JP3397890B2 - Non-sintered nickel electrode for alkaline storage batteries - Google Patents

Non-sintered nickel electrode for alkaline storage batteries

Info

Publication number
JP3397890B2
JP3397890B2 JP13143694A JP13143694A JP3397890B2 JP 3397890 B2 JP3397890 B2 JP 3397890B2 JP 13143694 A JP13143694 A JP 13143694A JP 13143694 A JP13143694 A JP 13143694A JP 3397890 B2 JP3397890 B2 JP 3397890B2
Authority
JP
Japan
Prior art keywords
active material
weight
nickel
particles
divalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13143694A
Other languages
Japanese (ja)
Other versions
JPH07320735A (en
Inventor
睦 矢野
光造 野上
茂和 安岡
克彦 新山
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13143694A priority Critical patent/JP3397890B2/en
Publication of JPH07320735A publication Critical patent/JPH07320735A/en
Application granted granted Critical
Publication of JP3397890B2 publication Critical patent/JP3397890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活物質利用率の高いアル
カリ蓄電池用非焼結式ニッケル極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel electrode for alkaline storage batteries, which has a high utilization rate of active materials.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】アルカ
リ蓄電池用ニッケル極の代表的なものとしては、ニッケ
ル粉末を穿穴鋼板などに焼結させて得た焼結基板の細孔
内に溶液含浸法により活物質を充填してなる焼結式ニッ
ケル極と、耐アルカリ性金属繊維焼結体、又は、ニッケ
ル等の耐アルカリ性に優れた金属をめっきした炭素繊維
不織布などからなる多孔性の基体に、水酸化ニッケル粉
末のペーストを充填してなる非焼結式ニッケル極とがあ
る。
BACKGROUND OF THE INVENTION A typical nickel electrode for an alkaline storage battery is a solution impregnated into pores of a sintered substrate obtained by sintering nickel powder on a perforated steel plate or the like. Sintered nickel electrode filled with an active material by the method, and an alkali-resistant metal fiber sintered body, or a porous substrate made of carbon fiber nonwoven fabric plated with a metal having excellent alkali resistance such as nickel, There is a non-sintered nickel electrode formed by filling a paste of nickel hydroxide powder.

【0003】焼結式ニッケル極は、焼結基板の導電性が
良いため、活物質利用率が高い。しかし、焼結基板のニ
ッケル粒子間の結合が弱いため、多孔度の大きい焼結基
板を用いると活物質が焼結基板から脱落し易い。したが
って、実用可能な焼結基板は多孔度が80%程度以下の
ものに制限される。加えて、ニッケル焼結体を保持する
ための穿穴鋼板等の芯金が必要とされる。これらのため
に、焼結式ニッケル極には、充填密度が小さいという問
題があった。また、ニッケル焼結体の細孔が10μm以
下と小さいことから、活物質を充填するにあたって、溶
液含浸操作を繰り返し行う必要があり、極板製造が煩雑
であるという問題もあった。
The sintered nickel electrode has a high utilization ratio of the active material because the sintered substrate has good conductivity. However, since the bonding between the nickel particles of the sintered substrate is weak, the active material is likely to drop out of the sintered substrate when the sintered substrate having high porosity is used. Therefore, the practicable sintered substrates are limited to those having a porosity of about 80% or less. In addition, a cored bar such as a perforated steel plate for holding the nickel sintered body is required. For these reasons, the sintered nickel electrode has a problem that the packing density is low. Further, since the pores of the nickel sintered body are as small as 10 μm or less, it is necessary to repeatedly perform the solution impregnation operation when filling the active material, and there is a problem that the electrode plate production is complicated.

【0004】非焼結式ニッケル極は、焼結式ニッケル極
が有する上述の問題を解決するべく提案されたものであ
る。この非焼結式ニッケル極では、芯金を持たない多孔
度の大きい耐アルカリ性金属繊維焼結体等の基体に活物
質を一回的に充填するので、充填密度の大きいニッケル
極が得られるとともに、極板の製造も簡便である。
The non-sintered nickel electrode has been proposed to solve the above problems of the sintered nickel electrode. In this non-sintered nickel electrode, since the active material is once filled in the base material such as the alkali-resistant metal fiber sintered body having a large porosity and having no core metal, the nickel electrode having a large packing density can be obtained. Also, the production of the electrode plate is simple.

【0005】しかしながら、水酸化ニッケル粉末のみを
基体に充填したのでは、極板の導電性が悪いために活物
質利用率が著しく低く、実用可能なものは得られない。
However, if the substrate is filled with only nickel hydroxide powder, the utilization factor of the active material is remarkably low due to the poor conductivity of the electrode plate, and a practical product cannot be obtained.

【0006】斯かる非焼結式ニッケル極の活物質利用率
を向上させてその実用化を図る試みとしては、導電剤と
しての2価の水酸化コバルト粉末を水酸化ニッケル粉末
に添加混合する方法(添加混合法)が提案されている
(特開昭61−49374号公報)。
As an attempt to improve the utilization rate of the active material of such a non-sintered nickel electrode and put it into practical use, a method of adding and mixing divalent cobalt hydroxide powder as a conductive agent to nickel hydroxide powder. (Addition and mixing method) has been proposed (Japanese Patent Laid-Open No. 61-49374).

【0007】ところで、水酸化コバルト粉末はペースト
中に偏在し易く、水酸化ニッケル粉末と均一に混合分散
しにくいので、活物質利用率を有効に向上させるために
は、多量の水酸化コバルト粉末を添加混合する必要があ
る。しかしながら、水酸化コバルト粉末を多量に添加す
ると活物質たる水酸化ニッケル粉末の充填量の減少を余
儀無くされるので極板容量が低下する。
By the way, the cobalt hydroxide powder is apt to be unevenly distributed in the paste and is difficult to be uniformly mixed and dispersed with the nickel hydroxide powder. Therefore, in order to effectively improve the utilization rate of the active material, a large amount of cobalt hydroxide powder should be used. It is necessary to add and mix. However, when a large amount of cobalt hydroxide powder is added, the filling amount of nickel hydroxide powder, which is an active material, is inevitably decreased, so that the electrode plate capacity is reduced.

【0008】そこで、近年、上述の添加混合法に代わる
ものとして、水酸化ニッケルの粒子表面に水酸化コバル
トの被覆層を形成する方法(コーティング法)が提案さ
れている(特開昭62−237667号公報、特開昭6
2−234867号公報、特開昭62−222566号
公報等)。このコーティング法は、水酸化ニッケルの粒
子表面に2価の水酸化コバルトからなる被覆層を形成し
て活物質粒子間の導電性を高めることにより活物質利用
率を改善せんとするものである。
Therefore, in recent years, a method (coating method) of forming a coating layer of cobalt hydroxide on the surface of nickel hydroxide particles has been proposed as an alternative to the above-mentioned addition and mixing method (JP-A-62-237667). Publication, JP-A-6
No. 2-2324867, JP-A No. 62-222566, etc.). This coating method is intended to improve the utilization factor of the active material by forming a coating layer made of divalent cobalt hydroxide on the surface of nickel hydroxide particles to enhance the conductivity between the active material particles.

【0009】しかしながら、上記従来のコーティング法
により作製した活物質粉末は、水酸化ニッケル粒子の表
面を被覆する水酸化コバルト層中のCo(OH)2 が強
アルカリ電解液中で酸化されて不活性なCoHO2 を生
成し易い。すなわち、従来のコーティング法では、活物
質利用率の充分高いニッケル極を得ることは困難であっ
た。
However, the active material powder produced by the above-mentioned conventional coating method is inactive because Co (OH) 2 in the cobalt hydroxide layer covering the surface of the nickel hydroxide particles is oxidized in the strong alkaline electrolyte. It is easy to generate CoHO 2 . That is, it has been difficult to obtain a nickel electrode having a sufficiently high active material utilization rate by the conventional coating method.

【0010】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、活物質利用率の高
いアルカリ蓄電池用非焼結式ニッケル極を提供するにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-sintered nickel electrode for an alkaline storage battery having a high utilization rate of an active material.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るアルカリ蓄電池用非焼結式ニッケル極
(以下、「本発明電極」と称する。)は、水酸化コバル
ト層で表面が被覆された水酸化ニッケル粒子又は水酸化
ニッケルを主成分とする固溶体粒子を活物質粒子とする
アルカリ蓄電池用非焼結式ニッケル極であって、前記水
酸化コバルト層中の2価Coと3価Coとの総量に対す
る2価Coの比率が75〜95重量%であり、且つ前記
活物質粒子の重量に対する前記水酸化コバルト層中のC
oの比率が2〜10重量%であるものである。
The non-sintered nickel electrode for an alkaline storage battery according to the present invention (hereinafter, referred to as "the electrode of the present invention") for achieving the above object is a cobalt hydroxide layer whose surface is What is claimed is: 1. A non-sintered nickel electrode for an alkaline storage battery, comprising coated nickel hydroxide particles or solid solution particles containing nickel hydroxide as a main component, the active material particles comprising divalent Co and trivalent Co in the cobalt hydroxide layer. The ratio of divalent Co to the total amount of Co is 75 to 95% by weight , and
C in the cobalt hydroxide layer relative to the weight of the active material particles
The ratio of o is 2 to 10% by weight .

【0012】水酸化ニッケルを主成分とする固溶体粒子
としては、水酸化ニッケルとともに、水酸化亜鉛、水酸
化コバルト、水酸化カドミウム、水酸化カルシウム、水
酸化バリウム、水酸化マンガンなどを1種又は2種以上
共沈させたものが例示される。
As the solid solution particles containing nickel hydroxide as a main component, zinc hydroxide, cobalt hydroxide, cadmium hydroxide, calcium hydroxide, barium hydroxide, manganese hydroxide or the like may be used alone or in combination with nickel hydroxide. Examples of co-precipitated seeds are given.

【0013】水酸化コバルト層中の2価Coと3価Co
との総量に対する水酸化コバルト層中の2価Coの比率
が75〜95重量%に規制されるのは、同比率が75重
量%未満になると、水酸化コバルト層中に不活性なCo
3価のコバルト化合物(CoHO2 )が多く存在し、一
方同比率が95重量%を越えると、水酸化コバルト層が
高濃度アルカリ中で酸化されて不活性なCo3価のコバ
ルト化合物(CoHO2 )に変化し易くなり、いずれの
場合にも高い活物質利用率を発現するニッケル極が得ら
れないからである。
Divalent and trivalent Co in the cobalt hydroxide layer
The ratio of divalent Co in the cobalt hydroxide layer is regulated to 75 to 95% by weight with respect to the total amount of, and when the ratio is less than 75% by weight, Co which is inactive in the cobalt hydroxide layer is
There are many trivalent cobalt compounds (CoHO 2 ), and when the ratio exceeds 95% by weight, the cobalt hydroxide layer is oxidized in a high-concentration alkali and is inactive Co trivalent cobalt compound (CoHO 2 ). This is because a nickel electrode that exhibits a high utilization factor of the active material cannot be obtained in any case.

【0014】活物質粒子の重量に対する水酸化コバルト
層中のCoの比率2〜10重量%に規制されるのは、
同比率が2重量%未満と少なくなると、被覆不足により
充分に導電性を高めることができなくなるため、活物質
利用率を有意に向上させることができず、一方同比率が
10重量%を越えると、活物質たる水酸化ニッケルの充
填量の減少を余儀無くされて、容量低下を招くからであ
る。
The ratio of Co in the cobalt hydroxide layer to the weight of the active material particles is regulated to 2 to 10% by weight .
When the ratio is less than 2% by weight, the conductivity cannot be sufficiently increased due to insufficient coating, and thus the active material utilization rate cannot be significantly improved. On the other hand, when the ratio exceeds 10% by weight. This is because the filling amount of nickel hydroxide, which is an active material, is forced to decrease, resulting in a decrease in capacity.

【0015】[0015]

【作用】本発明電極における水酸化ニッケル粒子又は水
酸化ニッケルを主成分とする固溶体粒子は、粒子表面が
2価Coを所定の割合で含有する水酸化コバルト層で被
覆されているので、充電により良好な導電性マトリック
ス(CoOOH)が形成されるとともに、電解液中に不
活性なCoHO2 が生成しにくい。このため、初期及び
放置後の活物質利用率が共に向上する。
The nickel hydroxide particles or the solid solution particles containing nickel hydroxide as the main component in the electrode of the present invention have the surface thereof covered with a cobalt hydroxide layer containing divalent Co in a predetermined ratio. A good conductive matrix (CoOOH) is formed, and inactive CoHO 2 is less likely to be generated in the electrolytic solution. Therefore, the utilization rate of the active material is improved both in the initial stage and after standing.

【0016】[0016]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the examples described below, and various modifications may be made without departing from the scope of the invention. Is possible.

【0017】(予備実験) 〔予備実験1:混合時間と水酸化コバルト粉末中の2価
Coの比率との関係〕硫酸コバルト50.6gをエチル
アルコールと水との重量比1:9の混合溶媒(25°
C)に溶かしたコバルト溶液1000mlに、エチルア
ルコールと水との重量比1:9の混合溶媒(25°C)
に水酸化ナトリウムを1モル/リットル溶かしたアルカ
リ液を、液のpHを測定しながらpH12になるまで滴
下した。その後、10分、30分、3時間、6時間、8
時間、10時間、12時間、14時間又は15時間攪拌
混合した後、濾過し、水洗し、真空乾燥して、順に水酸
化コバルト粉末a,b,c,d,e,f,g,h,iを
作製した。この作製法を作製法(1)と称する。なお、
pH測定には、自動温度補償機能を備えたガラス電極p
Hメータを用いた(以下におけるpH測定においても同
じものを用いた。)。
(Preliminary Experiment) [Preliminary Experiment 1: Relationship between Mixing Time and Ratio of Bivalent Co in Cobalt Hydroxide Powder] 50.6 g of cobalt sulfate was mixed solvent of ethyl alcohol and water at a weight ratio of 1: 9. (25 °
In 1000 ml of cobalt solution dissolved in C), a mixed solvent of ethyl alcohol and water in a weight ratio of 1: 9 (25 ° C)
An alkali solution in which 1 mol / liter of sodium hydroxide was dissolved was added dropwise to the solution while measuring the pH of the solution until the pH reached 12. Then 10 minutes, 30 minutes, 3 hours, 6 hours, 8
After stirring and mixing for 10 hours, 12 hours, 14 hours, or 15 hours, the mixture is filtered, washed with water, and dried in vacuum. Cobalt hydroxide powder a, b, c, d, e, f, g, h, i was made. This manufacturing method is referred to as a manufacturing method (1). In addition,
Glass electrode p with automatic temperature compensation function for pH measurement
An H meter was used (the same was used for pH measurement below).

【0018】また、硫酸コバルト50.6gを水(25
°C)に溶かしたコバルト水溶液1000mlに、1モ
ル/リットルの水酸化ナトリウム水溶液を、液のpHが
12になるまで滴下した。その後、10分、3時間、6
時間、9時間、12時間又は15時間攪拌混合した後、
濾過し、水洗し、真空乾燥して、順に水酸化コバルト粉
末j,k,l,m,n,oを作製した。この作製法を作
製法(2)と称する。
Further, 50.6 g of cobalt sulfate was added to water (25
1 mol / liter of sodium hydroxide aqueous solution was added dropwise to 1000 ml of cobalt aqueous solution dissolved in (° C.) Until the pH of the solution reached 12. Then 10 minutes, 3 hours, 6
After stirring for 9 hours, 12 hours or 15 hours,
It was filtered, washed with water, and vacuum dried to prepare cobalt hydroxide powders j, k, l, m, n, o in order. This manufacturing method is referred to as a manufacturing method (2).

【0019】各水酸化コバルト粉末の一定量を濃塩酸に
溶かして得た溶液中のCo量(A)を原子吸光法により
定量した(ステップ1)。このステップ1においては、
Co(OH)2 もCo3価の化合物もともに濃塩酸に溶
けるので、Co量(A)は全Co量、すなわち2価Co
及び3価Coのトータル量である。また、同量の上記C
o(OH)2 粉末を濃硝酸に溶かして得た溶液を濾過し
て、濾液中の2価Co量(B)を原子吸光法により定量
した(ステップ2)。このステップ2においては、Co
(OH)2 は濃硝酸に溶けるが、Co3価の化合物は濃
硝酸に溶けずに濾紙上に残る。そこで、下式より各水酸
化コバルト粉末中の2価Coの比率を算出した。結果を
図1に示す。
The amount of Co (A) in the solution obtained by dissolving a certain amount of each cobalt hydroxide powder in concentrated hydrochloric acid was quantified by the atomic absorption method (step 1). In this step 1,
Since both Co (OH) 2 and Co trivalent compounds are soluble in concentrated hydrochloric acid, the Co amount (A) is the total Co amount, that is, divalent Co.
And the total amount of trivalent Co. Also, the same amount of C
The solution obtained by dissolving o (OH) 2 powder in concentrated nitric acid was filtered, and the amount of divalent Co (B) in the filtrate was quantified by atomic absorption spectrometry (step 2). In this step 2, Co
(OH) 2 is soluble in concentrated nitric acid, but the Co3 valent compound is not dissolved in concentrated nitric acid and remains on the filter paper. Therefore, the ratio of divalent Co in each cobalt hydroxide powder was calculated by the following formula. The results are shown in Fig. 1.

【0020】水酸化コバルト粉末中の2価Coの比率
(重量%)=2価Co量(B)×100/全Co量
(A)
Ratio of divalent Co in cobalt hydroxide powder (% by weight) = divalent Co amount (B) × 100 / total Co amount (A)

【0021】図1は、種々の混合時間での水酸化コバル
ト粉末中の2価Coの比率を、縦軸に2価Coの比率
(%)を、また横軸に混合時間(h)をとって示したグ
ラフであり、同図に示すように、作製法(1)及び作製
法(2)のいずれの方法による場合も混合時間が長くな
るほど2価Coの比率が小さくなるが、作製法(2)の
方法では、2価Coの比率が75重量%以上のものは得
られない。このことから、不活性な3価のコバルト(C
oHO2 )の含有量が少ない導電性に優れた活物質粉末
を得るためには、作製法(1)を用いる必要があること
が分かる。
FIG. 1 shows the ratio of divalent Co in the cobalt hydroxide powder at various mixing times, the ratio of divalent Co (%) on the vertical axis, and the mixing time (h) on the horizontal axis. As shown in the same drawing, the ratio of divalent Co decreases as the mixing time becomes longer in any of the manufacturing method (1) and the manufacturing method (2). The method 2) cannot obtain a divalent Co content of 75% by weight or more. From this, inert trivalent cobalt (C
It can be seen that it is necessary to use the production method (1) in order to obtain an active material powder having a low content of oHO 2 ) and excellent conductivity.

【0022】〔予備実験2:アルカリ電解液浸漬後の2
価Coの比率〕作製法で作製した水酸化コバルト粉末
a,b,c,d,e,f,g,h,i各1gを電解液5
0mlに30分間浸漬した後、濾過し、水洗し、真空乾
燥して、各水酸化コバルト粉末のアルカリ電解液浸漬後
の2価Coの比率を、予備実験1と同様にして求めた。
結果を図2に示す。
[Preliminary experiment 2: 2 after immersion in alkaline electrolyte
Ratio of valence Co] 1 g of each of cobalt hydroxide powders a, b, c, d, e, f, g, h, and i prepared by the preparation method is added to electrolyte solution 5
After dipping in 0 ml for 30 minutes, filtering, washing with water, and vacuum drying, the divalent Co ratio of each cobalt hydroxide powder after dipping in the alkaline electrolyte was determined in the same manner as in Preliminary Experiment 1.
The results are shown in Figure 2.

【0023】図2は、縦軸にアルカリ電解液浸漬後の2
価Coの比率(重量%)を、また横軸にアルカリ電解液
浸漬前の2価Coの比率(重量%)をとって示したグラ
フであり、同図に示すように、アルカリ電解液浸漬前の
2価Coの比率が95重量%を越えると、アルカリ電解
液浸漬後の2価Coの比率が急激に低下する。このこと
から、アルカリ電解液浸漬後に不活性な3価のコバルト
(CoHO2 )の生成量が少ない導電性に優れた活物質
粉末を得るためには、アルカリ電解液浸漬前の2価Co
の比率を95重量%以下にする必要があることが分か
る。
In FIG. 2, the vertical axis indicates 2 after immersion in alkaline electrolyte.
2 is a graph showing the ratio (weight%) of valent Co and the ratio (weight%) of divalent Co before immersion in the alkaline electrolyte on the horizontal axis. As shown in FIG. When the ratio of the divalent Co in (1) exceeds 95% by weight, the ratio of the divalent Co after the immersion in the alkaline electrolyte is drastically reduced. From this fact, in order to obtain an active material powder having a small amount of trivalent cobalt (CoHO 2 ) that is inactive after immersion in an alkaline electrolyte and having excellent conductivity, divalent Co before immersion in an alkaline electrolyte is required.
It can be seen that the ratio must be 95% by weight or less.

【0024】(実施例及び比較例) 〔活物質粉末の作製〕硫酸コバルト50.6gをエチル
アルコールと水との重量比1:9の混合溶媒(25°
C)に溶かしたコバルト溶液1000mlに、水酸化ニ
ッケル100gを投入した後、エチルアルコールと水と
の重量比1:9の混合溶媒(25°C)に水酸化ナトリ
ウムを1モル/リットル溶かしたアルカリ液を、液のp
Hを測定しながらpH12になるまで滴下した。その
後、10分、30分、3時間、6時間、8時間、10時
間、12時間、14時間又は15時間攪拌混合した後、
濾過し、水洗し、真空乾燥して、順に活物質粉末A,
B,C,D,E,F,G,H,Iを作製した。この作製
法を作製法と称する。
(Examples and Comparative Examples) [Preparation of Active Material Powder] 50.6 g of cobalt sulfate was mixed with ethyl alcohol and water at a weight ratio of 1: 9 (25 ° C.).
After adding 100 g of nickel hydroxide to 1000 ml of a cobalt solution dissolved in C), an alkali was prepared by dissolving 1 mol / liter of sodium hydroxide in a mixed solvent (25 ° C.) of ethyl alcohol and water in a weight ratio of 1: 9. Liquid, p of liquid
While measuring H, the solution was added dropwise until the pH reached 12. Then, after stirring and mixing for 10 minutes, 30 minutes, 3 hours, 6 hours, 8 hours, 10 hours, 12 hours, 14 hours or 15 hours,
After filtering, washing with water, and vacuum drying, the active material powder A,
B, C, D, E, F, G, H and I were produced. This manufacturing method is called a manufacturing method.

【0025】また、硫酸コバルト50.6gを水(25
°C)に溶かしたコバルト水溶液1000mlに、水酸
化ニッケル100gを投入した後、1モル/リットルの
水酸化ナトリウム水溶液を、液のpHが12になるまで
滴下した。その後、10分、3時間、6時間、9時間、
12時間又は15時間攪拌混合した後、濾過し、水洗
し、真空乾燥して、順に活物質粉末J,K,L,M,
N,Oを作製した。この作製法を作製法と称する。こ
の作製法は、特開昭62−234867号公報等に開
示の方法に準じた作製法である。
Further, 50.6 g of cobalt sulfate was added to water (25
After adding 100 g of nickel hydroxide to 1000 ml of an aqueous cobalt solution dissolved in ° C), a 1 mol / liter aqueous sodium hydroxide solution was added dropwise until the pH of the liquid reached 12. After that, 10 minutes, 3 hours, 6 hours, 9 hours,
After stirring and mixing for 12 hours or 15 hours, the mixture is filtered, washed with water, dried in vacuum, and the active material powders J, K, L, M, and
N and O were produced. This manufacturing method is called a manufacturing method. This production method is a production method according to the method disclosed in JP-A-62-234867.

【0026】〔ニッケル極の作製〕各活物質粉末80重
量部と1重量%メチルセルロース水溶液20重量部とを
混練してペーストを作製し、このペーストをニッケルめ
っきした発泡メタル(多孔度95%;平均粒径200μ
m)からなる多孔体(耐アルカリ性基体)に充填し、乾
燥し、成形して、ニッケル極を作製した。
[Preparation of Nickel Electrode] 80 parts by weight of each active material powder and 20 parts by weight of a 1% by weight methylcellulose aqueous solution were kneaded to prepare a paste, and this paste was nickel-plated metal foam (porosity 95%; average). Particle size 200μ
m) was filled in a porous body (alkali resistant substrate), dried and molded to prepare a nickel electrode.

【0027】〔アルカリ蓄電池の組立〕正極として各ニ
ッケル極を、負極として各ニッケル極に対して充分に大
きな電気化学容量を有する公知のペースト式カドミウム
極を、セパレータとしてポリアミド不織布を、電解液と
して水酸化カリウムと水酸化ナトリウムと水酸化リチウ
ムとを重量比8:1:1で含有する強アルカリ水溶液
(比重=1.285)を、それぞれ用いて、AAサイズ
のニッケル−カドミウム蓄電池A,B,C,D,E,
F,G,H,I及びJ,K,L,M,N,O(理論容
量:700mAh)を組み立てた。各蓄電池の符号は、
使用した活物質粉末の符号を表す。
[Assembly of Alkaline Storage Battery] Each nickel electrode is used as a positive electrode, a known paste type cadmium electrode having a sufficiently large electrochemical capacity with respect to each nickel electrode is used as a negative electrode, a polyamide nonwoven fabric is used as a separator, and water is used as an electrolytic solution. AA-sized nickel-cadmium storage batteries A, B and C were prepared by using strong alkaline aqueous solutions (specific gravity = 1.285) containing potassium oxide, sodium hydroxide and lithium hydroxide in a weight ratio of 8: 1: 1. , D, E,
F, G, H, I and J, K, L, M, N, O (theoretical capacity: 700 mAh) were assembled. The code of each storage battery is
The symbol of the active material powder used is shown.

【0028】〔充放電サイクル試験〕各ニッケル−カド
ミウム蓄電池について、0.1Cで深度160%まで充
電した後、1Cで1.0Vまで放電する工程を1サイク
ルとする充放電サイクル試験を行い、10サイクル目の
電池容量を求めて活物質利用率を算出した。結果を図3
に示す。活物質利用率は下式より算出した。
[Charge / Discharge Cycle Test] Each nickel-cadmium storage battery was subjected to a charge / discharge cycle test in which one cycle includes a process of charging to a depth of 160% at 0.1C and then discharging to 1.0V at 1C. The battery capacity at the cycle was calculated to calculate the active material utilization rate. The result is shown in Figure 3.
Shown in. The active material utilization rate was calculated from the following formula.

【0029】活物質利用率(%)=10サイクル目の電
池の放電容量(mAh)×100/{活物質重量(g)
×活物質粉末の単位重量当たりの理論容量(mAh/
g)}
Active material utilization rate (%) = discharge capacity (mAh) of battery at 10th cycle × 100 / {weight of active material (g)
× Theoretical capacity per unit weight of active material powder (mAh /
g)}

【0030】図3は、各ニッケル−カドミウム蓄電池の
10サイクル目の活物質利用率を、縦軸に活物質利用率
を、また横軸に使用した活物質粉末のアルカリ電解液浸
漬前の2価Coの比率をとって示したグラフである。な
お、縦軸の活物質利用率は、アルカリ電解液浸漬前の水
酸化コバルト層中の2価Coの比率が80重量%の活物
質粉末を使用したニッケル−カドミウム蓄電池Eの活物
質利用率を100とした指数で示したものである。同図
より、活物質利用率の高いニッケル−カドミウム蓄電池
を得るためには、水酸化コバルト層中の2価Coの比率
を75〜95重量%とする必要があることが分かる。
FIG. 3 shows the active material utilization rate at the 10th cycle of each nickel-cadmium storage battery, the active material utilization rate on the vertical axis, and the active material powder used on the horizontal axis, which is divalent before dipping in the alkaline electrolyte. It is the graph which took and showed the ratio of Co. In addition, the active material utilization rate on the vertical axis is the active material utilization rate of the nickel-cadmium storage battery E using the active material powder in which the ratio of divalent Co in the cobalt hydroxide layer before immersion in the alkaline electrolyte is 80% by weight. It is shown by an index of 100. From the figure, it is understood that the ratio of divalent Co in the cobalt hydroxide layer needs to be 75 to 95% by weight in order to obtain a nickel-cadmium storage battery having a high active material utilization rate.

【0031】〔活物質粒子の重量に対する水酸化コバル
ト層中のCoの比率と電池容量との関係〕作製法又は
作製法においてNi(OH)2 粉末に対するCo(O
H)2 粉末の混合量を種々変えて、活物質粒子の重量に
対する水酸化コバルト層中のCoの比率が異なる活物質
粉末を作製した。なお、混合時間はいずれも8時間とし
た。
[Relationship between Battery Capacity and Ratio of Co in Cobalt Hydroxide Layer to Weight of Active Material Particles] Manufacturing method or Co (O) with respect to Ni (OH) 2 powder in the manufacturing method
H) 2 powder was mixed in various amounts to prepare active material powders having different ratios of Co in the cobalt hydroxide layer to the weight of the active material particles. The mixing time was 8 hours in all cases.

【0032】次いで、これらの活物質粉末を用いたこと
以外は先の実施例と同様にしてニッケル−カドミウム蓄
電池を作製し、先と同じ条件で充放電サイクル試験を行
い、各蓄電池の10サイクル目の電池容量を求めて、活
物質粒子の重量に対する水酸化コバルト層中のCoの比
率と電池容量との関係を調べた。結果を図4に示す。
Next, a nickel-cadmium storage battery was prepared in the same manner as in the previous example except that these active material powders were used, and a charge / discharge cycle test was conducted under the same conditions as above, and the 10th cycle of each storage battery was tested. The battery capacity was determined, and the relationship between the battery capacity and the ratio of Co in the cobalt hydroxide layer to the weight of the active material particles was investigated. The results are shown in Fig. 4.

【0033】図4は、縦軸に電池容量を、また横軸に活
物質粒子の重量(100重量%)に対する水酸化コバル
ト層中のCoの比率(重量%)をとって示したグラフで
ある。なお、縦軸の電池容量は、活物質粒子の重量に対
する水酸化コバルト層中のCoの比率が10重量%のと
きの電池容量を100とした指数で示したものである。
同図より、高容量のアルカリ蓄電池を得るためには、活
物質粒子の重量に対する水酸化コバルト層中のCoの比
率を2〜10重量%とする必要があることが分かる。
FIG. 4 is a graph in which the vertical axis represents the battery capacity, and the horizontal axis represents the ratio (% by weight) of Co in the cobalt hydroxide layer to the weight (100% by weight) of the active material particles. . The battery capacity on the vertical axis is an index of battery capacity as 100 when the ratio of Co in the cobalt hydroxide layer to the weight of the active material particles is 10% by weight.
From the figure, it is understood that the ratio of Co in the cobalt hydroxide layer to the weight of the active material particles needs to be 2 to 10% by weight in order to obtain a high capacity alkaline storage battery.

【0034】上記実施例では、水酸化ニッケル粒子の表
面を水酸化コバルト層で被覆した活物質粒子を用いる場
合を例に挙げて説明したが、水酸化ニッケルを主成分と
する固溶体粒子の表面に水酸化コバルト層を形成した活
物質粒子を用いた場合にも、同様の優れた効果が得られ
ることを確認した。
In the above embodiments, the case where the active material particles in which the surface of the nickel hydroxide particles is coated with the cobalt hydroxide layer is used has been described as an example, but the surface of the solid solution particles containing nickel hydroxide as the main component is used. It was confirmed that the same excellent effect can be obtained even when the active material particles having the cobalt hydroxide layer are used.

【0035】[0035]

【発明の効果】本発明に係る非焼結式ニッケル極は、充
電により良好な導電性マトリックス(CoOOH)が形
成されるとともに、電解液中に不活性なCoHO2 が生
成しにくいので、活物質利用率が高い。このため、本発
明電極を正極に用いることにより電池容量の大きいアル
カリ蓄電池を得ることが可能になる。
INDUSTRIAL APPLICABILITY The non-sintered nickel electrode according to the present invention forms a good conductive matrix (CoOOH) by charging and hardly produces inactive CoHO 2 in the electrolytic solution. High utilization rate. Therefore, by using the electrode of the present invention as the positive electrode, it is possible to obtain an alkaline storage battery having a large battery capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】活物質粉末作製時の混合時間と水酸化コバルト
粉末中の2価Coの比率との関係を示したグラフであ
る。
FIG. 1 is a graph showing the relationship between the mixing time when preparing an active material powder and the ratio of divalent Co in the cobalt hydroxide powder.

【図2】アルカリ電解液浸漬前の水酸化コバルト粉末中
の2価Coの比率とアルカリ電解液浸漬後の水酸化コバ
ルト粉末中の2価Coの比率との関係を示したグラフで
ある。
FIG. 2 is a graph showing the relationship between the ratio of divalent Co in the cobalt hydroxide powder before immersion in the alkaline electrolyte and the ratio of divalent Co in the cobalt hydroxide powder after immersion in the alkaline electrolyte.

【図3】水酸化コバルト層中のアルカリ電解液浸漬前の
2価Coの比率と10サイクル目の活物質利用率との関
係を示したグラフである。
FIG. 3 is a graph showing the relationship between the ratio of divalent Co before immersion in an alkaline electrolyte in a cobalt hydroxide layer and the active material utilization rate at the 10th cycle.

【図4】活物質粒子の重量に対する水酸化コバルト層中
のCoの比率と電池容量との関係を示したグラフであ
る。
FIG. 4 is a graph showing the relationship between the ratio of Co in the cobalt hydroxide layer to the weight of active material particles and the battery capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭62−234867(JP,A) 特開 平4−109557(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/32 H01M 4/26 H01M 4/52 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsuhiko Niiyama 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP 62-234867 (JP, A) JP Flat 4-109557 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 4/32 H01M 4/26 H01M 4/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水酸化コバルト層で表面が被覆された水酸
化ニッケル粒子又は水酸化ニッケルを主成分とする固溶
体粒子を活物質粒子とするアルカリ蓄電池用非焼結式ニ
ッケル極であって、前記水酸化コバルト層中の2価Co
と3価Coとの総量に対する2価Coの比率が75〜9
5重量%であり、且つ前記活物質粒子の重量に対する前
記水酸化コバルト層中のCoの比率が2〜10重量%
あることを特徴とするアルカリ蓄電池用非焼結式ニッケ
ル極。
1. A non-sintered nickel electrode for an alkaline storage battery, which comprises nickel hydroxide particles whose surface is coated with a cobalt hydroxide layer or solid solution particles containing nickel hydroxide as a main component as active material particles, said non-sintered nickel electrode comprising: Divalent Co in cobalt hydroxide layer
And the ratio of divalent Co to the total amount of trivalent Co is 75 to 9
5% by weight and before the weight of the active material particles
The non-sintered nickel electrode for an alkaline storage battery, wherein the ratio of Co in the cobalt hydroxide layer is 2 to 10% by weight .
【請求項2】水酸化コバルト層で表面が被覆された水酸
化ニッケル粒子又は水酸化ニッケルを主成分とする固溶
体粒子からなるアルカリ蓄電池用活物質であって、前記
水酸化コバルト層中の2価Coと3価Coとの総量に対
する2価Coの比率が75〜95重量%であり、且つ前
記水酸化コバルト層で表面が被覆された水酸化ニッケル
粒子又は前記固溶体粒子の重量に対する前記水酸化コバ
ルト層中のCoの比率が2〜10重量%であることを特
徴とするアルカリ蓄電池用活物質。
2. Hydroxic acid whose surface is coated with a cobalt hydroxide layer.
Solid solution containing nickel oxide particles or nickel hydroxide as the main component
An alkaline storage battery active material comprising body particles, comprising:
The total amount of divalent Co and trivalent Co in the cobalt hydroxide layer
The divalent Co content is 75 to 95% by weight, and
Nickel hydroxide whose surface is coated with a cobalt hydroxide layer
Particles or the solid hydroxide particles to the weight of the solid solution particles
The content of Co in the alloy layer is 2 to 10% by weight.
Active material for alkaline storage batteries to be collected.
JP13143694A 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage batteries Expired - Fee Related JP3397890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143694A JP3397890B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143694A JP3397890B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH07320735A JPH07320735A (en) 1995-12-08
JP3397890B2 true JP3397890B2 (en) 2003-04-21

Family

ID=15057926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143694A Expired - Fee Related JP3397890B2 (en) 1994-05-20 1994-05-20 Non-sintered nickel electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3397890B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287726B1 (en) 1997-01-10 2001-09-11 Matsushita Electric Industrial Co., L.T.D. Method for producing nickel positive electrode for alkaline storage batteries
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
US6444366B1 (en) 1998-05-29 2002-09-03 Matsushita Electric Industrial Co., Ltd. Non-sintered electrode and method of manufacturing same
DE19939025A1 (en) * 1998-12-24 2000-06-29 Starck H C Gmbh Co Kg Nickel mixed hydroxide, process for its production and its use as cathode material in alkaline batteries
FR2811810B1 (en) 2000-07-13 2002-10-11 Cit Alcatel CONDUCTIVE MATERIAL FOR ELECTRODE, METHOD FOR MANUFACTURING SUCH MATERIAL, AND ELECTRODE CONTAINING SUCH MATERIAL
JP4061048B2 (en) 2001-10-31 2008-03-12 松下電器産業株式会社 Positive electrode for alkaline storage battery and alkaline storage battery using the same
US11646414B2 (en) 2017-09-11 2023-05-09 Tanaka Corporation Positive electrode active material for alkaline storage battery, and method for producing positive electrode active material for alkaline storage battery

Also Published As

Publication number Publication date
JPH07320735A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US6521377B2 (en) Positive electrode active material for alkaline storage batteries, positive electrode for alkaline storage batteries, and alkaline storage battery
JP3397890B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3490818B2 (en) Paste nickel electrode for alkaline storage batteries
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3408008B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433066B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3272151B2 (en) Non-sintered nickel electrode for alkaline storage battery and method for producing the same
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3397889B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3234492B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP3272152B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH07320736A (en) Non-sintered nickel electrode for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP4436574B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP3433062B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3286445B2 (en) Method for producing paste-type nickel positive electrode
JPH1021909A (en) Non-sintered nickel electrode for alkaline storage battery
JP3234491B2 (en) Conductive agent for alkaline storage battery and non-sintered nickel electrode for alkaline storage battery using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees