JP2007106886A - 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 - Google Patents

硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 Download PDF

Info

Publication number
JP2007106886A
JP2007106886A JP2005299299A JP2005299299A JP2007106886A JP 2007106886 A JP2007106886 A JP 2007106886A JP 2005299299 A JP2005299299 A JP 2005299299A JP 2005299299 A JP2005299299 A JP 2005299299A JP 2007106886 A JP2007106886 A JP 2007106886A
Authority
JP
Japan
Prior art keywords
group
light
photosensitive
permanent pattern
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005299299A
Other languages
English (en)
Inventor
Takashi Tamura
崇 田村
Toshiaki Hayashi
利明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005299299A priority Critical patent/JP2007106886A/ja
Publication of JP2007106886A publication Critical patent/JP2007106886A/ja
Abandoned legal-status Critical Current

Links

Abstract

【課題】熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現する熱硬化性樹脂組成物の提供。該硬化促進剤を使用した感光性組成物及びこれを用いた感光性フィルム、並びに、高精細な永久パターン及びその効率的な形成方法の提供。
【解決手段】1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有し、該カルボキシル基が熱によって脱離可能な保護基で保護されていることを特徴とする硬化促進剤とエポキシ化合物を含む熱硬化性樹脂組成物。また、1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体と、重合性化合物と、光重合開始剤と、熱架橋剤と、本発明の硬化促進剤とを少なくとも含む感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法。
【選択図】なし

Description

本発明は、保存時の常温下では反応を生じず、保存安定性に極めて優れ、加熱により反応を開始して硬化し、硬化膜の良好な膜硬度が得られる硬化促進剤、該硬化促進剤を使用し、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現する熱硬化性樹脂組成物、該硬化促進剤を使用し、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性、電気絶縁性などを発現する感光性組成物及びこれを用いた感光性フィルム、並びに高精細な永久パターン(保護膜、層間絶縁膜、ソルダーレジストパターンなど)及びその効率的な形成方法に関する。
プリント配線基板の分野では、半導体やコンデンサ、抵抗等の部品がプリント配線基板の上に、半田付けされる。この場合、例えば、IRリフロー等のソルダリング工程において、半田が、半田付けの不必要な部分に付着するのを防ぐため、保護膜、絶縁膜として、前記半田付けの不要部分に相当する永久パターンを形成する方法が採用されている。また、保護膜の永久パターンとしては、ソルダーレジストが好適に用いられている。
従来、ソルダーレジストとしては、熱硬化型の材料が多く用いられ、これをスクリーン印刷法で印刷して施す方法が一般的であった。しかし、近年、プリント配線板の配線の高密度化に伴い、スクリーン印刷法では解像度の点で限界が生じ、フォトリソグラフィー法で画像形成を行うフォトソルダーレジストが盛んに用いられるようになってきている。中でも、炭酸ソーダ溶液等の弱アルカリ溶液で現像可能なアルカリ現像型のフォトソルダーレジストが、作業環境、地球環境保全の点で主流になっている。また、一般には液状ソルダーレジストをスクリーン印刷、スプレーコート、ディップコート等により配線形成済みの基板の片面に塗布して乾燥し、引き続き反対面に塗布して乾燥する製造方法が用いられている。
また、前記のようなアルカリ現像型のフォトソルダーレジストとしては、主成分としてエポキシ化合物にエチレン性不飽和二重結合及びアルカリ現像性を付与するための酸基を導入した化合物(エポキシアクリレート)と、エチレン性不飽和二重結合を有する付加重合性化合物(モノマー)と、を含む組成物が一般に用いられており、具体的には特許文献1に開示されている。しかし、特許文献1に記載のソルダーレジストは、ポストベイク後に高い表面硬度が得られ、耐薬品性に優れるものの、表面のタックが残り、ゴミが付着し易くなり欠陥が増大する、あるいはフォトマスクを汚染するなど、取扱い性を悪化させるという問題がある。ここで、表面にタックが残るのは、アルカリ水溶液に可溶性のバインダーであるエポキシアクリレートの分子量が数100程度と低分子量であり、モノマーが通常沸点の高い液体又は半固体であることによるものであると考えられる。
また、このようなソルダーレジストの露光感度は通常300〜1,000mJ/cmと低く、製造ラインのスピードアップのネックになりつつあり、更に感度アップが要請されている。該感度アップのためにはモノマーの配合量の増量が効果的であるが、モノマー類を多く配合してしまうと前記表面タックが更に悪化するという問題が生じ、解決策が見出されていない。
また、近年高密度実装が急速に進みつつあり、高密度実装を実現する上での、ソルダーレジストの課題は、ウェット現像やウェットエッチングを繰り返す、フォトリソグラフィープロセス中での基板の伸縮やフォトマスクフィルムの温湿度変化に基づく伸縮に起因する配線パターンやスルーホールランドパターンの位置ズレである。
位置ズレ防止には、これまでは、基板の変形度の少ないロットを選別したり、予め各種のパラメータで修正した複数のフィルムマスクを準備したり、高価なガラスマスクを使用するといった対策が採られてきた。また、この位置ズレ問題の解決のため、レーザーダイレクトイメージングシステム(LDI)の適用が進んでいる。ここで、LDIは、デジタルデータの高速処理による補正により、基板の変形に対応した露光パターンを形成する技術に基づくものである。
前記LDIに用いられるソルダーレジストには、365nm、あるいは405nmなどのUVレーザーに対応するため、100mJ/cm以上の露光感度が要求される。このため、高感度が得られやすいフィルムタイプのソルダーレジストが必要となってきている。しかし、特許文献1に記載のソルダーレジストをフィルム化すると、表面のタック性が強く、支持体や保護膜と感光層とが剥離しにくく、取扱い性が悪く、更に−20℃以下の冷凍保存でも2、3ヶ月の保存しか出来ず、保存安定性の問題がある。また波長405nmのレーザ光に対する感度が無いという欠点を有している。
一方、特許文献2には、分子量10,000以上の比較的高分子量のアルカリ水溶液に可溶性のバインダーを用いた、表面のタック性が小さく、耐熱性に優れ、比較的保存安定性が良好なソルダーレジストが開示されている。しかしながら、該ソルダーレジストは表面硬度が低く、ラミネート性に劣るという問題がある。したがって、気泡を生ずることなく、配線形成済みのプリント配線基板の最外層に予め液状のモノマーを下引き層として塗布しておく必要があり、工程が煩雑になり、取扱い性に劣るという欠点を有している。その理由としては、メチルメタクリレート、スチレンという硬質のポリマーを形成する共重合成分(各々のホモポリマーのTgは105℃以上、100℃である)を用いた結果、硬化膜が柔軟性に欠けて脆くなり、表面硬度が上がらず、また、真空条件下の加熱積層工程で、十分な流動性が得られず、気泡発生を引き起こしていることが考えられる。更に、波長405nmのレーザ光に対する感度が無いという欠点を有している。
また、先端電子機器分野では、高周波環境での高速伝搬性が要求されており、特に電子計算機や移動体通信機器に代表される電子機器においては、処理速度や信号伝播速度の高速化、使用帯域の高周波化に伴い、積層板用材料には低誘電率化、低誘電正接化が求められている。プリント配線板製造におけるソルダーレジストにも低誘電率化、低誘電正接化が求められてきている。しかしながら、現状のアルカリ現像型のソルダーレジストでは、高周波数領域での誘電特性が悪く、高周波数用樹脂として満足な特性が得られていないのが現状である。
また、前記フィルムタイプのソルダーレジストとして、一般に市販されている製品では、このフィルム化に伴い、感光層中においてバインダー及びモノマーと、熱架橋剤とが混在するため、架橋反応が生じて保存安定性に乏しいことが問題となっている。
そこで、エポキシ樹脂組成物などの熱硬化性樹脂組成物の硬化促進剤として、前記保存安定性の観点から、保存時には反応を生じないが、加熱により反応して硬化する性質を持つ、いわゆる潜在性硬化促進剤を使用した提案がされている。例えば、2−エチルヘキシル酸亜鉛とトリエタノールアミンからなる塩、トリエチレンジアミンと脂肪族カルボン酸からなる塩を配合した提案がされている(非特許文献1及び特許文献3参照)。これらは、硬化促進剤を錯塩とすることにより、溶解性を低下させて、反応活性を抑制し、保存安定性を向上させようとするものである。
また、エポキシ樹脂にジメチルアミンやジアルキルアミンを反応させて得られる付加物(特許文献4及び5参照)、エポキシ樹脂に3級アミンを反応させて得られる付加物(特許文献6参照)などを使用した提案もされている。これらは、エポキシ樹脂にアミン化合物を付加させて高分子化、不溶化させることにより、保存安定性の向上を図るものである。
しかしながら、これらの文献では、ソルダーレジストに使用した開示がなく、また、十分満足し得る高い保存安定性能を持ち、かつ、安価な原料を用いて簡単に得られる硬化促進剤は提供されておらず、更なる改良が望まれている。
一方、アミンを何らかの官能基で保護し、加熱により2段階で保護基を脱離させる方法が提案されている(非特許文献2参照)。この方法では、モノマーであるエポキシドとの分子間反応を経なければならないために、長時間の加熱を必要とするという問題がある。
したがって、保存安定性が極めて高く簡単で安価な材料を用いた硬化促進剤、該硬化促進剤を使用し、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現する熱硬化性樹脂組成物、該硬化促進剤を使用し、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現可能な感光性組成物及びこれを用いた感光性フィルム、並びに、高精細な永久パターン及びその効率的な形成方法も、未だ十分満足し得るものが提供されていないのが現状である。
特開昭61−243869号公報 特開平02−097502号公報 特開平11−246651号公報 特開昭56−155222号公報 特開昭57−100127号公報 特開昭59−053526号公報 特開2000−001526号公報 日本油脂、遠藤剛(東工大)ネットワークポリマー vol.19,No.4,P228−235、1998 日本接着学会誌 vol.40,No.12,P586−591、2004
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、保存時の常温下では反応を生じず、保存安定性に極めて優れ、加熱によりエポキシ化合物との反応を開始して硬化し、硬化膜の良好な膜硬度が得られる硬化促進剤、該硬化促進剤を使用し、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現する熱硬化性樹脂組成物、該硬化促進剤を使用し、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現する感光性組成物及びこれを用いた感光性フィルム、並びに、高精細な永久パターン(保護膜、層間絶縁膜、及びソルダーレジストパターンなど)及びその効率的な形成方法を提供することを目的とする。
本発明者らは、前記課題に鑑み鋭意検討を重ねた結果、以下の知見を得た。即ち、1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有し、該カルボキシル基が熱によって脱離可能な保護基で保護されている化合物からなる硬化促進剤では、低温又は常温では反応を生じることがなく、極めて優れた保存安定性を有するとともに、加熱処理時には、該熱処理温度で速やかな反応を示して硬化し、表面硬度、及び耐アルカリ性などに優れる硬化物が得られることを知見した。
また、本発明者らは、当該硬化促進剤と、エポキシ化合物とを少なくとも有する熱硬化性樹脂組成物では、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現することを知見した。更に、本発明者らは、前記該硬化促進剤と、1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体と、重合性化合物と、光重合開始剤と、熱架橋剤とを少なくとも有する感光性組成物では、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現することができ、特にフィルムタイプのソルダーレジストの保存安定性の向上が図れることを知見した。
本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 1分子中に少なくとも1個以上のカルボキシル基及びアミド基を共有し、該カルボキシル基が、保護基で保護されていることを特徴とする硬化促進剤である。該<1>に記載の硬化促進剤においては、低温又は常温では反応を生じることがなく、該硬化促進剤及び該硬化促進剤を使用した化合物の極めて優れた保存安定性が図れるとともに、加熱処理時には、該熱処理温度で速やかな反応を示し、表面硬度、及び耐アルカリ性などに優れる硬化物が得られる。
<2> 保護基が、熱によって脱離可能な保護基である前記<1>に記載の硬化促進剤である。
<3> 下記一般式(1)、(2)、(3)、(4)、(5)及び(6)のいずれかで表される前記<1>から<2>のいずれかに記載の硬化促進剤である。
ただし、前記一般式(1)、(2)、(3)、(4)、(5)及び(6)中、R〜R18は、水素原子、及び置換基のいずれかを表し、A1〜Aは、2価の置換基を表し、L〜L11は、単結合、二重結合、及び2価の置換基のいずれかを表し、Xは、無置換アルキル基、及び置換基含有アルキル基のいずれかを表す。
<4> 2段階以上の分子内反応を経てアミンを生成することを特徴とする前記<1>から<3>のいずれかに記載の硬化促進剤である。
<5> エポキシ化合物と、前記<1>から<4>のいずれかに記載の硬化促進剤と、を少なくとも含むことを特徴とする熱硬化性樹脂組成物である。該<5>に記載の熱硬化性樹脂組成物においては、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、耐熱性、誘電特性、電気絶縁性などを発現できる。
<6> エポキシ化合物と、硬化促進剤との質量比(エポキシ化合物:硬化促進剤)が100:0.01〜20である前記<5>に記載の熱硬化性樹脂組成物である。
<7> (A)1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体と、(B)重合性化合物と、(C)光重合開始剤と、(D)熱架橋剤と、(E)前記<1>から<4>のいずれかに記載の硬化促進剤と、を少なくとも含むことを特徴とする感光性組成物である。該<7>に記載の感光性組成物においては、前記<1>から<4>のいずれかに記載の硬化促進剤を含有するので、保存安定性及び安全性に極めて優れ、誘電率が低く、前記感光性組成物を用いて永久パターンを形成した場合、硬化膜の耐薬品性、表面硬度、耐熱性、誘電特性の向上が図られる。
<8> (E)硬化促進剤の含有量が、0.01〜15質量%である前記<7>に記載の感光性組成物である。
<9> (D)熱架橋剤が、エポキシ化合物、オキセタン化合物、ポリイソシアネート化合物、ポリイソシアネート化合物にブロック剤を反応させて得られる化合物、及びメラミン誘導体から選択される少なくとも1種である前記<7>から<8>のいずれかに記載の感光性組成物である。
<10> (D)熱架橋剤が、多価フェノール化合物とβ−アルキルエピハロヒドリンとから誘導されたエポキシ化合物である前記<7>から<9>のいずれかに記載の感光性組成物である。
<11> (D)熱架橋剤が、分子内に2つ以上のオキシラン基を有するエポキシ化合物である前記<7>から<10>のいずれかに記載の感光性組成物である。
<12> (D)熱架橋剤が、分子内に2つ以上のオキセタニル基を有するオキセタン化合物である前記<7>から<10>のいずれかに記載の感光性組成物である。
<13> (D)熱架橋剤が、下記一般式(7)及び(8)のいずれかで表される前記<7>から<12>のいずれかに記載の感光性組成物である。
ただし、前記一般式(7)中、Rは水素原子及び炭素数1〜6のアルキル基のいずれかを表し、nは0〜20の整数を表す。
ただし、前記一般式(8)中、Rは水素原子及び炭素数1〜6のアルキル基のいずれかを表し、R’は水素原子、及びCHのいずれかを表し、nは0〜20の整数を表す。
<14> (D)熱架橋剤が、ヘキサメチル化メチロールメラミンである前記<7>から<9>のいずれかに記載の感光性組成物である。
<15> (A)重合体が、エポキシアクリレート化合物である前記<7>から<13>のいずれかに記載の感光性組成物である。
<16> (A)重合体が、下記一般式(9)で表される前記<15>に記載の感光性組成物である。
ただし、前記一般式(9)中、Xは水素原子、及び少なくとも酸性基を含む置換基のいずれかを表し、Yはメチレン基、イソプロピリデン基、及びスルホニル基のいずれかを表し、nは、1〜20の整数を表す。
<17> (A)重合体が、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体の少なくとも1種を含む前記<7>から<13>のいずれかに記載の感光性組成物である。
<18> (A)重合体が、エポキシアクリレート化合物と、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体の少なくとも1種を含む前記<7>から<13>のいずれかに記載の感光性組成物である。
<19> (A)重合体が、無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体である前記<7>から<9>及び<14>のいずれかに記載の感光性組成物である。
<20> (A)重合体が、(a)無水マレイン酸、(b)芳香族ビニル単量体、及び(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体からなる共重合体と、該共重合体の無水物基に対して0.1〜1.0当量の1級アミン化合物を反応させて得られる共重合体である前記<7>から<9>、<14>及び<19>のいずれかに記載の感光性組成物である。
<21> (B)重合性化合物が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む前記<7>から<20>のいずれかに記載の感光性組成物である。
<22> (C)光重合開始剤が、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む前記<7>から<21>のいずれかに記載の感光性組成物である。
<23> 支持体と、該支持体上に、前記<7>から<22>のいずれかに記載の感光性組成物が積層されてなる感光層とを有することを特徴とする感光性フィルムである。
<24> 感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該露光及び現像後において変化させない前記露光に用いる光の最小エネルギーが0.1〜100mJ/cmである前記<23>に記載の感光性フィルムである。
<25> 支持体が、合成樹脂を含み、かつ透明である前記<23>から<25>のいずれかに記載の感光性フィルムである。
<26> 支持体が、長尺状である前記<23>から<25>のいずれかに記載の感光性フィルムである。
<27> 長尺状であり、ロール状に巻かれてなる前記<23>から<26>のいずれかに記載の感光性フィルムである。
<28> 感光層上に保護フィルムを有してなる前記<23>から<27>のいずれかに記載の感光性フィルムである。
<29> 感光層の厚みが、3〜100μmである前記<23>から<28>のいずれかに記載の感光性フィルムである。
<30> 感光層が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光される前記<23>から<29>のいずれかに記載の感光性フィルムである。
<31> 前記<7>から<22>のいずれかに記載の感光性組成物を、基材の表面に塗布し、乾燥して感光層を形成した後、露光し、現像することを特徴とする永久パターン形成方法である。該<31>に記載の永久パターン形成方法においては、前記感光性組成物が前記基材の表面に塗布され、該塗布された感光性組成物が乾燥されて前記感光層が形成される。該感光層が露光され、該露光された感光層が現像される。その結果、表面硬度が高く、保護膜、層間絶縁膜、及びソルダーレジストパターンなどに最適な永久パターンが形成される。
<32> 前記<23>から<30>のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、露光し、現像することを特徴とする永久パターン形成方法である。該<32>に記載の永久パターン形成方法においては、前記感光性フィルムが、加熱及び加圧下にて前記基材の表面に積層される。該積層された感光性フィルムにおける前記感光層が露光され、該露光された感光層が現像される。その結果、表面硬度が高く、保護膜、層間絶縁膜、及びソルダーレジストパターンなどに最適な永久パターンが形成される。
<33> 基材が、配線形成済みのプリント配線基板である前記<31>から<32>のいずれかに記載の永久パターン形成方法である。該永久パターン形成方法を利用することにより、半導体部品の多層配線基板やビルドアップ配線基板などへの高密度実装が可能である。
<34> 露光が、形成するパターン情報に基づいて像様に行われる前記<31>から<33>のいずれかに記載の永久パターン形成方法である。
<35> 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる前記<31>から<34>のいずれかに記載の永久パターン形成方法である。
<36> 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記<31>から<35>のいずれかに記載の永久パターン形成方法である。
<37> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、前記光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<36>に記載の永久パターン形成方法である。
<38> 光変調手段が、n個の描素部を有してなり、該n個の描素部の中から連続的に配置された任意のn個未満の前記描素部を、形成するパターン情報に応じて制御可能である前記<36>から<37>のいずれかに記載の永久パターン形成方法である。該<38>に記載の永久パターン形成方法においては、前記光変調手段におけるn個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御することにより、前記光照射手段からの光が高速で変調される。
<39> 光変調手段が、空間光変調素子である前記<36>から<38>のいずれかに記載の永久パターン形成方法である。
<40> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<39>に記載の永久パターン形成方法である。
<41> 描素部が、マイクロミラーである前記<38>から<40>のいずれかに記載の永久パターン形成方法である。
<42> 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる前記<38>から<41>のいずれかに記載の永久パターン形成方法である。
<43> 非球面が、トーリック面である前記<42>に記載の永久パターン形成方法である。該<43>に記載の永久パターン形成方法においては、前記非球面がトーリック面であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され、前記感光層上に結像させる像の歪みが効率よく抑制される。その結果、前記感光層への露光が高精細に行われる。その後、前記感光層を現像することにより、高精細な永久パターンが形成される。
<44> 露光が、アパーチャアレイを通して行われる前記<31>から<43>のいずれかに記載の永久パターン形成方法である。該<44>に記載の永久パターン形成方法においては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上する。その結果、露光が極めて高精細に行われる。その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<45> 露光が、露光光と感光層とを相対的に移動させながら行われる前記<31>から<44>のいずれかに記載の永久パターン形成方法である。該<45>に記載の永久パターン形成方法においては、前記変調させた光と前記感光層とを相対的に移動させながら露光することにより、露光が高速に行われる。
<46> 露光が、感光層の一部の領域に対して行われる前記<31>から<45>のいずれかに記載の永久パターン形成方法である。
<47> 光照射手段が、2以上の光を合成して照射可能である前記<36>から<46>のいずれかに記載の永久パターン形成方法である。該<47>に記載の永久パターン形成方法においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われる。その結果、前記感光層への露光が極めて高精細に行われる。その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<48> 光照射手段が、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射されたレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する前記<36>から<47>のいずれかに記載の永久パターン形成方法である。該<48>に記載の永久パターン形成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され、前記マルチモード光ファイバに結合可能とすることにより、露光が焦点深度の深い露光光で行われる。その結果、前記感光層への露光が極めて高精細に行われる。その後、前記感光層を現像することにより、極めて高精細な永久パターンが形成される。
<49> 露光が、395〜415nmの波長のレーザ光を用いて行われる前記<31>から<48>のいずれかに記載の永久パターン形成方法である。
<50> 現像が行われた後、感光層に対して硬化処理を行う前記<31>から<49>のいずれかに記載の永久パターン形成方法である。該<50>に記載の永久パターン形成方法においては、現像が行われた後、前記感光層に対して前記硬化処理が行われる。その結果、前記感光層の硬化領域の膜強度が高められる。
<51> 硬化処理が、全面露光処理及び120〜250℃で行われる全面加熱処理の少なくともいずれかである前記<50>に記載の永久パターン形成方法である。該<51>に記載の永久パターン形成方法では、前記全面露光処理において、前記感光性組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<52> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成する前記<31>から<51>のいずれかに記載の永久パターン形成方法である。該<52>に記載の永久パターン形成方法では、保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかが形成されるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲げなどから保護される。
<53> 前記<31>から<52>のいずれかに記載の永久パターン形成方法により形成されることを特徴とする永久パターンである。該<53>に記載の永久パターンは、前記永久パターン形成方法により形成されるので、優れた耐薬品性、表面硬度、耐熱性などを有し、かつ高精細であり、半導体部品の多層配線基板やビルドアップ配線基板などへの高密度実装に有用である。
<54> 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかである前記<53>に記載の永久パターンである。該<54>に記載の永久パターンは、保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかであるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲げなどから保護される。
本発明によると、従来における問題を解決することができ、常温下では反応を生じず、保存安定性に極めて優れ、加熱によりエポキシ化合物などの1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する化合物との反応を開始して硬化し、硬化膜の良好な膜硬度が得られる硬化促進剤、該硬化促進剤を使用し、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、誘電特性及び電気絶縁性などを発現する熱硬化性樹脂組成物、該硬化促進剤を使用し、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現する感光性組成物及びこれを用いた感光性フィルム、並びに、高精細な永久パターン(保護膜、層間絶縁膜、及びソルダーレジストパターンなど)及びその効率的な形成方法を提供することができる。
(硬化促進剤)
本発明の硬化促進剤は、1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有し、該カルボキシル基が、保護基、好ましくは熱によって脱離可能な保護基で保護されている化合物である。
前記硬化促進剤は、例えば、酸無水物にアミンを反応させて合成することができるが、この合成手段に限定されるものではない。
前記硬化促進剤が、1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有する化合物であることは、H−NMRスペクトルを測定して同定することができる。
前記硬化促進剤としては、下記一般式(1)、(2)、(3)、(4)、(5)及び(6)のいずれかで表される化合物が好ましい。
ただし、前記一般式(1)、(2)、(3)、(4)、(5)及び(6)中、R〜R18は、水素原子、及び置換基のいずれかを表し、A1〜Aは、2価の置換基を表し、L〜L11は、単結合、二重結合、及び2価の置換基のいずれかを表し、Xは、無置換アルキル基、及び置換基含有アルキル基のいずれかを表す。
前記一般式(1)〜(6)中、R〜R18は、水素原子;無置換アルキル基;アリール基、アルケニル基、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されており、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、及びエステル基の少なくともいずれかを有していてもよい置換基含有アルキル基;無置換アリール基;アルキル基、アリール基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されている置換基含有アリール基;のいずれかを表す。
前記無置換アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜30のものが好ましく、1〜15が特に好ましい。
このようなアルキル基としては、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。
前記置換基含有アルキル基中のアリール置換基としては、二重結合、三重結合を有していてもよく、総炭素数6〜30のものが好ましく、6〜15が特に好ましい。前記置換基としては、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。置換基含有アルキル基中のアルケニル置換基としては、総炭素数2〜10が好ましく、2〜6が特に好ましく、例えば、エチニル基、プロペニル基、ブチリル基、などが挙げられる。
前記置換基含有アルキル基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数2〜40のものが好ましく、2〜25が特に好ましい。このような置換されているアルキル基は、例えば、2−エチルヘキシル基、クロロブチル基、ベンジル基、2−エチニルプロピル基、フェニルエチル基、シアノプロピル基、メトキシエチル基、などが挙げられる。
前記無置換アリール基としては、総炭素数6〜30のものが好ましく、6〜20が特に好ましい。このようなアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、などが挙げられる。
前記置換基含有アリール基中のアルキル置換基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜20のものが好ましく、1〜6が特に好ましく、例えば、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。前記置換基含有アリール基中のアリール置換基としては、総炭素数6〜20のものが好ましく、6〜14が特に好ましく、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有アリール基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10が好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換されているアリール基としては、総炭素数6〜40のものが好ましく、6〜25が特に好ましく、例えば、エチルフェニル、ビフェニル、ノニルフェニル、オクチルフェニル、フルオロフェニル、メトキシフェニル基、などが挙げられる。
また、前記Rとしては、Rが結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、芳香環であってもよく、ヘテロ環を形成していてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
また、前記Rが結合している炭素と、前記Rが結合している炭素間は単結合であってもよいし、二重結合であってもよい。
前記Rとしては、Rが結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記Rとしては、Rが結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、ヘテロ環を形成していてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
また、前記Rが結合している炭素と、前記Rが結合している炭素間は単結合であってもよいし、二重結合であってもよい。
前記Rとしては、Rが結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、ヘテロ環を形成していてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記Rとしては、R10が結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記R11としては、R12が結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記R13としては、R14が結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記R15としては、R16が結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記R17としては、R18が結合して環を形成していてもよく、環内に二重結合、三重結合を含んでいてもよく、置換されていてもよい。4〜8員環が好ましく、5〜6員環が特に好ましい。
前記一般式(1)、(2)、(3)、(4)、(5)及び(6)中、A1〜Aは、無置換2価アルキル基;アリール基、アルケニル基、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されており、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、及びエステル基の少なくともいずれかを有していてもよい置換基含有2価アルキル基;無置換2価アリール基;アリール基、アルケニル基、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されており、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、及びエステル基の少なくともいずれかを有していてもよい置換基含有2価アリール基;のいずれかを表す。
前記無置換2価アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜30のものが好ましく、1〜15が特に好ましい。このようなアルキル基としては、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。
前記置換基含有2価アルキル基中のアリール置換基としては、二重結合、三重結合を有していてもよく、総炭素数6〜30のものが好ましく、6〜15が特に好ましく、前記置換基としては、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有2価アルキル基中のアルケニル置換基としては、総炭素数2〜10のものが好ましく、2〜6が特に好ましく、例えば、エチニル基、プロペニル基、ブチリル基、などが挙げられる。前記置換基含有2価アルキル基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有2価アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数2〜40のものが好ましく、2〜25が特に好ましい。このような置換基含有2価アルキル基としては、例えば、2−エチルヘキシル基、クロロブチル基、ベンジル基、2−エチニルプロピル基、フェニルエチル基、シアノプロピル基、メトキシエチル基、などが挙げられる。
前記無置換2価アリール基としては、総炭素数6〜30のものが好ましく、6〜20が特に好ましい。このようなアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、などが挙げられる。
前記置換基含有2価アリール基中のアルキル置換基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜20のものが好ましく、1〜6が特に好ましく、例えば、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。前記置換基含有2価アリール基中のアリール置換基としては、総炭素数6〜20のものが好ましく、6〜14が特に好ましく、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有2価アリール基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有2価アリール基としては、総炭素数6〜40のものが好ましく、6〜25が特に好ましく、例えば、エチルフェニル、ビフェニル、ノニルフェニル、オクチルフェニル、フルオロフェニル、メトキシフェニル基、などが挙げられる。
前記一般式(1)〜(6)中、L〜Lとしては、単結合;二重結合;無置換2価アルキル基;アリール基、アルケニル基、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されており、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、及びエステル基の少なくともいずれかを有していてもよい置換基含有2価アルキル基;無置換2価アリール基;アリール基、アルケニル基、ヒドロキシル基、アルコキシ基、シアノ基、及びハロゲン原子の少なくともいずれかで置換されており、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、及びエステル基の少なくともいずれかを有していてもよい置換基含有2価アリール基;のいずれかを表す。
前記無置換2価アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜15のものが好ましく、1〜10が特に好ましい。このようなアルキル基としては、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。
前記置換基含有2価アルキル基中のアリール置換基としては、二重結合、三重結合を有していてもよく、総炭素数6〜30のものが好ましく、6〜15が特に好ましく、置換基としては、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有2価アルキル基中のアルケニル置換基としては、総炭素数2〜10のものが好ましく、2〜6が特に好ましく、例えば、エチニル基、プロペニル基、ブチリル基、などが挙げられる。前記置換基含有2価アルキル基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有2価アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数2〜40のものが好ましく、2〜25が特に好ましい。このような置換基含有2価アルキル基としては、例えば、2−エチルヘキシル基、クロロブチル基、ベンジル基、2−エチニルプロピル基、フェニルエチル基、シアノプロピル基、メトキシエチル基、などが挙げられる。
前記無置換2価アリール基としては、総炭素数6〜30のものが好ましく、6〜20が特に好ましい。このようなアリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基、などが挙げられる。
前記置換基含有2価アリール基中のアルキル置換基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数1〜20のものが好ましく、1〜6が特に好ましく、例えば、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘキセニル基、などが挙げられる。前記置換基含有2価アリール基中のアリール置換基としては、総炭素数6〜20のものが好ましく、6〜14が特に好ましく、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有2価アリール基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有2価アリール基としては、総炭素数6〜40のものが好ましく、6〜25が特に好ましく、例えば、エチルフェニル、ビフェニル、ノニルフェニル、オクチルフェニル、フルオロフェニル、メトキシフェニル基、などが挙げられる。
このようなL〜Lの中でも、単結合、二重結合、無置換2価アルキル基、置換基含有2価アルキル基が好ましく、単結合、二重結合が特に好ましい。
前記一般式(1)〜(6)中、Xは、無置換アルキル基、及び、置換基含有アルキル基のいずれかを表し、該置換基含有アルキル基の置換基は、アリール基、アルケニル基、ヒドロキシル基、アルコキシル基、シアノ基、及びハロゲン原子の少なくともいずれかであり、該置換基は、酸素原子、硫黄原子、カルボニル基、アミド基、ウレタン基、ウレア基、エステル基等を有していてもよい。
前記無置換アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数は1〜30のものが好ましく、1〜15のものが特に好ましい。このようなアルキル基としては、メチル基、エチル基、エチニル基、プロピル基、イソプロピル基、ブチル基、s−ブチル基、t−ブチル基、ブチリル基、シクロヘキシル基、シクロヘクセニル基などが挙げられる。
前記置換基含有アルキル基中のアリール置換基としては、総炭素数6〜30のものが好ましく、6〜15が特に好ましく、置換基としては、例えば、フェニル基、ナフチル基、アントラセニル基、メトキシフェニル基、クロロフェニル基、などが挙げられる。前記置換基含有アルキル基中のアルケニル置換基としては、総炭素数2〜10のものが好ましく、2〜6が特に好ましく、例えば、エチニル基、プロペニル基、ブチリル基、などが挙げられる。前記置換基含有アルキル基中のアルコキシ置換基としては、分岐を有していてもよく、総炭素数1〜10のものが好ましく、1〜5が特に好ましく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、2−メチルプロピルオキシ基、ブトキシ基、などが挙げられる。
このような置換基含有アルキル基としては、分岐を有していてもよく、二重結合、三重結合を有していてもよく、総炭素数2〜40のものが好ましく、2〜25が特に好ましい。このような置換基含有アルキル基としては、例えば、クロロブチル基、ベンジル基、2−エチニルプロピル基、フェニルエチル基、シアノプロピル基、メトキシエチル基、などが挙げられる。
前記一般式(1)〜(6)で表される化合物の例としては、下記構造式(1)〜(32)で表される化合物などが挙げられるが、これらの化合物に限定されるものではない。
本発明の硬化促進剤は、低温又は常温では反応を生じることがなく、該硬化促進剤及び該硬化促進剤を使用した化合物の極めて優れた保存安定性が図れるとともに、加熱処理時には、該熱処理温度で速やかな反応を示して硬化し、表面硬度、及び耐アルカリ性などに優れる硬化物が得られる。このため、プリント配線板(多層配線基板、ビルドアップ配線基板等)の保護膜、層間絶縁膜、及びソルダーレジストパターン、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフ、接着剤などの永久パターン形成用として広く用いることができ、特に本発明の感光性組成物、感光性フィルム、並びに永久パターン及びその形成方法に好適に用いることができる。
(感光性組成物)
本発明の感光性組成物は、(A)1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体と、(B)重合性化合物と、(C)光重合開始剤と、(D)熱架橋剤と、(E)前記本発明の硬化促進剤とを少なくとも含み、更に、必要に応じて、着色顔料、体質顔料、熱重合禁止剤、及び界面活性剤などのその他の成分を含んでなる。
〔(A)バインダー(重合体)〕
前記バインダーとしては、アルカリ性水溶液に対して膨潤性を示す化合物が好ましく、アルカリ性水溶液に対して可溶性である化合物がより好ましい。
アルカリ性水溶液に対して膨潤性又は溶解性を示すバインダーとしては、例えば、酸性基を有するものが好適に挙げられ、具体的には、エポキシ化合物にエチレン性不飽和二重結合と酸性基とを導入した化合物(エポキシアクリレート化合物)、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体、また、エポキシアクリレート化合物と、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体との混合物、マレアミド酸系共重合体、などが好ましい。
前記酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基、などが挙げられ、これらの中でも、原料の入手性などの観点から、カルボキシル基が好ましく挙げられる。
<エポキシアクリレート化合物>
前記エポキシ化合物にエチレン性不飽和二重結合と酸性基とを導入した化合物(エポキシアクリレート化合物)としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、多官能エポキシ化合物とカルボキシル基含有モノマーとを反応させ、更に多塩基酸無水物を付加させる方法などで得られる。
前記多官能エポキシ化合物としては、例えば、ビキシレノール型もしくはビスフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティー・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾ−ルノボラック型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂(例えばテトラグリシジルジアミノジフェニルメタン等)、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等);フェノール、o−クレゾール、ナフトール等のフェノール化合物と、フェノール性水酸基を有する芳香族アルデヒド(例えば、p−ヒドロキシベンズアルデヒド)との縮合反応により得られるポリフェノール化合物とエピクロルヒドリンとの反応物;フェノール化合物とジビニルベンゼンやジシクロペンタジエン等のジオレフィン化合物との付加反応によって得られるポリフェノール化合物と、エピクロルヒドリンとの反応物;4−ビニルシクロヘキセン−1−オキサイドの開環重合物を過酢酸等でエポキシ化したもの;トリグリシジルイソシアヌレート等の複素環を有するエポキシ樹脂;グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記カルボキシル基含有モノマーの例としては、例えば(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、ソルビン酸、α−シアノ桂皮酸、アクリル酸ダイマー;この他、2−ヒドロキシエチル(メタ)アクリレート等の水酸基を有する単量体と無水マレイン酸、無水フタル酸、シクロヘキサンジカルボン酸無水物等の環状酸無水物との付加反応物;ハロゲン含有カルボン酸化合物との反応生成物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、などが挙げられる。更に、市販品としては、東亜合成化学工業(株)製のアロニックスM−5300、M−5400、M−5500およびM−5600、新中村化学工業(株)製のNKエステルCB−1およびCBX−1、共栄社油脂化学工業(株)製のHOA−MPおよびHOA−MS、大阪有機化学工業(株)製のビスコート#2100などを用いることができる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記多塩基酸無水物としては、例えば、無水コハク酸、無水メチルコハク酸、無水2,3−ジメチルコハク酸、無水2,2−ジメチルコハク酸、無水エチルコハク酸、無水ドデセニルコハク酸、無水ノネニルコハク酸、無水マレイン酸、無水メチルマレイン酸、無水2,3−ジメチルマレイン酸、無水2−クロロマレイン酸、無水2,3−ジクロロマレイン酸、無水ブロモマレイン酸、無水イタコン酸、無水シトラコン酸、無水シスアコット酸、無水フタル酸、テトラヒドロ無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水クロレンド酸および5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物などの二塩基酸無水物、無水トリメリット酸、無水ピロメリット酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸等の多塩基酸無水物なども使用できる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
それぞれを順次反応させて、エポキシアクリレートを得るが、それらを反応させる比率は、多官能エポキシ化合物のエポキシ基1当量に対して、カルボキシル基含有モノマーのカルボキシル基0.8〜1.2当量、好ましくは、0.9〜1.1当量であり、多塩基酸無水物0.1〜1.0当量、好ましくは、0.3〜1.0当量である。
また、特開平5−70528号公報記載のフルオレン骨格を有するエポキシアクリレート(カルボキシル基を有してはいない化合物)に前記多塩基酸無水物を付加させて得られる化合物なども本発明のエポキシアクリレートとして利用できる。
前記エポキシ化合物にエチレン性不飽和二重結合と酸性基とを導入した化合物の中でも、下記一般式(9)及び(10)で表されるエポキシアクリレート化合物が好ましい。
ただし、前記一般式(9)中、Xは水素原子、及び少なくとも酸性基を含む置換基のいずれかを表し、Yはメチレン基、イソプロピリデン基、及びスルホニル基のいずれかを表し、nは、1〜20の整数を表す。
ただし、前記一般式(10)中、nは、1〜20の整数を表す。
また、前記一般式(9)で表されるエポキシアクリレート化合物としては、具体的には、下記構造式(33)で表されるビスフェノールF型エポキシアクリレート化合物、及び下記構造式(34)で表されるビスフェノールA型エポキシアクリレート化合物がより好ましい。
前記エポキシアクリレート化合物の分子量としては、1,000〜100,000が好ましく、2,000〜50,000がより好ましい。該分子量が1,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、100,000を超えると、現像性が劣化することがある。また樹脂の合成も困難となる。
<側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体>
前記側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体としては、例えば(1)酸性基を有するビニルモノマー、(2)必要に応じて後述する高分子反応に利用可能な官能基を有するビニルモノマー、及び(3)必要に応じてその他の共重合可能なビニルモノマーのビニル(共)重合で得られた(共)重合体を合成し、更に(4)該(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記(1)酸性基を有するビニルモノマーの酸性基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カルボキシル基、スルホン酸基、リン酸基などが挙げられ、これらの中でもカルボキシル基が好ましい。カルボキシル基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマー、水酸基を有する単量体(例えば、2−ヒドロキシエチル(メタ)アクリレート等)と環状無水物(例えば、無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物)との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなどが挙げられる。これらの中でも、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。またこれらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸等の無水物を有するモノマーを用いてもよい。
前記(2)の高分子反応に利用可能な官能基を有するビニルモノマーにおける、高分子反応に利用可能な官能基としては水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基、などが挙げられる。また前述(1)のカルボシキル基や酸無水物基も利用可能な官能基として挙げられる。
前記水酸基を有するビニルモノマーとしては、例えば、下記一般式(11)〜(19)で表される化合物が挙げられる。
ただし、前記一般式(11)〜(19)中、Rは水素原子又はメチル基を表し、n、n1及びn2は1以上の整数を表す。
前記アミノ基を有するビニルモノマーとしては、例えば、ビニルベンジルアミン、アミノエチルメタクリレート、などが挙げられる。
前記イソシアネート基を有するモノマーとしては、例えば、下記一般式(20)〜(22)で表される化合物が挙げられる。
ただし、前記一般式(20)〜(22)中、Rは水素原子又はメチル基を表す。
前記エポキシ基を有するビニルモノマーとしては、例えば、グリシジル(メタ)アクリレート、下記一般式(23)で表される化合物などが挙げられる。
ただし、前記一般式(23)中、RはH及びMeのいずれかを表す。
前記酸ハライド基を有するビニルモノマーとしては、例えば、(メタ)アクリル酸クロリドなどが挙げられる。
前記活性ハライド基を有するビニルモノマーとしては、例えば、クロロメチルスチレン、などが挙げられる。
これらの市販品としては、例えば、「カネカレジンAXE;鐘淵化学工業(株)製」、「サイクロマー(CYCLOMER)A−200;ダイセル化学工業(株)製」、「サイクロマー(CYCLOMER)M−200;ダイセル化学工業(株)製」、などを用いることができる。
また、前記各モノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
前記(3)の必要に応じて用いられるその他の共重合可能なモノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類(例えば、スチレン、スチレン誘導体等)、(メタ)アクリロニトリル、ビニル基が置換した複素環式基(例えば、ビニルピリジン、ビニルピロリドン、ビニルカルバゾール等)、N−ビニルホルムアミド、N−ビニルアセトアミド、N−ビニルイミダゾール、ビニルカプロラクトン、2−アクリルアミド−2−メチルプロパンスルホン酸、リン酸モノ(2―アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2―アクリロイルオキシエチルエステル)、官能基(例えば、ウレタン基、ウレア基、スルホンアミド基、イミド基)を有するビニルモノマーなどが挙げられる。
前記(メタ)アクリル酸エステル類としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
前記クロトン酸エステル類としては、例えば、クロトン酸ブチル、クロトン酸ヘキシルなどが挙げられる。
前記ビニルエステル類としては、例えば、ビニルアセテート、ビニルプロピオネート、ビニルブチレート、ビニルメトキシアセテート、安息香酸ビニルなどが挙げられる。
前記マレイン酸ジエステル類としては、例えば、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチルなどが挙げられる。
前記フマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチルなどが挙げられる。
前記イタコン酸ジエステル類としては、例えば、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチルなどが挙げられる。
前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−プロピル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−n−ブチルアクリル(メタ)アミド、N−t−ブチル(メタ)アクリルアミド、N−シクロヘキシル(メタ)アクリルアミド、N−(2−メトキシエチル)(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−フェニル(メタ)アクリルアミド、N−ベンジル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、ジアセトンアクリルアミドなどが挙げられる。
前記スチレン類としては、例えば、前記スチレン、前記スチレン誘導体(例えば、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、酸性物質により脱保護可能な基(例えば、t-Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレン等)、などが挙げられる。
前記ビニルエーテル類としては、例えば、メチルビニルエーテル、ブチルビニルエーテル、ヘキシルビニルエーテル、メトキシエチルビニルエーテルなどが挙げられる。
前記官能基としてウレタン基又はウレア基を有するビニルモノマーの合成方法としては、例えば、イソシアナート基と水酸基又はアミノ基の付加反応が挙げられ、具体的には、イソシアナート基を有するモノマーと、水酸基を1個含有する化合物又は1級若しくは2級アミノ基を1個有する化合物との付加反応、水酸基を有するモノマー又は1級若しくは2級アミノ基を有するモノマーと、モノイソシアネートとの付加反応が挙げられる。
前記イソシアナート基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記一般式(20)〜(22)で表される化合物が挙げられる。
前記モノイソシアネートとしては、例えば、シクロヘキシルイソシアネート、n−ブチルイソシアネート、トルイルイソシアネート、ベンジルイソシアネート、フェニルイソシアネート等が挙げられる。
前記水酸基を有するモノマーとしては、例えば、前述の(2)に示したものと同様に、前記構造式(11)〜(19)で表される化合物が挙げられる。
前記水酸基を1個含有する化合物としては、例えば、アルコール類(例えば、メタノール、エタノール、n−プロパノール、i−プロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、n−ヘキサノール、2−エチルヘキサノール、n−デカノール、n−ドデカノール、n−オクタデカノール、シクロペンタノール、シクロへキサノール、ベンジルアルコール、フェニルエチルアルコール等)、フェノール類(例えば、フェノール、クレゾール、ナフトール等)、更に置換基を含むアルコール類(例えば、フロロエタノール、トリフロロエタノール、メトキシエタノール、フェノキシエタノール等)、置換基を含むフェノール類(例えば、クロロフェノール、ジクロロフェノール、メトキシフェノール、アセトキシフェノール等)、などが挙げられる。
前記1級又は2級アミノ基を有するモノマーとしては、例えば、ビニルベンジルアミンなどが挙げられる。
前記1級又は2級アミノ基を1個含有する化合物としては、例えば、アルキルアミン(例えば、メチルアミン、エチルアミン、n−プロピルアミン、i−プロピルアミン、n−ブチルアミン、sec−ブチルアミン、t−ブチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクチルアミン等)、環状アルキルアミン(例えば、シクロペンチルアミン、シクロへキシルアミン等)、アラルキルアミン(例えば、ベンジルアミン、フェネチルアミン等)、アリールアミン(例えば、アニリン、トルイルアミン、キシリルアミン、ナフチルアミン等)、更にこれらの組合せ(例えば、N−メチル−N−ベンジルアミン等)、更に置換基を含むアミン(例えば、トリフロロエチルアミン、ヘキサフロロイソプロピルアミン、メトキシアニリン、メトキシプロピルアミン等)、などが挙げられる。
また、これらのモノマーは、1種単独で使用してもよく、2種以上を併用してもよい。
これらをビニル(共)重合させることにより酸性基、酸無水物基および必要に応じて水酸基、アミノ基、イソシアネート基、エポキシ基、酸ハライド基、活性ハライド基などを含有する(共)重合体が得られる。前記ビニル(共)重合体は、それぞれ相当するモノマーを公知の方法により常法に従って共重合させることで調製することができる。例えば、前記モノマーを適当な溶媒中に溶解し、ここにラジカル重合開始剤を添加して溶液中で重合させる方法(溶液重合法)を利用することにより調製することができる。また、水性媒体中に前記モノマーを分散させた状態でいわゆる乳化重合等で重合を利用することにより調製することができる。
このようにして得られた(共)重合体に対して、前記(4)として、これらの共重合体中の酸性基、および必要に応じて水酸基、アミノ基、イソシアネート基、グリシジル基、酸ハライド基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物とを高分子反応させることによって得られる。
前記(4)の(共)重合体中の酸性基、又は高分子反応に利用可能な官能基の少なくとも1種に対して反応性を有する官能基と(メタ)アクリロイル基を有する化合物としては、前述の(2)に示した化合物などが利用できる。
これらの高分子反応を行なう場合の官能基の組合せの例としては、例えば、酸性基(カルボキシル基など)を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とエポキシ基を有するビニルモノマーの組合せ、アミノ基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体とイソシアネート基を有するビニルモノマーの組合せ、水酸基を有する共重合体と酸ハライド基を有するビニルモノマーの組合せ、アミノ基を有する共重合体と活性ハライド基を有するビニルモノマーの組合わせ、酸無水物基を有する共重合体と水酸基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体とアミノ基を有するビニルモノマーの組合せ、イソシアネート基を有する共重合体と水酸基を有するビニルモノマーの組合せ、活性ハライド基を有する共重合体とアミノ基を有するビニルモノマーの組合わせ、などが挙げられる。またこれらの組合せは2種以上を併用しても構わない。
<マレアミド酸系共重合体>
前記マレアミド酸系共重合体は、無水マレイン酸共重合体の無水物基に対して1級アミン化合物を1種以上反応させて得られる共重合体である。該共重合体は下記一般式(24)で表される、マレイン酸ハーフアミド構造を有するマレアミド酸ユニットBと、前記マレイン酸ハーフアミド構造を有しないユニットAと、を少なくとも含むマレアミド酸系共重合体であるのが好ましい。
前記ユニットAは1種であってもよいし、2種以上であってもよい。例えば、前記ユニットBが1種であるとすると、前記ユニットAが1種である場合には、前記マレアミド酸系共重合体が2元共重合体を意味することになり、前記ユニットAが2種である場合には、前記マレアミド酸系共重合体が3元共重合体を意味することになる。
前記ユニットAとしては、置換基を有していてもよいアリール基と、後述するビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体(c)との組合せが好適に挙げられる。
ただし、前記一般式(24)中、R及びRは水素原子及び低級アルキル基のいずれかを表す。x及びyは繰り返し単位のモル分率を表し、例えば、前記ユニットAが1種の場合、xは85〜50モル%であり、yは15〜50モル%である。
前記一般式(24)中、Rとしては、例えば、(−COOR10)、(−CONR1112)、(−OCOR13)、(−OR14)、(−COR15)、置換基を有していてもよいアリール基、などの置換基が挙げられる。ここで、前記R10〜R15は、水素原子(−H)、置換基を有していてもよいアルキル基、アリール基及びアラルキル基のいずれかを表す。該アルキル基、アリール基及びアラルキル基は、環状構造又は分岐構造を有していてもよい。
前記R10〜R15としては、例えば、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ペンチル、アリル、n−ヘキシル、シクロへキシル、2−エチルヘキシル、ドデシル、メトキシエチル、フェニル、メチルフェニル、メトキシフェニル、ベンジル、フェネチル、ナフチル、クロロフェニルなどが挙げられる。
前記Rの具体例としては、例えば、フェニル、α−メチルフェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル等のベンゼン誘導体;n−プロピルオキシカルボニル、n−ブチルオキシカルボニル、ペンチルオキシカルボニル、ヘキシルオキシカルボニル、n−ブチルオキシカルボニル、n−ヘキシルオキシカルボニル、2−エチルヘキシルオキシカルボニル、メチルオキシカルボニルなどが挙げられる。
前記Rとしては、置換基を有していてもよいアルキル基、アリール基、アラルキル基などが挙げられる。これらは、環状構造又は分岐構造を有していてもよい。前記Rの具体例としては、例えば、ベンジル、フェネチル、3−フェニル−1−プロピル、4−フェニル−1−ブチル、5−フェニル−1−ペンチル、6−フェニル−1−ヘキシル、α−メチルベンジル、2−メチルベンジル、3−メチルベンジル、4−メチルベンジル、2−(p−トリル)エチル、β―メチルフェネチル、1−メチル−3−フェニルプロピル、2−クロロベンジル、3−クロロベンジル、4−クロロベンジル、2−フロロベンジル、3−フロロベンジル、4−フロロベンジル、4−ブロモフェネチル、2−(2−クロロフェニル)エチル、2−(3−クロロフェニル)エチル、2−(4−クロロフェニル)エチル、2−(2−フロロフェニル)エチル、2−(3−フロロフェニル)エチル、2−(4−フロロフェニル)エチル、4−フロロ−α,α−ジメチルフェネチル、2−メトキシベンジル、3−メトキシベンジル、4−メトキシベンジル、2−エトキシベンジル、2−メトキシフェネチル、3−メトキシフェネチル、4−メトキシフェネチル、メチル、エチル、プロピル、i−プロピル、ブチル、t−ブチル、sec−ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ラウリル、フェニル、1−ナフチル、メトキシメチル、2−メトキシエチル、2−エトキシエチル、3−メトキシプロピル、2−ブトキシエチル、2−シクロへキシルオキシエチル、3−エトキシプロピル、3−プロポキシプロピル、3−イソプロポキシプロピルアミンなどが挙げられる。
前記バインダーは、特に、(a)無水マレイン酸と、(b)芳香族ビニル単量体と、(c)ビニル単量体であって、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体と、からなる共重合体の無水物基に対して1級アミン化合物を反応させて得られる共重合体であるのが好ましい。該(a)成分と、該(b)成分と、からなる共重合体では、後述する感光層の高い表面硬度を得ることはできるものの、ラミネート性の確保が困難になることがある。また、該(a)成分と、該(c)成分と、からなる共重合体では、ラミネート性は確保することができるものの、前記表面硬度の確保が困難になることがある。
−−(b)芳香族ビニル単量体−−
前記芳香族ビニル単量体としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明の感光性組成物を用いて形成される感光層の表面硬度を高くすることができる点で、ホモポリマーのガラス転移温度(Tg)が80℃以上である化合物が好ましく、100℃以上である化合物がより好ましい。
前記芳香族ビニル単量体の具体例としては、例えば、スチレン(ホモポリマーのTg=100℃)、α−メチルスチレン(ホモポリマーのTg=168℃)、2−メチルスチレン(ホモポリマーのTg=136℃)、3−メチルスチレン(ホモポリマーのTg=97℃)、4−メチルスチレン(ホモポリマーのTg=93℃)、2,4−ジメチルスチレン(ホモポリマーのTg=112℃)などのスチレン誘導体が好適に挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−−(c)ビニル単量体−−
前記ビニル単量体は、該ビニル単量体のホモポリマーのガラス転移温度(Tg)が80℃未満であることが必要であり、40℃以下が好ましく、0℃以下がより好ましい。
前記ビニル単量体としては、例えば、n−プロピルアクリレート(ホモポリマーのTg=−37℃)、n−ブチルアクリレート(ホモポリマーのTg=−54℃)、ペンチルアクリレート、あるいはヘキシルアクリレート(ホモポリマーのTg=−57℃)、n−ブチルメタクリレート(ホモポリマーのTg=−24℃)、n−ヘキシルメタクリレート(ホモポリマーのTg=−5℃)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
−1級アミン化合物−
前記1級アミン化合物としては、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β−メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、プロピルアミン、1−プロピルアミン、ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、アニリン、オクチルアニリン、アニシジン、4−クロルアニリン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロヘキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが挙げられる。これらの中でも、ベンジルアミン、フェネチルアミンが特に好ましい。
前記1級アミン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記1級アミン化合物の反応量としては、前記無水物基に対して0.1〜1.2当量であることが必要であり、0.1〜1.0当量が好ましい。該反応量が1.2当量を超えると、前記1級アミン化合物を1種以上反応させた場合に、溶解性が著しく悪化することがある。
前記(a)無水マレイン酸の前記バインダーにおける含有量としては、15〜50mol%が好ましく、20〜45mol%がより好ましく、20〜40mol%が特に好ましい。該含有量が15mol%未満であると、アルカリ現像性の付与ができず、50mol%を超えると、耐アルカリ性が劣化し、また、前記共重合体の合成が困難になり、正常な永久パターンの形成を行うことができないことがある。また、この場合における、前記(b)芳香族ビニル単量体、及び(c)ホモポリマーのガラス転移温度(Tg)が80℃未満であるビニル単量体の前記バインダーにおける含有量は、それぞれ20〜60mol%、15〜40mol%が好ましい。該含有量が該数値範囲を満たす場合には、表面硬度及びラミネート性の両立を図ることができる。
前記マレアミド酸系共重合体の分子量は、3,000〜500,000が好ましく、8,000〜150,000がより好ましい。該分子量が3,000未満であると、後述する感光層の硬化後において、膜質が脆くなり、表面硬度が劣化することがあり、500,000を超えると、前記感光性組成物の加熱積層時の流動性が低くなり、適切なラミネート性の確保が困難になることがあり、また、現像性が悪化することがある。
<その他のバインダー>
前記その他バインダーとしては、特開平11−288087号公報記載のポリアミド(イミド)樹脂、特開平11−282155号公報記載のポリイミド前駆体などを用いることができる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
前記ポリアミド(イミド)、あるいは、ポリイミド前駆体などのバインダーの分子量としては、3,000〜500,000が好ましく、5,000〜100,000がより好ましい。該分子量が3,000未満であると、感光層表面のタック性が強くなることがあり、後述する感光層の硬化後において、膜質が脆くなる、あるいは、表面硬度が劣化することがあり、500,000を超えると、現像性が劣化することがある。
前記バインダーの前記感光性組成物固形分中の固形分含有量としては、5〜70質量%が好ましく、10〜50質量%がより好ましい。該固形分含有量が、5質量%未満であると、後述する感光層の膜強度が弱くなりやすく、該感光層の表面のタック性が悪化することがあり、70質量%を超えると、露光感度が低下することがある。
〔(B)重合性化合物〕
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができるが、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノール等の多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号、特公昭50−6034号、特開昭51−37193号等の各公報に記載されているウレタンアクリレート類;特開昭48−64183号、特公昭49−43191号、特公昭52−30490号等の各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが特に好ましい。
前記重合性化合物の前記感光性組成物固形分中の固形分含有量は、5〜50質量%が好ましく、10〜40質量%がより好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、50質量%を超えると、感光層の粘着性が強くなりすぎることがあり、好ましくない。
〔(C)光重合開始剤〕
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができるが、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(より好ましくは330〜500nm)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、など)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、メタセロン類、などが挙げられる。
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記F.C.Schaefer等によるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−スチリル−1,3,4−オキサジアゾール等)などが挙げられる。
前記ホスフィンオキサイドとしては、例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPO、などが挙げられる。
前記ヘキサアリールビイミダゾールとしては、例えば、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(o−フロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ブロモフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(3−メトキシフェニル)ビイミダゾール、2,2’−ビス(2−クロロフェニル)−4,4’,5,5’−テトラ(4−メトキシフェニル)ビイミダゾール、2,2’−ビス(4−メトキシフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2,4−ジクロロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−ニトロフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−メチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、2,2’−ビス(2−トリフルオロメチルフェニル)−4,4’,5,5’−テトラフェニルビイミダゾール、WO00/52529号公報に記載の化合物、などが挙げられる。
前記ビイミダゾール類は、例えば、Bull.Chem.Soc.Japan,33,565(1960)、及びJ.Org.Chem,36(16)2262(1971)に開示されている方法により容易に合成することができる。
本発明で好適に用いられる前記オキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
前記有機過酸化物としては、例えば、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、などが挙げられる。
前記チオ化合物としては、例えば、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン、1−クロロ−4−プロポキシチオキサントン、2−ベンゾイルメチレン−3−メチルナフトチアゾリン、などが挙げられる。
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
前記芳香族オニウム塩としては、例えば、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、テトラフェニルホスホニウム−ヘキサフルオロホスフェート、などが挙げられる。
前記メタロセン類としては、例えば、ビス(η−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η−シクロペンタジエニル−η−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)、などが挙げられる。
また、上記以外の光重合開始剤として、N−フェニルグリシンなど、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトンなど)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、クリスタルバイオレットラクトン、ロイコクリスタルバイオレットなど)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
また、後述する感光層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光及び可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤等)と相互作用(例えば、エネルギー移動、電子移動等)することにより、ラジカルや酸等の有用基を発生することが可能である。
尚、これらの化合物は、感光層の感度の向上を図るだけでなく、光励起により前記モノマーの重合を開始させるような光重合開始剤としての機能をも有している。
前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができるが、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、などが挙げられる。
前記増感剤としては、更に、ヘテロ縮環系化合物が好ましく挙げられる。前記ヘテロ縮環系化合物とは、環の中にヘテロ元素を有する多環式化合物を意味し、前記環の中に、窒素原子を含むのが好ましい。前記ヘテロ縮環系化合物としては、例えば、ヘテロ縮環系ケトン化合物、キノリン化合物、アクリジン化合物が挙げられる。
前記ヘテロ縮環系ケトン化合物としては、具体的には、例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドン、などのアクリドン化合物;3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、7−ジエチルアミノ−4−メチルクマリン、また、特開平5−19475号、特開平7−271028号、特開2002−363206号、特開2002−363207号、特開2002−363208号、特開2002−363209号公報等に記載のクマリン化合物、などのクマリン類;などが挙げられる。
前記キノリン化合物としては、具体的には、例えば、キノリン、9−ヒドロキシ−1,2−ジヒドロキノリン−2−オン、9−エトキシ−1,2−ジヒドロキノリン−2−オン、9−ジブチルアミノ−1,2−ジヒドロキノリン−2−オン、8−ヒドロキシキノリン、8−メルカプトキノリン、キノリン−2−カルボン酸、などが挙げられる。
前記アクリジン化合物としては、具体的には、例えば、9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン、アクリジンオレンジ、クロロフラビン、アクリフラビン、などが挙げられる。これらヘテロ縮環系化合物の中でも、環の中に窒素元素を含有するものがより好ましい。前記環内に窒素元素を含有するものとしては、前記アクリジン化合物、アミノ基により置換されたクマリン化合物、アクリドン化合物、などが好適に挙げられる。この中でも前記アクリドン、アミノ基により置換されたクマリン、9−フェニルアクリジン、などが更に好ましく、これらの中でも、前記アクリドンが特に好ましい。
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
前記増感剤の含有量としては、前記感光性組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光層から前記増感剤が析出することがある。
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物とアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、ヘキサアリールビイミダゾール化合物とヘテロ縮環系化合物、あるいは、メタロセン類、などが挙げられる。
更にこれらの開始剤とともに、連鎖移動剤(例えば、メルカプト化合物、より具体的には、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、など)を併用してもよい。
前記光重合開始剤の前記感光性組成物における含有量としては、0.1〜30質量%が好ましく、0.5〜20質量%がより好ましく、0.5〜15質量%が特に好ましい。
〔(D)熱架橋剤〕
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性組成物を用いて形成される感光層の硬化後の膜強度を改良するために、現像性等などに悪影響を与えない範囲で、例えば、1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物を用いることができる。
前記1分子内に少なくとも2つのオキシラン基を有するエポキシ化合物としては、例えば、ビキシレノール型もしくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」等)又はこれらの混合物、イソシアヌレート骨格等を有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティー・ケミカルズ社製」等)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」等)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」等)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」等)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられるが、これらに限られるものではない。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
また、前記1分子内に少なくとも2つのオキシラン基を有する前記エポキシ化合物以外に、β位にアルキル基を有するエポキシ基を少なくとも1分子中に2つ含むエポキシ化合物を用いることができ、β位がアルキル基で置換されたエポキシ基(より具体的には、β−アルキル置換グリシジル基など)を含む化合物が特に好ましい。
前記β位にアルキル基を有するエポキシ基を少なくとも含むエポキシ化合物は、1分子中に含まれる2個以上のエポキシ基のすべてがβ−アルキル置換グリシジル基であってもよく、少なくとも1個のエポキシ基がβ−アルキル置換グリシジル基であってもよい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物は、室温における保存安定性の観点から、前記感光性組成物中に含まれる前記エポキシ化合物全量中における、全エポキシ基中のβ−アルキル置換グリシジル基の割合が、70%以上であることが好ましい。
前記β−アルキル置換グリシジル基としては、特に制限は無く、目的に応じて適宜選択することができ、例えば、β−メチルグリシジル基、β−エチルグリシジル基、β−プロピルグリシジル基、β−ブチルグリシジル基、などが挙げられ、これらの中でも、前記感光性樹脂組成物の保存安定性を向上させる観点、及び合成の容易性の観点から、β−メチルグリシジル基が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、多価フェノール化合物とβ−アルキルエピハロヒドリンとから誘導されたエポキシ化合物が好ましい。
前記β−アルキルエピハロヒドリンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、β−メチルエピクロロヒドリン、β−メチルエピブロモヒドリン、β−メチルエピフロロヒドリン等のβ−メチルエピハロヒドリン;β−エチルエピクロロヒドリン、β−エチルエピブロモヒドリン、β−エチルエピフロロヒドリン等のβ−エチルエピハロヒドリン;β−プロピルエピクロロヒドリン、β−プロピルエピブロモヒドリン、β−プロピルエピフロロヒドリン等のβ−プロピルエピハロヒドリン;β−ブチルエピクロロヒドリン、β−ブチルエピブロモヒドリン、β−ブチルエピフロロヒドリン等のβ−ブチルエピハロヒドリン;などが挙げられる。これらの中でも、前記多価フェノールとの反応性及び流動性の観点から、β−メチルエピハロヒドリンが好ましい。
前記多価フェノール化合物としては、1分子中に2以上の芳香族性水酸基を含有する化合物であれば、特に制限は無く、目的に応じて適宜選択することができ、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール化合物;ビフェノール、テトラメチルビフェノール等のビフェノール化合物;ジヒドロキシナフタレン、ビナフトール等のナフトール化合物;フェノール−ホルムアルデヒド重縮合物等のフェノールノボラック樹脂;クレゾール−ホルムアルデヒド重縮合物等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物;キシレノール−ホルムアルデヒド重縮合物等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物;ビスフェノールA−ホルムアルデヒド重縮合物等のビスフェノール化合物−ホルムアルデヒド重縮合物;フェノールと炭素数1〜10のモノアルキル置換フェノールとホルムアルデヒドとの共重縮合物;フェノール化合物とジビニルベンゼンの重付加物;などが挙げられる。これらの中でも、例えば、流動性及び保存安定性を向上させる目的で選択する場合には、前記ビスフェノール化合物が好ましい。
前記β位にアルキル基を有するエポキシ基を含むエポキシ化合物としては、例えば、ビスフェノールAのジ−β−アルキルグリシジルエーテル、ビスフェノールFのジ−β−アルキルグリシジルエーテル、ビスフェノールSのジ−β−アルキルグリシジルエーテル等のビスフェノール化合物のジ−β−アルキルグリシジルエーテル;ビフェノールのジ−β−アルキルグリシジルエーテル、テトラメチルビフェノールのジ−β−アルキルグリシジルエーテル等のビフェノール化合物のジ−β−アルキルグリシジルエーテル;ジヒドロキシナフタレンのジ−β−アルキルグリシジルエーテル、ビナフトールのジ−β−アルキルグリシジルエーテル等のナフトール化合物のβ−アルキルグリシジルエーテル;フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;クレゾール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のモノアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;キシレノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等の炭素数1〜10のジアルキル置換フェノール−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;ビスフェノールA−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル等のビスフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテル;フェノール化合物とジビニルベンゼンの重付加物のポリ−β−アルキルグリシジルエーテル;などが挙げられる。
これらの中でも、ビスフェノール化合物、及びこれとエピクロロヒドリンなどから得られる重合体から誘導されるβ−アルキルグリシジルエーテル、及びフェノール化合物−ホルムアルデヒド重縮合物のポリ−β−アルキルグリシジルエーテルが好ましい。
前記オキセタン化合物としては、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体等の多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサン等の水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
また、前記熱架橋剤として、メラミン誘導体を用いることができる。該メラミン誘導体としては、例えば、メチロールメラミン、アルキル化メチロールメラミン(メチロール基を、メチル、エチル、ブチルなどでエーテル化した化合物)などが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、保存安定性が良好で、感光層の表面硬度あるいは硬化膜の膜強度自体の向上に有効である点で、アルキル化メチロールメラミンが好ましく、ヘキサメチル化メチロールメラミンが特に好ましい。
前記熱架橋剤の前記感光性組成物固形分中の固形分含有量は、1〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が1質量%未満であると、硬化膜の膜強度の向上が認められず、50質量%を超えると、現像性の低下や露光感度の低下を生ずることがある。
〔(E)硬化促進剤〕
前記硬化促進剤は、前記1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体の熱硬化反応を促進するために添加される。
前記硬化促進剤は、前記本発明の1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有する化合物からなるエポキシ樹脂用潜在硬化促進剤であり、前記一般式(1)〜(6)のいずれかで表される化合物であるのが好ましい。
該硬化促進剤を感光性組成物、特に感光性フィルムとして製品化することにより、保存時は反応を生じることがなく、感光性組成物、或いは感光性フィルムの極めて優れた保存安定性が得られ、パターン形成のための加熱処理時には、速やかな反応を示して化合物の硬化を促進し、形成される硬化膜の高い膜硬度、耐薬品性などが得られる。
前記硬化促進剤の感光性組成物固形分中における固形分含有量としては、0.01〜15質量%が好ましく、0.05〜5質量%がより好ましい。前記含有量が0.01質量%未満であると、加熱処理時の反応が低下し、硬化膜の膜強度の向上が図れないことがあり、15質量%超であると、現像性、露光感度の低下、及び硬化膜の膜硬度の低下を生ずることがある。
−その他の熱硬化促進剤−
前記エポキシ化合物の熱硬化を促進するため、本発明の硬化促進剤とは別個に、従来公知の熱硬化促進剤を配合することができる。前記熱硬化促進剤としては、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物;トリエチルベンジルアンモニウムクロリド等の4級アンモニウム塩化合物;ジメチルアミン等でブロックされたブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール等のイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィン等のリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミン等のグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物等のS−トリアジン誘導体;などを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記熱硬化促進剤としては、前記エポキシ化合物の熱硬化を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記熱硬化促進剤の前記感光性組成物固形分中の固形分含有量は、0.01〜15質量%であることが好ましい。
〔その他の成分〕
前記その他の成分としては、例えば、熱重合禁止剤、可塑剤、着色剤(着色顔料あるいは染料)、体質顔料、などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする感光性組成物あるいは感光性フィルムの安定性、写真性、膜物性などの性質を調整することができる。
−熱重合禁止剤−
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止するために添加してもよい。
前記熱重合禁止剤としては、例えば、4−メトキシフェノール、ハイドロキノン、アルキルまたはアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレート等が挙げられる。
前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
−着色顔料−
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・イエローGT(C.I.ピグメント・イエロー12)、パーマネント・イエローGR(C.I.ピグメント・イエロー17)、パーマネント・イエローHR(C.I.ピグメント・イエロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)、ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
前記着色顔料の前記感光性組成物固形分中の固形分含有量は、永久パターン形成の際の感光層の露光感度、解像性などを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には0.01〜10質量%が好ましく、0.05〜5質量%がより好ましい。
−体質顔料−
前記感光性組成物には、必要に応じて、永久パターンの表面硬度の向上、あるいは線膨張係数を低く抑えること、あるいは、硬化膜自体の誘電率や誘電正接を低く抑えることを目的として、無機顔料や有機微粒子を添加することができる。
前記無機顔料としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
前記無機顔料の平均粒径は、10μm未満が好ましく、3μm以下がより好ましい。該平均粒径が10μm以上であると、光錯乱により解像度が劣化することがある。
前記有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径1〜5μm、吸油量100〜200m/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
前記体質顔料の添加量は、5〜60質量%が好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、60質量%を超えると、感光層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。
−密着促進剤−
各層間の密着性、又は感光層と基材との密着性を向上させるために、各層に公知のいわゆる密着促進剤を用いることができる。
前記密着促進剤としては、例えば、特開平5−11439号公報、特開平5−341532号公報、及び特開平6−43638号公報などに記載の密着促進剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンズオキサゾール、2−メルカプトベンズチアゾール、3−モルホリノメチル−1−フェニル−トリアゾール−2−チオン、3−モルホリノメチル−5−フェニル−オキサジアゾール−2−チオン、5−アミノ−3−モルホリノメチル−チアジアゾール−2−チオン、及び2−メルカプト−5−メチルチオ−チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。
前記密着促進剤の含有量としては、前記感光性組成物中の全成分に対して0.001質量%〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.1質量%〜5質量%が特に好ましい。
本発明の感光性組成物は、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性、電気絶縁性などを発現する。このため、プリント配線板(多層配線基板、ビルドアップ配線基板等)の保護膜、層間絶縁膜、及びソルダーレジストパターン、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、特に本発明の感光性フィルム、永久パターン及びその形成方法に好適に用いることができる。
(熱硬化性樹脂組成物)
本発明の熱硬化性樹脂組成物は、エポキシ化合物と、前記本発明の硬化促進剤と、を少なくとも含む。
前記硬化促進剤の含有量としては、エポキシ化合物と硬化促進剤との質量比(エポキシ樹脂化合物:硬化促進剤)で100:0.01〜20あることが好ましく、100:0.01〜15質量%がより好ましい。
硬化促進剤のエポキシ樹脂化合物100に対する質量比が0.01未満であると、加熱処理時の反応性が低下し、硬化膜の膜強度の向上が図れないことがあり、20超であると、現像性、露光感度の低下、及び硬化膜の膜硬度の低下を生じることがある。
前記エポキシ樹脂化合物としては、前記本発明の感光性組成物でしようしたものと同様のエポキシ樹脂化合物を使用することができる。
本発明の熱硬化性樹脂組成物は、保存時の常温では硬化反応を生じることがなく、加熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、耐熱性、誘電特性、電気絶縁性などを発現できるので、接着剤などに好適に用いることができる。
(感光性フィルム)
本発明の感光性フィルムは、少なくとも支持体と、感光層とを有してなり、好ましくは保護フィルムを有してなり、更に必要に応じて、クッション層、酸素遮断層(PC層)などのその他の層を有してなる。
前記感光性フィルムの形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、前記感光層、前記保護膜フィルムをこの順に有してなる形態、前記支持体上に、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態、前記支持体上に、前記クッション層、前記PC層、前記感光層、前記保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光層は、単層であってもよいし、複数層であってもよい。
〔感光層〕
前記感光層は、本発明の前記感光性組成物により形成される。
前記感光層の前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記支持体上に積層される。
前記感光層は、後述する露光工程において、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光されるのが好ましい。
前記感光層を露光し現像する場合において、該感光層の露光する部分の厚みを該露光及び現像後において変化させない前記露光に用いる光の最小エネルギーは、0.1〜100mJ/cmであることが好ましく、1〜80mJ/cmであることがより好ましい。前記露光に用いる光の最小エネルギーが、0.1mJ/cm未満であると、加工マージンが狭くなることがあり、100mJ/cmを超えると、タクト時間が長くなるため好ましくない。
ここで、「該感光層の露光する部分の厚みを該露光及び現像後において変化させない前記露光に用いる光の最小エネルギー」とは、いわゆる現像感度であり、例えば、前記感光層を露光したときの前記露光に用いた光のエネルギー量(露光量)と、前記露光に続く前記現像処理により生成した前記硬化層の厚みとの関係を示すグラフ(感度曲線)から求めることができる。
前記硬化層の厚みは、前記露光量が増えるに従い増加していき、その後、前記露光前の前記感光層の厚みと略同一かつ略一定となる。前記現像感度は、前記硬化層の厚みが略一定となったときの最小露光量を読み取ることにより求められる値である。
ここで、前記硬化層の厚みと前記露光前の前記感光層の厚みとが±1μm以内であるとき、前記硬化層の厚みが露光及び現像により変化していないとみなす。
前記硬化層及び前記露光前の前記感光層の厚みの測定方法としては、特に制限はなく、目的に応じて適宜選択することができるが、膜厚測定装置、表面粗さ測定機(例えば、サーフコム1400D(東京精密社製))などを用いて測定する方法が挙げられる。
前記感光層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、3〜100μmが好ましく、5〜70μmがより好ましい。
前記感光層の形成方法としては、前記支持体の上に、本発明の前記感光性組成物を、水又は溶剤に溶解、乳化又は分散させて感光性組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
前記感光性組成物溶液の溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合等によっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
〔支持体〕
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができるが、前記感光層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルム等の各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、4〜300μmが好ましく、5〜175μmがより好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができるが、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10〜20,000mの長さのものが挙げられる。
〔保護フィルム〕
前記保護フィルムは、前記感光層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記感光性フィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記感光層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
前記保護フィルムを用いる場合、前記感光層及び前記支持体の接着力Aと、前記感光層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
前記感光性フィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性フィルムの長さとしては、特に制限はなく、例えば、10〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性フィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
前記保護フィルムは、前記保護フィルムと前記感光層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコール等のポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
また、前記感光層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。
前記クッション層は、常温ではタック性が無く、真空及び加熱条件で積層した場合に溶融し、流動する層である。
前記PC層は、通常ポリビニルアルコールを主成分として形成された0.5〜5μm程度の被膜である。
本発明の感光性フィルムは、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現する感光性組成物が積層された感光層を有してなる。このため、プリント配線板、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の永久パターン及びその形成方法に好適に用いることができる。
特に、本発明の感光性フィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、基材への積層がより精細に行われる。
(永久パターン及び永久パターン形成方法)
本発明の永久パターンは、本発明の永久パターン形成方法により得られる。
本発明の永久パターン形成方法は、第1の態様として、本発明の感光性組成物を、基材の表面に塗布し、乾燥して感光層を形成した後、露光し、現像する。
また、本発明の永久パターン形成方法は、第2の態様として、本発明の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、露光し、現像する。
以下、本発明の永久パターン形成方法の説明を通じて、本発明の永久パターンの詳細も明らかにする。
〔基材〕
前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板等)、合成樹脂性のフィルム、紙、金属板などが挙げられるが、これらの中でも、プリント配線板形成用基板が好ましく、多層配線基板やビルドアップ配線基板などへの半導体等の高密度実装化が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好ましい。
前記基材は、前記第1の態様として、該基材上に前記感光性組成物による感光層が形成されてなる積層体、又は前記第2の態様として、前記感光性フィルムにおける感光層が重なるようにして積層されてなる積層体を形成して用いることができる。即ち、前記積層体における前記感光層に対して後述する露光することにより、露光した領域を硬化させ、後述する現像により永久パターンを形成することができる。
−積層体−
前記第1の態様の積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記基材上に、前記感光性組成物を塗布及び乾燥して形成した感光層を積層するのが好ましい。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光性フィルムにおける感光層を形成する際に行われる、前記感光性組成物溶液の塗布及び乾燥と同様な方法で行うことができ、例えば、該感光性組成物溶液をスピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて塗布する方法が挙げられる。
前記第2の態様の積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記基材上に前記感光性フィルムを加熱及び加圧の少なくともいずれかを行いながら積層するのが好ましい。なお、前記感光性フィルムが前記保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光層が重なるようにして積層するのが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、70〜130℃が好ましく、80〜110℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーター(例えば、ニチゴーモートン(株)社製、VP130)などが好適に挙げられる。
〔露光工程〕
前記露光工程は、前記感光層に対し、露光を行う工程である。
前記露光の対象としては、感光層を有する材料である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、基材上に前記感光性組成物又は前記感光性フィルムが形成されてなる前記積層体に対して行われることが好ましい。
前記積層体への露光としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体、クッション層及びPC層を介して前記感光層を露光してもよく、前記支持体を剥離した後、前記クッション層及びPC層を介して前記感光層を露光してもよく、前記支持体及びクッション層を剥離した後、前記PC層を介して前記感光層を露光してもよく、前記支持体、クッション層及びPC層を剥離した後、前記感光層を露光してもよい。
前記露光としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル露光、アナログ露光等が挙げられるが、これらの中でもデジタル露光が好ましい。
前記デジタル露光としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行うのが好ましい。
前記デジタル露光の手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該光照射手段から照射される光を変調させる光変調手段などが挙げられる。
<光変調手段>
前記光変調手段としては、光を変調することができる限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、n個の描素部を有するのが好ましい。
前記n個の描素部を有する光変調手段としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、空間光変調素子が好ましい。
前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。
また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有するのが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD50は図1に示すように、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジおよびヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図2(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図2(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。したがって、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを、図1に示すように制御することによって、DMD50に入射したレーザ光Bはそれぞれのマイクロミラー62の傾き方向へ反射される。
なお、図1には、DMD50の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続されたコントローラ302(図12参照)によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
また、DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図3(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図3(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。
DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図3(B)に示すように、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。
次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
前記光変調手段は、前記n個の描素の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能であるのが好ましい。前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58により感光層150上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、感光層150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、感光層150がステージ152と共に一定速度で移動されることにより、感光層150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
なお本例では、図4(A)及び(B)に示すように、DMD50には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、前記コントローラ302(図12参照)により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。
この場合、図4(A)に示すようにDMD50の中央部に配置されたマイクロミラー列を使用してもよく、図4(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
DMD50のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
スキャナ162による感光層150の副走査が終了し、センサ164で感光層150の後端が検出されると、ステージ152は、ステージ駆動装置304により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。
例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。
以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。
また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。
また、前記露光の方法として、露光光と前記感光層とを相対的に移動しながら行うのが好ましく、この場合、前記高速変調と併用するのが好ましい。これにより、短時間で高速の露光を行うことができる。
その他、図5に示すように、スキャナ162によるX方向への1回の走査で感光層150の全面を露光してもよく、図6(A)及び(B)に示すように、スキャナ162により感光層150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光層150の全面を露光するようにしてもよい。なお、この例では、スキャナ162は18個の露光ヘッド166を備えている。なお、露光ヘッドは、前記光照射手段と前記光変調手段とを少なくとも有する。
前記露光は、前記感光層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、永久パターンが形成される。
次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しながら説明する。
前記光変調手段を含むパターン形成装置は、図7に示すように、感光層150を有する前記積層体を表面に吸着して保持する平板状のステージ152を備えている。
4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向
に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の端部の各々は、設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側には感光層150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。
スキャナ162は、図8及び図9(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、感光層150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。
露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。したがって、ステージ152の移動に伴い、感光層150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。
また、図9(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。
露光ヘッド16611〜166mn各々は、図10及び図11に示すように、入射された光ビームをパターン情報に応じて前記光変調手段(各描素毎に変調する空間光変調素子)として、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(DMD)50を備えている。DMD50は、データ処理部とミラー駆動制御部とを備えた前記コントローラ302(図12参照)に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。
DMD50の光入射側には、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源66、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69がこの順に配置されている。なお、図10では、レンズ系67を概略的に示してある。
レンズ系67は、図11に詳しく示すように、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74から構成されている。集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。このロッドインテグレータ72の形状や作用については、後に詳しく説明する。
レンズ系67から出射したレーザ光Bはミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図10では、このTIRプリズム70は省略してある。
また、DMD50の光反射側には、DMD50で反射されたレーザ光Bを、感光層150上に結像する結像光学系51が配置されている。この結像光学系51は、図10では概略的に示してあるが、図11に詳細を示すように、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。
マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。
そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。
また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。
前記第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大して感光層150上に結像、投影する。したがって全体では、DMD50による像が4.8倍に拡大して感光層150上に結像、投影されることになる。
なお、前記第2結像光学系と感光層150との間にプリズムペア73が配設され、このプリズムペア73を図11中で上下方向に移動させることにより、感光層150上における像のピントを調節可能となっている。なお同図中において、感光層150は矢印F方向に副走査送りされる。
前記描素部としては、前記光照射手段からの光を受光し出射することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の永久パターン形成方法により形成される永久パターンが画像パターンである場合には、画素であり、前記光変調手段がDMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数(前記n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、2次元状に配列しているのが好ましく、格子状に配列しているのがより好ましい。
−光照射手段−
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザ等の公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ光(以下、「合波レーザ光」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、395nm〜415nmが特に好ましい。
前記合波レーザ光を照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。
以下、前記合波レーザ光を照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。
ファイバアレイ光源66は図27aに示すように、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図27bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。
マルチモード光ファイバ31の端部で構成されるレーザ出射部68は、図27bに示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラス等の透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。
このような光ファイバは、例えば、図28に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。
マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。したがって、クラッド径を60μmと小さくすることができる。
ただし、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。
レーザモジュール64は、図29に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
前記合波レーザ光源は、図30及び図31に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部はパッケージ40の壁面に形成された開口からパッケージ外に引き出されている。
また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。
なお、図31においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。
図32は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図32の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザ光B1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
したがって、各発光点から発せられたレーザ光B1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザ光B1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f1=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
また、複数の発光点を備えた光照射手段としては、例えば、図33に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図34(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザ光を合波し易い。ただし、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。
前記光照射手段としては、このマルチキャビティレーザ110や、図34(B)に示すように、ヒートブロック100上に、複数のマルチキャビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図21に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略等しい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略等しい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザ光Bのマルチモード光ファイバ130への結合効率を上げることができる。
また、図35に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いに等間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキャビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。
この合波レーザ光源は、レーザアレイ140と、各マルチキャビティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキャビティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
上記の構成では、複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザ光Lは、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図36(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向に等間隔で配列されて固定されている。
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザ光を集光して結合する集光レンズ120と、が配置されている。
前記構成では、レーザブロック180、182上に配置された複数のマルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、前記パターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μm等のマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
ここで、本発明の前記永久パターン形成方法について更に説明する。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザ光B1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザ光B1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
本例では、コリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。即ち、集光レンズ20によって上述のように集光されたレーザ光B1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザ光Bに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。
各レーザモジュールにおいて、レーザ光B1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザ光Bを得ることができる。したがって、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。
ファイバアレイ光源66のレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。
これに対し、前記光照射手段が合波レーザ光を照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。
ここで、図37(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
一方、図37(B)に示すように、前記パターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。したがって、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図37(A)及び(B)は、光学的な関係を説明するために展開図とした。
露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。
感光層150を有する感光性フィルムを表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164により感光層150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。
ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58により感光層150の被露光面56上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、感光層150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、感光層150がステージ152と共に一定速度で移動されることにより、感光層150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
<マイクロレンズアレイ>
また、前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うのが好ましく、更にアパーチャアレイ、結像光学系等などを通して行ってもよい。
前記マイクロレンズアレイとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したものが好適に挙げられる。
前記非球面としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トーリック面が好ましい。
以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系等について図面を参照しながら説明する。
図13(A)は、DMD50、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される露光ヘッドを表す。
ここで、図14に、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。
本発明の永久パターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。
図16の(A)及び(B)はそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明の永久パターン形成方法では、先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。
また、図17の(A)及び(B)はそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。
したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。
マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
ただし、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。
図19a〜dと図20a〜dとを比較すると明らかなように、本発明の永久パターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像を感光層150に露光可能となる。また、図19a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが分かる。
なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像を感光層150に露光可能となる。
また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。
本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。
また、本発明の永久パターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状を更に高精細にすることができる。
また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。
更に、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。
そのようなマイクロレンズ155aの一例を図22に示す。同図の(A)及び(B)はそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。
また、図23の(A)及び(B)は、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定の等ピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。
なお、先に図17及び図18に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正するようにしてもよい。
また、上記の実施形態では、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明の永久パターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。
次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD50によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
この結像光学系では、DMD50により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図13(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。
一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図13(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD50を傾けて配置しているからである。
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。
更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。
<その他の光学系>
本発明の永久パターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
まず、図24(A)に示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図24(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。
前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。すなわち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。
このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内、好ましくは20%以内となるようにする。
前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図24(B),(C))においても同様である。
図24(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
図24(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。
次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明の永久パターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付ける等により光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。
表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
上記の非球面データは、非球面形状を表す下記式(A)における係数で表される。
上記式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
図26は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図25に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図25及び図26から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。
〔現像工程〕
前記現像工程は、前記露光工程により前記感光層を露光し、該感光層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成する工程である。
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、アルカリ金属又はアルカリ土類金属の水酸化物若しくは炭酸塩、炭酸水素塩、アンモニア水、4級アンモニウム塩の水溶液等が好適に挙げられる。これらの中でも、炭酸ナトリウム水溶液が特に好ましい。
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、ベンジルアミン、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミン等)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類等)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
〔硬化処理工程〕
本発明の永久パターン形成方法は、更に、硬化処理工程を含むことが好ましい。
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターンにおける感光層に対して硬化処理を行う工程である。
前記硬化処理としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光層を形成する感光性組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
本発明の永久パターン形成方法においては、保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかを形成するのが好ましい。前記永久パターン形成方法により形成される永久パターンが、前記保護膜又は前記層間絶縁膜であると、配線を外部からの衝撃や曲げから保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体部品の高密度実装に有用である。
本発明の永久パターン形成方法は、高速でパターン形成が可能であるため、各種パターンの形成に広く用いることができ、特に配線パターンの形成に好適に使用することができる。
また、本発明の永久パターン形成方法により形成される永久パターンは、優れた表面硬度、絶縁性、耐熱性などを有し、保護膜、層間絶縁膜、及びソルダーレジストパターンとして好適に使用することができる。
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
(実施例1)
−感光性組成物の調製−
下記組成に基づいて、感光性組成物を調製した。なお、分散溶媒としてメチルエチルケトンを用い、固形分濃度を55質量%として調製した。分散は、ビーズミルを用いて行い、得られた分散液は、粒ゲージにより凝集が無いことを確認した。
〔感光性組成物溶液の組成〕
―――――――――――――――――――――――――――――――――――――――
・硫酸バリウム(堺化学工業社製、B30)・・・・・・・・・・・・33.4質量部
・下記一般式(10)で表されるバインダー・・・・・・・・・・・・40.0質量部
・2,2−ビス(4−グリシジルフェニル)プロパン(熱架橋剤)・・15.7質量部
・ジペンタエリスリトールヘキサアクリレート(重合性化合物)・・・16.0質量部
・IRG819*1(光重合開始剤)・・・・・・・・・・・・・・・・・5.8質量部
・ハイドロキノンモノメチルエーテル・・・・・・・・・・・・・・0.056質量部
・ジシアンジアミド・・・・・・・・・・・・・・・・・・・・・・・0.77質量部
・下記構造式(1)で表される硬化促進剤・・・・・・・・・・・・・0.47質量部
―――――――――――――――――――――――――――――――――――――――
*1:IRGACURE819(チバ・スペシャルティー・ケミカルズ社製)
ただし、前記一般式(10)中、nは、0〜10の整数を表す。
なお、前記構造式(1)で表される硬化促進剤は、次のようにして合成した。
ナスフラスコに下記に示す構造式(35)で表される化合物を5質量部とトルエン30質量部を入れ、塩化チオニル2.29質量部とトルエン5質量部の溶液を滴下漏斗から20分かけて滴下し、40分撹拌した。その後、トリエチルアミン2.2質量部、t−ブチルアルコール2.2質量部を加えて5時間撹拌した後反応を終了した。得られた溶液に水200質量部を加えて分液処理し、有機層に硫酸マグネシウム10質量部を加えて乾燥させた。その後、溶媒を真空留去し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=7/3)で精製することによって構造式(1)で表される硬化促進剤3.3質量部を得た。このときの収率は57%であった。
なお、前記構造式(1)で表される硬化促進剤は、CHClを溶媒としてH−NMRスペクトル(300MHz)を測定して同定した。スペクトルの各ピークは、δ(ppm):5.78−5.64(m;2H),3.29−3.15(m;4H),2.82−2.62(m;2H),2.37−2.25(m;3H),1.64−1.23(m;26H),0.93−0.86(m;6H)である。
また、前記構造式(1)で表される硬化促進剤の感光性組成物中の含有量は、0.42質量%である。
−感光性フィルムの製造−
得られた感光性組成物を、前記支持体としての厚み20μmのPET(ポリエチレンテレフタレート)フィルム上に、塗布し、乾燥させて、膜厚30μmの感光層を形成した。次いで、該感光層の上に、前記保護フィルムとして12μm厚のポリプロピレンフィルムをラミネートで積層し、感光性フィルムを製造した。
−永久パターンの形成−
−−積層体の調製−−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μm)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性フィルムの感光層が前記銅張積層板に接するようにして前記感光性フィルムにおける保護フィルムを剥がしながら、真空ラミネーター(ニチゴーモートン(株)社製、VP130)を用いて積層させ、前記銅張積層板と、前記感光層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、真空引きの時間40秒、圧着温度70℃、圧着圧力0.2MPa、加圧時間10秒とした。
前記感光性フィルムにおける保護フィルムを剥がした時点では、前記感光層の表面に強いタック性がなく、剥離自体も容易に行うことができた。
−−露光工程−−
前記調製した積層体における感光層に対し、ポリエチレンテレフタレートフィルム(支持体)側から、レーザ露光装置を用いて、405nmのレーザ光を、直径の異なる穴部が形成されるパターンが得られるように照射して露光し、前記感光層の一部の領域を硬化させた。
−−現像工程−−
室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光層の全面に、アルカリ現像液として、1質量%炭酸ソーダ水溶液を用い、30℃にて60秒間シャワー現像し、未硬化の領域を溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
−−硬化処理工程−−
前記永久パターンが形成された積層体の全面に対して、160℃で60分間、加熱処理を施し、永久パターンの表面を硬化し、膜強度を高めた。該永久パターンを目視で観察したところ、永久パターンの表面に気泡は認められなかった。
前記製造した感光性フィルムについて、露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表3に示す。
<露光感度>
得られた前記永久パターンにおいて、残った前記感光層の硬化領域の厚みを測定した。次いで、レーザ光の照射量と、硬化層の厚さとの関係をプロットして感度曲線を得る。こうして得た感度曲線から配線上の硬化領域の厚さが15μmとなり、硬化領域の表面が光沢面である時の光エネルギー量を、感光層を硬化させるために必要な光エネルギー量とした。
その結果、前記感光層を硬化させるために必要な光エネルギー量は、30mJ/cmであった。
<解像度>
得られた前記永久パターン形成済みのプリント配線基板の表面を光学顕微鏡で観察し、硬化層パターンの穴部に残膜が無い、最小の穴径を測定し、これを解像度とした。該解像度は数値が小さいほど良好である。その結果、解像度は、70μmであった。
<露光速度>
405nmレーザ露光装置を用いて、露光光と前記感光層とを相対的に移動させる速度を変更し、永久パターンが形成される速度を求めた。露光は、前記調製した積層体における感光層に対して、ポリエチレンテレフタレートフィルム(支持体)側から行った。なお、この設定速度が速い方が効率的な永久パターン形成が可能となる。なお、前記405nmレーザ露光装置は、前記DMDからなる光変調手段を有し、露光速度は、13mm/secであった。
<保存安定性>
実施例1と同様にして製造した感光性フィルムを60℃ドライの促進条件の下、2日間保管した。2日後に取り出し、実施例1と同様にして積層体を形成し、室温で10分保存した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、前記感光層に現像処理を行った。前記感光処理は、銅張積層板上の感光層の全面に、アルカリ現像液として、1質量%炭酸ソーダ水溶液を用い、30℃にてシャワーすることによって行い、炭酸ソーダ水溶液のシャワー開始から前記感光層が溶解除去されるまでに要した時間を測定し、得られた現像時間から、下記基準に基づいて保存安定性を評価した。その結果、現像時間は20秒であり、保存安定性に極めて優れることが認められた。
〔評価基準〕
◎:現像時間が30秒未満
○:現像時間が30秒以上45秒未満
△:現像時間が45秒以上60秒未満
×:現像時間が60秒以上
<鉛筆硬度>
前記永久パターン形成済みのプリント配線基板に対して、常法に従い金メッキを行った後、水溶性フラックス処理を行った。次いで、260℃に設定された半田槽に5秒間にわたって、3回浸漬し、フラックスを水洗で除去した。そして、該フラックス除去後の永久パターンについて、JIS K−5400に基づいて、鉛筆硬度を測定した。
その結果、鉛筆硬度は5H以上であった。また、目視観察を行ったところ、前記永久パターンにおける硬化膜の剥がれ、ふくれ、変色は認められなかった。
<誘電特性の測定>
膜厚500μmの硬化膜の誘電特性を、アジデント・テクノロジー社製LCRメーターと4291A型固体電極を用いて25℃で測定した結果、1GHzでの誘電率は3.3であり、誘電正接は0.014であった。
(実施例2)
下記組成に基づいて、感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性組成物及び感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表3に示す。
〔感光性組成物溶液の組成〕
―――――――――――――――――――――――――――――――――――――――
・硫酸バリウム・・・・・・・・・・・・・・・・・・・・・・・・・33.4質量部
・スチレン/無水マレイン酸/ブチルアクリレート共重合体(モル比40/32/28)とベンジルアミン(該共重合体の無水物基に対して1.0当量)との付加反応物*2
(バインダー)・・・・・・・・・・・・・・・・・・・・・・・・・40.0質量部
・2,2−ビス(4−グリシジルフェニル)プロパン(熱架橋剤)・・15.7質量部
・ジペンタエリスリトールヘキサアクリレート(重合性化合物)・・・16.0質量部
・IRG819(光重合開始剤)・・・・・・・・・・・・・・・・・・5.8質量部
・ハイドロキノンモノメチルエーテル・・・・・・・・・・・・・・0.056質量部
・ジシアンジアミド・・・・・・・・・・・・・・・・・・・・・・・0.77質量部
・前記構造式(1)で表される硬化促進剤・・・・・・・・・・・・・0.47質量部
―――――――――――――――――――――――――――――――――――――――
*2:下記一般式(24)で表されるユニットA及びユニットBを有するマレアミド酸系共重合体である。該ユニットAは2種の構成単位からなり、その内の一の構成単位におけるRはフェニルであり、他の構成単位におけるRはブチルオキシカルボニル、R及びRは水素原子である。上記ユニットBにおけるRはベンジルである。上記ユニットAにおける繰り返し単位のモル分率xは、前記一の構成単位については40モル%であり、前記他の構成単位については28モル%であり、上記ユニットBにおける繰り返し単位のモル分率yは32モル%である。また、前記スチレン/無水マレイン酸/ブチルアクリレート共重合体の無水物基に対する前記ベンジルアミンの反応量は1.0当量である。
上記ビニル単量体であるブチルアクリレートのホモポリマーのガラス転移温度(Tg)は、−54℃である。
なお、実施例2における、前記構造式(1)で表される硬化促進剤の感光性組成物中の含有量は0.42質量%である。
(実施例3)
実施例1において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパン15.7質量部を、下記構造式(36)で表される熱架橋剤(TEPIC)8.2質量部に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表3に示す。
(実施例4)
実施例1において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパンを、エピコートYX4000(ジャパンエポキシレジン社製、エポキシ樹脂)に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表3に示す。
(実施例5)
実施例1において、感光性組成物中の前記構造式(1)で表される硬化促進剤を、下記構造式(2)で表される硬化促進剤に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表4に示す。
なお、前記構造式(2)で表される硬化促進剤は、次のようにして合成した。
ナスフラスコに下記構造式(37)で表される化合物を5質量部とトルエン30質量部を入れ、塩化チオニル2.14質量部とトルエン5質量部の溶液を滴下漏斗から20分かけて滴下し、40分撹拌した。その後、トリエチルアミン2.1質量部、t−ブチルアルコール2.5質量部を加えて5時間撹拌した後反応を終了した。得られた溶液に水200質量部を加えて分液処理し、有機層に硫酸マグネシウム10質量部を加えて乾燥させた。その後、溶媒を真空留去し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=5/5)で精製することによって構造式(2)で示される硬化促進剤3.5質量部を得た。このときの収率は60%であった。
なお、前記構造式(2)で表される硬化促進剤は、CHClを溶媒としてH−NMRスペクトル(300MHz)を測定して同定した。スペクトルの各ピークは、δ(ppm):7.29(t;2H),7.21(d;1H),7.14(d;2H),5.76−5.63(m;2H),4.62−4.51(m;1H),91−3.76(m;1H),3.19−3.13(m;1H),3.05−2.87(m;1H),2.73−2.22(m;8H),1.82−1.45(m;3H),1.43(s;9H),1.28−1.09(m;3H)である。
また、前記構造式(2)で表される硬化促進剤の感光性組成物中の含有量は、0.42質量%である。
(実施例6)
実施例5において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパン15.7質量部を、前記構造式(36)で表される熱架橋剤(TEPIC)8.2質量部に代えたこと以外は、実施例5と同様にして感光性組成物を調製し、実施例5と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて、露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表4に示す。
(実施例7)
実施例1において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパンを、下記構造式(38)で表される熱架橋剤(エポキシ当量:214g/eq.;粘度:6,200mPa・s)に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表5に示す。
(実施例8)
実施例7において、感光性組成物中の前記構造式(1)で表される硬化促進剤を、前記構造式(2)で表される硬化促進剤に代えたこと以外は、実施例7と同様にして感光性組成物を調製し、実施例7と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表5に示す。
(実施例9)
実施例7において、感光性組成物中の前記一般式(10)で表されるバインダーを、前記一般式(24)で表される、スチレン/無水マレイン酸/ブチルアクリレート共重合体(モル比40/32/28)とベンジルアミン(該共重合体の無水物基に対して1.0当量)との付加反応物(組成量同じ)に代えたこと以外は、実施例7と同様にして感光性組成物を調製し、実施例7と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表5に示す。
(実施例10〜12)
実施例1、2、及び5において、露光装置を下記に説明するパターン形成装置に代えた以外は、実施例1と同様な方法により、前記製造した感光性組成物及び感光性フィルムについて露光感度、解像度、露光速度の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表6に示す。
<<パターン形成装置>>
前記光照射手段として図27〜32に示す合波レーザ光源と、前記光変調手段として図4に示す主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が、副走査方向に768組配列された内、1024個×256列のみを駆動するように制御したDMD50と、図13に示した一方の面がトーリック面であるマイクロレンズ474をアレイ状に配列したマイクロレンズアレイ472及び該マイクロレンズアレイを通した光を前記感光層に結像する光学系480、482とを有するパターン形成装置を用いた。
また、前記マイクロレンズにおけるトーリック面は以下に説明するものを用いた。
まず、DMD50の前記描素部としてのマイクロレンズ474の出射面における歪みを補正するため、該出射面の歪みを測定した。結果を図14に示した。図14においては、反射面の同じ高さ位置を等高線で結んで示してあり、等高線のピッチは5nmである。なお、同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として回転する。また、図15の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示した。
図14及び図15に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっていることが判る。このため、このままではマイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪んでしまうことが判る。
図16の(A)及び(B)には、マイクロレンズアレイ55全体の正面形状及び側面形状をそれぞれ詳しく示した。これらの図には、マイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。先に図4を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。
また、図17の(A)及び(B)には、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状をそれぞれ示した。なお、同図(A)には、マイクロレンズ55aの等高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、前記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、前記y方向に対応する方向の曲率半径Ry=−0.1mmである。
したがって、前記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図18の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっていることが判る。
なお、マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図19a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図20a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
ただし、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。
図19a〜dと図20a〜dとを比較すると明らかなように、マイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。この結果、歪みの無い、より高精細なパターンを感光層150に露光可能となる。また、図19a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが判る。
また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。
(実施例13)
実施例1において、感光性組成物中の一般式(10)で表されるバインダーの添加量を20質量部に変え、更にバインダーとして、以下のようにして合成した不飽和基を持つアクリル樹脂(B1)20質量部を添加したこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表7に示す。
―アクリル樹脂(B1)の合成―
メチルメタクリレート45.1質量部、メタクリル酸47.3質量部、アゾイソバレロニトリル1質量部、及び溶媒であるプロピレングリコールモノメチルエーテル215質量部からなる混合溶液を窒素ガス雰囲気下、90℃の反応容器中に3時間かけて滴下した。滴下後4時間反応し、アクリル樹脂(A1)を得た。
次に、このアクリル樹脂(A1)溶液に、サイクロマーA200(ダイセル化学工業(株)製)54.7質量部、ハイドロキノンモノメチルエーテル0.2質量部、及びトリフェニルフォスフィン1質量部を加えて、空気を吹き込みながら80℃で8時間反応させて、不飽和基を持つアクリル樹脂(B1)溶液(41質量%プロピレングリコールモノメチルエーテル溶液)を得た。B1の固形分酸価は111mgKOH/g、質量平均分子量(Mw)は18,000、二重結合当量は2.3mmol/gであった。
(実施例14)
実施例13において、不飽和基を持つアクリル樹脂(B1)を以下のようにして合成した不飽和基を持つアクリル樹脂(B2)に代えたこと以外は、実施例13と同様にして感光性組成物を調製し、実施例13と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表7に示す。
―アクリル樹脂(B2)の合成―
メチルメタクリレート45.1質量部、メタクリル酸47.3質量部、アゾイソバレロニトリル1質量部、及び溶媒であるプロピレングリコールモノメチルエーテル215質量部からなる混合溶液を窒素ガス雰囲気下、90℃の反応容器中に3時間かけて滴下した。滴下後4時間反応し、アクリル樹脂(A2)を得た。
次に、このアクリル樹脂(A2)溶液に、グリシジルメタクリレート35.9質量部、ハイドロキノンモノメチルエーテル0.2質量部、及びトリフェニルフォスフィン1質量部を加えて、空気を吹き込みながら80℃で8時間反応させて、不飽和基を持つアクリル樹脂(B2)溶液(37質量%プロピレングリコールモノメチルエーテル溶液)を得た。なお、B2の固形分酸価は104mgKOH/g、質量平均分子量(Mw)は20,000、二重結合当量は2.0mmol/gであった。
(実施例14)
実施例1において、感光性組成物中の構造式(1)で表される硬化促進剤の添加量を21.3質量部に変えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。なお、実施例13における、前記構造式(1)で表される硬化促進剤の感光性組成物中の含有量は16.0質量%である。
また、実施例1と同様にしてな方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表7に示す。
(実施例15)
実施例1において、感光性組成物中の構造式(1)で表される硬化促進剤の添加量を0.005質量部に変えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。なお、実施例14における、前記構造式(1)で表される硬化促進剤の感光性組成物中の含有量は0.0048質量%である。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表7に示す。
(比較例1)
下記組成に基づいて、感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性組成物及び感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表8に示す。
〔感光性組成物溶液の組成〕
―――――――――――――――――――――――――――――――――――――――
・硫酸バリウム(堺化学工業社製、B30) 31.6質量部
・前記一般式(10)で表されるバインダー(n=0〜10) 40.0質量部
・2,2−ビス(4−グリシジルフェニル)プロパン(熱架橋剤) 10.8質量部
・ジペンタエリスリトールヘキサアクリレート(重合性化合物) 16.0質量部
・IRG819(光重合開始剤) 6.0質量部
・ジシアンジアミド 0.60質量部
・2E4MZ(熱硬化促進剤)*3 0.48質量部
―――――――――――――――――――――――――――――――――――――――
*3:下記構造式(39)で表される2−エチル−4−メチルイミダゾール(四国化成工業株式会社製)
(比較例2)
比較例1において、感光性組成物中の前記熱硬化促進剤、2E4MZを、下記構造式(40)で表される2MAOK(2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン・イソシアヌル酸付加物、四国化成工業株式会社製)に代えたこと以外は、比較例1と同様にして感光性組成物を調製し、比較例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表8に示す。
(比較例3)
比較例2において、感光性組成物中の熱架橋剤である2,2−ビス(4−グリシジルフェニル)プロパンを、エピコートYX4000に代えたこと以外は、比較例2と同様にして感光性組成物を調製し、比較例2と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表8に示す。
(比較例4)
下記組成に基づいて、感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性組成物及び感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表8に示す。
〔感光性組成物溶液の組成〕
―――――――――――――――――――――――――――――――――――――――
・硫酸バリウム(堺化学工業社製、B30) 29.2質量部
・前記一般式(10)で表されるバインダー(n=0〜10) 40.0質量部
・前記構造式(36)で表される熱架橋剤(TEPIC) 5.6質量部
・前記構造式(39)で表されるモノマー 16.0質量部
・IRG819(光重合開始剤) 6.0質量部
・ジシアンジアミド 0.60質量部
・前記構造式(41)で表される2MAOK(熱硬化促進剤) 0.40質量部
―――――――――――――――――――――――――――――――――――――――
(参考例1)
実施例1において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパンを、前記構造式(1)の原料である下記構造式(35)で表される硬化促進剤に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表9に示す。
なお、前記構造式(35)で表される硬化促進剤は、次のようにして合成した。
ナスフラスコにシス−4−シクロヘキセン−1,2−ジカルボン酸無水物20質量部とアセトニトリル100質量部を入れ、シス−4−シクロヘキセン−1,2−ジカルボン酸無水物が溶解した後、ジヘキシルアミン24.3質量部を加えて2時間攪拌した。その後、溶媒を真空留去し、シリカゲルカラムクロマトグラフィーによって、前記構造式(35)で示される硬化促進剤40.9質量部を得た。このときの収率は92%であった。
なお、前記構造式(35)で表される硬化促進剤は、CHClを溶媒としてH−NMRスペクトル(300MHz)を測定して同定した。スペクトルの各ピークは、δ(ppm):5.85−5.65(m;2H),3.63−3.52(m;1H),3.44−3.32(m;1H),3.26−3.10(m;2H),3.01−2.87(m;1H),2.51−2.40(m;1H),2.72−2.13(m;2H),1.66−1.52(m;4H),1.36−1.23(m;12H),0.94−0.88(m;6H)である。
また、前記構造式(35)で表される硬化促進剤の感光性組成物中の含有量は0.42質量%である。
(参考例2)
実施例1において、感光性組成物中の前記熱架橋剤、2,2−ビス(4−グリシジルフェニル)プロパンを、前記構造式(2)の原料である下記構造式(37)で表される硬化促進剤に代えたこと以外は、実施例1と同様にして感光性組成物を調製し、実施例1と同様にして感光性フィルム及び積層体を調製し、永久パターンを形成した。
また、実施例1と同様な方法により、前記製造した感光性フィルムについて露光感度、解像度、露光速度、及び保存安定性の評価を行い、前記形成した永久パターンについて鉛筆硬度、及び誘電特性の評価を行った。結果を表9に示す。
なお、前記構造式(37)で表される硬化促進剤は、次のようにして合成した。
ナスフラスコにシス−4−シクロヘキセン−1,2−ジカルボン酸無水物2.92質量部とクロロホルム30質量部を入れ、シス−4−シクロヘキセン−1,2−ジカルボン酸無水物が溶解した後、4−ベンジルピペリジン3.37質量部を加えて2時間攪拌した。その後、溶媒を真空留去し、酢酸エチルで再結晶化することによって、前記構造式(37)で示される硬化促進剤4.5質量部を得た。このときの収率は72%であった。
なお、前記構造式(37)で表される硬化促進剤は、CHClを溶媒としてH−NMRスペクトル(300MHz)を測定して同定した。スペクトルの各ピークは、δ(ppm):7.32−7.19(m;4H),7.14(d;1H),5.84−5.77(m;1H),5.72−5.62(m;1H),4.71−4.62(m;1H),3.87(d;1H),3.23−3.03(m;3H),2.85(d;1H),2.69−2.50(m;1H),2.46−2.28(m;1H),1.86−1.76(m;3H),1.26−1.16(m;2H)である。
また、前記構造式(37)で表される硬化促進剤の感光性組成物中の含有量は0.42質量%である。
(実施例17)
−熱硬化性樹脂組成物の調製−
下記組成に基づいて、熱硬化性組成物を調製した。
〔熱硬化性樹脂組成物の組成〕
―――――――――――――――――――――――――――――――――――――――
・エピコート828(油化シェル社製、エポキシ樹脂)・・・・・・・・100質量部
・メチルテトラヒドロ無水フタル酸(日本ゼオン社製、QH−200、硬化剤)・・・
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・95質量部
・前記構造式(1)で表される硬化促進剤・・・・・・・・・・・・・・4.5質量部
―――――――――――――――――――――――――――――――――――――――
上記組成でエポキシ樹脂、硬化剤及び硬化促進剤を混合し、ミキサー(7,000rpm、1分間)で撹拌することにより、実施例17の熱硬化性樹脂を調製した。
前記製造した熱硬化性樹脂組成物について、ゲル化時間、耐熱性及び貯蔵安定性の評価を行った。結果を表10に示す。
<ゲル化時間>
得られた熱硬化性樹脂組成物について、JIS K5059(1997)に準じ、150℃で熱板法によりゲル化時間を測定した。
<耐熱性>
得られた熱硬化性樹脂組成物について、硬化樹脂の耐熱性の指標である熱変形温度を測定した。該熱変形温度は、JIS K7207(1997)に準じ、HDTテスターS-3M(東洋精機)を用いて測定した。樹脂の硬化条件は150℃、2時間で行った。
<貯蔵安定性>
40℃で貯蔵した熱硬化性樹脂組成物について、B型粘度計を用いて樹脂組成物の粘度を測定し、樹脂粘度が初期粘度の2倍になった時間を評価時間とした。この評価時間をもとに、下記評価基準により、貯蔵安定性を評価した。
◎:評価時間が48時間超
○:評価時間が24時間超48時間以内
△:評価時間が10時間超24時間以内
×:評価時間が10時間以内
(実施例18)
実施例17において、前記構造式(1)で示される硬化促進剤を、前記構造式(2)で示される硬化促進剤に代えたこと以外は、実施例17と同様にして、実施例18の熱硬化性樹脂組成物を調製した。
得られた熱硬化性樹脂組成物について、実施例17と同様な方法によりゲル化時間、耐熱性及び貯蔵安定性の評価を行った。結果を表10に示す。
(実施例19)
実施例17において、前記構造式(1)で示される硬化促進剤4.5質量部を、下記構造式(3)で示される硬化促進剤20質量部に代え、更に硬化剤であるメチルテトラヒドロ無水フタル酸を使用しなかったこと以外は、実施例17と同様にして、実施例19の熱硬化性樹脂組成物を調製した。
得られた熱硬化性樹脂組成物について、実施例17と同様な方法によりゲル化時間、耐熱性及び貯蔵安定性の評価を行った。結果を表10に示す。
なお、前記構造式(3)で表される硬化促進剤は、次のようにして合成した。
ナスフラスコに下記構造式(35)で表される化合物を8質量部とt−ブチルビニルエーテル5質量部を入れ、リン酸0.2質量部加え、1時間撹拌し反応させた。その後、キョウワード500SH(協和化学工業(株)製)1.0質量部を加えて1時間撹拌した。得られた溶液をセライトろ過した後、溶媒を真空留去し、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル=7/3)で精製することによって構造式(3)で示される硬化促進剤2.5質量部を得た。このときの収率は24%であった。
なお、前記構造式(3)で表される硬化促進剤は、CHClを溶媒としてH−NMRスペクトル(300MHz)を測定して同定した。スペクトルの各ピークは、δ(ppm):6.18(q;1H),5.77(d;1H),5.65(d;1H),3.42−3.04(m;4H),2.87−2.76(m;1H),2.69−2.63(m;1H),2.34(s;3H),1.71−1.41(m;4H),1.39−1.15(m;25H),0.88(t;6H)である。
(比較例5〜6)
実施例17において、構造式(1)で示される硬化促進剤を、表11に示す従来の硬化促進剤に代え、1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有する化合物からなる硬化促進剤を使用しなかったこと以外は、実施例17と同様にして、比較例5〜6の熱硬化性樹脂組成物を調製した。
得られた各熱硬化性樹脂組成物について、実施例17と同様な方法によりゲル化時間、耐熱性及び貯蔵安定性の評価を行った。結果を表11に示す。
表3〜表9の結果より、1分子中に少なくとも1個以上カルボキシル基及びアミド基を共有し、該カルボキシル基が保護基で保護されている本発明の硬化促進剤を使用した実施例1〜16の感光性組成物及びこの感光性組成物を用いて製造した感光性フィルムにおける感光層は、保存安定性、露光感度及び解像度に極めて優れ、前記感光性フィルムを用いて形成した永久パターンにおける硬化層の表面硬度及び誘電特性も良好であることが確認された。特に、前記硬化促進剤の感光性組成物中での含有量が0.01〜15質量%である実施例1〜13の感光性フィルムは、保存安定性及び露光速度の双方が極めて優れていることが判った。
また、実施例1、2及び5と同様の感光性フィルムを用いた実施例10〜12では、露光装置として、高輝度光源と高速変調可能であり、かつトーリックレンズによる光学系歪み補正が可能なパターン形成装置を用いたため、解像度が優れることが認められ、高精細な永久パターンが形成されることが確認された。
これに対して、本発明の硬化促進剤を使用しなかった比較例1〜4の感光性フィルムは、保存安定性に劣っていた。
また、表10〜表11の結果より、前記本発明の硬化促進剤を使用した実施例17〜19の熱硬化性樹脂組成物は、本発明の硬化促進剤を使用しなかった比較例5〜6に比べ、貯蔵安定性に優れていることが判った。
本発明の硬化促進剤は、保存時の常温下では反応を生じず、保存安定性に極めて優れ、加熱によりエポキシ化合物との反応を開始して、硬化膜の良好な膜硬度が得られるため、プリント配線板(多層配線基板、ビルドアップ配線基板等)の保護膜、層間絶縁膜、及びソルダーレジストパターン、並びに、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフ、接着剤、熱硬化性組成物、永久パターン形成用の感光性組成物などに好適に用いることができる。
また、本発明の硬化促進剤を使用した本発明の熱硬化性樹脂組成物は、熱によって硬化可能で保存安定性に極めて優れ、硬化後は優れた耐薬品性、硬度、耐熱性、誘電特性、電気絶縁性などを発現できるため、接着剤などに好適に用いることができる。
また、本発明の硬化促進剤を使用した本発明の感光性組成物及び該感光性組成物を用いた感光性フィルムは、UV露光により画像形成可能で、表面のタック性が小さく、ラミネート性及び取扱い性が良好で、保存安定性に極めて優れ、高感度で現像性にも優れ、現像後に優れた耐薬品性、表面硬度、耐熱性、誘電特性などを発現するため、プリント配線板(多層配線基板、ビルドアップ配線基板等)の保護膜、層間絶縁膜、及びソルダーレジストパターン、並びに、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができる。
また、本発明の永久パターンは耐薬品性、表面硬度、耐熱性、誘電特性、電気絶縁性に優れる。このため、プリント配線板(多層配線基板、ビルドアップ配線基板等)の保護膜、層間絶縁膜、ソルダーレジストパターン、並びに、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができるとして好適に使用することができる。
図1は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。 図2(A)及び(B)は、DMDの動作を説明するための説明図の一例である。 図3(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。 図4(A)及び(B)は、DMDの使用領域の例を示す図の一例である。 図5は、スキャナによる1回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図6(A)及び(B)は、スキャナによる複数回の走査で感光層を露光する露光方式を説明するための平面図の一例である。 図7は、パターン形成装置の一例の外観を示す概略斜視図の一例である。 図8は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。 図9(A)は、感光層に形成される露光済み領域を示す平面図の一例であり、図9(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。 図10は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。 図11は、図10に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。 図12は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。 図13(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図13(B)は、マイクロレンズアレイ等を使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図13(C)は、マイクロレンズアレイ等を使用した場合に被露光面に投影される光像を示す平面図の一例である。 図14は、DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図の一例である。 図15は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。 図16は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。 図17は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。 図18は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。 図19aは、本発明のマイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図19bは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図19cは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図19dは、図19aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。 図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。 図21は、合波レーザ光源の他の構成を示す平面図の一例である。 図22は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。 図23は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。 図24(A)、(B)及び(C)は、光量分布補正光学系による補正の概念についての説明図の一例である。 図25は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。 図26は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。 図27a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図27a(B)は、(A)の部分拡大図の一例であり、図27a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。 図27bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。 図28は、マルチモード光ファイバの構成を示す図の一例である。 図29は、合波レーザ光源の構成を示す平面図の一例である。 図30は、レーザモジュールの構成を示す平面図の一例である。 図31は、図30に示すレーザモジュールの構成を示す側面図の一例である。 図32は、図30に示すレーザモジュールの構成を示す部分側面図である。 図33は、レーザアレイの構成を示す斜視図の一例である。 図34(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図34(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。 図35は、合波レーザ光源の他の構成を示す平面図の一例である。 図36(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図36(B)は、(A)の光軸に沿った断面図の一例である。 図37(A)及び(B)は、従来の露光装置における焦点深度と本発明の永久パターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。
符号の説明
LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17 コリメータレンズ
20 集光レンズ
30〜31 マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
56 被露光面(走査面)
55a マイクロレンズ
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャビティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 感光層
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系

Claims (27)

  1. 1分子中に少なくとも1個以上のカルボキシル基及びアミド基を共有し、該カルボキシル基が、保護基で保護されていることを特徴とする硬化促進剤。
  2. 保護基が、熱によって脱離可能な保護基である請求項1に記載の硬化促進剤。
  3. 下記一般式(1)、(2)、(3)、(4)、(5)及び(6)のいずれかで表される請求項1から2のいずれかに記載の硬化促進剤。
    ただし、前記一般式(1)、(2)、(3)、(4)、(5)及び(6)中、R〜R18は、水素原子、及び置換基のいずれかを表し、A1〜Aは、2価の置換基を表し、L〜L11は、単結合、二重結合、及び2価の置換基のいずれかを表し、Xは、無置換アルキル基、及び置換基含有アルキル基のいずれかを表す。
  4. 2段階以上の分子内反応を経てアミンを生成することを特徴とする請求項1から3のいずれかに記載の硬化促進剤。
  5. エポキシ化合物と、請求項1から4のいずれかに記載の硬化促進剤とを少なくとも含むことを特徴とする熱硬化性樹脂組成物。
  6. エポキシ化合物と、硬化促進剤との質量比(エポキシ化合物:硬化促進剤)が100:0.01〜20である請求項5に記載の熱硬化性樹脂組成物。
  7. (A)1分子中に1個以上のカルボキシル基及びエステル基のいずれかを有する重合体と、(B)重合性化合物と、(C)光重合開始剤と、(D)熱架橋剤と、(E)請求項1から4のいずれかに記載の硬化促進剤と、を少なくとも含むことを特徴とする感光性組成物。
  8. (E)硬化促進剤の含有量が、0.01〜15質量%である請求項7に記載の感光性組成物。
  9. (D)熱架橋剤が、分子内に2つ以上のオキシラン基を有するエポキシ化合物である請求項7から8のいずれかに記載の感光性組成物。
  10. (D)熱架橋剤が、多価フェノール化合物とβ−アルキルエピハロヒドリンとから誘導されたエポキシ化合物である請求項7から9のいずれかに記載の感光性組成物。
  11. (D)熱架橋剤が、分子内に2つ以上のオキセタニル基を有するオキセタン化合物である請求項7から10のいずれかに記載の感光性組成物。
  12. (A)重合体が、エポキシアクリレート化合物である請求項7から11のいずれかに記載の感光性組成物。
  13. (A)重合体が、下記一般式(9)で表される請求項12に記載の感光性組成物。
    ただし、前記一般式(9)中、Xは水素原子、及び少なくとも酸性基を含む置換基のいずれかを表し、Yはメチレン基、イソプロピリデン基、及びスルホニル基のいずれかを表し、nは、1〜20の整数を表す。
  14. (A)重合体が、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体の少なくとも1種を含む請求項7から11のいずれかに記載の感光性組成物。
  15. (A)重合体が、エポキシアクリレート化合物と、側鎖に(メタ)アクリロイル基、及び酸性基を有するビニル共重合体の少なくとも1種を含む請求項7から11のいずれかに記載の感光性組成物。
  16. (A)重合体が、無水マレイン酸共重合体の無水物基に対して0.1〜1.2当量の1級アミン化合物を反応させて得られる共重合体である請求項7から11のいずれかに記載の感光性組成物。
  17. 支持体と、該支持体上に、請求項7から16のいずれかに記載の感光性組成物が積層されてなる感光層とを有することを特徴とする感光性フィルム。
  18. 感光層が、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光される請求項17に記載の感光性フィルム。
  19. 請求項7から16のいずれかに記載の感光性組成物を、基材の表面に塗布し、乾燥して感光層を形成した後、露光し、現像することを特徴とする永久パターン形成方法。
  20. 請求項17から18のいずれかに記載の感光性フィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、露光し、現像することを特徴とする永久パターン形成方法。
  21. 基材が、配線形成済みのプリント配線基板である請求項19から20のいずれかに記載の永久パターン形成方法。
  22. 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる請求項19から21のいずれかに記載の永久パターン形成方法。
  23. 非球面が、トーリック面である請求22に記載の永久パターン形成方法。
  24. 現像が行われた後、感光層に対して硬化処理を行う請求項19から23のいずれかに記載の永久パターン形成方法。
  25. 硬化処理が、全面露光処理及び120〜250℃で行われる全面加熱処理の少なくともいずれかである請求項24に記載の永久パターン形成方法。
  26. 請求項19から25のいずれかに記載の永久パターン形成方法により形成されることを特徴とする永久パターン。
  27. 保護膜、層間絶縁膜、及びソルダーレジストパターンの少なくともいずれかである請求項26に記載の永久パターン。
JP2005299299A 2005-10-13 2005-10-13 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法 Abandoned JP2007106886A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005299299A JP2007106886A (ja) 2005-10-13 2005-10-13 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005299299A JP2007106886A (ja) 2005-10-13 2005-10-13 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Publications (1)

Publication Number Publication Date
JP2007106886A true JP2007106886A (ja) 2007-04-26

Family

ID=38033007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299299A Abandoned JP2007106886A (ja) 2005-10-13 2005-10-13 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Country Status (1)

Country Link
JP (1) JP2007106886A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256745A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP2011253110A (ja) * 2010-06-03 2011-12-15 Jsr Corp 感放射線性樹脂組成物、硬化膜、硬化膜の形成方法、及び表示素子
WO2013140638A1 (ja) * 2012-03-23 2013-09-26 太陽油墨(蘇州)有限公司 感光性樹脂組成物およびその硬化物、ならびにプリント配線板
JP2013214057A (ja) * 2012-03-05 2013-10-17 Ajinomoto Co Inc 感光性樹脂組成物
JP2018169518A (ja) * 2017-03-30 2018-11-01 株式会社タムラ製作所 感光性樹脂組成物およびプリント配線基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194574A (ja) * 1996-01-23 1997-07-29 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物
JP2004277484A (ja) * 2003-03-13 2004-10-07 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物
JP2005309247A (ja) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007023254A (ja) * 2005-06-14 2007-02-01 Fujifilm Corp 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194574A (ja) * 1996-01-23 1997-07-29 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物
JP2004277484A (ja) * 2003-03-13 2004-10-07 Asahi Denka Kogyo Kk エポキシ樹脂用硬化剤組成物
JP2005309247A (ja) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007023254A (ja) * 2005-06-14 2007-02-01 Fujifilm Corp 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256745A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP2011253110A (ja) * 2010-06-03 2011-12-15 Jsr Corp 感放射線性樹脂組成物、硬化膜、硬化膜の形成方法、及び表示素子
JP2013214057A (ja) * 2012-03-05 2013-10-17 Ajinomoto Co Inc 感光性樹脂組成物
JP2017097381A (ja) * 2012-03-05 2017-06-01 味の素株式会社 感光性樹脂組成物
WO2013140638A1 (ja) * 2012-03-23 2013-09-26 太陽油墨(蘇州)有限公司 感光性樹脂組成物およびその硬化物、ならびにプリント配線板
JPWO2013140638A1 (ja) * 2012-03-23 2015-08-03 太陽油墨(蘇州)有限公司 感光性樹脂組成物およびその硬化物、ならびにプリント配線板
JP2018169518A (ja) * 2017-03-30 2018-11-01 株式会社タムラ製作所 感光性樹脂組成物およびプリント配線基板

Similar Documents

Publication Publication Date Title
JP2007093801A (ja) 感光性フィルム、並びに永久パターン形成方法及びパターン
JP2006285108A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007199205A (ja) 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及びパターン
JP2007139878A (ja) 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及びパターン
JP2007025275A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4603496B2 (ja) 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及び永久パターン
JP2007023254A (ja) 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007133333A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007106886A (ja) 硬化促進剤、熱硬化性樹脂組成物、感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006235101A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4546368B2 (ja) 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
JP4651534B2 (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2007232789A (ja) 感光性組成物及び感光性フィルム、並びに永久パターン形成方法及び永久パターン
JP2006285174A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4494243B2 (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006330655A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP4546349B2 (ja) パターン形成材料、並びにパターン形成方法及びパターン
JP2007041240A (ja) パターン形成材料、並びにパターン形成方法及びパターン
JP2007025176A (ja) パターン形成材料、並びにパターン形成装置及び永久パターン形成方法
JP2007093793A (ja) 感光性フィルム、並びに永久パターン形成方法及びパターン
JP4468087B2 (ja) ソルダーレジスト用感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006065000A (ja) サンドブラストレジスト用感光性組成物、及びこれを用いたサンドブラストレジストフィルム、並びにサンドブラストレジストパターン形成方法
JP2006243552A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2006285177A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法
JP2007033675A (ja) 感光性組成物及び感光性フィルム、並びに、永久パターン及びその形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20120611