JP2007108208A - 発色装置およびその製造方法 - Google Patents

発色装置およびその製造方法 Download PDF

Info

Publication number
JP2007108208A
JP2007108208A JP2005296109A JP2005296109A JP2007108208A JP 2007108208 A JP2007108208 A JP 2007108208A JP 2005296109 A JP2005296109 A JP 2005296109A JP 2005296109 A JP2005296109 A JP 2005296109A JP 2007108208 A JP2007108208 A JP 2007108208A
Authority
JP
Japan
Prior art keywords
substrate
buffer layer
wavelength
light
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005296109A
Other languages
English (en)
Inventor
Katsunori Suzuki
克典 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Microelectronics Inc
Original Assignee
Kawasaki Microelectronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Microelectronics Inc filed Critical Kawasaki Microelectronics Inc
Priority to JP2005296109A priority Critical patent/JP2007108208A/ja
Publication of JP2007108208A publication Critical patent/JP2007108208A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】従来からの半導体製造工程を利用しつつ、積層体内の多層構造に急峻な段差や屈曲点を形成することが少ない、構造色による発色装置とその製造方法を提供する。
【解決手段】屈折率の異なる2種類の物質41、42を厚さ方向に交互に積層した積層体4が、基体上に複数個が配置されることにより生じる構造色を用いた発色装置であって、隣接する積層体との間隔w2が発色させたい光の波長未満となるように、前記積層体4が配置されており、かつ、該積層体4の下地層は、その表面の断面起伏線において鋭角部のない段差と連続した曲面形状とを有し、その最大高低差は発色させたい光の波長よりも短い。
【選択図】図1

Description

本発明は、構造色を発する発色装置とその製造方法に関する。
色素分子の吸収による色とは異なり、サブミクロンオーダーの微細構造が光と相互作用(反射、干渉、回折等)することで発する色を構造色と呼ぶ。構造色による発色装置は、紫外線による経時変化が少なく、かつ光沢が出やすい等の利点を有することから、自動車の塗装方法や繊維への着色手段として期待されている。
このような発色装置としては、例えば非特許文献1には、モルフォチョウの鱗粉の微細構造から、縦方向は周期的にかつ横方向は不規則的になるような構造の試作例が開示されている。また、特許文献1や特許文献2には、可視光線の波長より小さい幅を有し、かつ屈折率の異なる2種類の無機材料を交互に積層した積層体を、ある一定の間隔で基材上に平面方向に配列した構造を有する発色体が提案されている。
特開2003−053875号公報 特開2005−153192号公報 吉岡伸也他2名、「モルフォチョウの青い輝きの仕組みと再現発色基板」、応用物理、社団法人応用物理学会、第73巻、第7号、2004年、p.939−942
構造色の発色方法において、1)特定波長の高い反射率、2)反射波長の角度依存性、3)奥行きのある色調、を生じさせる要点は、前述の積層体を厚みが一定周期の多層構造とすることで積層体内部において特定波長の干渉を強めること、および積層体の高さをランダムにすることで積層体上部から反射される光を非干渉にすることである。
積層体の高さをランダムにするために、非特許文献1や特許文献2では、電子線描画とドライエッチング法をもちいてランダムな矩形段差を基板表面に形成し、その上に積層体を形成している。あるいは、特許文献1では、基板を30nmから400nm程度の粗さに研磨し、その上に積層体を形成している。しかし、これらの方法では、積層体を載せる基板表面に、急峻な段差や屈曲点が形成される可能性が非常に大きくなるのが問題である。本発明のようなナノオーダーの微細構造を製造する場合、製造条件によっては基板の凹凸がその上に載る多層構造の層から層へ伝搬する現象が発生する。例えば、バイアススパッタ成膜法で「ノジュール」としてよく知られている現象である。つまり、基板部分の急峻な段差や屈曲点上に積層体が形成された場合、その基板の凹凸が積層体の多層構造内にも複写され、結果として、積層体内部で多層構造が屈曲、変動等し、入射光に複雑な反射が生じて、特定波長の干渉効果が十分期待できなくなる。
本発明の目的は、上記問題点を解決し、従来からの半導体製造工程を利用しつつ、積層体内の多層構造に急峻な段差や屈曲点を形成することが少ない、構造色による発色装置とその製造方法を提供することにある。
本発明は上記の課題を解決するため、積層体を、厚みが一定周期の多層構造とし、かつ一定の間隔をおいて配置することで、特定波長の反射を強めた。また、積層体の高さを積層体の下地層によりランダムに配置することで、積層体で反射される光を非干渉とした。具体的な構成は、以下に示したとおりである。
(1)本発明に係る発光装置は、屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体が、基体上に複数個配置されることにより生じる構造色を用いた発色装置であって、隣接する積層体との間隔が発色させたい光の波長未満となるように、前記積層体が配置されており、かつ、該積層体の下地層は、その表面の断面起伏線において鋭角部のない段差と連続した曲面形状とを有し、その最大高低差は発色させたい光の波長よりも短いことを特徴とする。
(2)上記(1)において、積層体の下地層の最表面に、特定の波長を吸収する吸収帯が設けられていることを特徴とする。
(3)上記(1)または(2)において、積層体の下地層は、基体の平坦面上にランダムに配置されたパターン要素と、該パターン要素上と前記基体の平坦面上に設けられ、かつ前記パターン要素よりもなだらかな段差を有するバッファ層とからなることを特徴とする。
(4)上記の課題を解決するため、本発明に係る発光装置の製造方法は、屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体を、基体上に複数個配置することにより生じる構造色を用いた発色装置の製造方法であって、前記基体の平坦面上にパターン要素を、ランダムに配置する工程と、前記パターン要素上と前記基体の平坦面上にバッファ層を、発色させたい光の波長よりも短い高さにスピンコート法にて形成する工程と、かつ前記バッファ層上に前記積層体を、発色させたい光の波長未満の間隔で水平方向に配置する工程とを有することを特徴とする。
(5)上記の課題を解決するため、本発明に係る発光装置の製造方法は、屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体を、基体上に複数個配置することにより生じる構造色を用いた発色装置の製造方法であって、前記基体の平坦面上にパターン要素をランダムに配置する工程と、前記パターン要素上と前記基体の平坦面上にバッファ層を成膜した後、該バッファ層に厚み方向へプラズマによるスパッタエッチング法を適用して、発色させたい光の波長よりも短い高さに形成する工程と、かつ前記バッファ層上に前記積層体を、発色させたい光の波長未満の間隔で水平方向に配置する工程とを有することを特徴とする。
(6)上記(4)または(5)において、バッファ層上に積層体を配置する前に、バッファ層の最表面に特定の波長を吸収する吸収帯を設ける工程を有することを特徴とする。
(7)上記(4)から(6)の何れかにおいて、バッファ層上に積層体を配置する工程にあっては、積層体の内の少なくとも1層を、スピンコート法を用いて設けることを特徴とする。
本発明によれば、バッファ層を設けることで、パターン要素で形成された急峻な段差や屈曲点を鋭角部のない形状に変えることができる。これにより、積層体内部で多層構造が屈曲、変動等が改善され、従来装置よりも高い反射率と奥行きのある色調を特徴とした構造色を発することができる。
また、従来から半導体製造工程で使用されていたスピンコート法あるいはプラズマによるスパッタエッチング法を用いることで、既存の半導体装置やフラットパネルディスプレイ製造工程との整合性を取ることができ、既存設備を用いて容易に量産可能である。
本発明に係る発色装置の実施の形態について説明する。図1は、本発明に係る構造色の発色装置の実施の形態の一例を示す側面からの断面図である。最も基本的な構造は、基体1の平坦な面上にパターン要素2を設け、次に当該パターン要素2と基体1の平坦な面の上に、パターン要素2より鋭角部のない段差(最大高低差h3)と連続した曲面形状を有するバッファ層3を設け、さらに当該バッファ層3の上に異なる屈折率を持つ2種類の物質の層からなる積層体4が設けられている。
基体1は、平坦面を有する素材なら何でも良く、特に、鏡面加工された平坦面を持つ素材であることが望ましい。具体的には、シリコン基板あるいはガラス基板がある。シリコン基板は、半導体部品製造用のウエハ形状のものを用いれば良く、これにより半導体部品製造ラインを利用して、本発色装置の量産が可能となる。一方、ガラス基板はフラットパネルディスプレイ製造用の基板形状のものを用いれば良く、これによりフラットパネルディスプレイ製造ラインを利用して、本発色装置の量産が可能となる。これらの材料を基体として用いれば、各種半導体装置やフラットパネルディスプレイ内に組み込むことも、勿論可能となる。この場合は、外部光により発色するので、電源OFF時の発色機構として優れた効果を奏する。
なお、装置を作りこむ面の平坦性を向上させる、もしくはパターン要素やバッファ層の付着力を高める等のために、基体1の最表面に薄膜11を設けて平坦面としても良い。材料は、その目的に合わせて適宜選択すれば良い。
基体1の平坦面上に形成されるパターン要素2は、その厚みは150nm程度で、フォトリソグラフィー、ドライエッチング法を用いてライン状に形成する。該ライン状のパターン要素のライン幅、ライン長さ、ライン密度、ライン間隔は、ランダムに設定する。ここで云うランダムとは、完全にランダムでも良いし、出現頻度に法則性があるランダムパターンでも良い。特に、パターン要素の隣接する間隔fnが、0<n<2の範囲でパターン要素の出現確率に対して逆比例の関係になるように配置されている場合は、その周期性に基づいて、特定波長の発色が幅広い角度より取り出せるという利点がある。
ここでパターン要素の形成には、従来の半導体製造工程を用いるため、通常、パターン要素2のラインの断面形状は矩形となる。そのため図1中の符号21のような、急峻な段差形状を有しているが、後述する通り、後の工程で、鋭角部のない段差に置き換えるため、この段階で急峻な段差形状を有していても、問題にならない。
基体1の平坦面とパターン要素2上のバッファ層3は、基体側より順に第1のバッファ層31と吸収帯32からなる。第1のバッファ層31はパターン要素2の21に代表される急峻な段差形状を緩和する機能を有する。一方、吸収帯32はバッファ層3の最表層に設けられ、発色させたい色の波長を強める機能を有する。
第1のバッファ層31を形成するためには、スピンコート法、あるいはプラズマによるスパッタエッチング法を用いれば、第1のバッファ層31内に膜厚分布が生じる。すなわち、パターン要素2の膜厚差以外にも、パターン要素2のラインの密集部やライン幅の大きい部分で第1のバッファ層31は厚く、一方、ラインが孤立したりライン幅の小さい部分で第1のバッファ層31は薄く形成され、結果的に、パターン要素2の急峻な段差形状は、より鋭角部のない段差と連続した曲面形状に置き換わる。さらにバッファ層3の起伏がラインとそのライン同士の隙間から構成されることで起伏に異方性が生じる。この効果によって、反射波長の角度依存性を高めることができる。また、スピンコート法もしくはプラズマによるスパッタエッチング法の特性として、第1のバッファ層31の表面は連続した起伏となり、この点でも急峻な段差を形成することがない。即ち、第1のバッファ層31の起伏は、下地となるパターン要素2のライン形状を制御することで、所望の鋭角部のない段差と連続した曲面形状を生じさせることができる。同時に、スピンコート法あるいはプラズマによるスパッタエッチング法によれば、パターン要素2のライン密度差に応じて、さまざまなバッファ層3の高さが形成でき、反射光の非干渉性を高めることができる。
なお、これらの「鋭角部のない」段差とは、h3(後述するバッファ層の、段差の最大高低差)>Ry(後述する、表面粗さにおける最大高さ)であって、かつ表面の断面において急峻な部分がないことをいう。
ここで、表面粗さにおける最大高さRyとは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものをいう。なお、Ryを求める場合には、キズとみなされるような並外れた高い山や低い谷の無い部分から、基準長さだけ抜き取る(JIS B 0601-1994より)。
第1のバッファ層31の上でかつバッファ層3の最表層に、必要があれば、発色させたい光以外の光を吸収する吸収帯32を形成する。この層を設ければ、発色させたい光以外をある程度除いた光に対して積層体4が作用するため、発する光を、特定波長に、より収束させることができる発色装置となるので望ましい。この吸収帯32の材料は、発色したい光により適宜選択すればよく、例えば、波長が360nmから400nmの青色の発色装置の場合は、シリコン窒化膜を用いれば良い。この時、シリコン窒化膜の膜厚は、所望の反射波長が得られる膜厚にする。これにより、シリコン窒化膜の場合、固有のモホロジーが奥行きのある色調を生み出すことができる。
なお、第1のバッファ層31の上で最表層の吸収帯32の下に、第2のバッファ層、第3のバッファ層、…、第nのバッファ層という具合に、吸収帯以外のバッファ層を複数設けても、本発明に係る効果の発現を妨げるものではない。
バッファ層3上に形成する積層体4は、屈折率の異なる第1の層41と第2の層42とが交互に積層されて構成されている。積層体の形状は、発色させたい色の波長により、第1の層41の1層分の厚みh1、第2の層42の1層分の厚みh2、積層体の水平方向の幅w1、および隣接する積層体同士の隙間間隔w2を適宜選択することで決まる。また、上記それぞれの層の厚みh1、h2は、同じく発色させたい色の波長と、第1の層41と第2の層42を構成するそれぞれの物質とにより適宜選択する。また、積層体4の下地となるバッファ層3における段差の最大高低差h3を、少なくとも第1の層41の厚みh1と第2の層42の厚みh2との合計分設けておけば、積層体4表面の反射光が非干渉になり、積層体4内部からの干渉光強度が高まり、より望ましい形態となる。
なお、光の波長は、伝播する媒体に応じて異なるため、前記「発色させたい色の波長」は、積層体4を構成する第1の層41と第2の層42とでは異なる。したがって、第1の層41と第2の層42の、それぞれの層を伝播する波長に応じて、上記それぞれの層の厚みh1、h2、水平方向の幅w1、及び隣接する積層体同士の隙間間隔w2を適宜選択する。
さらに、積層体4の各層を設けるに当たって、スピンコート法を使用してもよい。この場合、積層体4の多層構造の階層間隔に、積層体4の下地となるバッファ層3の段差形状に応じた微小な高低差が生じるので、特定波長範囲内での波長の微小変動が生じ、色調の奥行きが高まる。
なお、多重干渉効果を生むためには、積層体を構成する第1の層41と第2の層42とを1組とした場合、少なくとも3組以上設ける必要がある。また、積層体の水平方向の幅w1は、表面反射光を非干渉にできるレベルにする必要があり、従って、発色させたい色の波長程度にする必要がある。さらに、高い反射率を得るためには、隣接する積層体同士の隙間w2は、1000nm以下に抑える必要がある。その理由は、1000nmは赤外領域であるため、実用的ではなく、また、1000nm以上にしても、孤立した積層体ごとに発せられる多重干渉光を得る効果しかないと考えられるためである。
図1に示した構造の発色装置の製造方法について、図2を参照して説明する。本実施例では、基体1にシリコンウエハを用い、波長が360nmから400nmに代表される青色に発色する発色装置の製作を示す。
(1)先ず、シリコンウエハ1の最表面上に薄膜11としてシリコン酸化膜を設けた。当該シリコン酸化膜を、熱酸化法あるいは化学的気相成長法により、10nm成膜した。
(2)(1)で設けた薄膜11上に、パターン要素2として多結晶シリコン層を設けた。多結晶シリコン層を、化学的気相成長法で150nm成膜し、その後、フォトリソグラフィーおよびドライエッチング法にて、断面矩形のライン形状に加工した。ライン幅は200nmで一定とし、ライン長さは1μmから100μmの範囲のものを、ランダムに配置した。また、ライン間隔は100nmから2.5μmまでの範囲で用意した。なお、特に、ライン間隔をfnとしたとき、0<n<2の範囲でfnが出現確率に対して逆比例するような関係となるよう配置することが好ましい。
ドライエッチング法は、塩素系ガス雰囲気中での反応性ドライエッチング法を適用した。塩素系ガスとプラズマを用いることで、多結晶シリコンのみをエッチングし、下地であるシリコン酸化膜を残存させることができる。これにより、シリコンウエハ最表面の鏡面加工による平坦性が維持され、装置を作り込むシリコンウエハ最表面にダメージを与えることがない。
当該ドライエッチング後に、酸素含有プラズマを照射し、ライン形成に用いたレジスト層を除去した(図2(a)参照)。
(3)基体1の薄膜11と(2)で設けたパターン要素2の上に、バッファ層3を形成した。下側に位置する第1のバッファ層31の材料として無機系スピンオングラスを、その上の吸収帯32の材料としてシリコン窒化物を用いた。
先ず、基体1の薄膜11とパターン要素2の上に、無機系スピンオングラスをスピンコート法にて成膜した。スピンコート条件は、無機系スピンオングラスを5ccを5秒間で基体1の薄膜11とパターン要素2上に滴下した後、6000rpmで5秒間回転させた。その後、基体ごとホットプレート上で300℃まで昇温ガス脱離を行った後、別のホットプレートに移載して400℃で30分間の本焼成工程を行った。この段階で、無機系スピンオングラス層の平均膜厚は40nm程度になるが、パターン要素2のライン間隔の大きい部分は薄く、ライン間隔が小さく、高密度の部分は厚くなり、段差の最大高低差h3は70nm程度になる。同時に、パターン要素2が有していた急峻な段差や屈曲点は消失し、全て連続的で滑らかな形状のうねりに置き換わる(図2(b)参照)。
さらに無機系スピンオングラス層の上に、シリコン窒化膜層を化学的気相成長法で150nm成膜した(図2(c)参照)。シリコン窒化膜を150nm程度の膜厚とすると、シリコンウエハ表面上のシリコン酸化膜層と無機系スピンオングラス層の合計膜厚50nmとの薄膜干渉効果で、青色の反射光を選択的に得ることができる。
(4)(3)で設けたバッファ層3の上に、積層体4を設けた。積層体4における、第1の層41の材料を窒化チタン(屈折率は2.0)、第2の層42の材料をBPSG(屈折率は1.5)とした。
先ず、バッファ層3の上に、窒化チタンをスパッタリング法にて、厚みh1を70nmで成膜した。次に、当該窒化チタン層の上にBPSGを化学的気相成長法にて、厚みh2を70nmで成膜した。その後はこの工程を繰り返し、2層を1組として8組まで積み上げて多層膜を形成した。8組の層を積み上げた後、シリコンウエハごとランプアニール法にて熱処理を施し、多層膜の機械強度を高めた。ランプアニールの条件は、ピーク温度850℃およびピーク温度保持時間を20秒とした。その後、厚さ70nmの窒化チタンをスパッタリング法で成膜し、多層膜の最上段層とした。
次に、上述の多層膜を、フォトリソグラフィーとドライエッチング法にて、一定間隔の積層体4に分断した。この時、積層体4の幅w1は400nm、積層体同士の間隔w2は200nmとした。
ドライエッチング法には、弗化炭素系ガス雰囲気中での反応性ドライエッチング法を適用した。ここで言う弗化炭素系ガスとは、半導体製造工程にて通常使用されているもので良く、例えば、CF4、CHF3、CH2F2、C4F8等があげられる。弗化炭素系ガスとプラズマを用いることで、BPSG層と窒化チタン層とを連続してエッチング可能である。窒化チタン層のエッチング速度が低い場合は、弗化炭素系ガスに酸素ガスを添加しても良い。フッ化炭素系ガス雰囲気中でのプラズマエッチングにおいては、シリコン窒化膜のエッチング速度は非常に小さいので、積層体4の下地をなすシリコン窒化膜層で、異方性エッチングを停止させることができる。これにより、さらに下層の構造を乱すことがない。
当該ドライエッチング後に、酸素含有プラズマを照射し、積層体4への分断に用いたレジストを除去した。
本実施例に示した製造方法によれば、ランダムに配置されたパターン要素2を設けることで積層体4の高さを変動させることができる。また、第1のバッファ層31の形成にスピンコート法を用いることで、積層体4の多層構造内に、急峻な段差や屈曲点の発生を防ぐことができる。これにより、本実施例で示した発色装置は、従来装置よりも高い反射率と奥行きのある色調を特徴とした青色の構造色を発し、また反射波長に角度依存性を持たせることができる。さらに、発色装置をなす積層体4は剛性が高い材質を用いているので、耐久性に優れる。また、全て半導体装置やフラットパネルディスプレイ製造に係わる材料、装置、製造方法を流用できるので、容易に量産が可能という利点もある。
なお、BPSGと窒化チタンを、各々スピンコート法にて形成可能な材料に置き換えても良い。例えば、BPSGの替わりに有機系スピンオングラスへ、窒化チタンの替わりにTa2O5へ、各々置き換えることができる。
図1に示した構造の発色装置の製造方法について、図3を参照して説明する。本実施例でも、基体にシリコンウエハを用い、波長が360nmから400nmに代表される青色に発色する発色装置の製作を示す。なお、実施例1と同一のものは同一の符号を付し、詳細な説明は省略する。
(1)シリコンウエハ1の最表面上に薄膜11を設けた。実施例1と同じ材料と工程を用いたので、詳細な説明は省略する。
(2)(1)で設けた薄膜11の上に、パターン要素2を設けた(図3(a)参照)。実施例1と同じ材料と工程を用いたので、詳細な説明は省略する。
(3)基体1の薄膜11と(2)で設けたパターン要素2の上に、バッファ層3を形成した。下側に位置する第1のバッファ層31の材料としてシリコン酸化膜を用いた。その上の吸収帯32の材料としてシリコン窒化物を用いた。
先ず、基体1の薄膜11とパターン要素2の上に、シリコン酸化膜を化学的気相成長法にて厚み150nmで成膜した(図3(b)参照)。本実施例では、狭い間隔の埋め込み性に優れ、かつ下地となるパターン要素2の形状依存性が高い、高密度プラズマを用いた化学的気相成長法を用いた。この方法では、下地となるパターン要素2の段差形状を、実施例1の場合よりは転写し易いため、図3(b)の矢印Aの箇所に示したような急峻な段差形状や屈曲点が残存する。
そこで、次に、当該シリコン酸化膜に、基板高さ方向に対しプラズマによるスパッタエッチング法を基体全面に行い、イオンスパッタによる当該急峻な段差形状の緩和を行う。プラズマによるスパッタエッチング工程にはAr含有ガスを用いるのが効果的である。プラズマによるスパッタエッチング法は、平行平板型プラズマエッチング装置にて、Ar流量:2000sccm、真空槽の圧力:130Pa、RF周波数:13,56MHz、RFパワー:4.5W/cm2の条件で行った。この条件下で、シリコン酸化膜層を厚み110nmだけスパッタエッチングした。これにより、シリコン酸化膜の表面が連続的でなめらかな段差形状に変化する(図3(c)参照)。
さらに無機系スピンオングラス層の上に、シリコン窒化膜層を化学的気相成長法で150nm成膜した。
(4)(3)で設けたバッファ層3の上に、積層体4を設けた。実施例1と同じ材料と工程を用いたので、詳細な説明は省略する。
本発明は、発色装置としてだけではなく、光の反射装置としても利用可能である。即ち、積層体やバッファ層最表面の吸収帯を適宜選択することによってフォトニック結晶としても好適であり、偏光子、波長板、回折格子、光導波路もしくはこれらの集積素子等の光産業用素子にも適用できる。
本発明に係る発色装置を模式的に示した側面からの断面図。 本発明に係る発色装置の製造方法を側面から模式的に示した図(実施例1)。 本発明に係る発色装置の製造方法を側面から模式的に示した図(実施例2)。
符号の説明
1 基体(シリコン基板)
11 薄膜
2 パターン要素
21 パターン要素の急峻な形状
3 バッファ層
31 第1のバッファ層
32 吸収帯
4 積層体
41 積層体の第1の層
42 積層体の第2の層
5 イオン
A 急峻な段差や屈曲点の例
h1 積層体の第1の層の厚み
h2 積層体の第2の層の厚み
h3 バッファ層の段差の最大高低差
w1 積層体の幅
w2 積層体とその隣の積層体との間隔

Claims (7)

  1. 屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体が、基体上に複数個配置されることにより生じる構造色を用いた発色装置であって、
    隣接する積層体との間隔が発色させたい光の波長未満となるように、前記積層体が配置されており、
    かつ、該積層体の下地層は、その表面の断面起伏線において鋭角部のない段差と連続した曲面形状とを有し、その最大高低差は発色させたい光の波長よりも短いことを特徴とする発色装置。
  2. 積層体の下地層の最表面に、特定の波長を吸収する吸収帯が設けられていることを特徴とする請求項1に記載の発色装置。
  3. 積層体の下地層は、基体の平坦面上にランダムに配置されたパターン要素と、該パターン要素上と前記基体の平坦面上に設けられ、かつ前記パターン要素よりもなだらかな段差を有するバッファ層とからなることを特徴とする請求項1または2に記載の発色装置。
  4. 屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体を、基体上に複数個配置することにより生じる構造色を用いた発色装置の製造方法であって、
    前記基体の平坦面上にパターン要素を、ランダムに配置する工程と、
    前記パターン要素上と前記基体の平坦面上にバッファ層を、発色させたい光の波長よりも短い高さにスピンコート法にて形成する工程と、
    かつ前記バッファ層上に前記積層体を、発色させたい光の波長未満の間隔で水平方向に配置する工程とを有することを特徴とする発色装置の製造方法。
  5. 屈折率の異なる2種類の物質を厚さ方向に交互に積層した積層体を、基体上に複数個配置することにより生じる構造色を用いた発色装置の製造方法であって、
    前記基体の平坦面上にパターン要素をランダムに配置する工程と、
    前記パターン要素上と前記基体の平坦面上にバッファ層を成膜した後、該バッファ層に厚み方向へプラズマによるスパッタエッチング法を適用して、発色させたい光の波長よりも短い高さに形成する工程と、
    かつ前記バッファ層上に前記積層体を、発色させたい光の波長未満の間隔で水平方向に配置する工程とを有することを特徴とする発色装置の製造方法。
  6. バッファ層上に積層体を配置する前に、バッファ層の最表面に特定の波長を吸収する吸収帯を設ける工程を有することを特徴とする請求項4または5に記載の発色装置の製造方法。
  7. バッファ層上に積層体を配置する工程にあっては、積層体の内の少なくとも1層を、スピンコート法を用いて設けることを特徴とする請求項4乃至6の何れかに記載の発色装置の製造方法。
JP2005296109A 2005-10-11 2005-10-11 発色装置およびその製造方法 Pending JP2007108208A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296109A JP2007108208A (ja) 2005-10-11 2005-10-11 発色装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296109A JP2007108208A (ja) 2005-10-11 2005-10-11 発色装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007108208A true JP2007108208A (ja) 2007-04-26

Family

ID=38034136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296109A Pending JP2007108208A (ja) 2005-10-11 2005-10-11 発色装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007108208A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010099A1 (ja) * 2015-07-13 2017-01-19 凸版印刷株式会社 発色構造体およびその製造方法
JP2017021251A (ja) * 2015-07-13 2017-01-26 凸版印刷株式会社 発色構造体およびその製造方法
KR20190053608A (ko) * 2017-11-10 2019-05-20 포항공과대학교 산학협력단 구조색용 구조체의 제조 방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010099A1 (ja) * 2015-07-13 2017-01-19 凸版印刷株式会社 発色構造体およびその製造方法
JP2017021251A (ja) * 2015-07-13 2017-01-26 凸版印刷株式会社 発色構造体およびその製造方法
EP3324222A4 (en) * 2015-07-13 2019-03-06 Toppan Printing Co., Ltd. COLOR DEVELOPMENT STRUCTURE AND METHOD FOR MANUFACTURING THE STRUCTURE
US10571607B2 (en) 2015-07-13 2020-02-25 Toppan Printing Co., Ltd. Color developing structure and method of producing the same
KR20190053608A (ko) * 2017-11-10 2019-05-20 포항공과대학교 산학협력단 구조색용 구조체의 제조 방법
KR102068737B1 (ko) 2017-11-10 2020-01-21 안동대학교 산학협력단 구조색용 구조체의 제조 방법

Similar Documents

Publication Publication Date Title
US9508956B2 (en) Organic light emitting diode, manufacturing method for organic light emitting diode, image display device, and illumination device
JP4228058B2 (ja) 発色体とその製造方法
KR100623026B1 (ko) 선 격자 편광자 및 그 제조방법
US20230184996A1 (en) Reflective optical metasurface films
FI127799B (en) Process for producing a diffraction grating
TWI756459B (zh) 具有多層繞射光學元件薄膜塗層的光學元件以及製造其之方法
JP2008508553A (ja) ナノ構造反射防止表面
US20220404525A1 (en) Optical metasurface films
WO2019024572A1 (zh) 抗反射结构、显示装置及抗反射结构制作方法
JP2003302532A (ja) 偏光板およびその製造方法
JP2020522021A5 (ja)
JP2014021146A (ja) 光学膜、光学素子、光学系および光学機器
JP5239219B2 (ja) 光学素子の製造方法
JPWO2016031167A1 (ja) 反射防止膜および反射防止膜を備えた光学部材
KR20070012438A (ko) 광학 부재 및 그의 제조방법
JP2007108208A (ja) 発色装置およびその製造方法
US20120170113A1 (en) Infrared transmission optics formed with anti-reflection pattern, and manufacturing method thereof
Saleem et al. Effect of substrate overetching and heat treatment of titanium oxide waveguide gratings and thin films on their optical properties
JP2017211661A (ja) 発色構造体、モールドおよびモールドを用いた発色構造体の製造方法
JP4999401B2 (ja) 表面に微細凹凸形状をもつ光学素子の製造方法
JP4260142B2 (ja) フォトニック結晶素子
CN117255958A (zh) 包括光控膜和菲涅耳透镜的光学系统
CN116710272A (zh) 结构化膜和使用结构化膜在基底上形成图案的方法
Niimura et al. High-precision nanofabrication technology for metal nanoparticle ensembles using nanotemplate-guided thermal dewetting
JP2017227902A (ja) 発色構造体およびその製造方法