得られる。まず、図6に3種類の酸化膜(熱酸化膜◆印、LP−TEOS膜□印、BPSG膜△印)を用いたときの、ウエハの半径方向の研磨レート分布を示す。図6の縦軸は規格化された研磨レート、横軸はウエハ中心からの距離である。この結果から、BPSG膜を用いると研磨レート分布が熱酸化膜やLP−TEOS膜に比べ凸型化(中央部の研磨レートが大きい)がさらに進んでいることが分かる。このときの外周部の研磨レートは中心部よりも約26%低く、トレンチエッチング工程で生じる酸化膜厚分布を打ち消すような理想的な形状が得られることが分かった。
次に、前記表2に示すように、BPSG膜を用いると第一研磨工程における選択比が前記表1の熱酸化膜より若干低下(120が75に低下)するものの、第二研磨工程における選択比も低下(2.3から1.1に低下)して、ほぼ1に近い1.1になることが分かった。第二研磨工程は、酸化膜の研磨除去とその後の下層のシリコン層の鏡面研磨が連続的であるため、選択比が大きいと最終的な研磨量バラツキを増大させてしまう。選択比が1に近いということは酸化膜研磨からシリコン層研磨へ移る際に研磨レートの変化が無いということであって非常に理想的なことであり、BPSG膜とシリコンとを連続体として研磨でき、研磨量バラツキの抑制が容易になる。
Figure 2007129115
The use of a BPSG film provides two advantages. First, FIG. 6 shows the polishing rate distribution in the radial direction of the wafer when three types of oxide films (thermal oxide film ◆, LP-TEOS film □, and BPSG film Δ) are used. The vertical axis in FIG. 6 is a normalized polishing rate, and the horizontal axis is the distance from the wafer center. From this result, it can be seen that when the BPSG film is used, the polishing rate distribution is more convex (the polishing rate at the center is larger) than the thermal oxide film or the LP-TEOS film. At this time, the polishing rate of the outer peripheral portion is about 26% lower than that of the central portion, and it has been found that an ideal shape can be obtained that cancels the oxide film thickness distribution generated in the trench etching process.
Next, as shown in Table 2, when the BPSG film is used, the selection ratio in the first polishing process is slightly lower than the thermal oxide film in Table 1 (120 is reduced to 75), but the selection in the second polishing process is performed. It was also found that the ratio also decreased (from 2.3 to 1.1) to 1.1 close to 1. In the second polishing step, the removal of the oxide film and the subsequent mirror polishing of the lower silicon layer are continuous. Therefore, if the selection ratio is large, the final polishing amount variation is increased. The selection ratio close to 1 means that there is no change in the polishing rate when shifting from oxide film polishing to silicon layer polishing, which is very ideal. Polishing with a BPSG film and silicon as a continuum This makes it easy to suppress variations in the polishing amount.

最後に、実施例1と同様な方法で6インチウエハ面内に形成した50個のマーカーの段差を調べた。その結果、段差は3.0±0.07μmになっており、実施例1以上に段差バラツキが押えられることを確認した。   Finally, the steps of 50 markers formed on the 6-inch wafer surface were examined in the same manner as in Example 1. As a result, the step was 3.0 ± 0.07 μm, and it was confirmed that the step variation was suppressed more than in Example 1.

実施例3は、第二研磨工程における酸化膜の残膜厚モニタリング方法として光学反射率計測を用いる方法である。この方法では、CMP装置に光学計測系を付加した図7に示すような光学計測システムを用いる。回転テーブル9、研磨パッド10に設けた石英窓11および回転テーブルに設けられた孔を通してランプ12から白色光12−1を、研磨ヘッド8に保持され回転させながらスラリー15による研磨が行われるウエハ7に照射し、回転テーブル9の回転に同期させてその反射スペクトルを計測し、光検出装置13を介してコンピュータ14にデータを保存する。この光学計測システムを用いて、本発明にかかる半導体基板(ウエハ)の表面研磨中に測定された代表的な反射スペクトル波形を図8に示す。
図8に示す反射スペクトル図は、研磨によってマーカー部3以外の酸化膜4が完全に除去された後(たとえば、図1(f)に示す点線2−5まで研磨した後の状態を示すで図1(g))は、図8の鎖線で示すように、研磨初期と中期のスペクトル(太、細実線)に見られるような多重干渉によるフリンジが消失して、反射スペクトルの反射率に時間変化が見られなくなり、反射率が一定になることを示している。この反射スペクトル計測を用いて終点を検出する方法としては次の二つの方法が考えられる。
Example 3 is a method using optical reflectance measurement as a method for monitoring the remaining thickness of the oxide film in the second polishing step. In this method, an optical measurement system as shown in FIG. 7 in which an optical measurement system is added to the CMP apparatus is used. Wafer 7 that is polished by slurry 15 while white light 12-1 is held by polishing head 8 and rotated through lamp 12 through quartz window 11 provided in rotary table 9, polishing pad 10, and holes provided in the rotary table. The reflection spectrum is measured in synchronization with the rotation of the rotary table 9, and the data is stored in the computer 14 via the light detection device 13. FIG. 8 shows a typical reflection spectrum waveform measured during surface polishing of the semiconductor substrate (wafer) according to the present invention using this optical measurement system.
The reflection spectrum diagram shown in FIG. 8 shows a state after the oxide film 4 other than the marker portion 3 is completely removed by polishing (for example, after polishing to the dotted line 2-5 shown in FIG. 1 (f)). 1 (g)), as shown by the chain line in FIG. 8, fringes due to multiple interference as seen in the initial and intermediate spectra (thick and thin solid lines) disappear, and the reflectance of the reflection spectrum changes with time. Is not seen, indicating that the reflectance is constant. The following two methods are conceivable as methods for detecting the end point using this reflection spectrum measurement.

第一の終点検出方法は、リファレンス反射スペクトルとの比較を行う方法である。シリコン鏡面を研磨した際の反射スペクトルをリファレンスとしてコンピュータ14にあらかじめ入力し、第二研磨工程中の反射スペクトルに対して逐次比較する。第二研磨工程中の反射スペクトルが前記リファレンススペクトルと合致した時点で酸化膜完全除去と判定し、その時点から所定量の半導体層の研磨を余分に行うことにより第二研磨工程を終了させる。
第二の終点検出方法は、反射スペクトルを光学モデルにより光学フィッティングし、計算により酸化膜の残膜厚を逐次導出する方法である。この実施例3の場合、半導体基板の光学的な層構成は図3からも分かるように、酸化膜4とシリコン2との2つの領域に分かれると考えられる。前記酸化膜4とシリコン層2とについて、反射スペクトルを測定する対象部分のそれぞれの厚さ(1μm程度)の比率は1:1程度となる。この点を考慮して反射スペクトルの光学フィッティングを行うことにより、酸化膜の残膜厚を逐次モニタリングできる。この方法は前記モーター負荷電流の時間変化が小さくて終点検出に使えない場合に特に有効である。前記光学モデルの光学フィッティングによる酸化膜の残厚のモニタリング方法そのものは特開2001−21317号公報などに詳細に説明されている。
The first end point detection method is a method for comparison with a reference reflection spectrum. The reflection spectrum when the silicon mirror surface is polished is previously input to the computer 14 as a reference, and the reflection spectrum during the second polishing process is sequentially compared. When the reflection spectrum in the second polishing process matches the reference spectrum, it is determined that the oxide film is completely removed, and the second polishing process is terminated by extra polishing of a predetermined amount of the semiconductor layer.
The second end point detection method is a method in which the reflection spectrum is optically fitted by an optical model, and the remaining film thickness of the oxide film is sequentially derived by calculation. In the case of Example 3, it can be considered that the optical layer configuration of the semiconductor substrate is divided into two regions of the oxide film 4 and the silicon 2 as can be seen from FIG. For the oxide film 4 and the silicon layer 2, the ratio of the thickness (about 1 μm) of the target portion whose reflection spectrum is to be measured is about 1: 1. In consideration of this point, the remaining film thickness of the oxide film can be sequentially monitored by optical fitting of the reflection spectrum. This method is particularly effective when the time change of the motor load current is small and cannot be used for end point detection. A method of monitoring the remaining thickness of the oxide film by optical fitting of the optical model is described in detail in Japanese Patent Application Laid-Open No. 2001-21317.

以上の実施例1,2,3によれば、アライメントマーカーの認識性を劣化させずに研磨工程を連続化できるなどのように簡略化でき、超接合半導体装置の製造に必要な並列細条のp型半導体層とn型半導体層を半導体基板の主面に垂直な方向に備える超接合構造を有する半導体基板表面の平坦化のための研磨工程において膜厚バラツキを小さくでき、高い良品率とすることができる。
なお、以上説明した実施例1、2、3ではシリコンを用いた超接合半導体装置を想定して本発明の半導体装置の製造方法について詳細に説明してきたが、SiCなどの他の半導体結晶を用いた超接合半導体装置の場合にも本発明は適用できる。さらに、前記実施例1、2、3ではn型シリコンエピタキシャル領域に形成されたトレンチにp型シリコンエピタキシャル層を埋め込む場合について説明したが、適切に導電型を変更することによりp型エピタキシャル層のトレンチにn型エピタキシャル層を埋め込んだ場合にも適用できることは言うまでもない。
According to the first, second, and third embodiments, it is possible to simplify the polishing process such that the recognition process of the alignment marker is not deteriorated, and the parallel strips necessary for manufacturing the superjunction semiconductor device can be simplified. In the polishing process for flattening the surface of a semiconductor substrate having a superjunction structure in which a p-type semiconductor layer and an n-type semiconductor layer are provided in a direction perpendicular to the main surface of the semiconductor substrate, the film thickness variation can be reduced and the yield rate is high. be able to.
In the first, second, and third embodiments described above, the semiconductor device manufacturing method of the present invention has been described in detail assuming a superjunction semiconductor device using silicon. However, other semiconductor crystals such as SiC are used. The present invention can also be applied to a superjunction semiconductor device. Further, in the first, second, and third embodiments, the case where the p-type silicon epitaxial layer is buried in the trench formed in the n-type silicon epitaxial region has been described. However, the trench of the p-type epitaxial layer can be changed by appropriately changing the conductivity type. Needless to say, the present invention can also be applied to the case where an n-type epitaxial layer is embedded.

本発明の半導体装置の製造方法にかかる実施例1の半導体基板の工程断面図(その1)Sectional drawing of process of semiconductor substrate of Example 1 according to manufacturing method of semiconductor device of the present invention (Part 1) 本発明の半導体装置の製造方法にかかる実施例1の半導体基板の工程断面図(その2)Sectional drawing of process of semiconductor substrate of Example 1 according to manufacturing method of semiconductor device of the present invention (Part 2) 本発明の半導体装置の製造方法にかかる実施例1の半導体基板の工程断面図(その3)Sectional view of semiconductor substrate of Example 1 according to manufacturing method of semiconductor device of the present invention (No. 3) 本発明の半導体装置の製造方法にかかる実施例1の半導体基板の工程断面図(その4)Sectional drawing of the semiconductor substrate of Example 1 concerning the manufacturing method of the semiconductor device of this invention (the 4) 本発明にかかるトレンチエッチング後の酸化膜厚分布図、Oxide film thickness distribution diagram after trench etching according to the present invention, 本発明にかかる酸化膜表面研磨後の半導体基板の断面図、Sectional drawing of the semiconductor substrate after the oxide film surface grinding | polishing concerning this invention, 本発明にかかる研磨パッドおよび研磨テーブルの回転数をパラメータとしたときの半導体基板の半径方向研磨レート分布図、Polishing pad and polishing table according to the present invention when the rotational speed of the polishing table as a parameter is a radial polishing rate distribution diagram of the semiconductor substrate, 本発明にかかる第二研磨工程におけるモーター負荷電流と研磨時間との関係図、Relationship diagram between motor load current and polishing time in the second polishing step according to the present invention, 本発明にかかる3種類の酸化膜(熱酸化膜、LP−TEOS膜、BPSG膜)に対する半導体基板半径方向研磨レート分布図、Semiconductor substrate radial direction polishing rate distribution diagram for three types of oxide films (thermal oxide film, LP-TEOS film, BPSG film) according to the present invention, 本発明にかかる研磨中の反射スペクトルを評価するための光学計測システム概略図、Schematic diagram of an optical measurement system for evaluating the reflection spectrum during polishing according to the present invention, 本発明にかかる半導体基板の研磨中における反射スペクトル図、Reflection spectrum diagram during polishing of a semiconductor substrate according to the present invention, 従来の製造方法を説明するための半導体基板の要部断面図、Sectional drawing of the principal part of the semiconductor substrate for demonstrating the conventional manufacturing method, 従来の異なる製造方法を説明するための半導体基板の要部断面図である。It is principal part sectional drawing of the semiconductor substrate for demonstrating the conventional different manufacturing method.

符号の説明Explanation of symbols

1: n++低抵抗基板、
2: n型エピタキシャル成長層、
2−1:p型エピタキシャル成長層、
2−2:トレンチ、
2−3:研磨終了位置、
2−4:研磨終了位置、
2−5:研磨終了位置、
3: アライメントマーカー、
4: トレンチ形成用マスク酸化膜、
5: トレンチ、
6: 第二研磨工程での研磨終了ライン、
7: ウエハ、
8: 研磨ヘッド、
9: 回転テーブル、
10:研磨パッド、
11:石英窓
12:光学ヘッド、
13:分光反射率測定装置、
14:コンピュータ。
1: n ++ low resistance substrate,
2: n-type epitaxial growth layer,
2-1: p-type epitaxial growth layer,
2-2: Trench,
2-3: Polishing end position,
2-4: Polishing end position,
2-5: Polishing end position,
3: Alignment marker,
4: Mask oxide film for trench formation,
5: Trench,
6: Polishing end line in the second polishing step,
7: Wafer,
8: Polishing head,
9: Rotary table,
10: Polishing pad,
11: Quartz window 12: Optical head,
13: Spectral reflectance measuring device,
14: Computer.

Claims (16)

低抵抗半導体基板に一導電型半導体層が積層された半導体基板の前記一導電型半導体層表面に、トレンチ形成用並列絶縁膜パターンと、該並列絶縁膜パターンをマスクにエッチングされる、前記半導体表面に垂直な並列トレンチと、アライメントマーカーとをそれぞれ形成し、前記並列トレンチ内に他導電型半導体層を充填した後、突出した部分の前記他導電型半導体層を除去する第一研磨工程と、前記並列絶縁膜パターンと前記他導電型半導体層との研磨を同時に行い、続いて下層の半導体層の研磨を行う第二研磨工程とを連続的に行う半導体素子の製造方法において、前記第一および第二研磨工程ではそれぞれ前記絶縁膜と前記半導体層に対する研磨レートが異なる研磨スラリーを用いることを特徴とする半導体素子の製造方法。 The semiconductor surface etched by using the parallel insulating film pattern for trench formation and the parallel insulating film pattern as a mask on the surface of the one conductive semiconductor layer of the semiconductor substrate in which the one conductive semiconductor layer is laminated on the low resistance semiconductor substrate A first polishing step of forming parallel trenches perpendicular to each other and alignment markers, filling the parallel trenches with other conductivity type semiconductor layers, and then removing the other conductivity type semiconductor layers in the protruding portions; In the method for manufacturing a semiconductor element, the parallel polishing film pattern and the other conductive type semiconductor layer are simultaneously polished, and then the second polishing step of polishing the lower semiconductor layer is performed continuously. A method for manufacturing a semiconductor device, wherein polishing slurries having different polishing rates for the insulating film and the semiconductor layer are used in the two polishing steps, respectively. 前記研磨が、回転テーブル上に保持された研磨パッドを回転させながら研磨スラリーを供給し、研磨ヘッドに保持された半導体基板を回転させながら前記研磨パッド上面に押圧して研磨するCMP装置を用いて行われることを特徴とする請求項1記載の半導体装置の製造方法。 The polishing is performed using a CMP apparatus that supplies polishing slurry while rotating a polishing pad held on a rotary table, and presses and polishes the upper surface of the polishing pad while rotating a semiconductor substrate held by a polishing head. The method of manufacturing a semiconductor device according to claim 1, wherein the method is performed. 前記第二研磨工程における並列絶縁膜パターンに対する、前記半導体基板面内の研磨レート分布を、前記並列絶縁層パターンの半導体基板面内における膜厚分布を補正して平坦化されるように、半導体基板の中央部で大きく、外周部に向かって次第に小さくなるように研磨条件を設定することを特徴とする請求項1または2記載の半導体素子の製造方法。 The semiconductor substrate so that the polishing rate distribution in the semiconductor substrate surface with respect to the parallel insulating film pattern in the second polishing step is flattened by correcting the film thickness distribution in the semiconductor substrate surface of the parallel insulating layer pattern. The method for manufacturing a semiconductor device according to claim 1, wherein the polishing conditions are set so as to be large at the center portion and gradually smaller toward the outer peripheral portion. 前記第一研磨工程には、半導体層の研磨レート/絶縁膜の研磨レートで表される選択比が30以上、好ましくは60以上の高選択比スラリーを用い、第二研磨工程には、前記選択比が3以下、好ましくは2以下の低選択比スラリーを用いることを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置の製造方法 In the first polishing step, a high selectivity slurry having a selectivity expressed by the polishing rate of the semiconductor layer / the polishing rate of the insulating film is 30 or more, preferably 60 or more, and the selection is used in the second polishing step. The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein a low selective ratio slurry having a ratio of 3 or less, preferably 2 or less is used. 前記第二研磨工程では、格子状の溝を設けた研磨パッドを用いることを特徴とする請求項2乃至4のいずれか一項に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 2, wherein a polishing pad provided with a lattice-like groove is used in the second polishing step. 6. 前記第二研磨工程では、前記CMP装置における回転テーブルの回転数が42回転以上で行われることを特徴とする請求項2乃至5のいずれか一項に記載の半導体装置の製造方法。 6. The method of manufacturing a semiconductor device according to claim 2, wherein in the second polishing step, the number of rotations of the rotary table in the CMP apparatus is 42 or more. 前記絶縁膜が熱酸化膜あるいは熱CVDまたはプラズマCVDによる酸化膜であることを特徴とする請求項1乃至6のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film is a thermal oxide film or an oxide film formed by thermal CVD or plasma CVD. 前記熱CVDあるいはプラズマCVDによる酸化膜がBPSG酸化膜であることを特徴とする請求項7記載の半導体装置の製造方法。 8. The method of manufacturing a semiconductor device according to claim 7, wherein the oxide film formed by thermal CVD or plasma CVD is a BPSG oxide film. 前記第二研磨工程では、半導体基板の中央部の受ける前記押圧力が外周部に比べて高くなるような圧力分布で研磨されることを特徴とする請求項3乃至8のいずれか一項に記載の半導体装置の製造方法。 9. The polishing according to claim 3, wherein, in the second polishing step, polishing is performed with a pressure distribution such that the pressing force received by the central portion of the semiconductor substrate is higher than that of the outer peripheral portion. Semiconductor device manufacturing method. 前記第二研磨工程における研磨終点検出に研磨ヘッドあるいは回転テーブルの負荷電流の変化を用いることを特徴とする請求項2乃至9のいずれか一項に記載の半導体装置の製造方法。 10. The method of manufacturing a semiconductor device according to claim 2, wherein a change in load current of a polishing head or a rotary table is used for detecting a polishing end point in the second polishing step. 11. 前記第二研磨工程で、研磨中の絶縁膜の膜厚を監視するために絶縁膜に対する単色あるいは白色光による光学反射スペクトルを測定することを特徴とする請求項1乃至10のいずれか一項に記載の半導体装置の製造方法。 11. The optical reflection spectrum by monochromatic or white light with respect to the insulating film is measured in the second polishing step in order to monitor the film thickness of the insulating film being polished. 11. The manufacturing method of the semiconductor device of description. 前記絶縁膜の研磨終点検出をリファレンス反射スペクトルとの比較から検出することを特徴とする請求項11記載の半導体装置の製造方法。 12. The method of manufacturing a semiconductor device according to claim 11, wherein the polishing end point detection of the insulating film is detected by comparison with a reference reflection spectrum. 絶縁膜の膜厚を薄膜の光学フィッティングから導出することを特徴とする請求項11または12記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 11, wherein the thickness of the insulating film is derived from optical fitting of the thin film. 前記絶縁膜を完全に除去した後に、さらに半導体層を0.2〜2μmの厚さの範囲で研磨することを特徴とする請求項1乃至13のいずれか一項に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein after the insulating film is completely removed, the semiconductor layer is further polished in a thickness range of 0.2 to 2 μm. . 前記第二研磨工程後の研磨面を基準としたアライメントマーカーの凹部の深さが0.5μmから8μmの範囲にあることを特徴とする請求項1乃至14のいずれか一項に記載の半導体装置の製造方法。 15. The semiconductor device according to claim 1, wherein a depth of the concave portion of the alignment marker is in a range of 0.5 μm to 8 μm with reference to the polished surface after the second polishing step. Manufacturing method. 前記第二研磨工程後のアライメントマーカーが絶縁膜で覆われていることを特徴とする半導体装置の製造方法。 A method of manufacturing a semiconductor device, wherein the alignment marker after the second polishing step is covered with an insulating film.
JP2005321724A 2005-11-07 2005-11-07 Manufacturing method for semiconductor device Withdrawn JP2007129115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321724A JP2007129115A (en) 2005-11-07 2005-11-07 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321724A JP2007129115A (en) 2005-11-07 2005-11-07 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2007129115A true JP2007129115A (en) 2007-05-24

Family

ID=38151501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321724A Withdrawn JP2007129115A (en) 2005-11-07 2005-11-07 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2007129115A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088245A (en) * 2007-09-28 2009-04-23 Sumco Techxiv株式会社 Device and method for polishing semiconductor wafer
JP2010062347A (en) * 2008-09-04 2010-03-18 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device
JP2010185876A (en) * 2009-02-10 2010-08-26 Samsung Electronics Co Ltd Substrate for microarray and method for manufacturing microarray using the same, and how to collect optical data from this microarray
JP2011159917A (en) * 2010-02-03 2011-08-18 Denso Corp Method of manufacturing semiconductor substrate
US8673749B2 (en) 2011-12-26 2014-03-18 Denso Corporation Semiconductor device manufacturing method
US9252106B2 (en) 2013-08-09 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
CN108242399A (en) * 2016-12-27 2018-07-03 丰田自动车株式会社 The manufacturing method of switch element
WO2019173044A1 (en) * 2018-03-07 2019-09-12 Applied Materials, Inc. Polishing fluid additive concentration measurement apparatus and methods related thereto
WO2020225973A1 (en) * 2019-05-09 2020-11-12 信越半導体株式会社 Single surface polishing method
CN112086354A (en) * 2020-07-31 2020-12-15 北京烁科精微电子装备有限公司 Planarization method of IGBT device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293699A (en) * 1996-04-25 1997-11-11 Hitachi Ltd Manufacture of semiconductor device
JP2000156360A (en) * 1998-06-30 2000-06-06 Fujitsu Ltd Manufacture of semiconductor device
JP2001021317A (en) * 1999-07-02 2001-01-26 Nikon Corp Measuring method, measuring apparatus, polishing method and polishing apparatus
JP2002009031A (en) * 2000-06-21 2002-01-11 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2002541649A (en) * 1998-12-16 2002-12-03 スピードファム−アイピーイーシー コーポレイション Multi-step CMP
JP2004017229A (en) * 2002-06-18 2004-01-22 Shimadzu Corp Substrate polishing device
JP2004128112A (en) * 2002-10-01 2004-04-22 Renesas Technology Corp Manufacturing method of semiconductor device
JP2004273742A (en) * 2003-03-07 2004-09-30 Fuji Electric Holdings Co Ltd Manufacturing method of semiconductor wafer
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method
JP2005057142A (en) * 2003-08-06 2005-03-03 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor substrate
JP2005072191A (en) * 2003-08-22 2005-03-17 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor substrate
US20050139914A1 (en) * 2003-12-19 2005-06-30 Third Dimension (3D) Semiconductor, Inc. Method for forming thick dielectric regions using etched trenches

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09293699A (en) * 1996-04-25 1997-11-11 Hitachi Ltd Manufacture of semiconductor device
JP2000156360A (en) * 1998-06-30 2000-06-06 Fujitsu Ltd Manufacture of semiconductor device
JP2002541649A (en) * 1998-12-16 2002-12-03 スピードファム−アイピーイーシー コーポレイション Multi-step CMP
JP2001021317A (en) * 1999-07-02 2001-01-26 Nikon Corp Measuring method, measuring apparatus, polishing method and polishing apparatus
JP2002009031A (en) * 2000-06-21 2002-01-11 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2004017229A (en) * 2002-06-18 2004-01-22 Shimadzu Corp Substrate polishing device
JP2004128112A (en) * 2002-10-01 2004-04-22 Renesas Technology Corp Manufacturing method of semiconductor device
JP2004273742A (en) * 2003-03-07 2004-09-30 Fuji Electric Holdings Co Ltd Manufacturing method of semiconductor wafer
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method
JP2005057142A (en) * 2003-08-06 2005-03-03 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor substrate
JP2005072191A (en) * 2003-08-22 2005-03-17 Fuji Electric Holdings Co Ltd Method for manufacturing semiconductor substrate
US20050139914A1 (en) * 2003-12-19 2005-06-30 Third Dimension (3D) Semiconductor, Inc. Method for forming thick dielectric regions using etched trenches

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088245A (en) * 2007-09-28 2009-04-23 Sumco Techxiv株式会社 Device and method for polishing semiconductor wafer
JP2010062347A (en) * 2008-09-04 2010-03-18 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device
JP2010185876A (en) * 2009-02-10 2010-08-26 Samsung Electronics Co Ltd Substrate for microarray and method for manufacturing microarray using the same, and how to collect optical data from this microarray
JP2011159917A (en) * 2010-02-03 2011-08-18 Denso Corp Method of manufacturing semiconductor substrate
US8673749B2 (en) 2011-12-26 2014-03-18 Denso Corporation Semiconductor device manufacturing method
US9252106B2 (en) 2013-08-09 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
KR102057030B1 (en) * 2013-08-09 2019-12-18 삼성전자 주식회사 Semiconductor device and method of fabricating the same
CN108242399B (en) * 2016-12-27 2021-02-23 株式会社电装 Method for manufacturing switching element
CN108242399A (en) * 2016-12-27 2018-07-03 丰田自动车株式会社 The manufacturing method of switch element
JP2018107339A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Method for manufacturing switching element
WO2019173044A1 (en) * 2018-03-07 2019-09-12 Applied Materials, Inc. Polishing fluid additive concentration measurement apparatus and methods related thereto
US11478894B2 (en) 2018-03-07 2022-10-25 Applied Materials, Inc. Polishing fluid additive concentration measurement apparatus and methods related thereto
JP2020188036A (en) * 2019-05-09 2020-11-19 信越半導体株式会社 Single-sided polishing method
WO2020225973A1 (en) * 2019-05-09 2020-11-12 信越半導体株式会社 Single surface polishing method
CN113766994A (en) * 2019-05-09 2021-12-07 信越半导体株式会社 Single-side polishing method
JP7092092B2 (en) 2019-05-09 2022-06-28 信越半導体株式会社 Single-sided polishing method
CN113766994B (en) * 2019-05-09 2024-03-08 信越半导体株式会社 Single-sided polishing method
CN112086354A (en) * 2020-07-31 2020-12-15 北京烁科精微电子装备有限公司 Planarization method of IGBT device
CN112086354B (en) * 2020-07-31 2023-06-20 北京晶亦精微科技股份有限公司 Flattening method of IGBT device

Similar Documents

Publication Publication Date Title
JP2007129115A (en) Manufacturing method for semiconductor device
JP5194912B2 (en) Manufacturing method of semiconductor device having super junction structure
KR20000006580A (en) Method for fabricating semiconductor device
US20080211063A1 (en) Semiconductor wafer and manufacturing method of semiconductor device
TWI246722B (en) Semiconductor substrate, method for fabricating the same, and method for fabricating semiconductor device
JP3340333B2 (en) Semiconductor device and manufacturing method thereof
WO2010079543A1 (en) Semiconductor device producing method
JP5568856B2 (en) Manufacturing method of semiconductor device
JP4539052B2 (en) Manufacturing method of semiconductor substrate
US8673749B2 (en) Semiconductor device manufacturing method
JP2000156360A (en) Manufacture of semiconductor device
JP2008226935A (en) Manufacturing method of semiconductor device
JP2010040964A (en) Method for manufacturing semiconductor device, and polishing apparatus
TW200837806A (en) Method for manufacturing silicon epitaxial wafer
CN1897227A (en) Manufacture of semiconductor device with cmp
JP5439768B2 (en) Manufacturing method of semiconductor device
CN104409349B (en) The production method of trench device
JP5186296B2 (en) Wafer polishing method and semiconductor device manufacturing method
JP2003142357A (en) Method for manufacturing semiconductor device, method for measuring thickness of epitaxial film and semiconductor device
JP2006190784A (en) Method of manufacturing semiconductor device
JP6525046B1 (en) Semiconductor wafer manufacturing method
JP2005072191A (en) Method for manufacturing semiconductor substrate
CN112086354B (en) Flattening method of IGBT device
JP2006253584A (en) Method for manufacturing soi wafer
JP4178821B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120405