JP2007081017A - モノリシック型半導体レーザ - Google Patents

モノリシック型半導体レーザ Download PDF

Info

Publication number
JP2007081017A
JP2007081017A JP2005265073A JP2005265073A JP2007081017A JP 2007081017 A JP2007081017 A JP 2007081017A JP 2005265073 A JP2005265073 A JP 2005265073A JP 2005265073 A JP2005265073 A JP 2005265073A JP 2007081017 A JP2007081017 A JP 2007081017A
Authority
JP
Japan
Prior art keywords
semiconductor laser
face
semiconductor
refractive index
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265073A
Other languages
English (en)
Inventor
Tetsuhiro Tanabe
哲弘 田邉
Shuichi Nawae
周一 縄江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005265073A priority Critical patent/JP2007081017A/ja
Publication of JP2007081017A publication Critical patent/JP2007081017A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明は、それぞれの半導体積層部の構造を変更することなく、長時間の動作によりCOD破壊に至るまでの時間を長くして長寿命化することができる高出力動作可能なモノリシック型半導体レーザを提供する。
【解決手段】半導体基板1上に赤外光用の半導体積層部2aを有する赤外素子10aと、半導体基板1上の赤外素子が形成されていない領域に、赤色光用の半導体積層部2bからなる赤色素子10bが同一の半導体基板面1上に形成され、活性層からの光を出射する出射端面部3に接するように半導体積層部2aおよび2bの実効屈折率よりも大きな屈折率を有する誘電体膜4が形成され、誘電体膜4上にはAl23、SiO2、TiO2、ZrO2のいずれか1種以上の材料からなり反射率が20%以下となるような出射端面コーティング膜5を備えている。
【選択図】 図1

Description

本発明は、DVD(デジタル多用途ディスク;digital versatile disk)、DVD−ROM、データ書き込み可能なDVD−RなどのDVD装置と、CD、CD−ROM、データ書き込み可能なCD−RなどのCD装置との一体型光ディスク装置のピックアップ光源に用いるのに適したモノリシック型半導体レーザに関する。さらに詳しくは、高出力でもCOD破壊出力が高く、長寿命化できるモノリシック型半導体レーザに関する。
近年、DVDとCDとの間に互換性のある光ディスク装置の普及に伴い、InGaAlP系の半導体レーザ素子およびAlGaAs系の半導体レーザ素子を同一半導体基板上に形成したモノリシック型半導体レーザが光源として用いられている(特許文献1参照)。
具体的には、たとえば図4にチップの斜視説明図が示されるようにn形GaAsからなる半導体基板91の上に、たとえばAlGaAs系化合物半導体からなる活性層を含むリッジストライプ構造の半導体積層部92aが形成されることによりAlGaAs系半導体レーザ素子90aが、他方、同一半導体基板91上のAlGaAs系半導体レーザ素子90aが形成されていない領域に、たとえばInGaAlP系化合物半導体からなる活性層を含むリッジストライプ構造の半導体積層部92bを有するInGaAlP系半導体レーザ素子90bが形成され、両半導体積層部92a、92bの積層面およびリッジストライプ形成面と垂直な面に劈開などにより出射端面部93が形成されている。そして、出射端面部93にAl23やSiO2などの単層の端面コーティング膜95が形成される。さらに出射端面の反対面にAl23やSiO2とアモルファスシリコンなどが順次積層された端面コーティング膜96が形成され、出射端面部よりも反射率が大きくなるよう調整される。その後、さらにダイシングなどによりチップ化されモノリシック型半導体レーザとなる。なお、出射端面部93を形成する際、半導体積層部92a、92b上にそれぞれp側電極97a、97bが形成され、半導体基板91の裏面側にn側共通電極98が形成されている。
特開2000−11417号公報(図9)
近年DVDとCDの互換性ある光ディスク装置においては、DVD−R、CD−Rなどの互換性を持たせるべく、書き込み用の高出力のモノリシック型半導体レーザが要求され、InGaAlP系半導体レーザ素子およびAlGaAs系半導体レーザ素子ともに高出力化が必要となる。
そこで、それぞれの半導体積層部の構造を変更して初期のCOD(瞬時光学損傷)破壊出力自体を高めることで高出力化を図ることが考えられるが、構造を変更することにも限界がある。また、他の手法として、出射端面部での光密度を低減しCOD破壊出力を向上させるべく半導体レーザの出射端面部の反射率を低減することが考えられる。具体的には、出射端面部での反射率を低くするため、出射端面部に直接接するようにAl23などの端面コーティング膜を形成し高出力化を図ることが考えられる。しかし、このような構成を採用し初期のCOD破壊出力をあげたとしても、高出力での長時間の動作(高温エージング試験)によりCOD破壊出力の時間に対する低下度合いは急峻であり、破壊に至るまでの時間が極めて短時間となり信頼性が低下し結局実用化できないという問題がある。
また、モノリシック型半導体レーザでは、AlGaAs系半導体レーザ素子とInGaAlP系半導体レーザ素子が同一半導体基板上に形成されており、出射端面部が同一面上に形成され、出射端面部上に形成される出射端面コーティング膜も共通となる。そして、出射端面コーティング膜は活性層で発生する光の波長に対して反射率依存性を有しており、低反射率とするためAl23などからなる単層の材料を用いると、反射率の波長依存性により、一方の素子に対して低反射膜となるが、他方の素子に対して低反射膜を形成できないというモノリシック型半導体レーザ特有の問題もある。
本発明はこのような状況に鑑みてなされたもので、それぞれの半導体積層部の構造を変更することなく、長時間の動作(高温エージング試験)に対してもCOD破壊に至るまでの時間を長くして長寿命化することができる高出力動作可能なモノリシック型半導体レーザを提供することを目的とする。
本発明者らは、AlGaAs系半導体レーザ素子とInGaAlP系半導体レーザ素子とを備えるモノリシック型半導体レーザの出射端面部に、低反射率の出射端面コーティング膜を、反対面に高反射率の出射端面コーティング膜を設け、高温(たとえば70℃)で高出力(たとえばAlGaAs系半導体レーザ素子250mW、InGaAlP系半導体レーザ素子240mW)の加速寿命試験を実施したところ、両素子とも10〜100時間という短い時間で破壊が生じた。そこで、その原因について鋭意検討を重ねて調べた結果、光導波層の実効屈折率よりも遥かに小さい屈折率を有する材料からなる出射端面コーティング膜が直接出射端面部に接しているため、出射端面部での光密度が大きくなってしまうことに起因していることを見出した。
すなわち、出射端面部の反射率を低減させるには、一般的に光導波層の実効屈折率よりも遥かに小さい屈折率を有する材料を出射端面コーティング膜とすることが好ましい。そして、このような膜を用いると半導体積層部内の光密度分布は出射端面部方向にかけて確かに小さくなっていくが、光導波層の実効屈折率と出射端面コーティング膜の屈折率が相違することから生じる位相の関係により、ちょうど出射端面部で光密度が大きくなり、出射端面部で設計している値にまで光密度が低下していない。そのため、加速寿命試験を行うと、出射端面部での光密度が大きいことに起因し、出射端面部での劣化が激しく、時間とともに急激にCOD破壊出力が低下してしまい破壊に至るということを見出した。
そこで、出射端面部での光密度を低減するための検討をした結果、出射端面部と出射端面コーティング膜との間で、出射端面部に接するように光導波層の実効屈折率よりも大きな屈折率を有する材料の誘電体膜を挿入することにより、従来の低反射率の出射端面コーティング膜を用いても、屈折率の相違から生じる出射端面部での光密度が大きくなることを防止し、加速寿命試験によるCOD破壊出力の急激な低下を防止し得ることを見出した。
そこで、本発明のモノリシック型半導体レーザは、半導体基板上に積層される第1波長用の活性層を含む半導体積層部を有する第1波長用の半導体レーザ素子と、前記半導体基板上の前記第1波長用の半導体レーザ素子が形成されていない領域に積層される第2波長用の活性層を含む半導体積層部とを有する第2波長用の半導体レーザ素子と、前記第1および第2波長用の活性層で発生する光を出射する出射端面部と、該出射端面部に出射端面コーティング膜とを備えるモノリシック型半導体レーザにおいて、前記出射端面コーティング膜がAl23、SiO2、TiO2およびZrO2よりなる群から選ばれる少なくとも1種の材料からなり反射率が20%以下とされ、かつ、前記出射端面部と前記出射端面コーティング膜との間で該出射端面部に接するように、前記第1および第2波長用の光導波層の実効屈折率よりも大きな屈折率を有する誘電体膜を備えることを特徴とする。
ここに、実効屈折率とは、活性層・クラッド層からなる光導波層において、導波光が平均的に感じる屈折率をいう。
さらに、検討を進めた結果、誘電体膜として半導体積層部の実効屈折率よりも大きな屈折率を有する材料を用いた場合であっても、エージング試験によるCOD破壊出力の急激な低下は免れるものの、初期のCOD破壊出力が従来よりも低下する場合があることが判明した。さらに本発明者は鋭意検討を加え、かかる原因が誘電体膜によっては活性層で発生した光を誘電体膜で吸収し、出射端面部での温度上昇を引き起こすことに起因していること、およびこれを回避するために誘電体膜を薄膜化することで吸収される度合いを小さくし初期のCOD破壊出力の低下を防止し得ることを見出した。
そこで、本発明のモノリシック型半導体レーザは、さらに該誘電体の膜厚が10Å以上40Å以下であることを特徴とする。具体的には、前記活性層で発生する光の発振波長が600nmから800nmの間で、かつ前記誘電体膜が屈折率4以上のアモルファスシリコン膜からなる。
さらに、本発明のモノリシック型半導体レーザは、前記出射端面コーティング膜がAl23、SiO2、TiO2、ZrO2のいずれか2種以上の材料のうちから2種選択され、屈折率の大きい材料からなる層と屈折率の小さい材料からなる層とが少なくとも1層交互に積層されてなることを特徴とする。
ここに、屈折率の大きい材料からなる層とは、誘電体膜に直接接し出射端面コーティング膜の一部を形成する層および当該層と同一材料からなる層をいい、屈折率の小さい材料からなる層とは、屈折率の大きい材料からなる層の屈折率と比較して屈折率が小さい材料からなる層をいう。
本発明によれば、半導体積層部の実効屈折率よりも大きい誘電体膜を出射端面部と出射端面コーティング膜との間で、出射端面部に接するように設けているため、出射端面部での反射率を低減するために出射端面コーティング膜として半導体積層部の実効屈折率よりも小さい屈折率を有する材料を用いた場合でも、出射端面部での光密度は小さい値をとることになり、出射端面部での光密度増大を防止し、高温エージング試験によるCOD破壊に至るまでの時間的劣化度合いを緩やかにでき、非常に長時間高出力動作を行っても破損することが無く、高出力かつ信頼性の高いモノリシック型半導体レーザが得られる。
また、誘電体膜の膜厚が10Å以上40Å以下とすることにより、活性層で発生した光の一部を誘電体膜で吸収する場合であっても、初期のCOD破壊出力の低下を抑えることができ、信頼性の高いモノリシック型半導体レーザが得られる。
さらに、600nmから800nmの間で、かつ前記誘電体膜が屈折率4以上のアモルファスシリコン膜を使用することにより、誘電体膜での吸収をさらに低減することができ、より初期のCOD破壊出力の低下を抑えることができ、信頼性の高いモノリシック型半導体レーザが得られる。
さらに、出射端面コーティング膜として、屈折率の大きい材料からなる層と屈折率の小さい材料からなる層とが少なくとも1対交互に積層されることによって、第1波長用および第2波長用の半導体レーザ素子に対していずれも反射率をより小さくすることができ、より高出力化を図ったモノリシック型半導体レーザが得られる。
つぎに、図面を参照しながら本発明の半導体レーザについて説明をする。本発明によるモノリシック型半導体レーザは、たとえば図1にその一実施形態のチップの斜視説明図および断面説明図が示されるように、半導体基板1上に第1波長(たとえば赤外光)用の活性層22aを含む半導体積層部2aを有するAlGaAs系半導体レーザ素子10a(以下、赤外素子という)と、半導体基板1上の赤外素子が形成されていない領域に、第2波長(たとえば赤色光)用の活性層22bを含む半導体積層部2bを有するInGaAlP系半導体レーザ素子10b(以下、赤色素子という)が同一の半導体基板面1上に形成され、活性層22a、22bからの光を出射する出射端面部3に接するように半導体積層部2aおよび2bの実効屈折率よりも大きな屈折率を有する誘電体膜4が形成され、誘電体膜4上にはAl23、SiO2、TiO2、ZrO2のいずれか1種以上の材料からなり反射率が20%以下となるような出射端面コーティング膜5を備えている。
第1波長用および第2波長用の半導体レーザ素子10a、10bを構成する半導体積層部2a、2bとしては、赤外光である780nm波長帯としては、主としてAlGaAs系化合物半導体が、赤色光である650nm波長帯としては、主としてInGaAlP系化合物半導体が一般的に用いられる。これらの半導体材料を積層するための半導体基板1としては、GaAs基板が一般的に用いられるが、他の化合物半導体でも構わない。また、半導体基板1の導電形は、半導体レーザを組み込むセットとの関係で、基板側に望まれる導電形のn形またはp形のいずれかが用いられ、この基板1の導電形にしたがって、積層される半導体層の導電形も定まる。以下の具体例では、半導体基板1がn形の例で説明する。
半導体積層部2a、2bは、図1(b)に示されるように、それぞれn形クラッド層21a、21b、ノンドープまたはn形もしくはp形の活性層22a、22bおよびp形のクラッド層23a、23b、リッジ状にエッチングされたp形クラッド層23a、23bのリッジ部の両側に埋め込まれたn形の電流狭窄層24a、24b、n形電流狭窄層24a、24bならびにp形クラッド層23a、23b上に積層されるp形コンタクト層25a、25bとからなっている。なお、図1(b)は図1(a)の半導体積層部2a、2bを出射方向からみた断面説明図である。
具体的には、n形GaAs基板1を、たとえばMOCVD(有機金属化学気相成長)装置内に入れ、反応ガスのトリエチルガリウム(TEG)もしくはトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMIn)、ホスフィン(PH3)、アルシン(AsH3)および半導体層の導電形に応じて、n形ドーパントガスとしてのSiH4またはp形ドーパントとしてジメチル亜鉛(DMZn)、ビスメチルシクロペンタジエニルベリリウム((MeCp)2Be)、シクロペンタジエニルマグネシウム(Cp2Mg)などの必要な材料をキャリアガスの水素(H2)と共に導入し、500〜700℃程度で各半導体層をエピタキシャル成長することにより各半導体層の積層構造が得られる。
赤外素子用のn形クラッド層21aは、たとえばAlx1Ga1-x1As(0.4≦x1≦0.7、たとえばx1=0.5)からなり、1〜10μm程度に形成され、活性層22aは、Aly1Ga1-y1As(0.05≦y1≦0.2、たとえばy1=0.15)のバルク構造またはAly2Ga1-y2As(0.04≦y2≦0.2、たとえばy2=0.1)からなるウェル層とAly3Ga1-y3As(0.1≦y3≦0.5、y2<y3、たとえばy3=0.3)からなるバリア層との単一もしくは多重量子井戸(SQWまたはMQW)構造により、全体で0.04〜0.2μm程度に形成され、p形クラッド層23aは、Alx2Ga1-x2As(0.4≦x2≦0.7、たとえばx2=0.5)からなり0.1〜3.5μm程度に形成されている。なお、活性層とクラッド層との間に光ガイド層を設ける構造や、p形クラッド層内に、エッチングストップ層を設ける構造など、他の半導体層がいずれかの層間に介在されてもよい。また、p形クラッド層上にp形GaAsなどからなるキャップ層が設けられてもよい。そしてp形クラッド層23の両側がエッチングされてリッジ部が形成され、その両側に、たとえばAlzGa1-zAs(0.5≦z≦0.8、たとえばz=0.6)からなるn形電流狭窄層24aがリッジ部の横を埋めるように形成される。そして、p形クラッド層23aおよびn形電流狭窄層24a上に、たとえばp形GaAs層25aなどからなるコンタクト層25が1〜20μm程度に形成されていることにより、赤外素子の半導体積層部2が形成されている。
また、赤色素子の半導体積層部2bは、n形クラッド層21bおよびp形クラッド層23bとして、In0.5(Ga1-uAlu0.5P(0.45≦u≦0.8、たとえばu=0.7)を、活性層22bとして、In0.5(Ga1-v1Alv10.5P(0≦v1≦0.25、たとえばv1=0)/In0.5(Ga1-v2Alv20.5P(0.3≦v2≦0.7、たとえばv2=0.4)による多重量子井戸(MQW)構造などで、また、電流狭窄層24bとして、In0.5(Ga1-wAl0.5P(0.6≦w≦1.0、たとえばu=0.75)またはGaAsなどを用いることにより形成する以外は、赤外素子10aの半導体積層部2aと基本的に同様に構成することができ、特性に応じて適宜膜厚、組成などが変更される。ここにInと(Ga1-xAlx)の混晶割合の0.5は、GaAsと格子整合する割合であることを意味する。
なお、リッジ部を形成するためのエッチングは、たとえばCVD法などにより、SiO2またはSiNxなどからなるマスクを形成し、たとえばドライエッチングやウエットエッチングなどにより、p形クラッド層23a、23bをエッチングすることにより、図に示されるようにリッジ部が帯状(紙面と垂直方向)に形成される。その他、同一の半導体基板に半導体レーザ素子10a、10bを形成するモノリシック化のプロセスは公知の方法で行うことができる。
半導体積層部の構成は、リッジ構造で説明したが、電流狭窄層をクラッド層の間に積層して電流注入領域とするストライプ溝をエッチングにより除去するSAS構造など、他の構造でも同様であることは言うまでもない。
出射端面部3は活性層22で発生した光を出射する部分であり、一般的に結晶成長面および光の導波路を形成するリッジストライプ面と垂直面に形成され、劈開などにより形成される。なお、出射端面部は必ずしも前述のように劈開面に形成される必要はない。
具体的には、半導体積層部2a、2bを形成後、研磨により半導体基板1が薄くされた後、コンタクト層25a、25bの表面に、Ti/Auなどからなるp側電極7a、7bが、半導体基板1の裏面には、Au-Ge/Niなどからなるn側電極8がそれぞれ形成され、その後、ウェハがリッジストライプの延びる方向と結晶成長面とに垂直方向にバー状に劈開され、劈開面に出射端面部3が形成される。
そして、出射端面部3にスパッタなどにより誘電体膜4および出射端面コーティング膜5が形成される。さらに出射端面部の反対面には、高反射膜の端面コーティング膜6が形成される。
誘電体膜4は、出射端面部3と出射端面コーティング膜5の間で出射端面部3に接するように、半導体積層部2aおよび2bの実効屈折率よりも大きな屈折率を有する材料により形成される。
つぎに、この誘電体膜4を半導体積層部2aおよび2bの実効屈折率より大きな材料で出射端面部3に接触するように形成しなければいけない理由について詳説する。前述のように、本発明者は、加速寿命試験により短時間で破損しやすいという現象を改善するため、鋭意検討を重ねた。その結果、半導体積層部と出射端面コーティング膜との間の屈折率の違いにより、出射端面部で光密度が大きくなり、加速寿命試験でCOD破壊出力が急激に低下し、COD破壊出力に短い時間で到達することで破損を生じることが原因であることを見出した。すなわち、たとえば赤外素子では、半導体積層部2aの半導体材料として主としてAlGaAs系化合物が用いられ、光導波層の実効屈折率は3.9程度であるのに対して、たとえば出射端面コーティング膜5を形成するAl23の屈折率は1.6程度と、光導波層の実効屈折率よりも遥かに小さい値となっている。このような構成では、出射端面部で光密度が高くなり、加速寿命試験において出射端面部での光吸収に伴う発熱、バンドギャップエネルギーの収縮という繰り返しが活発となり、COD破壊出力が時間と共に急激に低下していく。また、同様に赤色素子でも光導波層の実効屈折率は、4.0程度であり、同様の問題が生じる。
この光密度が出射端面部で大きくなり、COD破壊出力の急激に低下する現象について、従来の半導体レーザでは、半導体積層部の素子構造を変更し初期COD破壊出力をあげることで破壊までの時間を延ばすことができたので、COD破壊出力の低下度合いが時間に対して急峻であっても実用上あまり問題になっていなかった。しかし、更に高出力を目指す上では、素子の構造を変更することだけでは限界があり、また、従来構造の半導体レーザでは、出力をあげて寿命試験を行うと寿命が20時間程度となってしまうため、COD破壊出力の時間と共に急激に低下していく現象をなんらかの方法で防止することが必要となる。そして、本発明のように半導体積層部の屈折率よりも大きい誘電体膜を出射端面部に接するように設ける構成とすることで、出射端面部での光密度を小さくすることができる。これにより、加速寿命試験を行ってもCOD破壊出力の低下度合いが従来に比べて緩やかとなり、長寿命化を図ることができ、高信頼性を確保し得ることとなる。
誘電体膜4の厚さは、200Å以下であることが出射端面部での反射率への影響を避けるために好ましい。また、10Åを下回るとスパッタにおいて安定した成膜をなし得ないため、10Å以上であることが好ましい。さらに、活性層22で発生する光を吸収する材料を誘電体膜に用いる場合(たとえばアモルファスシリコン膜を用いる場合)には、その吸収を減らすため、後述のように膜厚が40Å以下とすることがより好ましい。さらに、アモルファスシリコン膜は成膜条件により大きく屈折率が変わるため、より吸収係数が小さくなる屈折率4以上の膜とすることがより初期のCOD破壊出力の低下を抑える上でより好ましい。
また、活性層で発生する光の発振波長が600nmから800nmの間では、光導波層の実効屈折率が3.9〜4.0程度であるので、このような範囲では誘電体膜として屈折率4以上のアモルファスシリコン膜を用いることが確実に光導波層の実効屈折率よりも大きい実効屈折率の誘電体膜となるため、本発明の効果を享受する上でさらに好ましい。
本発明者らは、前述の図1に示される構造で、誘電体膜4にアモルファスシリコン膜を用い、アモルファスシリコン膜の厚さのみを種々変化させて、その際の赤外素子の初期のCOD破壊出力を調べた。その結果が図2に示されている。なお、各厚さに対するCOD破壊出力の値は、それぞれの厚さで、サンプル10個ずつでの平均値であり、測定条件は25℃環境下において、パルス幅75nsec、50%デューティのパルス駆動である。また、初期COD破壊出力とは、半導体レーザを製造後、長期の通電試験をする前段階で測定したCOD破壊出力をいう。図2から明らかなように、アモルファスシリコン膜の厚さを40Åより厚くすると、アモルファスシリコン膜を挿入しない状態よりも初期のCOD破壊出力が低下していくことが分る。これはアモルファスシリコン膜の屈折率が半導体積層部の実効屈折率よりも大きいが、活性層で発生する光をアモルファスシリコン膜で一部吸収するため、膜厚が厚くなるにつれて吸収が多くなり、初期のCOD破壊出力が低下していくと考えられる。また、特に図示していないが、赤色素子でも同様の調査を行ったところ、赤外素子とCOD破壊出力の値自体は異なるが、40Åよりも大きくすると初期COD破壊出力が低下するという同様の結論が得られた。
以上、検討結果を纏めると、結局、誘電体膜の厚さを40Å以下とすることで、従来のCOD破壊出力を維持できることになる。そして、このような構造のモノリシック型半導体レーザで加速寿命試験を行い、500時間以上の長時間行っても両素子とも破損せず、推定寿命も30000時間となり十分に実用化し得ることを確認した。このように、屈折率の大きい膜を用いた場合であっても、活性層で発生する光を吸収する膜であれば、高温エージングによる急激なCOD破壊出力の低下は防げるものの、初期のCOD破壊出力自体が低下してしまうことがあるのに対して、本発明のように誘電体膜を薄膜化することで、かかる問題も生じなくなる。
出射端面コーティング膜5は誘電体膜4上に設けられ、出射端面部での反射率が20%以下になるようにAl23、SiO2、TiO2、ZrO2のいずれか1種以上の材料からなる。それぞれの膜厚も設定する反射率に合わせて設計する。
また、出射端面コーティング膜5として、前述の材料のうちから2種選択され、屈折率の大きい材料からなる層と屈折率の小さい材料からなる層とが少なくとも1対以上交互に積層されてなることが、赤外および赤色の両素子ともより低反射率となり高出力化し得る点で好ましい。ここに、屈折率の大きい材料からなる層とは、誘電体膜に直接接し出射端面コーティング膜の一部を形成する層および当該層と同一材料からなる層をいい、屈折率の小さい材料からなる層とは、屈折率の大きい材料からなる層の屈折率と比較して屈折率が小さい材料からなる層をいう。
すなわち、モノリシック型半導体レーザでは、赤外素子10aと赤色素子10bが同一半導体基板1上に形成されており、出射端面部3が同一面上に形成され、出射端面部3上に形成される出射端面コーティング膜4も共通となる。そして、出射端面コーティング膜は活性層で発生する光の波長に対して反射率依存性を有しており、Al23、SiO2などからなる単層の材料を用いると、反射率の波長依存性により、一方の素子に対して低反射率とし得ても、他方の素子では低反射率とすることが難しく、両素子ともより低反射率(10%以下)の膜を構成することが事実上困難であった。
しかし、Al23、SiO2、TiO2、ZrO2のうちから2種選択し、たとえば図3(b)に示されるように、誘電体膜に接するように屈折率が大きい材料からなる層51を設け、その層51に接するように屈折率が小さい材料からなる層52を形成し、かかる両層を交互に複数対とした場合、600〜800nmの間に反射率曲線の極大点を設ける構成とすることができ、それにより650nm、790nmにおいても、より低反射率(10%以下)を実現することができるようになる。
具体的には、図1に示されるモノリシック型半導体レーザの出射端面コーティング膜5を単層とした場合(図3(a)のA)と、複数層で構成とした場合(図3(a)のB)の反射率の波長依存性を比較した図3(a)を用いて説明する。Al23単層(膜厚380Å程度)とした場合(A)、図3(a)に示されるように600〜800nmの間で低反射率を実現するためには、下に凸型となる曲線となるような膜厚設定が必要となる。また、戻り光との関係で反射率の下限は6%以下とすることができない。そうすると一方の波長に対しできる限り反射率を低減(6%に近づける)しようとすると、他方の反射率は大きくなることになり、結局、650nm付近では6%、790nm付近では12%程度となり、赤外素子に対して低反射膜を構成することが困難となる。
しかし、図3(b)に示されるように出射端面コーティング膜5を、屈折率が大きい材料からなる層51(実験例では屈折率が1.6で1200Å程度のAl23)を設け、その層51に接するように屈折率が小さい材料からなる層52(実験例では屈折率が1.4で1400Å程度のSiO2)を形成し、かかる両層を交互に複数対(実験例では2対)とした場合(B)、図3(a)に示されるように600〜800nmの間(具体的には720nm付近)に反射率曲線の極大点を設ける構成とすることができ、それにより650nm、790nmにおいても反射率は10%以下となり両素子での低反射率を実現することができる。
なお、出射端面と反対端面の端面コーティング膜6には、反射率が80〜90%程度になるように既知の材料(Al23やSiO2などとアモルファスシリコン、TiOx、ZrOxなどが交互に積層された層など)で、それぞれの膜厚も反射率に合わせて設計する。
具体的に誘電体膜4および出射端面コーティング膜5などを形成するためには、たとえばバー状に形成された素子群を、アモルファスシリコン、Al23、SiO2ターゲットなどが設けられているスパッタ装置内に入れ、Arガスや水素ガスなどを導入しスパッタにより、誘電体膜4として10〜40Å(好ましくは、20Å程度)のアモルファスシリコン膜を、端面コーティング膜5として1000〜1400Å程度(好ましくは1200Å程度)のAl23膜51と1200〜1600Å程度(好ましくは1400Å程度)のSiO2膜52を交互に2層連続して形成することで、誘電体膜4および出射端面コーティング膜5が得られる。この際、アモルファスシリコン膜は薄膜であるので、回転式のスパッタ装置を用いるような場合には高速回転により形成することが面内分布をなくす上で好ましい。またスパッタ時の圧力、RFパワーなどを最適化し、屈折率が4以上となるように適宜調整する。
引き続き、一度スパッタ装置から取り出し、バー状体の出射端面と反対面を上向きとして再度スパッタ装置に入れ、同様の方法により、たとえば、1000〜1500Å程度のSiO2膜と、800〜1200Å程度のTiOx膜を交互に2〜3対積層することにより端面コーティング膜6が形成される。その後、スパッタ装置から取り出し、バー状からダイシングによりチップ化することで、本発明の半導体レーザが得られる。
本発明は、CD、DVD、DVD−ROM、データ書き込み可能なCD−R/RW、DVD−R/RAMなどのピックアップ用光源に用いることができ、パーソナルコンピュータなどの電機機器に用いることができる。
本発明のモノリシック型半導体レーザの一実施形態を示す斜視および断面説明図である。 本発明のモノリシック型半導体レーザのアモルファスシリコン膜の膜厚に対する赤外素子のCOD破壊出力依存性を示す図である。 本発明のモノリシック型半導体レーザの出射端面コーティング膜材料を変更したときの反射率の波長依存性を表す図および出射端面部の拡大説明図である。 従来の半導体レーザの斜視説明図である。
符号の説明
2a 第1波長用の半導体積層部
2b 第2波長用の半導体積層部
3 出射端面部
4 誘電体膜
5 出射端面コーティング膜

Claims (4)

  1. 半導体基板上に積層される第1波長用の活性層を含む半導体積層部を有する第1波長用の半導体レーザ素子と、前記半導体基板上の前記第1波長用の半導体レーザ素子が形成されていない領域に積層される第2波長用の活性層を含む半導体積層部とを有する第2波長用の半導体レーザ素子と、前記第1および第2波長用の活性層で発生する光を出射する出射端面部と、該出射端面部に出射端面コーティング膜とを備えるモノリシック型半導体レーザにおいて、
    前記出射端面コーティング膜がAl23、SiO2、TiO2およびZrO2よりなる群から選ばれる少なくとも1種の材料からなり反射率が20%以下とされ、かつ、前記出射端面部と前記出射端面コーティング膜との間で該出射端面部に接するように、前記第1および第2波長用の光導波層の実効屈折率よりも大きな屈折率を有する誘電体膜を備えることを特徴とするモノリシック型半導体レーザ。
  2. 前記誘電体膜の膜厚が10Å以上40Å以下であることを特徴とする請求項1記載のモノリシック型半導体レーザ。
  3. 前記活性層で発生する光の発光波長が600nmから800nmの間で、かつ前記誘電体膜が屈折率4以上のアモルファスシリコン膜からなることを特徴とする請求項2記載のモノリシック型半導体レーザ。
  4. 前記出射端面コーティング膜が、請求項1記載の材料のうちから2種選択され、屈折率の大きい材料からなる層と屈折率の小さい材料からなる層とが少なくとも交互に1対以上積層されてなることを特徴とする請求項1乃至3のいずれか1項記載のモノリシック型半導体レーザ。
JP2005265073A 2005-09-13 2005-09-13 モノリシック型半導体レーザ Pending JP2007081017A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265073A JP2007081017A (ja) 2005-09-13 2005-09-13 モノリシック型半導体レーザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265073A JP2007081017A (ja) 2005-09-13 2005-09-13 モノリシック型半導体レーザ

Publications (1)

Publication Number Publication Date
JP2007081017A true JP2007081017A (ja) 2007-03-29

Family

ID=37941017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265073A Pending JP2007081017A (ja) 2005-09-13 2005-09-13 モノリシック型半導体レーザ

Country Status (1)

Country Link
JP (1) JP2007081017A (ja)

Similar Documents

Publication Publication Date Title
JP4451371B2 (ja) 窒化物半導体レーザ素子
JP2007103814A (ja) 窒化物半導体発光素子およびその製造方法
JP2007027260A (ja) 半導体素子およびその製造方法
JP2010068007A (ja) 窒化物半導体レーザ素子
JP2011096856A (ja) 半導体レーザ
JP2006228826A (ja) 半導体レーザ
JP2007214221A (ja) 窒化物半導体レーザ素子
US7852893B2 (en) Semiconductor laser device
JP2006351966A (ja) 多波長半導体レーザ素子
TWI360273B (en) Semiconductor laser
JP2007324582A (ja) 集積型半導体発光装置およびその製造方法
US8077753B2 (en) Semiconductor laser device
JP4799339B2 (ja) 窒化物半導体発光素子
JP2006332195A (ja) 半導体レーザ素子
JP5431441B2 (ja) 窒化物半導体発光素子
JP5233987B2 (ja) 窒化物半導体レーザ
JP2008205231A (ja) 窒化物系半導体発光素子及びその製造方法
JP2010034221A (ja) 端面発光型半導体レーザおよびその製造方法
JP2000216476A (ja) 半導体発光素子
JP4599432B2 (ja) 半導体レーザ及びその製造方法
JP2007081017A (ja) モノリシック型半導体レーザ
JP4249920B2 (ja) 端面窓型半導体レーザ装置およびその製造方法
JP4091529B2 (ja) 半導体レーザ
JPH10303493A (ja) 窒化物半導体レーザ素子
JP2007081016A (ja) 半導体レーザ