JP2005072191A - Method for manufacturing semiconductor substrate - Google Patents

Method for manufacturing semiconductor substrate Download PDF

Info

Publication number
JP2005072191A
JP2005072191A JP2003298744A JP2003298744A JP2005072191A JP 2005072191 A JP2005072191 A JP 2005072191A JP 2003298744 A JP2003298744 A JP 2003298744A JP 2003298744 A JP2003298744 A JP 2003298744A JP 2005072191 A JP2005072191 A JP 2005072191A
Authority
JP
Japan
Prior art keywords
trench
semiconductor substrate
target
oxide film
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298744A
Other languages
Japanese (ja)
Other versions
JP4539057B2 (en
Inventor
Kunio Mochizuki
邦雄 望月
Susumu Iwamoto
進 岩本
Daisuke Kishimoto
大輔 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003298744A priority Critical patent/JP4539057B2/en
Publication of JP2005072191A publication Critical patent/JP2005072191A/en
Application granted granted Critical
Publication of JP4539057B2 publication Critical patent/JP4539057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To terminate polish of a surface of the substrate in the amount of appropriate polishing by forming a polish stopper film used as a target of polish end when a trench is formed on a semiconductor substrate, epitaxial growth of semiconductor is performed in the trench, and parallel pn junction structure is formed. <P>SOLUTION: A target trench 14 is formed in the n-type semiconductor substrate 11 and filled with an HTO oxide film 15. The HTO oxide film 15 is subjected to etch back and left only on a bottom of the target trench 14. A trench 17 for super junction which is used for forming the parallel pn junction structure is formed on the semiconductor substrate 11, epitaxial growth of p-type semiconductor is performed to the trench 17, and a p-type semiconductor region 18 is formed. The surface of the semiconductor substrate 11 is polished. Polishing is stopped when the HTO oxide film 15 positioned on the bottom of the target trench 14 appears to the polishing surface, and the surface of the substrate is planarized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、半導体基板の製造方法に関し、特に第1導電型の半導体基板に形成されたトレンチ内に第2導電型の半導体をエピタキシャル成長させることにより、n型半導体領域とp型半導体領域とが交互に繰り返し接合された構成の並列pn接合構造を有する半導体基板の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor substrate, and in particular, an n-type semiconductor region and a p-type semiconductor region are alternately formed by epitaxially growing a second conductivity type semiconductor in a trench formed in the first conductivity type semiconductor substrate. The present invention relates to a method for manufacturing a semiconductor substrate having a parallel pn junction structure that is repeatedly bonded to each other.

一般に、半導体素子は、電極が片面に形成された横型の素子と、両面に電極を有する縦型の素子に分類される。縦型半導体素子は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦型MOSFET(絶縁ゲート型電界効果トランジスタ)では、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。したがって、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので MOSFETの実質的なオン抵抗が下がるという効果が得られる。 In general, semiconductor elements are classified into a horizontal element having electrodes formed on one side and a vertical element having electrodes on both sides. In the vertical semiconductor element, the direction in which the drift current flows in the on state is the same as the direction in which the depletion layer due to the reverse bias voltage extends in the off state. In a normal planar type n-channel vertical MOSFET (insulated gate field effect transistor), the high-resistance n drift layer portion functions as a region in which a drift current flows in the vertical direction when in the ON state. Therefore, if the current path of the n drift layer is shortened, the drift resistance is lowered, so that the effect of reducing the substantial on-resistance of the MOSFET can be obtained.

その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。したがって、n-ドリフト層が薄くなると、Pベース領域とドリフト領域との間のpn接合から進行するドレイン−ベース間空乏層が広がる幅が狭くなり、シリコンの臨界電界強度に速く達するため、耐圧が低下してしまう。逆に、耐圧の高い半導体素子では、n-ドリフト層が厚いため、オン抵抗が大きくなり、損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。 On the other hand, the portion of the high resistance n drift layer is depleted in the off state to increase the breakdown voltage. Therefore, when the n drift layer is thinned, the width of the drain-base depletion layer proceeding from the pn junction between the P base region and the drift region is narrowed, and the critical electric field strength of silicon is reached quickly. It will decline. On the other hand, in a semiconductor device with a high breakdown voltage, since the n drift layer is thick, the on-resistance increases and the loss increases. Thus, there is a trade-off relationship between on-resistance and breakdown voltage.

このトレードオフ関係は、IGBT(絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタやダイオード等の半導体素子においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの空乏層の伸びる方向とが異なる横型半導体素子にも共通である。   This trade-off relationship is also known to hold in semiconductor devices such as IGBTs (insulated gate bipolar transistors), bipolar transistors, and diodes. This trade-off relationship is also common to lateral semiconductor elements in which the direction in which the drift current flows in the on state and the direction in which the depletion layer extends in the off state are different.

上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型ドリフト領域とp型仕切領域とを交互に繰り返し接合した構成の並列pn構造とした超接合半導体素子が公知である。このような構造の半導体素子では、並列pn構造の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn構造の縦方向に伸びる各pn接合から横方向に広がり、ドリフト領域全体を空乏化するため、高耐圧化を図ることができる。   As a solution to the above-described problem due to the trade-off relationship, a superjunction semiconductor element having a parallel pn structure in which a drift layer is formed by alternately and repeatedly joining n-type drift regions and p-type partition regions having a high impurity concentration is known. It is. In the semiconductor element having such a structure, even when the impurity concentration of the parallel pn structure is high, the depletion layer extends laterally from each pn junction extending in the vertical direction of the parallel pn structure in the off state, and the entire drift region Therefore, a high breakdown voltage can be achieved.

超接合半導体素子を製造するにあたっては、上述した並列pn接合構造を有する半導体基板が用いられる。そのような半導体基板を低コストで、かつ高良品率で量産する方法として、n型半導体基板にトレンチを形成し、そのトレンチの内部をp型半導体よりなるエピタキシャル成長層で埋め込む方法が公知である。この方法では、図16に示すように、p型半導体2のエピタキシャル成長が終了すると、半導体基板1の表面に1〜数μmの段差や、酸化膜3やポリシリコン4が残るため、基板表面を研磨して、酸化膜3やポリシリコン4を除去するとともに、平坦化する必要がある。   In manufacturing the super junction semiconductor element, the semiconductor substrate having the parallel pn junction structure described above is used. As a method for mass-producing such a semiconductor substrate at a low cost and at a high yield rate, a method is known in which a trench is formed in an n-type semiconductor substrate and the inside of the trench is filled with an epitaxial growth layer made of a p-type semiconductor. In this method, as shown in FIG. 16, when the epitaxial growth of the p-type semiconductor 2 is completed, a step of 1 to several μm, an oxide film 3 and polysilicon 4 remain on the surface of the semiconductor substrate 1, so that the substrate surface is polished. Then, it is necessary to remove the oxide film 3 and the polysilicon 4 and planarize it.

ところで、超接合半導体素子の製造に用いられる半導体基板には、MOSFET等の半導体素子を形成する際のマスク合わせ用のターゲットとしてトレンチ(以下、ターゲットトレンチとする)が形成される。通常、このターゲットトレンチの深さは1μm以下であるため、従来の並列pn接合構造を有する半導体基板において上述した平坦化処理をおこなうと、研磨によりターゲットトレンチが消滅してしまう。その結果、基板表面にMOSFET等を形成する際に、MOSFETのパターンと並列pn接合構造のパターンとを合わせるのが困難になるという問題点がある。   Meanwhile, a trench (hereinafter referred to as a target trench) is formed as a mask alignment target in forming a semiconductor element such as a MOSFET in a semiconductor substrate used for manufacturing a superjunction semiconductor element. Usually, since the depth of the target trench is 1 μm or less, if the above-described planarization process is performed on a semiconductor substrate having a conventional parallel pn junction structure, the target trench disappears due to polishing. As a result, when forming a MOSFET or the like on the substrate surface, there is a problem that it is difficult to match the pattern of the MOSFET and the pattern of the parallel pn junction structure.

ターゲットトレンチが平坦化処理の研磨により消滅するのを防ぐため、研磨により除去される表面層の厚さよりも深いターゲットトレンチを形成することが考えられる。しかし、そうすると、フォトリソグラフィー工程においてターゲットパターンによるレジストむらやレジスト残りが生じやすいという問題点がある。   In order to prevent the target trench from disappearing by the planarization polishing, it is conceivable to form a target trench deeper than the thickness of the surface layer removed by the polishing. However, in this case, there is a problem that resist unevenness and resist residue due to the target pattern are likely to occur in the photolithography process.

また、並列pn接合構造を形成するためのトレンチ、すなわち本来のトレンチと、ターゲットトレンチとを同時に形成する場合、ターゲットトレンチがエピタキシャル成長層により埋め込まれるのを防ぐため、エピタキシャル成長をおこなう前に、ターゲットトレンチの内壁を酸化膜で被覆しておく必要がある。そのためには、一旦、本来のトレンチとターゲットトレンチの両方の内壁を酸化膜で被覆した後に、本来のトレンチの酸化膜を選択的に除去すればよい。しかし、その場合には、フォトリソグラフィー工程が増えるため、上述したレジストむらやレジスト残りが発生しやすくなるという問題点がある。   In addition, when forming a trench for forming a parallel pn junction structure, that is, an original trench and a target trench at the same time, before the epitaxial growth is performed, in order to prevent the target trench from being buried by the epitaxial growth layer, It is necessary to coat the inner wall with an oxide film. For this purpose, once the inner walls of both the original trench and the target trench are covered with an oxide film, the oxide film in the original trench may be selectively removed. However, in this case, there is a problem that the resist unevenness and the resist residue are likely to occur because the number of photolithography processes increases.

上記問題点の対策として、本発明者らは、平坦化処理時の研磨により除去される基板表面部分よりも深いターゲットトレンチを形成し、基板表面を所定の厚さだけ除去した時点で研磨を終了することにより、研磨後の基板表面にターゲットトレンチを残す方法を提案した(特願2002−221778号)。しかし、その後、本方法で半導体基板の量産をおこなうと以下のような不具合があり、それが原因で歩留まりや工程処理能力の低下を招くことが判明した。   As measures against the above problems, the present inventors formed a target trench deeper than the substrate surface portion to be removed by polishing during the planarization process, and finished polishing when the substrate surface was removed by a predetermined thickness. Thus, a method of leaving a target trench on the polished substrate surface was proposed (Japanese Patent Application No. 2002-221778). However, after that, when mass production of semiconductor substrates is performed by this method, it has been found that there are the following problems, which cause a decrease in yield and process throughput.

すなわち、この方法を適用してターゲットを形成する場合、研磨を終了させるための目標となるものがないため、あらかじめ予備実験等により最適な研磨時間を求めておき、その時間だけ研磨をおこなうことになる。したがって、研磨中にスラリーの供給量や研磨パッドの温度が予備実験等の条件からずれると、研磨量が一定にならず、研磨後に残るターゲットトレンチの深さにばらつきが生じることがわかった。   That is, when forming a target by applying this method, there is no target for finishing the polishing, so an optimum polishing time is obtained in advance by a preliminary experiment or the like, and polishing is performed only for that time. Become. Therefore, it has been found that when the amount of slurry supplied and the temperature of the polishing pad deviate from the conditions of the preliminary experiment or the like during polishing, the polishing amount is not constant and the depth of the target trench remaining after polishing varies.

実際に上記先願にかかる方法により500枚の半導体基板を用いてターゲットトレンチの形成および研磨をおこなった。その結果、27枚の基板では研磨量が多すぎたため、ターゲットが消失しており、再生不可能であった。また、別の59枚の基板ではターゲットトレンチの深さが1.5μm以上であり、追加研磨が必要であった。さらに、別の55枚の基板ではターゲットトレンチの深さが1〜1.5μmであり、自動でマスク合わせをおこなうには不適切な深さであるため、半導体素子を作製する際に手動でマスク合わせをおこなわなければならず、工程処理能力が大幅に低下した。   Actually, the target trench was formed and polished using 500 semiconductor substrates by the method according to the prior application. As a result, since the polishing amount was too large for 27 substrates, the target disappeared and could not be regenerated. Further, in another 59 substrates, the depth of the target trench was 1.5 μm or more, and additional polishing was necessary. Further, in another 55 substrates, the depth of the target trench is 1 to 1.5 μm, which is inappropriate for automatic mask alignment. Matching has to be done, and the process capacity is greatly reduced.

この発明は、上述した問題点を解消するため、研磨終了の目標となる研磨ストッパ膜を形成することにより適切な研磨量で研磨を終了させることを可能とし、それによって工程処理能力の高い半導体基板を高歩留まりで製造することができる半導体基板の製造方法を提供することを目的とする。   In order to solve the above-mentioned problems, the present invention makes it possible to finish polishing with an appropriate polishing amount by forming a polishing stopper film that is a target for polishing completion, and thereby a semiconductor substrate having high process throughput An object of the present invention is to provide a method of manufacturing a semiconductor substrate that can be manufactured at a high yield.

上述した課題を解決し、目的を達成するため、請求項1の発明にかかる半導体基板の製造方法は、n型半導体領域とp型半導体領域とが交互に繰り返し接合された構成の並列pn接合構造を有する半導体基板を製造するにあたって、第1導電型の半導体基板にマスク合わせ用のターゲットとなる第1のトレンチを形成する工程と、前記第1のトレンチを絶縁膜で埋める工程と、前記絶縁膜をエッチングして前記第1のトレンチの底部にのみ前記絶縁膜を残す工程と、前記半導体基板に前記第1のトレンチよりも深い第2のトレンチを形成する工程と、前記第2のトレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a semiconductor substrate manufacturing method according to the invention of claim 1 is a parallel pn junction structure in which n-type semiconductor regions and p-type semiconductor regions are alternately and repeatedly joined. Forming a first trench serving as a mask alignment target in a first conductivity type semiconductor substrate, filling the first trench with an insulating film, and the insulating film Leaving the insulating film only at the bottom of the first trench, forming a second trench deeper than the first trench in the semiconductor substrate, and in the second trench And a step of epitaxially growing a second conductivity type semiconductor.

この請求項1の発明によれば、第1のトレンチ内に絶縁膜が研磨ストッパ膜として残る。また、ターゲットが半導体基板と材質が異なる絶縁膜でできているので、ステッパによるターゲットの認識が容易である。   According to the first aspect of the present invention, the insulating film remains as a polishing stopper film in the first trench. Moreover, since the target is made of an insulating film made of a material different from that of the semiconductor substrate, the target can be easily recognized by the stepper.

また、請求項2の発明にかかる半導体基板の製造方法は、請求項1に記載の発明において、前記第2導電型半導体のエピタキシャル成長後、前記半導体基板の表面を研磨し、前記第1のトレンチの底部にある前記絶縁膜が研磨面に出現した時点で研磨を停止して基板表面を平坦化する工程をさらに含むことを特徴とする。   According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor substrate according to the first aspect, wherein after the epitaxial growth of the second conductivity type semiconductor, the surface of the semiconductor substrate is polished to form the first trench. The method further includes the step of planarizing the substrate surface by stopping polishing when the insulating film at the bottom appears on the polishing surface.

この請求項2の発明によれば、第1のトレンチ内に研磨ストッパ膜として残る絶縁膜の厚さを調整することにより、適切な研磨量で研磨を終了させることができる。   According to the second aspect of the invention, by adjusting the thickness of the insulating film remaining as the polishing stopper film in the first trench, the polishing can be completed with an appropriate polishing amount.

また、請求項3の発明にかかる半導体基板の製造方法は、請求項1または2に記載の発明において、前記絶縁膜の厚さは、前記第1のトレンチの開口幅の1/2以上であることを特徴とする。   According to a third aspect of the present invention, there is provided the method for manufacturing a semiconductor substrate according to the first or second aspect, wherein the thickness of the insulating film is ½ or more of the opening width of the first trench. It is characterized by that.

この請求項3の発明によれば、絶縁膜を第1のトレンチの開口幅の1/2以上の厚さで析出させることにより、第1のトレンチを絶縁膜で完全に埋めることができる。   According to the third aspect of the present invention, the first trench can be completely filled with the insulating film by depositing the insulating film with a thickness of ½ or more of the opening width of the first trench.

また、上述した課題を解決し、目的を達成するため、請求項4の発明にかかる半導体基板の製造方法は、n型半導体領域とp型半導体領域とが交互に繰り返し接合された構成の並列pn接合構造を有する半導体基板を製造するにあたって、第1導電型の半導体基板にマスク合わせ用の第1のターゲットとなる第1のトレンチを形成する工程と、前記半導体基板に前記第1のトレンチよりも深い第2のトレンチを形成する工程と、前記第2のトレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、前記半導体基板にマスク合わせ用の第2のターゲットとして、前記第1のトレンチよりも深く、かつ前記第2のトレンチよりも浅い第3のトレンチを形成する工程と、前記第3のトレンチを絶縁膜で埋める工程と、前記絶縁膜をエッチングして前記第3のトレンチの底部にのみ前記絶縁膜を残す工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object, a semiconductor substrate manufacturing method according to the invention of claim 4 is a parallel pn having a configuration in which n-type semiconductor regions and p-type semiconductor regions are alternately and repeatedly joined. In manufacturing a semiconductor substrate having a junction structure, a step of forming a first trench serving as a first target for mask alignment in a semiconductor substrate of a first conductivity type, and a step of forming a first trench in the semiconductor substrate than the first trench. A step of forming a deep second trench; a step of epitaxially growing a second conductivity type semiconductor in the second trench; and a second target for mask alignment on the semiconductor substrate, from the first trench. Forming a third trench that is deeper and shallower than the second trench, filling the third trench with an insulating film, and etching the insulating film. Ring to characterized in that it comprises a a step of leaving the insulating film only on the bottom of the third trench.

この請求項4の発明によれば、第3のトレンチ内に絶縁膜が研磨ストッパ膜として残る。また、ターゲットが、半導体基板と材質が異なる絶縁膜でできているので、ステッパによるターゲットの認識が容易である。   According to the invention of claim 4, the insulating film remains as a polishing stopper film in the third trench. Moreover, since the target is made of an insulating film made of a material different from that of the semiconductor substrate, the target can be easily recognized by the stepper.

また、請求項5の発明にかかる半導体基板の製造方法は、請求項4に記載の発明において、前記絶縁膜のエッチング後、前記半導体基板の表面を研磨し、前記第3のトレンチの底部にある前記絶縁膜が研磨面に出現した時点で研磨を停止して基板表面を平坦化する工程をさらに含むことを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for manufacturing a semiconductor substrate according to the fourth aspect of the invention, wherein after the insulating film is etched, the surface of the semiconductor substrate is polished and located at the bottom of the third trench. The method further includes a step of planarizing the substrate surface by stopping polishing when the insulating film appears on the polished surface.

この請求項5の発明によれば、第3のトレンチ内に研磨ストッパ膜として残る絶縁膜の厚さを調整することにより、適切な研磨量で研磨を終了させることができる。   According to the fifth aspect of the present invention, the polishing can be completed with an appropriate polishing amount by adjusting the thickness of the insulating film remaining as the polishing stopper film in the third trench.

また、請求項6の発明にかかる半導体基板の製造方法は、請求項4または5に記載の発明において、前記絶縁膜の厚さは、前記第3のトレンチの開口幅の1/2以上であることを特徴とする。   According to a sixth aspect of the present invention, in the semiconductor substrate manufacturing method according to the fourth or fifth aspect, the thickness of the insulating film is ½ or more of the opening width of the third trench. It is characterized by that.

この請求項6の発明によれば、絶縁膜を第3のトレンチの開口幅の1/2以上の厚さで析出させることにより、第3のトレンチを絶縁膜で完全に埋めることができる。   According to the sixth aspect of the present invention, the third trench can be completely filled with the insulating film by depositing the insulating film with a thickness of ½ or more of the opening width of the third trench.

また、請求項7の発明にかかる半導体基板の製造方法は、請求項5に記載の発明において、前記半導体基板の表面研磨により前記第1のトレンチを消失させることを特徴とする。   According to a seventh aspect of the present invention, in the semiconductor substrate manufacturing method according to the fifth aspect, the first trench is eliminated by surface polishing of the semiconductor substrate.

この請求項7の発明によれば、第1のトレンチが消失しても、第3のトレンチ内の絶縁膜がマスク合わせ用のターゲットとして残るので、これを利用することにより素子作製時に自動でマスク合わせをおこなうことができる。   According to the seventh aspect of the present invention, even if the first trench disappears, the insulating film in the third trench remains as a mask alignment target. You can make adjustments.

本発明にかかる半導体基板の製造方法によれば、ターゲットトレンチ内に絶縁膜が研磨ストッパ膜として残るため、適切な研磨量で研磨を終了させることができるので、従来のようにターゲットトレンチの深さのばらつきが原因で歩留まりや工程処理能力が低下するのを防ぐことができる。また、ターゲットが半導体基板とは異なる材質でできているため、ステッパにより基板表面の段差を利用してターゲットを認識するという従来技術に比べて、ターゲットの認識が容易である。したがって、工程処理能力の高い半導体基板を高歩留まりで製造することができるいう効果を奏する。   According to the semiconductor substrate manufacturing method of the present invention, since the insulating film remains as a polishing stopper film in the target trench, the polishing can be completed with an appropriate polishing amount. Therefore, it is possible to prevent the yield and the process throughput from being lowered due to the variation of the process. Further, since the target is made of a material different from that of the semiconductor substrate, the target can be easily recognized as compared with the conventional technique in which the stepper recognizes the target using a step on the substrate surface. Therefore, there is an effect that a semiconductor substrate having a high process throughput can be manufactured with a high yield.

以下に添付図面を参照して、この発明にかかる半導体基板の製造方法の好適な実施の形態を詳細に説明する。   Exemplary embodiments of a method for producing a semiconductor substrate according to the present invention will be explained below in detail with reference to the accompanying drawings.

実施の形態1.
図1〜図7は、本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。まず、図1に示すように、低抵抗のn型シリコン半導体基板11を用意し、その表面にトレンチエッチング用の酸化膜12を形成する。なお、マスクは、酸化膜に限らず、窒化膜などの絶縁膜でもよい。そして、図2に示すように、図示しないマスクを用い、フォトリソグラフィー技術によって、酸化膜12の一部を除去し、半導体基板11の、ターゲットトレンチの形成領域13を露出させる。
Embodiment 1 FIG.
1 to 7 are longitudinal sectional views schematically showing a semiconductor substrate being manufactured according to the first embodiment of the present invention. First, as shown in FIG. 1, a low-resistance n-type silicon semiconductor substrate 11 is prepared, and an oxide film 12 for trench etching is formed on the surface thereof. The mask is not limited to the oxide film, but may be an insulating film such as a nitride film. Then, as shown in FIG. 2, a part of the oxide film 12 is removed by a photolithography technique using a mask (not shown), and the target trench formation region 13 of the semiconductor substrate 11 is exposed.

ついで、図3に示すように、パターニングした酸化膜12をマスクとしてプラズマエッチングやRIE(反応性イオンエッチング)や異方性ウェットエッチング等の異方性エッチングをおこない、第1のトレンチであるターゲットトレンチ14を形成する。このターゲットトレンチ14の深さは、特に限定しないが、たとえば後の平坦化処理時の研磨により除去される基板表面部分の厚さ(すなわち、研磨量)よりも1μm程度深ければよい。そして、酸化膜12の表面上およびターゲットトレンチ14内に絶縁膜であるHTO酸化膜15を、ターゲットトレンチ14の開口幅の半分以上の厚さとなるように析出させ、ターゲットトレンチ14をHTO酸化膜15で完全に埋める。   Next, as shown in FIG. 3, anisotropic etching such as plasma etching, RIE (reactive ion etching) or anisotropic wet etching is performed using the patterned oxide film 12 as a mask, and the target trench which is the first trench is formed. 14 is formed. The depth of the target trench 14 is not particularly limited. For example, the depth may be about 1 μm deeper than the thickness (that is, the polishing amount) of the substrate surface portion to be removed by polishing in the subsequent planarization process. Then, an HTO oxide film 15 that is an insulating film is deposited on the surface of the oxide film 12 and in the target trench 14 so as to have a thickness that is half or more of the opening width of the target trench 14. Completely fill with.

ついで、図4に示すように、酸化膜エッチャー等を用いてHTO酸化膜15をエッチバックする。このエッチバック処理中に、基板表面上のHTO酸化膜15および酸化膜12が消失して半導体基板11が露出すると、常時モニタしているプラズマ発光が変化する。この変化を検知することにより、半導体基板11の表面上の酸化膜12,15がなくなったことを知ることができる。   Next, as shown in FIG. 4, the HTO oxide film 15 is etched back using an oxide film etcher or the like. If the HTO oxide film 15 and the oxide film 12 on the substrate surface disappear and the semiconductor substrate 11 is exposed during the etch back process, the plasma emission that is constantly monitored changes. By detecting this change, it can be known that the oxide films 12 and 15 on the surface of the semiconductor substrate 11 have disappeared.

プラズマ発光が変化した時点、すなわち基板表面上の酸化膜12,15がなくなったとされる時点から所定時間、ターゲットトレンチ14内に残るHTO酸化膜15をオーバーエッチングして除去し、ターゲットトレンチ14の底部にのみHTO酸化膜15を約1μmの厚さで残す。このオーバーエッチング処理は、上述したように時間管理によって制御されるが、基板表面上の酸化膜12,15がなくなったとされる時点からの時間経過によりエッチング量を制御するので、精度よく処理することができる。   The HTO oxide film 15 remaining in the target trench 14 is removed by over-etching for a predetermined time from when the plasma emission changes, that is, when the oxide films 12 and 15 on the substrate surface disappear. Only the HTO oxide film 15 is left with a thickness of about 1 μm. As described above, this over-etching process is controlled by time management. However, the etching amount is controlled by the passage of time from the time when the oxide films 12 and 15 on the surface of the substrate are eliminated. Can do.

ついで、図5に示すように、再度、半導体基板11の表面およびターゲットトレンチ14内に酸化膜(窒化膜などの絶縁膜でもよい)16を形成する。ついで、図5において図示しないマスクを用い、フォトリソグラフィー技術によって、酸化膜16の一部を除去し、半導体基板11の、並列pn接合構造を形成するための超接合用トレンチの形成領域を露出させる。そして、プラズマエッチングやRIEや異方性ウェットエッチング等の異方性エッチングをおこない、第2のトレンチである超接合用トレンチ17を形成する。   Next, as shown in FIG. 5, an oxide film (which may be an insulating film such as a nitride film) 16 is formed again on the surface of the semiconductor substrate 11 and in the target trench 14. Next, using a mask (not shown) in FIG. 5, a part of the oxide film 16 is removed by a photolithography technique to expose a formation region of a superjunction trench for forming a parallel pn junction structure of the semiconductor substrate 11. . Then, anisotropic etching such as plasma etching, RIE, or anisotropic wet etching is performed to form a superjunction trench 17 that is a second trench.

ついで、図6に示すように、減圧エピタキシャル法等によりp型半導体のエピタキシャル成長をおこない、超接合用トレンチ17をp型半導体で埋めてp型半導体領域18を形成する。このとき、減圧エピタキシャル法を用いているので、酸化膜16上にはエピタキシャル膜が成長しない。ついで、ウェットエッチング法により酸化膜16を除去して、半導体基板11の表面を露出させる。   Next, as shown in FIG. 6, the p-type semiconductor is epitaxially grown by a low pressure epitaxial method or the like, and the superjunction trench 17 is filled with the p-type semiconductor to form a p-type semiconductor region 18. At this time, since the reduced pressure epitaxial method is used, the epitaxial film does not grow on the oxide film 16. Next, the oxide film 16 is removed by wet etching to expose the surface of the semiconductor substrate 11.

その際、ターゲットトレンチ14内では酸化膜がHTO酸化膜15と酸化膜16の2層構造になっているため、ターゲットトレンチ14内の酸化膜全体の厚さはHTO酸化膜15と酸化膜16を合わせた厚さとなり、半導体基板11の表面を覆う酸化膜16よりも厚い。そのため、ウェットエッチング中に半導体基板11の表面が露出した時点、すなわち基板表面の酸化膜16が消失した時点でエッチングを停止すれば、酸化膜15、またはHTO酸化膜15と酸化膜16の一部がターゲットトレンチ14の底部に残る。   At that time, since the oxide film has a two-layer structure of the HTO oxide film 15 and the oxide film 16 in the target trench 14, the total thickness of the oxide film in the target trench 14 is the same as that of the HTO oxide film 15 and the oxide film 16. The combined thickness is thicker than the oxide film 16 covering the surface of the semiconductor substrate 11. Therefore, if the etching is stopped when the surface of the semiconductor substrate 11 is exposed during wet etching, that is, when the oxide film 16 on the substrate surface disappears, the oxide film 15 or a part of the HTO oxide film 15 and the oxide film 16 is removed. Remains at the bottom of the target trench 14.

ついで、図7に示すように、たとえばCMP(化学機械研磨)法等により基板表面を研磨して平坦化する。一般に、CMP法によるシリコン半導体基板の研磨では、有機アルカリ等からなるスラリーを用い、化学的な作用を主として研磨をおこなうため、シリコンと酸化膜との選択比は高く、酸化膜はほとんど研磨されない。この特性を利用して、図7に示すように、ターゲットトレンチ14内のHTO酸化膜15が研磨面に出現した時点で研磨を停止する。このようにすれば、ターゲットトレンチ14内の底部に残る酸化膜15の厚さを調整するだけで、平坦化処理時の研磨を任意の位置で停止させることができる。   Next, as shown in FIG. 7, the substrate surface is polished and planarized by, for example, a CMP (chemical mechanical polishing) method. In general, polishing of a silicon semiconductor substrate by a CMP method uses a slurry made of an organic alkali or the like to perform polishing mainly by a chemical action, so that the selection ratio between silicon and an oxide film is high and the oxide film is hardly polished. Using this characteristic, as shown in FIG. 7, the polishing is stopped when the HTO oxide film 15 in the target trench 14 appears on the polishing surface. In this way, the polishing during the planarization process can be stopped at any position simply by adjusting the thickness of the oxide film 15 remaining at the bottom in the target trench 14.

上述したように実施の形態1によれば、ターゲットトレンチ14内にHTO酸化膜15を研磨ストッパ膜として残すことにより任意の研磨量で研磨を終了させることができるので、従来のようにターゲットトレンチの深さのばらつきが原因で歩留まりや工程処理能力が低下するのを防ぐことができる。また、ターゲットがシリコンではなく、HTO酸化膜15でできているため、ステッパにより基板表面の段差を利用してターゲットを認識するという従来技術に比べて、ターゲットの認識が容易である。したがって、工程処理能力の高い半導体基板を高歩留まりで製造することができる。   As described above, according to the first embodiment, since the HTO oxide film 15 is left as a polishing stopper film in the target trench 14, the polishing can be finished with an arbitrary polishing amount. It is possible to prevent a decrease in yield and process capability due to variations in depth. Further, since the target is made of the HTO oxide film 15 instead of silicon, the target can be easily recognized as compared with the conventional technique in which the target is recognized using the step on the substrate surface by the stepper. Therefore, it is possible to manufacture a semiconductor substrate having a high process throughput with a high yield.

これを検証するため、本発明者らは、実際に上述した実施の形態1にしたがってターゲットトレンチ14内に1μmの厚さのHTO酸化膜15が残るように処理を施した500枚の半導体基板を用意し、従来技術と同様にマスク合わせをおこなった。その結果、500枚全ての半導体基板について自動でマスク合わせをおこなうことができた。また、50枚の半導体基板についてSEM(走査型電子顕微鏡)でターゲット断面を観察したところ、ターゲットトレンチ14内に残るHTO酸化膜15(および酸化膜16)の厚さは0.83〜1.12μmであり、この範囲で研磨が停止していることが確認された。   In order to verify this, the present inventors actually applied 500 semiconductor substrates that were processed so that the HTO oxide film 15 having a thickness of 1 μm remained in the target trench 14 in accordance with the first embodiment described above. Prepared and performed mask matching as in the prior art. As a result, it was possible to automatically perform mask alignment for all 500 semiconductor substrates. Further, when the cross section of the target was observed with 50 SEMs using a scanning electron microscope (SEM), the thickness of the HTO oxide film 15 (and the oxide film 16) remaining in the target trench 14 was 0.83 to 1.12 μm. It was confirmed that polishing was stopped within this range.

なお、上述した実施の形態1では、減圧エピタキシャル成長法を用いて酸化膜16上にエピタキシャル成長膜が堆積しない条件でエピタキシャル成長をおこなったが、酸化膜16上にエピタキシャル成長膜が堆積する条件でエピタキシャル成長をおこなってもよい。その場合でも、平坦化処理時にターゲットトレンチ14内の酸化膜15が露出した時点で研磨が停止するので、同様の効果が得られる。   In the first embodiment described above, the epitaxial growth is performed under the condition that the epitaxial growth film is not deposited on the oxide film 16 by using the low pressure epitaxial growth method. However, the epitaxial growth is performed under the condition that the epitaxial growth film is deposited on the oxide film 16. Also good. Even in such a case, since the polishing is stopped when the oxide film 15 in the target trench 14 is exposed during the planarization process, the same effect can be obtained.

実施の形態2.
図8〜図15は、本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。まず、図8に示すように、低抵抗のn型シリコン半導体基板21を用意し、その表面に図示しないトレンチエッチング用の酸化膜(窒化膜などの絶縁膜でもよい)を形成する。そして、図示しないマスクを用い、フォトリソグラフィー技術によって、基板表面の酸化膜の一部を除去し、半導体基板21の、第1のターゲットトレンチの形成領域を露出させる。ついで、パターニングした酸化膜をマスクとしてプラズマエッチングやRIEや異方性ウェットエッチング等の異方性エッチングをおこない、第1のトレンチである第1のターゲットトレンチ22を形成し、基板表面の酸化膜を除去する。
Embodiment 2. FIG.
8 to 15 are longitudinal sectional views showing an outline of a semiconductor substrate being manufactured according to the second embodiment of the present invention. First, as shown in FIG. 8, a low-resistance n-type silicon semiconductor substrate 21 is prepared, and an oxide film for trench etching (an insulating film such as a nitride film) (not shown) is formed on the surface thereof. Then, by using a mask (not shown), a part of the oxide film on the substrate surface is removed by photolithography technique, and the first target trench formation region of the semiconductor substrate 21 is exposed. Next, anisotropic etching such as plasma etching, RIE, or anisotropic wet etching is performed using the patterned oxide film as a mask to form a first target trench 22 that is a first trench, and an oxide film on the substrate surface is formed. Remove.

ついで、図9に示すように、半導体基板21の表面および第1のターゲットトレンチ22内に酸化膜(窒化膜などの絶縁膜でもよい)23を形成する。そして、図示しないマスクを用い、フォトリソグラフィー技術によって、酸化膜23の一部を除去し、半導体基板21の、並列pn接合構造を形成するための超接合用トレンチの形成領域を露出させる。ついで、酸化膜23をマスクとしてプラズマエッチングやRIEや異方性ウェットエッチング等の異方性エッチングをおこない、第2のトレンチである超接合用トレンチ24を形成する。その後、p型半導体のエピタキシャル成長をおこない、超接合用トレンチ24をp型半導体で埋めてp型半導体領域25を形成する。   Next, as shown in FIG. 9, an oxide film (or an insulating film such as a nitride film) 23 is formed on the surface of the semiconductor substrate 21 and in the first target trench 22. Then, using a mask (not shown), a part of the oxide film 23 is removed by a photolithography technique, and a formation region of a superjunction trench for forming a parallel pn junction structure of the semiconductor substrate 21 is exposed. Next, anisotropic etching such as plasma etching, RIE, or anisotropic wet etching is performed using the oxide film 23 as a mask to form a superjunction trench 24 as a second trench. Thereafter, the p-type semiconductor is epitaxially grown, and the superjunction trench 24 is filled with the p-type semiconductor to form the p-type semiconductor region 25.

ついで、図10に示すように、酸化膜23を除去した後、再度、半導体基板21の表面および第1のターゲットトレンチ22内に酸化膜(窒化膜などの絶縁膜でもよい)26を形成する。そして、図11に示すように、図示しないマスクを用い、フォトリソグラフィー技術によって、酸化膜26の一部を除去し、半導体基板21の、第2のターゲットトレンチの形成領域27を露出させる。   Next, as shown in FIG. 10, after removing the oxide film 23, an oxide film (which may be an insulating film such as a nitride film) 26 is formed again on the surface of the semiconductor substrate 21 and in the first target trench 22. Then, as shown in FIG. 11, a part of the oxide film 26 is removed by a photolithography technique using a mask (not shown), and the second target trench formation region 27 of the semiconductor substrate 21 is exposed.

ついで、図12に示すように、パターニングした酸化膜26をマスクとしてプラズマエッチングやRIEや異方性ウェットエッチング等の異方性エッチングをおこない、第3のトレンチである第2のターゲットトレンチ28を形成する。この第2のターゲットトレンチ28の深さは、特に限定しないが、たとえば後の平坦化処理時の研磨により除去される基板表面部分の厚さ(すなわち、研磨量)よりも1μm程度深ければよい。   Then, as shown in FIG. 12, anisotropic etching such as plasma etching, RIE, or anisotropic wet etching is performed using the patterned oxide film 26 as a mask to form a second target trench 28 that is a third trench. To do. The depth of the second target trench 28 is not particularly limited. For example, the depth may be about 1 μm deeper than the thickness (that is, the polishing amount) of the substrate surface portion to be removed by polishing during the subsequent planarization process.

ついで、図13に示すように、酸化膜26を除去した後、再度、半導体基板21の表面、第1のターゲットトレンチ22および第2のターゲットトレンチ28内に酸化膜(窒化膜などの絶縁膜でもよい)29を、第2のターゲットトレンチ28の開口幅の半分以上の厚さとなるように析出させ、第2のターゲットトレンチ28を酸化膜29で完全に埋める。なお、酸化膜26を除去せずに、その上にさらに酸化膜29を堆積してもよい。   Next, as shown in FIG. 13, after removing the oxide film 26, an oxide film (an insulating film such as a nitride film) is again formed on the surface of the semiconductor substrate 21, the first target trench 22, and the second target trench 28. 29) is deposited so as to have a thickness more than half of the opening width of the second target trench 28, and the second target trench 28 is completely filled with the oxide film 29. Note that an oxide film 29 may be further deposited thereon without removing the oxide film 26.

ついで、図14に示すように、酸化膜エッチャー等を用いて酸化膜29(酸化膜26がある場合には酸化膜26,29)をエッチバックする。このエッチバック処理においては、基板表面上の酸化膜29(酸化膜26がある場合には酸化膜26,29)が消失して半導体基板21が露出したとされる時点から所定時間、第2のターゲットトレンチ28内に残る酸化膜29をオーバーエッチングして除去し、第2のターゲットトレンチ28の底部にのみ酸化膜29を約1μmの厚さで残す。このオーバーエッチング処理は、上述したように時間管理によって制御されるが、基板表面上の酸化膜29(酸化膜26がある場合には酸化膜26,29)がなくなったとされる時点からの時間経過によりエッチング量を制御するので、精度よく処理することができる。   Next, as shown in FIG. 14, the oxide film 29 (the oxide films 26 and 29 when there is the oxide film 26) is etched back using an oxide film etcher or the like. In this etch-back process, the oxide film 29 on the substrate surface (the oxide films 26 and 29 when the oxide film 26 is present) disappears for a predetermined time from the time when the semiconductor substrate 21 is exposed for a second time. The oxide film 29 remaining in the target trench 28 is removed by over-etching, and the oxide film 29 is left with a thickness of about 1 μm only at the bottom of the second target trench 28. This over-etching process is controlled by time management as described above, but the time elapses from the point when the oxide film 29 on the substrate surface (the oxide films 26 and 29 when the oxide film 26 is present) is eliminated. Since the etching amount is controlled by this, processing can be performed with high accuracy.

ついで、図15に示すように、たとえばCMP法等により基板表面を研磨して平坦化する。その際、実施の形態1において説明したようにCMP法では酸化膜がほとんど研磨されないので、第2のターゲットトレンチ28内の酸化膜29が研磨面に出現した時点で研磨を停止する。このようにすることによって、第2のターゲットトレンチ28内の底部に残る酸化膜29の厚さを調整するだけで、平坦化処理時の研磨を任意の位置で停止させることができる。なお、図15に示す例では、研磨により第1のターゲットトレンチ22が消失しているが、第1のターゲットトレンチ22が残っていても何ら問題はない。   Next, as shown in FIG. 15, the substrate surface is polished and planarized by, for example, a CMP method. At this time, as described in the first embodiment, since the oxide film is hardly polished by the CMP method, the polishing is stopped when the oxide film 29 in the second target trench 28 appears on the polishing surface. In this way, the polishing during the planarization process can be stopped at an arbitrary position only by adjusting the thickness of the oxide film 29 remaining at the bottom in the second target trench 28. In the example shown in FIG. 15, the first target trench 22 disappears due to polishing, but there is no problem even if the first target trench 22 remains.

上述したように実施の形態2によれば、第2のターゲットトレンチ28内に酸化膜29を研磨ストッパ膜として残すことにより任意の研磨量で研磨を終了させることができるので、実施の形態1と同様に歩留まりの低下や工程処理能力の低下を防ぐことができる。また、ターゲットが酸化膜29でできているため、実施の形態1と同様にターゲットの認識が容易である。したがって、工程処理能力の高い半導体基板を高歩留まりで製造することができる。   As described above, according to the second embodiment, the polishing can be finished with an arbitrary polishing amount by leaving the oxide film 29 as a polishing stopper film in the second target trench 28. Similarly, a decrease in yield and a decrease in process throughput can be prevented. Further, since the target is made of the oxide film 29, the target can be easily recognized as in the first embodiment. Therefore, it is possible to manufacture a semiconductor substrate having a high process throughput with a high yield.

以上において本発明は、上述した各実施の形態に限らず、種々変更可能である。たとえば、上述した各実施の形態では、第1導電型をn型とし、第2導電型をp型として説明したが、その逆の場合も同様である。また、本発明は、シリコン半導体に限らず、たとえばSiCなどの化合物半導体にも適用可能である。   In the above, this invention is not restricted to each embodiment mentioned above, A various change is possible. For example, in each of the above-described embodiments, the first conductivity type is n-type and the second conductivity type is p-type, but the reverse is also true. Further, the present invention is not limited to a silicon semiconductor, and can be applied to a compound semiconductor such as SiC.

以上のように、本発明にかかる半導体基板の製造方法は、並列pn接合構造の耐圧構造を有するデバイスを製造する際に用いられる半導体基板の製造に有用であり、特に並列pn接合構造により高耐圧化と大電流容量化を両立させることができるMOSFET、IGBT、バイポーラトランジスタ、GTOサイリスタまたはダイオード等の製造に適している。   As described above, the method for manufacturing a semiconductor substrate according to the present invention is useful for manufacturing a semiconductor substrate used when manufacturing a device having a breakdown voltage structure with a parallel pn junction structure. This is suitable for manufacturing MOSFETs, IGBTs, bipolar transistors, GTO thyristors, diodes, and the like that can achieve both high current capacity and high current capacity.

本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 1 of this invention. 本発明の実施の形態1により製造された半導体基板の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the semiconductor substrate manufactured by Embodiment 1 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2による製造途中の半導体基板の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the semiconductor substrate in the middle of manufacture by Embodiment 2 of this invention. 本発明の実施の形態2により製造された半導体基板の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the semiconductor substrate manufactured by Embodiment 2 of this invention. 並列pn接合構造を有する半導体基板のエピタキシャル成長後の基板表面の様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows the mode of the substrate surface after the epitaxial growth of the semiconductor substrate which has a parallel pn junction structure.

符号の説明Explanation of symbols

11,21 第1導電型半導体基板
14 第1のトレンチ(ターゲットトレンチ)
15 絶縁膜(HTO酸化膜)
17,24 第2のトレンチ(超接合用トレンチ)
18,25 第2導電型半導体(p型半導体領域)
22 第1のトレンチ(第1のターゲットトレンチ)
28 第3のトレンチ(第2のターゲットトレンチ)
29 絶縁膜(酸化膜)
11, 21 First conductivity type semiconductor substrate 14 First trench (target trench)
15 Insulating film (HTO oxide film)
17, 24 Second trench (super junction trench)
18, 25 Second conductivity type semiconductor (p-type semiconductor region)
22 First trench (first target trench)
28 Third trench (second target trench)
29 Insulating film (oxide film)

Claims (7)

n型半導体領域とp型半導体領域とが交互に繰り返し接合された構成の並列pn接合構造を有する半導体基板を製造するにあたって、
第1導電型の半導体基板にマスク合わせ用のターゲットとなる第1のトレンチを形成する工程と、
前記第1のトレンチを絶縁膜で埋める工程と、
前記絶縁膜をエッチングして前記第1のトレンチの底部にのみ前記絶縁膜を残す工程と、
前記半導体基板に前記第1のトレンチよりも深い第2のトレンチを形成する工程と、
前記第2のトレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、
を含むことを特徴とする半導体基板の製造方法。
In manufacturing a semiconductor substrate having a parallel pn junction structure in which an n-type semiconductor region and a p-type semiconductor region are alternately and repeatedly joined,
Forming a first trench serving as a target for mask alignment on a semiconductor substrate of a first conductivity type;
Filling the first trench with an insulating film;
Etching the insulating film to leave the insulating film only at the bottom of the first trench;
Forming a second trench deeper than the first trench in the semiconductor substrate;
Epitaxially growing a second conductivity type semiconductor in the second trench;
A method for manufacturing a semiconductor substrate, comprising:
前記第2導電型半導体のエピタキシャル成長後、前記半導体基板の表面を研磨し、前記第1のトレンチの底部にある前記絶縁膜が研磨面に出現した時点で研磨を停止して基板表面を平坦化する工程をさらに含むことを特徴とする請求項1に記載の半導体基板の製造方法。   After the epitaxial growth of the second conductivity type semiconductor, the surface of the semiconductor substrate is polished, and when the insulating film at the bottom of the first trench appears on the polished surface, the polishing is stopped and the substrate surface is flattened. The method for manufacturing a semiconductor substrate according to claim 1, further comprising a step. 前記絶縁膜の厚さは、前記第1のトレンチの開口幅の1/2以上であることを特徴とする請求項1または2に記載の半導体基板の製造方法。   3. The method of manufacturing a semiconductor substrate according to claim 1, wherein a thickness of the insulating film is not less than ½ of an opening width of the first trench. n型半導体領域とp型半導体領域とが交互に繰り返し接合された構成の並列pn接合構造を有する半導体基板を製造するにあたって、
第1導電型の半導体基板にマスク合わせ用の第1のターゲットとなる第1のトレンチを形成する工程と、
前記半導体基板に前記第1のトレンチよりも深い第2のトレンチを形成する工程と、
前記第2のトレンチ内に第2導電型の半導体をエピタキシャル成長させる工程と、
前記半導体基板にマスク合わせ用の第2のターゲットとして、前記第1のトレンチよりも深く、かつ前記第2のトレンチよりも浅い第3のトレンチを形成する工程と、
前記第3のトレンチを絶縁膜で埋める工程と、
前記絶縁膜をエッチングして前記第3のトレンチの底部にのみ前記絶縁膜を残す工程と、
を含むことを特徴とする半導体基板の製造方法。
In manufacturing a semiconductor substrate having a parallel pn junction structure in which an n-type semiconductor region and a p-type semiconductor region are alternately and repeatedly joined,
Forming a first trench serving as a first target for mask alignment in a first conductivity type semiconductor substrate;
Forming a second trench deeper than the first trench in the semiconductor substrate;
Epitaxially growing a second conductivity type semiconductor in the second trench;
Forming a third trench deeper than the first trench and shallower than the second trench as a second target for mask alignment on the semiconductor substrate;
Filling the third trench with an insulating film;
Etching the insulating film to leave the insulating film only at the bottom of the third trench;
A method for manufacturing a semiconductor substrate, comprising:
前記絶縁膜のエッチング後、前記半導体基板の表面を研磨し、前記第3のトレンチの底部にある前記絶縁膜が研磨面に出現した時点で研磨を停止して基板表面を平坦化する工程をさらに含むことを特徴とする請求項4に記載の半導体基板の製造方法。   Polishing the surface of the semiconductor substrate after the etching of the insulating film, and further stopping the polishing when the insulating film at the bottom of the third trench appears on the polished surface to planarize the substrate surface. The method of manufacturing a semiconductor substrate according to claim 4, comprising: 前記絶縁膜の厚さは、前記第3のトレンチの開口幅の1/2以上であることを特徴とする請求項4または5に記載の半導体基板の製造方法。   6. The method of manufacturing a semiconductor substrate according to claim 4, wherein the thickness of the insulating film is not less than 1/2 of the opening width of the third trench. 前記半導体基板の表面研磨により前記第1のトレンチを消失させることを特徴とする請求項5に記載の半導体基板の製造方法。

6. The method of manufacturing a semiconductor substrate according to claim 5, wherein the first trench is eliminated by surface polishing of the semiconductor substrate.

JP2003298744A 2003-08-22 2003-08-22 Manufacturing method of semiconductor substrate Expired - Fee Related JP4539057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298744A JP4539057B2 (en) 2003-08-22 2003-08-22 Manufacturing method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298744A JP4539057B2 (en) 2003-08-22 2003-08-22 Manufacturing method of semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2005072191A true JP2005072191A (en) 2005-03-17
JP4539057B2 JP4539057B2 (en) 2010-09-08

Family

ID=34404159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298744A Expired - Fee Related JP4539057B2 (en) 2003-08-22 2003-08-22 Manufacturing method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP4539057B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129115A (en) * 2005-11-07 2007-05-24 Fuji Electric Holdings Co Ltd Manufacturing method for semiconductor device
JP2008109026A (en) * 2006-10-27 2008-05-08 Disco Abrasive Syst Ltd Semiconductor wafer and manufacturing method for the same
JP2010118536A (en) * 2008-11-13 2010-05-27 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device
CN103715232A (en) * 2012-09-28 2014-04-09 中国科学院微电子研究所 Groove type terminal used for semiconductor power device and preparation method of groove type terminal
US9252106B2 (en) 2013-08-09 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
CN105551966A (en) * 2016-01-15 2016-05-04 上海华虹宏力半导体制造有限公司 Manufacturing method for groove type super junction
JP7283211B2 (en) 2019-04-26 2023-05-30 富士電機株式会社 Silicon carbide substrate manufacturing method and silicon carbide substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124474A (en) * 2000-10-13 2002-04-26 Denso Corp Semiconductor substrate and method of manufacturing the same
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123605A (en) * 1988-11-01 1990-05-11 Stanley Electric Co Ltd Signal lighting fixture for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124474A (en) * 2000-10-13 2002-04-26 Denso Corp Semiconductor substrate and method of manufacturing the same
JP2005019898A (en) * 2003-06-27 2005-01-20 Denso Corp Semiconductor substrate and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129115A (en) * 2005-11-07 2007-05-24 Fuji Electric Holdings Co Ltd Manufacturing method for semiconductor device
JP2008109026A (en) * 2006-10-27 2008-05-08 Disco Abrasive Syst Ltd Semiconductor wafer and manufacturing method for the same
JP2010118536A (en) * 2008-11-13 2010-05-27 Fuji Electric Systems Co Ltd Method of manufacturing semiconductor device
CN103715232A (en) * 2012-09-28 2014-04-09 中国科学院微电子研究所 Groove type terminal used for semiconductor power device and preparation method of groove type terminal
US9252106B2 (en) 2013-08-09 2016-02-02 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
CN105551966A (en) * 2016-01-15 2016-05-04 上海华虹宏力半导体制造有限公司 Manufacturing method for groove type super junction
JP7283211B2 (en) 2019-04-26 2023-05-30 富士電機株式会社 Silicon carbide substrate manufacturing method and silicon carbide substrate

Also Published As

Publication number Publication date
JP4539057B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US9917186B2 (en) Semiconductor device with control structure including buried portions and method of manufacturing
US7833862B2 (en) Semiconductor device and method for forming same
TWI329925B (en) Semiconductor device and method of fabricating the same
JP5383732B2 (en) Semiconductor device
US9257532B2 (en) Method for forming a semiconductor device with a trench and an isolation
US8097501B2 (en) Method for manufacturing semiconductor device
US20160133741A1 (en) Silicon carbide semiconductor device and method for manufacturing the silicon carbide semiconductor device
JP5572924B2 (en) Manufacturing method of semiconductor device
US8017494B2 (en) Termination trench structure for mosgated device and process for its manufacture
JP2018046251A (en) Semiconductor device and method of manufacturing the same
US20170278712A1 (en) Planarization Control in Semiconductor Manufacturing Process
JP4539052B2 (en) Manufacturing method of semiconductor substrate
JP4039161B2 (en) Manufacturing method of semiconductor substrate
JP4539057B2 (en) Manufacturing method of semiconductor substrate
JP4764999B2 (en) Manufacturing method of semiconductor device
US9754788B2 (en) Manufacturing method of semiconductor structure including planarizing a polysilicon layer over an array area and a periphery area
JP5458608B2 (en) Manufacturing method of semiconductor device
US11869966B2 (en) Method for forming an insulation layer in a semiconductor body and transistor device
JP5439768B2 (en) Manufacturing method of semiconductor device
JP5625291B2 (en) Semiconductor device and manufacturing method thereof
JP2011155290A (en) Method of manufacturing semiconductor element
JPH09129874A (en) Semiconductor device and its manufacture
JP6648743B2 (en) Method for manufacturing silicon carbide semiconductor device
KR102062050B1 (en) Combined gate trench and contact etch process and related structure
JP2006303232A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees