JP2007095358A - Positive plate for alkaline secondary battery - Google Patents

Positive plate for alkaline secondary battery Download PDF

Info

Publication number
JP2007095358A
JP2007095358A JP2005280011A JP2005280011A JP2007095358A JP 2007095358 A JP2007095358 A JP 2007095358A JP 2005280011 A JP2005280011 A JP 2005280011A JP 2005280011 A JP2005280011 A JP 2005280011A JP 2007095358 A JP2007095358 A JP 2007095358A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel hydroxide
particles
electrode plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005280011A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamane
哲哉 山根
Arinori Morikawa
有紀 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005280011A priority Critical patent/JP2007095358A/en
Publication of JP2007095358A publication Critical patent/JP2007095358A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive plate for an alkaline secondary battery densely filled with a positive mix containing higher valent nickel hydroxide. <P>SOLUTION: In the positive plate for the alkaline secondary battery filled with the positive mix containing active material particles mainly comprising nickel hydroxide, the active material particles contain first globular particles mainly comprising nickel hydroxide particles and second globular particles mainly comprising nickel hydroxide and in which a part or the whole of the nickel hydroxide particles are converted into the higher order nickel hydroxide, and third non-globular particles mainly comprising nickel hydroxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はニッケル水素二次電池を代表例とするアルカリ二次電池用の正極板に関し、更に詳しくは、高次の水酸化ニッケルを含む正極合剤の充填密度が3.25g/cm3以上と高い値になっているアルカリ二次電池用の正極板に関する。 The present invention relates to a positive electrode plate for an alkaline secondary battery, typically a nickel metal hydride secondary battery. More specifically, the packing density of a positive electrode mixture containing higher-order nickel hydroxide is 3.25 g / cm 3 or more. The present invention relates to a positive electrode plate for an alkaline secondary battery having a high value.

ニッケル水素二次電池に組み込まれる正極板は電池の高容量化の観点から非焼結式すなわちペースト式のものが主流になっている。
このペースト式の正極板は、概ね次のようにして製造されている。すなわち、例えば水酸化ニッケル単体やこれにCo、Znなどを共晶させた活物質粒子と結着材と水を所定の割合で混合して所定粘度のスラリ状の正極合剤を調製し、この正極合剤を導電性を有する3次元網状構造の多孔質基板の空孔に充填したのち、圧延・乾燥処理を施し、最後に所定の寸法形状に加工する。
The positive electrode plate incorporated in the nickel metal hydride secondary battery is mainly non-sintered, that is, a paste type, from the viewpoint of increasing the capacity of the battery.
This paste type positive electrode plate is generally manufactured as follows. That is, for example, nickel hydroxide alone, active material particles obtained by co-crystallizing Co, Zn, and the like, a binder, and water are mixed at a predetermined ratio to prepare a slurry-like positive electrode mixture having a predetermined viscosity. After filling the positive electrode mixture into the pores of the conductive porous substrate having a three-dimensional network structure, the mixture is subjected to a rolling / drying process and finally processed into a predetermined size and shape.

このときに使用する結着材としては、スラリ状正極合剤の安定性の確保という問題や多孔質基板への充填性が良好であるという問題などを考慮して選択されている。
例えば、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルメチルセルロース(HPC)、メチルセルロース(MC)などの直鎖状の結着材、ポリアクリル酸ナトリウム(SPA)などの親水性樹脂、各種の界面活性剤、またはポリテトラフルオロエチレン(PTFE)などが使用されている。
The binder used at this time is selected in consideration of the problem of ensuring the stability of the slurry-like positive electrode mixture and the problem of good filling properties into the porous substrate.
For example, linear binders such as carboxymethylcellulose (CMC), hydroxypropylmethylcellulose (HPC), methylcellulose (MC), hydrophilic resins such as sodium polyacrylate (SPA), various surfactants, or poly Tetrafluoroethylene (PTFE) or the like is used.

また組み立てた電池の放電リザーブを制御することによって当該電池のサイクル寿命特性を向上させるために、活物質として、高次化された水酸化ニッケルを使用することが行われている(特許文献1〜5を参照)。
なお、高次化された水酸化ニッケルとは、水酸化ニッケルに酸化処理を施して水酸化ニッケルの一部または全部をオキシ水酸化ニッケルに転化したものであって、ニッケルの価数が水酸化ニッケルにおけるニッケルの価数よりも高次になっている材料のことである。
Moreover, in order to improve the cycle life characteristic of the battery by controlling the discharge reserve of the assembled battery, use of higher-order nickel hydroxide is performed as an active material (Patent Documents 1 to 3). 5).
Higher-order nickel hydroxide is obtained by oxidizing nickel hydroxide to convert part or all of nickel hydroxide into nickel oxyhydroxide, and the valence of nickel is hydroxide. It is a material that is higher than the valence of nickel in nickel.

しかしながら、高次化された水酸化ニッケルを活物質として含む正極合剤のスラリの場合、高次の水酸化ニッケルの活性な表面に結着材が吸着され、スラリの流動性が低下して、スラリは安定性に欠けているので、多孔質基板への充填性が不均一となり、結果として正極合剤の充填密度が低下するという問題が発生する。
また、正極合剤のスラリに水酸化コバルトを添加するとスラリの粘度が安定して正極合剤の充填密度は高まるが、その場合、活物質として高次化された水酸化ニッケルを用いると、組み立てた電池の活性化処理前に水酸化コバルトが安定で高次化された状態になってしまい、結局、得られた電池は添加した水酸化コバルトの分だけ容量低下するという問題が発生する。
However, in the case of a slurry of a positive electrode mixture containing higher-order nickel hydroxide as an active material, the binder is adsorbed on the active surface of the higher-order nickel hydroxide, and the fluidity of the slurry is reduced. Since the slurry lacks stability, the filling property to the porous substrate becomes non-uniform, resulting in a problem that the filling density of the positive electrode mixture is lowered.
In addition, when cobalt hydroxide is added to the slurry of the positive electrode mixture, the viscosity of the slurry is stabilized and the packing density of the positive electrode mixture is increased. In this case, when using higher-order nickel hydroxide as the active material, assembly is performed. Before the activation treatment of the battery, the cobalt hydroxide is in a stable and higher order state. As a result, the obtained battery has a problem that the capacity is reduced by the amount of the added cobalt hydroxide.

また、高次化された水酸化コバルトを含むスラリに、更に界面活性剤を添加することが提案されている(特許文献6を参照)。
しかしながら、スラリが高次の水酸化ニッケルを含んでいる場合、そのスラリに界面活性剤を添加すると、スラリの粘度が激しく低下し、スラリは不安定化する。そのため、多孔質基板にスラリを充填してから乾燥するまでの間に、スラリが不規則に流動して多孔質基板の各所に充填密度のばらつきが発生し、結果として正極合剤を均質で高密度状態で充填することが困難になる。
特許第2765008号 特許第3490825号 特許第3469766号 特許第3617203号 特許第3429741号 特開2003−109588号公報
Further, it has been proposed to further add a surfactant to a slurry containing higher-order cobalt hydroxide (see Patent Document 6).
However, if the slurry contains higher-order nickel hydroxide, adding a surfactant to the slurry will drastically reduce the viscosity of the slurry and destabilize the slurry. As a result, the slurry flows irregularly between the time when the porous substrate is filled with the slurry and the slurry is dried, resulting in a variation in filling density at various locations on the porous substrate. It becomes difficult to fill in the density state.
Japanese Patent No. 2765008 Japanese Patent No. 3490825 Japanese Patent No. 3469766 Japanese Patent No. 3617203 Japanese Patent No. 3429741 JP 2003-109588 A

本発明は、高次の水酸化ニッケルを活物質として含む正極合剤のスラリにおける上記した問題を解決し、スラリの安定性を高め、多孔質基板への均一充填を実現し、もって正極合剤が高密度で充填されているアルカリ二次電池用の正極板の提供を目的とする。   The present invention solves the above-mentioned problems in a slurry of a positive electrode mixture containing high-order nickel hydroxide as an active material, enhances the stability of the slurry, realizes uniform filling into a porous substrate, and thus has a positive electrode mixture Is intended to provide a positive electrode plate for an alkaline secondary battery.

上記した目的を達成するために、本発明においては、
導電性の多孔質基板の空孔に、水酸化ニッケルを主体とする活物質粒子を含む正極合剤が充填されているアルカリ二次電池用の正極板において、
前記活物質粒子は、水酸化ニッケル粒子を主体とする球状の第1粒子と、
水酸化ニッケルを主体とし、当該水酸化ニッケルの一部または全部が高次の水酸化ニッケルに転化している球状の第2粒子と、
水酸化ニッケルを主体とする非球状の第3粒子とを含み、かつ、
前記正極合剤には界面活性剤が含まれている
ことを特徴とするアルカリ二次電池用の正極板(以下、第1の正極板という)が提案される。
In order to achieve the above object, in the present invention,
In the positive electrode plate for an alkaline secondary battery in which the positive electrode mixture containing active material particles mainly composed of nickel hydroxide is filled in the pores of the conductive porous substrate,
The active material particles include spherical first particles mainly composed of nickel hydroxide particles,
Spherical second particles mainly composed of nickel hydroxide, and a part or all of the nickel hydroxide is converted into higher-order nickel hydroxide;
Non-spherical third particles mainly composed of nickel hydroxide, and
A positive electrode plate for an alkaline secondary battery (hereinafter referred to as a first positive electrode plate) is proposed in which a surfactant is included in the positive electrode mixture.

また、本発明においては、
導電性の多孔質基板の空孔に、水酸化ニッケルを主体とする活物質粒子を含む正極合剤が充填されているアルカリ二次電池用の正極板において、
前記活物質粒子は、水酸化ニッケル粒子を主体とし、当該水酸化ニッケルの一部または全部が高次の水酸化ニッケルに転化している球状粒子と、
水酸化ニッケルを主体とする非球状の異形粒子とを含み、かつ、
前記正極合剤には界面活性剤が含まれている
ことを特徴とするアルカリ二次電池用の正極板(以下、第2の正極板という)が提供される。
In the present invention,
In the positive electrode plate for an alkaline secondary battery in which the positive electrode mixture containing active material particles mainly composed of nickel hydroxide is filled in the pores of the conductive porous substrate,
The active material particles are mainly composed of nickel hydroxide particles, and spherical particles in which part or all of the nickel hydroxide is converted into higher-order nickel hydroxide,
Including non-spherical irregularly shaped particles mainly composed of nickel hydroxide, and
Provided is a positive electrode plate for an alkaline secondary battery (hereinafter referred to as a second positive electrode plate), wherein the positive electrode mixture contains a surfactant.

その場合、正極板は、
前記多孔質基板の全空孔容積をS(cm3)、前記正極合材の充填量をM(g)としたとき、M/Sで示される正極合剤の充填密度が、3.25〜3.40g/cm3であり、また、
前記正極合剤の前躯体であるスラリの調製時に、前記スラリは前記界面活性剤を0.01〜0.10質量%添加することによって製造されたものである。
In that case, the positive electrode plate is
When the total pore volume of the porous substrate is S (cm 3 ) and the filling amount of the positive electrode mixture is M (g), the filling density of the positive electrode mixture represented by M / S is 3.25 to 25. 3. 40 g / cm 3 , and
During the preparation of the slurry that is the precursor of the positive electrode mixture, the slurry is produced by adding 0.01 to 0.10% by mass of the surfactant.

本発明の正極板の場合、多孔質基板の空孔に充填される正極合剤のスラリには界面活性剤が添加されているので、結着材がスラリの中に均質に分散してスラリ全体は安定化する。
他方では、界面活性剤は高次化された水酸化ニッケル粒子である第2粒子の表面張力を大幅に下げ、スラリの粘度を低下させるので、スラリを不安定化させるのであるが、そのスラリには非球状・異形で比表面積が大きい第3粒子が存在しているので、これが第2粒子と界面活性剤の相互作用の発生を抑制して、スラリを安定化させ良好な充填性を確保する。
In the case of the positive electrode plate of the present invention, since the surfactant is added to the slurry of the positive electrode mixture filled in the pores of the porous substrate, the binder is uniformly dispersed in the slurry and the entire slurry is dispersed. Stabilizes.
On the other hand, the surfactant significantly lowers the surface tension of the second particles, which are nickel hydroxide particles with higher order, and lowers the viscosity of the slurry, thereby destabilizing the slurry. Since there are non-spherical and irregular third particles with a large specific surface area, this suppresses the interaction between the second particles and the surfactant, stabilizes the slurry, and ensures good packing properties. .

その結果、本発明の正極板では正極合剤の高密度充填が達成される。   As a result, high density filling of the positive electrode mixture is achieved in the positive electrode plate of the present invention.

本発明の正極板では、正極合剤の多孔質基板への充填密度を3.25〜3.40g/cm3の範囲内にすることが設計目的の1つである。
また、この正極板の容量をA(mAh)とし、正極板に用いた多孔質基板の全空孔容積をS(cm3)としたとき、A/Sで示される正極板の容量密度が780〜900mAh/cm3となる正極板を得ることが他の設計目的である。
In the positive electrode plate of the present invention, one of the design purposes is to make the packing density of the positive electrode mixture into the porous substrate in the range of 3.25 to 3.40 g / cm 3 .
Further, when the capacity of the positive electrode plate is A (mAh) and the total pore volume of the porous substrate used for the positive electrode plate is S (cm 3 ), the capacity density of the positive electrode plate indicated by A / S is 780. Another design objective is to obtain a positive electrode plate of ~ 900 mAh / cm 3 .

正極板は、例えば発泡ニッケル板のような3次元網状構造の多孔質基板と、その基板の空孔内に、上記した充填密度で充填された正極合剤で構成されている。
正極合剤は、後述する活物質粒子を含み、更に結着材やスラリ調製時に添加される界面活性剤も同時に含んでいる。
用いる活物質粒子の種類により、本発明の正極板は前記した第1の正極板と第2の正極板に分類される。
The positive electrode plate is composed of, for example, a porous substrate having a three-dimensional network structure such as a foamed nickel plate, and a positive electrode mixture filled in the pores of the substrate with the above-described packing density.
The positive electrode mixture includes active material particles described later, and also includes a surfactant and a surfactant added during slurry preparation.
Depending on the type of active material particles used, the positive electrode plate of the present invention is classified into the first positive electrode plate and the second positive electrode plate.

最初に第1の正極板について詳細に説明する。
第1の正極板で用いる活物質粒子は前記したように、第1粒子、第2粒子、第3粒子という3種類の粒子である。
第1粒子は水酸化ニッケル粒子を芯材とし、好ましくはその芯材の表層の一部または全部に例えばオキシ水酸コバルトのような高次コバルト化合物の皮膜が形成されていて、全体の形状は平均粒径8〜20μm程度の球状になっている。
First, the first positive electrode plate will be described in detail.
As described above, the active material particles used in the first positive electrode plate are three types of particles, ie, first particles, second particles, and third particles.
The first particles have nickel hydroxide particles as a core material, and preferably a coating of a higher cobalt compound such as cobalt oxyhydroxide is formed on a part or all of the surface layer of the core material. It has a spherical shape with an average particle diameter of about 8 to 20 μm.

第1粒子におけるコバルト化合物の皮膜は、負荷放置特性の改善、放電性の向上のために設けられ、その目的を実現するために、コバルトはその価数が2.8価以上と高次化されていることが好ましい。
この皮膜を形成するためには、球状の水酸化ニッケル粒子の表面に例えば水酸化コバルトを析出させ、ついで全体に空気中で熱アルカリ処理を施すという公知の方法を適用すればよい。このときの処理条件を調整することにより、例えばコバルトの価数を2.8価以上にすることができる。
The coating of the cobalt compound on the first particles is provided to improve the load standing characteristics and the discharge property, and in order to realize the purpose, cobalt has a higher valence of 2.8 or more. It is preferable.
In order to form this film, a known method may be applied in which, for example, cobalt hydroxide is deposited on the surface of the spherical nickel hydroxide particles, and then the whole is subjected to hot alkali treatment in the air. By adjusting the processing conditions at this time, for example, the valence of cobalt can be increased to 2.8 or more.

第2粒子は、上記した第1粒子に化学酸化処理を施して、芯材である水酸化ニッケル粒子の一部または全部を高次の水酸化ニッケルに転化し、好ましくはその芯材の表層の一部または全部に例えばオキシ水酸化コバルトのような高次のコバルト化合物の皮膜が形成されていて、第1粒子の場合と同様に、平均粒径が8〜20μm程度の球状になっている。
化学酸化処理は、第1粒子を例えば次亜塩素酸ナトリウム、チオ硫酸ナトリウム、チオ硫酸カリウム、ペルオキソ硫酸カリウム、ペルオキソ硫酸ナトリウムなどの酸化剤が溶解する溶液に所定時間浸漬して行われる。このとき、浸漬時間、酸化剤の濃度、温度などを調整して、処理後におけるニッケルの価数が平均して2.05〜2.9価程度にすることが好ましい。
The second particles are obtained by subjecting the first particles to chemical oxidation treatment to convert part or all of the nickel hydroxide particles, which are the core material, into higher-order nickel hydroxide, preferably on the surface layer of the core material. A coating of a higher order cobalt compound such as cobalt oxyhydroxide, for example, is formed on a part or all of them, and has a spherical shape with an average particle diameter of about 8 to 20 μm, as in the case of the first particles.
The chemical oxidation treatment is performed by immersing the first particles in a solution in which an oxidizing agent such as sodium hypochlorite, sodium thiosulfate, potassium thiosulfate, potassium peroxosulfate, or sodium peroxosulfate is dissolved for a predetermined time. At this time, it is preferable to adjust the immersion time, the concentration of the oxidizing agent, the temperature, and the like so that the average valence of nickel after the treatment is about 2.05 to 2.9.

第3粒子は、水酸化ニッケルの球状粒子を粉砕して全体形状を非球状化すると同時に、表面に微細な凹凸を発生させて比表面積を高めた異形粒子である。平均粒径で1.0〜4.0μm程度のものが使用される。この第3粒子の表層には、第1粒子や第2粒子の場合と異なり、高次のコバルト化合物や高次の水酸化ニッケル(オキシ水酸化ニッケル)のような活性な化合物は存在していない。   The third particles are deformed particles in which the spherical particles of nickel hydroxide are pulverized to make the entire shape non-spherical, and at the same time, fine irregularities are generated on the surface to increase the specific surface area. An average particle diameter of about 1.0 to 4.0 μm is used. Unlike the case of the first particle and the second particle, there is no active compound such as a higher-order cobalt compound or higher-order nickel hydroxide (nickel oxyhydroxide) on the surface layer of the third particle. .

スラリの調製に際しては、これら粒子を適正割合で混合し、更に結着材を混合し、全体に水を添加して撹拌・混合することは従来の場合と変わることはないが、本発明においては更に適量の界面活性剤を配合するところに特徴がある。
配合する界面活性剤の種類は格別限定されるものではなく、例えばアルキルエーテル型、アルキルフェノール型などの非イオン性界面活性剤系の界面活性剤が使用でき、具体的にはポリオキシエチレンアルキルエーテル、フェノールエトキシレートなどを使用することができる。
In preparing the slurry, mixing these particles at an appropriate ratio, further mixing the binder, adding water to the whole and stirring and mixing is not different from the conventional case, but in the present invention. Further, it is characterized in that an appropriate amount of a surfactant is blended.
The type of surfactant to be blended is not particularly limited, and for example, nonionic surfactant type surfactants such as alkyl ether type and alkylphenol type can be used, specifically, polyoxyethylene alkyl ether, Phenol ethoxylate or the like can be used.

界面活性剤は、第2粒子の高次化した水酸化ニッケルの表面に作用して、その表面張力を抑制する。また、結着材と、高次化された水酸化ニッケルとの結合反応を抑制し、結着材をスラリの中に均質に分散させることによりスラリ全体を安定化させる。
しかし、高次化された水酸化ニッケルの表面に対する界面活性剤の作用は強いので、高次化された水酸化ニッケルの表面張力が選択的に小さくなり、その結果、スラリの粘度は大幅に低下するようになる。
The surfactant acts on the surface of nickel hydroxide having higher order of the second particles and suppresses the surface tension. Further, the binding reaction between the binder and higher-order nickel hydroxide is suppressed, and the entire slurry is stabilized by uniformly dispersing the binder in the slurry.
However, since the surfactant has a strong effect on the surface of the nickel hydroxide with higher order, the surface tension of the nickel hydroxide with higher order is selectively reduced, and as a result, the viscosity of the slurry is greatly reduced. Will come to do.

しかし、このスラリには比表面積が大きい第3粒子が存在しているので、これが界面活性剤と第2粒子との相互作用に起因するスラリ粘度の大幅な低下を抑制してスラリ粘度を高める抵抗因子となるので、結局、スラリは安定した状態を保持する。その結果、正極合剤の高密度充填が可能となる。
界面活性剤の配合量は活物質粒子の使用量、結着材の使用量にもよるが、調製した正極合剤の概ね0.01〜0.10質量%であることが好ましい。0.01質量%より少ない場合は、上記した効果が発揮されず、また0.10質量%より多くすると、組み立てた電池の特性に悪影響を及ぼすようになるからである。好ましい配合量0.01〜0.03質量%である。
However, since this slurry has third particles with a large specific surface area, this suppresses a significant decrease in the slurry viscosity due to the interaction between the surfactant and the second particles, thereby increasing the slurry viscosity. In the end, the slurry remains stable because it becomes a factor. As a result, high-density filling of the positive electrode mixture becomes possible.
The compounding amount of the surfactant is preferably about 0.01 to 0.10% by mass of the prepared positive electrode mixture, although it depends on the amount of active material particles used and the amount of binder used. This is because when the amount is less than 0.01% by mass, the above-described effects are not exhibited, and when the amount is more than 0.10% by mass, the characteristics of the assembled battery are adversely affected. A preferable blending amount is 0.01 to 0.03 mass%.

また、第3粒子は界面活性剤の配合時にスラリの安定化に寄与するが、この量が多すぎると、今度はスラリの粘度が高くなりすぎて充填作業に難をきたすとともに、正極合剤における第1粒子と第2粒子の相対量が減少して組み立てた電池の容量特性の低下を招くようになる。
このようなことから、第1粒子、第2粒子および第3粒子の混合割合、とりわけ第3粒子の混合割合は、多孔質基板に充填されたのち、圧延して製造された正極板における正極合剤の充填密度が3.25〜3.40g/cm3となり、また正極板の容量(A:mAh)と多孔質基板の全密孔容積(S:cm3)との関係A/Sが780〜900mAh/cm3となるように設定することが好ましい。
In addition, the third particles contribute to the stabilization of the slurry when the surfactant is blended. However, if this amount is too large, the viscosity of the slurry becomes too high and the filling operation becomes difficult. The relative amount of the first particles and the second particles is reduced, resulting in a decrease in capacity characteristics of the assembled battery.
For this reason, the mixing ratio of the first particles, the second particles, and the third particles, especially the mixing ratio of the third particles, is determined by mixing the positive electrode in the positive electrode plate manufactured by rolling after filling the porous substrate. The packing density of the agent becomes 3.25 to 3.40 g / cm 3 , and the relationship between the capacity (A: mAh) of the positive electrode plate and the total pore volume (S: cm 3 ) of the porous substrate is 780. It is preferable to set it to ˜900 mAh / cm 3 .

このようなスラリを多孔質基板に充填し、乾燥し、そして圧延したのち所定の寸法形状に切断して第1の正極板が製造される。
第2の正極板の場合は、用いる活物質粒子が第1の正極板における第2粒子と第3粒子(異形粒子)の2種類であることを除いては、第1の正極板と同じ構成になっている。
(実施例)
実施例1
表面が水酸化コバルトで被覆されている平均粒径10μmの球状の水酸化ニッケル粒子を空気中で熱アルカリ処理することにより、コバルトの価数が3.2価に高次化された第1粒子を製造した。
Such a slurry is filled in a porous substrate, dried, rolled, and then cut into a predetermined size and shape to produce a first positive electrode plate.
In the case of the second positive electrode plate, the same configuration as that of the first positive electrode plate except that the active material particles to be used are two types of second particles and third particles (deformed particles) in the first positive electrode plate. It has become.
(Example)
Example 1
First particles whose cobalt valence is increased to 3.2 by heat alkali treatment of spherical nickel hydroxide particles having an average particle size of 10 μm whose surface is coated with cobalt hydroxide in air Manufactured.

この第1粒子の一部を分取し、それを濃度10%の次亜塩素酸ナトリウム水溶液中に投入し、温度60℃で6時間撹拌して、水酸化ニッケルの一部を酸化することにより、平均価数が2.3価に高次化された水酸化ニッケルから成る第2粒子を製造した。
また、球状の水酸化ニッケル粒子を機械粉砕して、非球状で2μm程度の大きさの第3粒子を製造した。
A part of the first particles is collected, put into a sodium hypochlorite aqueous solution having a concentration of 10%, and stirred at a temperature of 60 ° C. for 6 hours to oxidize a part of nickel hydroxide. Second particles made of nickel hydroxide having an average valence of 2.3 higher were produced.
In addition, spherical nickel hydroxide particles were mechanically pulverized to produce non-spherical third particles having a size of about 2 μm.

これら3種類の粒子を、第1粒子72.7質量%、第2粒子18.2質量%、第3粒子9.1%の割合で混合して全体で100質量部とし、これに対し、カルボキシメチルセルロース(結着材)を0.18質量部添加して混合し、更に0.02質量部のポリオキシエチレンアルキルエーテル(界面活性剤)を添加したのち、30質量部の水を添加し、全体を混練してスラリを調製した。   These three kinds of particles are mixed in a ratio of 72.7% by mass of the first particles, 18.2% by mass of the second particles, and 9.1% of the third particles to make a total of 100 parts by mass. Add 0.18 parts by mass of methylcellulose (binder), mix, and then add 0.02 parts by mass of polyoxyethylene alkyl ether (surfactant), then add 30 parts by mass of water, Kneaded to prepare a slurry.

ついで、発泡ニッケル板にスラリを充填し、乾燥したのちロール圧延を行って第1の正極板を製造した。なお、ロール圧延時に基板の伸びを測定し、圧延前の寸法に対する伸び率(%)を算出した。
得られた正極板につき、正極合剤の充填密度を計算した。
充填密度は、発泡ニッケル板の全空孔容積をS(cm3)とし、正極合剤の充填量をM(g)としたとき、M/Sで表してある。その場合、正極合剤の充填量は正極板全体の質量から基板の質量を減算した値とし、また基板の全空孔容積は、正極板の全体積から、基板の質量を当該基板材料の比重で除算した値を減算した値を用いた。
Next, the foamed nickel plate was filled with slurry, dried, and then rolled to produce a first positive electrode plate. In addition, the elongation of the board | substrate was measured at the time of roll rolling, and elongation rate (%) with respect to the dimension before rolling was computed.
About the obtained positive electrode plate, the packing density of the positive electrode mixture was calculated.
The packing density is expressed in M / S, where S (cm 3 ) is the total pore volume of the foamed nickel plate and M (g) is the filling amount of the positive electrode mixture. In that case, the filling amount of the positive electrode mixture is a value obtained by subtracting the mass of the substrate from the mass of the entire positive electrode plate, and the total pore volume of the substrate is calculated from the total volume of the positive electrode plate, the mass of the substrate, the specific gravity of the substrate material The value obtained by subtracting the value divided by is used.

結果を表1に示す。
実施例2
実施例1において、平均価数を2.1価にした高次の水酸化ニッケルから成る第2粒子と、第3粒子(異形粒子)の2種類の粒子を90.9質量%、9.1質量%の割合で混合して全体で100質量部としたことを除いては、実施例1と同様にしてスラリを調製し、それを用いて第2の正極板を製造した。
The results are shown in Table 1.
Example 2
In Example 1, 90.9 mass%, 9.1 of 2 types of particle | grains, the 2nd particle | grains which consist of the high order nickel hydroxide which made the average valence 2.1 valence, and 3rd particle | grains (atypical shape particle | grains). A slurry was prepared in the same manner as in Example 1 except that the mixture was mixed at a ratio of mass% to 100 parts by mass in total, and a second positive electrode plate was produced using the slurry.

この第2の正極板における正極合剤の充填密度を表1に示した。
比較例1
第3粒子を用いなかったことを除いては、実施例2と同様にして正極板を製造した。結果を表1に示した。
比較例2
スラリ調製時に界面活性剤を用いなかったことを除いては、実施例2と同様にして正極板を製造した。結果を表1に示した。
比較例3
第3粒子を用いなかったこと、界面活性剤を用いなかったことを除いては実施例2と同様にして正極板を製造した。結果を表1に示した。
比較例4
第3粒子を用いなかったことを除いては、実施例1と同様にして正極板を製造した。結果を表1に示した。
比較例5
スラリ調製時に界面活性剤を用いなかったことを除いては実施例1と同様にして正極板を製造した。結果を表1に示した。
比較例6
第3粒子を用いなかったこと、界面活性剤を用いなかったことを除いては実施例1と同様にして正極板を製造した。結果を表1に示した。
The packing density of the positive electrode mixture in the second positive electrode plate is shown in Table 1.
Comparative Example 1
A positive electrode plate was produced in the same manner as in Example 2 except that the third particles were not used. The results are shown in Table 1.
Comparative Example 2
A positive electrode plate was produced in the same manner as in Example 2 except that the surfactant was not used during slurry preparation. The results are shown in Table 1.
Comparative Example 3
A positive electrode plate was produced in the same manner as in Example 2 except that the third particles were not used and the surfactant was not used. The results are shown in Table 1.
Comparative Example 4
A positive electrode plate was produced in the same manner as in Example 1 except that the third particles were not used. The results are shown in Table 1.
Comparative Example 5
A positive electrode plate was produced in the same manner as in Example 1 except that the surfactant was not used during the slurry preparation. The results are shown in Table 1.
Comparative Example 6
A positive electrode plate was produced in the same manner as in Example 1 except that the third particles were not used and the surfactant was not used. The results are shown in Table 1.

Figure 2007095358
Figure 2007095358

表1からも明らかなように、非球状の第3粒子を用い、同時に界面活性剤を添加して調製したスラリを充填した正極板は、正極合剤の充填密度が目標とする3.25g/cm3以上の値となっていて、電池の高容量化を実現できる正極板として有用である。 As can be seen from Table 1, the positive electrode plate filled with slurry prepared by using non-spherical third particles and simultaneously adding a surfactant was 3.25 g / It has a value of cm 3 or more, and is useful as a positive electrode plate capable of realizing a high capacity battery.

本発明の正極板は、高次化された水酸化ニッケルを含む正極合剤が高密度で充填されているので、この正極板を用いることにより、リザーブ制御技術による設計メリットを享受しながら、高容量のニッケル水素二次電池を提供することができる。   Since the positive electrode plate of the present invention is filled with a high-order positive electrode mixture containing nickel hydroxide at a high density, by using this positive electrode plate, while enjoying the design merit by the reserve control technology, A nickel-metal hydride secondary battery having a capacity can be provided.

Claims (5)

導電性の多孔質基板の空孔に、水酸化ニッケルを主体とする活物質粒子を含む正極合剤が充填されているアルカリ二次電池用の正極板において、
前記活物質粒子は、水酸化ニッケル粒子を主体とする球状の第1粒子と、
水酸化ニッケルを主体とし、当該水酸化ニッケルの一部または全部が高次の水酸化ニッケルに転化している球状の第2粒子と、
水酸化ニッケルを主体とする非球状の第3粒子とを含み、かつ、
前記正極合剤には界面活性剤が含まれていることを特徴とするアルカリ二次電池用の正極板。
In the positive electrode plate for an alkaline secondary battery in which the positive electrode mixture containing active material particles mainly composed of nickel hydroxide is filled in the pores of the conductive porous substrate,
The active material particles include spherical first particles mainly composed of nickel hydroxide particles,
Spherical second particles mainly composed of nickel hydroxide, and a part or all of the nickel hydroxide is converted into higher-order nickel hydroxide;
Non-spherical third particles mainly composed of nickel hydroxide, and
A positive electrode plate for an alkaline secondary battery, wherein the positive electrode mixture contains a surfactant.
導電性の多孔質基板の空孔に、水酸化ニッケルを主体とする活物質粒子を含む正極合剤が充填されているアルカリ二次電池用の正極板において、
前記活物質粒子は、水酸化ニッケル粒子を主体とし、当該水酸化ニッケルの一部または全部が高次の水酸化ニッケルに転化している球状粒子と、
水酸化ニッケルを主体とする非球状の異形粒子とを含み、かつ、
前記正極合剤には界面活性剤が含まれていることを特徴とするアルカリ二次電池用の正極板。
In the positive electrode plate for an alkaline secondary battery in which the positive electrode mixture containing active material particles mainly composed of nickel hydroxide is filled in the pores of the conductive porous substrate,
The active material particles are mainly composed of nickel hydroxide particles, and spherical particles in which part or all of the nickel hydroxide is converted into higher-order nickel hydroxide,
Including non-spherical irregularly shaped particles mainly composed of nickel hydroxide, and
A positive electrode plate for an alkaline secondary battery, wherein the positive electrode mixture contains a surfactant.
前記多孔質基板の全空孔容積をS(cm3)、前記正極合材の充填量をM(g)としたとき、M/Sで示される正極合剤の充填密度が、3.25〜3.40g/cm3である請求項1または2のアルカリ二次電池用の正極板。 When the total pore volume of the porous substrate is S (cm 3 ) and the filling amount of the positive electrode mixture is M (g), the filling density of the positive electrode mixture represented by M / S is 3.25 to 25. 3. The positive electrode plate for an alkaline secondary battery according to claim 1, wherein the positive electrode plate has a capacity of 40 g / cm 3 . 前記正極合剤には前記界面活性剤が0.01〜0.10質量%添加されている請求項1〜3のいずれかのアルカリ二次電池用の正極板。   The positive electrode plate for an alkaline secondary battery according to claim 1, wherein 0.01 to 0.10% by mass of the surfactant is added to the positive electrode mixture. 前記多孔質基板の全空孔容積をS(cm3)、前記正極板の容量をA(mAh)としたとき、A/Sで示される正極板の容量密度が、780〜900mAh/cm3である請求項1〜4のアルカリ二次電池用の正極板。 When the total pore volume of the porous substrate is S (cm 3 ) and the capacity of the positive electrode plate is A (mAh), the capacity density of the positive electrode plate indicated by A / S is 780 to 900 mAh / cm 3 . A positive electrode plate for an alkaline secondary battery according to claim 1.
JP2005280011A 2005-09-27 2005-09-27 Positive plate for alkaline secondary battery Pending JP2007095358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005280011A JP2007095358A (en) 2005-09-27 2005-09-27 Positive plate for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005280011A JP2007095358A (en) 2005-09-27 2005-09-27 Positive plate for alkaline secondary battery

Publications (1)

Publication Number Publication Date
JP2007095358A true JP2007095358A (en) 2007-04-12

Family

ID=37980824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005280011A Pending JP2007095358A (en) 2005-09-27 2005-09-27 Positive plate for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP2007095358A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2003017063A (en) * 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd Non-sintered nickel positive electrode for alkaline storage battery, and its manufacturing method
JP2003109586A (en) * 2001-09-28 2003-04-11 Yuasa Corp Manufacturing method of nickel electrode active material paste, nickel electrode active material paste, nickel electrode and alkali storage battery
JP2003217591A (en) * 2002-01-23 2003-07-31 Yuasa Corp Non-sintered nickel electrode and alkaline battery
JP3469766B2 (en) * 1998-01-30 2003-11-25 三洋電機株式会社 Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3490825B2 (en) * 1996-02-07 2004-01-26 三洋電機株式会社 Nickel electrode for alkaline storage battery
JP2004062387A (en) * 2002-07-26 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Method and device for network auction of a plurality of goods, network auction program and recording medium recording the program
JP2004111131A (en) * 2002-09-17 2004-04-08 Sanyo Electric Co Ltd Paste type nickel electrode and its manufacturing method
JP2004259515A (en) * 2003-02-25 2004-09-16 Yuasa Corp Thickening agent for nickel electrode, nickel electrode and manufacturing method of the same, and alkaline storage battery
JP2004327064A (en) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology Electrode and battery using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3490825B2 (en) * 1996-02-07 2004-01-26 三洋電機株式会社 Nickel electrode for alkaline storage battery
JP3469766B2 (en) * 1998-01-30 2003-11-25 三洋電機株式会社 Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP2003017063A (en) * 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd Non-sintered nickel positive electrode for alkaline storage battery, and its manufacturing method
JP2003109586A (en) * 2001-09-28 2003-04-11 Yuasa Corp Manufacturing method of nickel electrode active material paste, nickel electrode active material paste, nickel electrode and alkali storage battery
JP2003217591A (en) * 2002-01-23 2003-07-31 Yuasa Corp Non-sintered nickel electrode and alkaline battery
JP2004062387A (en) * 2002-07-26 2004-02-26 Nippon Telegr & Teleph Corp <Ntt> Method and device for network auction of a plurality of goods, network auction program and recording medium recording the program
JP2004111131A (en) * 2002-09-17 2004-04-08 Sanyo Electric Co Ltd Paste type nickel electrode and its manufacturing method
JP2004259515A (en) * 2003-02-25 2004-09-16 Yuasa Corp Thickening agent for nickel electrode, nickel electrode and manufacturing method of the same, and alkaline storage battery
JP2004327064A (en) * 2003-04-21 2004-11-18 National Institute Of Advanced Industrial & Technology Electrode and battery using it

Similar Documents

Publication Publication Date Title
JP2008181891A (en) Sealed nickel zinc primary battery, its positive electrode, and manufacturing method of them
JPH08222217A (en) Nickel active material for alkaline storage battery
JP3232990B2 (en) Alkaline storage battery and method for manufacturing the same
JP4305264B2 (en) Non-sintered positive electrode for alkaline storage battery and alkaline storage battery
JP2005523387A (en) Zinc powder or zinc alloy powder for alkaline batteries
JP3808193B2 (en) Nickel positive electrode for alkaline storage battery and manufacturing method thereof
JP2007095358A (en) Positive plate for alkaline secondary battery
JP2007095544A (en) Positive plate for alkaline secondary battery and alkaline secondary battery
JP2000223119A (en) Positive electrode active material for alkaline storage battery, its manufacture, and manufacture of positive electrode for alkaline storage battery using positive electrode active material
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP3397890B2 (en) Non-sintered nickel electrode for alkaline storage batteries
WO2019093125A1 (en) Negative electrode for batteries, battery and method for producing battery
JP2011111643A (en) Hydrophilic metal foam body
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS6266570A (en) Cathode for alkaline storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH0917428A (en) Manufacture of nickel active material for alkaline storage battery and manufacture of non-sintered nickel pole for alkaline storage battery
JP4967263B2 (en) Method for producing electrode mixture paste for alkaline storage battery
JP2007258074A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it
JP5164412B2 (en) Alkaline storage battery and method for manufacturing sintered substrate
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
JP4305029B2 (en) Alkaline storage battery with non-sintered nickel positive electrode
JPH11238507A (en) Alkaline storage battery
JP3397889B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH07130364A (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120613