JP2007080707A - Lighting system and image display device using it - Google Patents
Lighting system and image display device using it Download PDFInfo
- Publication number
- JP2007080707A JP2007080707A JP2005267976A JP2005267976A JP2007080707A JP 2007080707 A JP2007080707 A JP 2007080707A JP 2005267976 A JP2005267976 A JP 2005267976A JP 2005267976 A JP2005267976 A JP 2005267976A JP 2007080707 A JP2007080707 A JP 2007080707A
- Authority
- JP
- Japan
- Prior art keywords
- light
- axis
- linear
- light source
- linear light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Abstract
Description
本発明は、複数の線状光源と反射板とを有する照明装置、前記反射板、及びこれを用いた画像表示装置に関するものであり、特に、大型で高輝度と輝度均一性とが要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる直下方式の照明装置、この照明装置が備える反射板、及びこの照明装置を用いた画像表示装置に関するものである。 The present invention relates to an illuminating device having a plurality of linear light sources and a reflecting plate, the reflecting plate, and an image display device using the reflecting plate, and particularly requires a large size, high luminance, and luminance uniformity. The present invention relates to a direct lighting system suitably used for lighting signage devices, liquid crystal display devices, and the like, a reflector provided in the lighting device, and an image display device using the lighting device.
画像表示装置用の照明装置を例にすると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を光拡散板で均一化する直下方式が挙げられる。 Taking an illumination device for an image display device as an example, an edge light system in which light from a light source disposed on the side edge of the light guide plate is guided in the front direction by the light guide plate and made uniform by a diffusion sheet, and a light source on the back side of the illumination surface And a direct system in which light is made uniform by a light diffusion plate.
直下方式は、光源を装置の背面に備えることから厚さが厚くなる傾向があり、このため、携帯電話やモバイルパソコンなどの薄さを要求される分野では、光源を側端に備えることで有利となるエッジライト方式が主流であった。 The direct type has a tendency to increase the thickness because the light source is provided on the back surface of the apparatus. For this reason, it is advantageous to provide the light source at the side edge in a field where thinness is required such as a mobile phone or a mobile personal computer. The edge-light method is the mainstream.
一方で、近年、テレビやパソコンモニターなどの市場を中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、充分な輝度を得ることができない。 On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. In particular, with the increase in the size of the display, the edge light method reduces the ratio of the length of the peripheral portion where the light source can be arranged to the display area, and the amount of light is insufficient, so that sufficient luminance cannot be obtained.
そこで、面光源上に複数の輝度向上のためのフィルムを配置して、光の利用効率を向上させる方法が提案されている(例えば、特許文献1参照)。 Therefore, a method has been proposed in which a plurality of films for improving luminance are arranged on a surface light source to improve the light use efficiency (see, for example, Patent Document 1).
しかしながら、輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。また、エッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このように、エッジライト方式では、近年のディスプレイの大型化、高輝度化のといった市場の要求に応えることは困難となってきた。 However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has been difficult to meet market demands such as an increase in display size and brightness in recent years.
そこで、複数の光源を用いる直下方式が注目されている。この方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち発光面から放射される光束の割合が高く、かつ、光源の数を自由に増加させることができる。 Therefore, a direct method using a plurality of light sources is attracting attention. In this method, the utilization efficiency of light emitted from the light source, that is, the ratio of the light flux emitted from the light emitting surface to the light flux emitted from the light source is high, and the number of light sources can be increased freely.
すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下や輝度均一性の低下がない。さらに、光を正面に向ける導光板が不要となるため、軽量化を図ることができる。 That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness or brightness uniformity due to an increase in size. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.
また、同様の照明装置の別の例として、例えば照明看板などでは、構成が単純であり、輝度向上のためのフィルムなどを用いることなく、容易に高輝度が得られることから、複数の光源を用いる直下方式が主流である。 As another example of a similar lighting device, for example, an illumination signboard has a simple configuration, and high brightness can be easily obtained without using a film for improving brightness. The direct method used is the mainstream.
これら直下方式の照明装置の代表的な構成例としては、
x軸と該x軸に垂直なy軸とに平行なxy平面に垂直なz軸と平行な一方向を主たる出光方向である正面方向とし、複数の光源と、反射板と、前記光源および前記反射板からの光を出光側に透過する光拡散板とを少なくとも備えており、前記反射板、光源、光拡散板が、前記z軸に沿って出光側に向かって反射板、光源、光拡散板の順に配置され、前記光源は、前記xy平面と平行な1つの仮想平面内に、規則的に配列しており、前記反射板および前記光拡散板の主面の外周は前記xy平面に平行な矩形である構成が知られている。この構成では拡散板は線状光源の輝度ムラを解消する機能を有し、反射板は目的の出光方向と逆に向いて進む光を出光側の拡散板に戻す機能を有する。
As a typical configuration example of these direct illumination devices,
One direction parallel to the z-axis perpendicular to the xy plane parallel to the x-axis and the y-axis perpendicular to the x-axis is a front direction that is the main light output direction, a plurality of light sources, a reflector, the light source, and the light source A light diffusing plate that transmits light from the reflecting plate to the light emitting side, and the reflecting plate, the light source, and the light diffusing plate are directed toward the light emitting side along the z axis. The light sources are arranged in the order of the plates, the light sources are regularly arranged in one virtual plane parallel to the xy plane, and the outer peripheries of the main surfaces of the reflector and the light diffusing plate are parallel to the xy plane. A configuration having a rectangular shape is known. In this configuration, the diffusion plate has a function of eliminating luminance unevenness of the linear light source, and the reflection plate has a function of returning the light traveling in the direction opposite to the target light emission direction to the light emission side diffusion plate.
光源としては、LEDなどの点状光源に比べて輝度ムラが少なく、光源点数も少なく、配線も容易な線状光源が多く用いられて、これらは平行かつ等間隔に前記x軸またはy軸に沿って配列される。 As a light source, a linear light source with less luminance unevenness, a small number of light source points, and easy wiring is used as compared with a point light source such as an LED, and these light sources are parallel and equally spaced on the x-axis or y-axis. Arranged along.
一方、さらに、光源本数の低減、更なる高輝度化、視野角特性の調節などが求められており、光源の光をいかに有効に活用するかが課題となっている。 On the other hand, further reduction of the number of light sources, further increase in brightness, adjustment of viewing angle characteristics, and the like are required, and how to effectively use light from the light sources is a problem.
そこで、光拡散材を含有した光拡散板について種々検討されている。この方式では、たとえば、背面側に反射板を配置した光源の前面側に光拡散板を設置する。良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機微粒子や架橋有機微粒子を光拡散材として配合した光拡散板(例えば、特許文献2参照)が検討されている。 Accordingly, various studies have been made on light diffusion plates containing a light diffusion material. In this method, for example, a light diffusing plate is installed on the front side of a light source in which a reflecting plate is arranged on the back side. In order to obtain good diffusibility and light utilization efficiency, light containing inorganic fine particles or crosslinked organic fine particles as a light diffusing material in base resin such as methacrylic resin, polycarbonate resin, styrene resin, vinyl chloride resin, etc. A diffusion plate (for example, see Patent Document 2) has been studied.
しかし、これら光拡散材を用いる方法では光拡散材への光の吸収や、不要な方向への光の拡散のため充分な光の利用効率が得られない。 However, methods using these light diffusing materials cannot obtain sufficient light use efficiency due to the absorption of light into the light diffusing material and the diffusion of light in unnecessary directions.
そこでエッジライト方式同様、前記輝度向上フィルムを用いることで正面輝度を高める方法が用いられる。これらは出光を正面方向に集光して、通常照明装置として求められる正面輝度を高めることで、光の利用効率を高める。複数の輝度向上フィルムを合わせて用いることで正面輝度を更に高めることができ、このとき角度を変えて配置することで例えばx軸とy軸の各方向の集光が可能となるが、エッジライト方式同様、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。 Therefore, as with the edge light method, a method of increasing the front luminance by using the luminance enhancement film is used. These concentrate the emitted light in the front direction and increase the front luminance normally required as a lighting device, thereby increasing the light utilization efficiency. By using a plurality of brightness enhancement films in combination, the front brightness can be further increased. At this time, by arranging the angles at different angles, for example, light can be condensed in each of the x-axis and y-axis directions. Like the method, it leads to an increase in cost and the number of films to be used increases, which is not necessarily advantageous from the viewpoint of productivity and thinning.
一方、反射板に線状光源と平行な独特の形状をもたせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、この場合、反射板の形状と線状光源との正確な位置合わせが必要である。このことは位置合わせによる生産効率の低下を招くだけでなく、光源配置が設計変更や仕様の違いによって異なる場合に反射板の形状も変更する必要があり、好ましくない。また大判の賦形シートから所望のサイズを切り出すというような生産性を高める方法においても裁断位置の限定や収率の低下につながり、好ましくない。 On the other hand, there has also been proposed a method of erasing the lamp image by giving the reflector a unique shape parallel to the linear light source (see, for example, Patent Document 3). However, in this case, accurate alignment between the shape of the reflector and the linear light source is necessary. This not only causes a decrease in production efficiency due to the alignment, but also requires a change in the shape of the reflector when the light source arrangement varies depending on the design change or specification difference, which is not preferable. Further, even in a method for improving productivity such as cutting out a desired size from a large shaped sheet, it is not preferable because it leads to limitation of a cutting position and a decrease in yield.
そこで、本発明は、一方向を主たる出光方向とする、輝度ムラがない高品位な照明光を提供でき、正面輝度を高めたり視野角を調整したりすることができ、かつ、光利用効率が高く、フィルム構成を単純化できる、テレビや照明看板など多くの用途に有用な、線状光源を用いる直下方式の照明装置と、この照明装置で用いることができる反射板、およびこの照明装置を用いた高品位で高輝度な画像表示装置を提供することを目的とする。また光拡散剤の使用量を大幅に削減又は回避することも可能であることを別の目的とする。さらに部材と線状光源の位置合わせが実質不要なため、生産速度や収率を低下させることもなく、設計変更や仕様の違いにも問題なく対応できることを別の目的とする。 Therefore, the present invention can provide high-quality illumination light that has one direction as the main light emission direction and has no luminance unevenness, can increase the front luminance and adjust the viewing angle, and can use light efficiently. Uses a direct illumination system that uses a linear light source, a reflector that can be used in the illumination apparatus, and a lighting apparatus that can be used in many applications such as televisions and lighting signs, and that is simple and can simplify the film configuration. An object of the present invention is to provide a high-quality and high-luminance image display device. Another object is that the amount of the light diffusing agent used can be significantly reduced or avoided. Further, since the alignment of the member and the linear light source is substantially unnecessary, another object is to cope with design changes and differences in specifications without any problem without lowering the production speed and yield.
本発明者は、線状光源の輝度ムラ解消と出光方向の制御によって、正面輝度を高めたり視野角を調整したりすることができ、さらに品位も高い、照明装置や画像表示装置を提供できると考えた。またその手段として、光拡散板と反射板の機能を用いることで、輝度向上フィルムなどの光学フィルムの使用を削減できると考えた。 The present inventor can provide an illumination device and an image display device that can increase the front luminance and adjust the viewing angle by eliminating the luminance unevenness of the linear light source and controlling the light output direction, and can further improve the quality. Thought. Moreover, it was thought that the use of optical films, such as a brightness enhancement film, can be reduced by using the function of a light diffusing plate and a reflecting plate as the means.
一方、光拡散板は光の利用効率を高めることを別の目的とする。これには光拡散板の全光線透過率は高めることが重要であると考えた。しかしながら光拡散板の全光線透過率は高めることは輝度ムラ解消の課題も高めることにもつながる。すなわち反射板での反射なしで出光面から出射するいう光が多くなるため、反射板の機能で輝度ムラを解消することには限界がある。そこで線状光源の輝度ムラ解消と出光方向の制御という二つの大きな課題のうち、輝度ムラの解消は主として光拡散板の機能によって解決することとした。 On the other hand, another object of the light diffusing plate is to increase the light use efficiency. For this purpose, it was considered important to increase the total light transmittance of the light diffusion plate. However, increasing the total light transmittance of the light diffusing plate also leads to an increase in luminance unevenness. In other words, there is a limit in eliminating luminance unevenness by the function of the reflecting plate because more light is emitted from the light emitting surface without being reflected by the reflecting plate. Therefore, of the two major problems of eliminating the luminance unevenness of the linear light source and controlling the light exit direction, the luminance unevenness is solved mainly by the function of the light diffusion plate.
そこで別の課題である出光方向の制御は主として反射板で行うことにした。光拡散板は輝度ムラ解消のためy軸方向の出光エネルギーを均一化するという主たる機能の他に一部y軸方向の出光方向制御機能を持たせることも可能と考え、特に反射板はx軸方向の出光方向制御を主たる機能とした。そのため反射板は出光側表面の略全面がy軸に平行な凹状および/または凸状のストライプ形状であることとした。 Therefore, the control of the light exit direction, which is another problem, was decided mainly by the reflector. The light diffusing plate is considered to be able to have a light emitting direction control function in the y-axis direction in addition to the main function of uniforming the light emitting energy in the y-axis direction in order to eliminate luminance unevenness. The main function is to control the direction of light emission. For this reason, the reflecting plate has a concave and / or convex stripe shape substantially parallel to the y-axis on the entire surface of the light output side.
そこで上記課題に鑑みて、検討をなし以下の本発明に至った。
請求項1に記載の発明は、
x軸と、該x軸に垂直なy軸とに平行なxy平面に対して垂直なz軸と平行な一方向を、主たる出光方向である正面方向とする照明装置であって、
該照明装置は、複数の線状光源と、反射板と、前記光源および前記反射板からの光を出光方向に透過する光拡散板とを少なくとも備えており、
前記反射板、線状光源、光拡散板が、前記正面方向に向かって反射板、線状光源、光拡散板の順に配置され、
前記線状光源は、前記xy平面と平行な1つの仮想平面内に、前記x軸に平行に、かつ、前記y軸に沿って等間隔に配列して配置されており、
前記反射板および前記光拡散板の主面の外周は前記xy平面に平行な矩形であり、
前記反射板の主面の出光側表面の略全面が前記y軸に平行で、前記x軸に沿った、規則的な、凹状および/または凸状のストライプ形状であることを特徴とする照明装置
を提供する。
In view of the above problems, the present inventors have made studies and have reached the following present invention.
The invention described in claim 1
An illuminating device having one direction parallel to a z-axis perpendicular to an xy plane parallel to an x-axis and a y-axis perpendicular to the x-axis as a front direction which is a main light exit direction,
The illuminating device includes at least a plurality of linear light sources, a reflecting plate, and a light diffusing plate that transmits light from the light source and the reflecting plate in a light emitting direction,
The reflecting plate, the linear light source, and the light diffusing plate are arranged in the order of the reflecting plate, the linear light source, and the light diffusing plate toward the front direction,
The linear light sources are arranged in one imaginary plane parallel to the xy plane, arranged in parallel to the x axis and at equal intervals along the y axis,
The outer peripheries of the main surfaces of the reflecting plate and the light diffusing plate are rectangular parallel to the xy plane,
An illuminating device characterized in that substantially the entire surface of the light-emitting side of the main surface of the reflecting plate is in a regular, concave and / or convex stripe shape parallel to the y-axis and along the x-axis. I will provide a.
この構成によれば、該照明装置が備える拡散板と反射板は、照明装置の主たる出光方向である正面方向に垂直なxy平面に平行な矩形上の主面の外形を持つので効率よく正面方向に出光することができる。また反射板の主面の出光側表面の略全面が前記y軸に平行で、前記x軸に沿った、凹状および/または凸状のストライプ形状であることから、反射板が受けた光のx軸方向の出光角度分布を制御できる。 According to this configuration, the diffusing plate and the reflecting plate included in the lighting device have an outer shape of a main surface on a rectangle parallel to the xy plane perpendicular to the front direction, which is the main light output direction of the lighting device, and thus the front direction can be efficiently performed. Can emit light. In addition, since substantially the entire surface of the light exit side of the main surface of the reflector is parallel to the y-axis and has a concave and / or convex stripe shape along the x-axis, x of the light received by the reflector The light emission angle distribution in the axial direction can be controlled.
請求項2に記載の発明は、
前記光拡散板の主面が前記線状光源からの光を受光する入光面と、線状光源側と対向する前記出光側に位置して前記入光面から受光した光を出光側に出光する出光面とからなり、
前記少なくとも片方の前記主面に、前記x軸に平行で、前記y軸に沿った複数の、規則的な、ストライプ状の畝部を有することを特徴とする請求項1に記載の照明装置
を提供する。
The invention described in claim 2
The main surface of the light diffusing plate is located on the light incident surface that receives light from the linear light source and the light exit side facing the linear light source side, and the light received from the light incident surface is emitted to the light exit side. The light-emitting surface
2. The lighting device according to claim 1, wherein the at least one main surface has a plurality of regular, striped flanges parallel to the x-axis and along the y-axis. provide.
この構成によれば、該照明装置はx軸に平行で、前記y軸に沿った複数の、ストライプ状の畝部を有するので、同じくx軸に平行に配置された線状光源で顕著となるy軸方向の輝度ムラを効率よく解消したり、y軸方向の出光角度分布を制御したりすることができる。 According to this configuration, the illuminating device has a plurality of striped collar portions parallel to the x-axis and along the y-axis, so that the illuminating device is conspicuous with a linear light source that is also arranged parallel to the x-axis. It is possible to efficiently eliminate luminance unevenness in the y-axis direction and to control the light emission angle distribution in the y-axis direction.
請求項3に記載の発明は、
任意の前記線状光源Xとその最近傍にある別の線状光源Yとの間の距離をD、該線状光源Xと前記光拡散板との距離をHとした場合、前記y軸と前記z軸に平行なyz平面に平行な断面内で、前記入光面上の任意の点に前記z軸に対してα=Tan−1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入光面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜5倍であることを特徴とする請求項2に記載の照明装置
を提供する。
The invention according to claim 3
When the distance between the arbitrary linear light source X and another linear light source Y located in the vicinity thereof is D and the distance between the linear light source X and the light diffusion plate is H, the y-axis In a cross section parallel to the yz plane parallel to the z axis, an arbitrary point on the light incident surface is incident on the z axis at an angle of α = Tan −1 {(D / 2) / H}. The total light transmittance of light is 50% or more, and the total light transmittance is 1.05 of the total light transmittance of light when the light is incident on the point on the light incident surface from the normal direction. The illumination device according to claim 2, wherein the illumination device has a magnification of 5 to 5 times.
この構成によれば、光の光拡散板への入射位置と線状光源との位置関係によって、全光線透過率が異なる構成であるため、出光エネルギーを出光面内で均一化できる。そのため輝度ムラを解消した品位の高い照明光を発する照明装置を提供できる。 According to this configuration, since the total light transmittance is different depending on the positional relationship between the light incident position on the light diffusion plate and the linear light source, the light output energy can be made uniform in the light output surface. Therefore, it is possible to provide an illumination device that emits high-quality illumination light that eliminates uneven brightness.
請求項4に記載の発明は、
前記光拡散板の出光面に前記畝部を有し、y軸方向の位置と距離yを持って隣接する任意の3本の前記線状光源の正面方向への出光強度との関数G(y)の最小値と最大値の比を80%以上となることを特徴とする請求項2に記載の照明装置
を提供する。
The invention according to claim 4
The function G (y) of the light output intensity in the front direction of any three linear light sources adjacent to each other with the position in the y-axis direction and the distance y having the flange on the light output surface of the light diffusion plate. The lighting device according to claim 2, wherein the ratio between the minimum value and the maximum value is 80% or more.
この構成によれば、光拡散板の機能によってy軸方向の出光方向制御を行うことができる。すなわちy軸方向の位置と隣接する任意の3本の前記線状光源の正面方向への出光強度との関係によって、光拡散板の畝部の形状を調節することで、y軸方向の正面方向の出光強度を均一化できる。 According to this configuration, the light emission direction control in the y-axis direction can be performed by the function of the light diffusion plate. That is, the front direction in the y-axis direction is adjusted by adjusting the shape of the collar portion of the light diffusion plate according to the relationship between the position in the y-axis direction and the light output intensity in the front direction of any three adjacent linear light sources. Can be made uniform.
請求項5に記載の発明は、
請求項1〜4に記載の照明装置に備えることができる反射板
を提供する。
The invention described in claim 5
The reflecting plate which can be provided in the illuminating device of Claims 1-4 is provided.
これによって、光を制御しながら反射することができる。 As a result, light can be reflected while being controlled.
請求項6に記載の発明は、
請求1〜4のいずれか1項に記載の上記照明装置上に透過型表示素子を設けたことを特徴とする画像表示装置
を提供する。
The invention described in claim 6
A transmissive display element is provided on the illumination device according to any one of claims 1 to 4, and an image display device is provided.
この構成によって、テレビやパソコンモニター、片面表示の照明看板などの用途に用いることができる。 With this configuration, it can be used for applications such as televisions, personal computer monitors, and single-sided lighting signs.
なお、本発明の照明装置とは、画像表示装置のバックライト、照明器具、発光装置を含んでいる。また本発明の画像表示装置とは、照明装置と透過型表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器などを含む。 The lighting device of the present invention includes a backlight of an image display device, a lighting fixture, and a light emitting device. The image display device of the present invention includes a display module in which a lighting device and a transmissive display element are combined, and a device having at least an image display function such as a television and a personal computer monitor using the display module.
本発明は、反射板の形状によって、線状光源と平行な1方向の集光を行うことで、高輝度で光利用効率が高い照明装置と画像照明装置を提供する。また反射板の形状を規則的なものとすることで、大型化に伴う部材の光学設計変更や輝度低下や輝度均一性低下がないことから大型化への対応が容易で、線状光源と反射板との厳密な位置合わせをする必要がない。また光拡散板で線状光源と垂直な方向の輝度ムラであるランプイメージが解消される。これによって高品位な照明光が得られ、画像表示装置に用いると高品位な画像が得られる。輝度向上フィルムなどの光学フィルムの使用を削減又は回避できるので、構成を単純化できる。また光拡散板の表面形状によって効率的にランプイメージを解消できるので、光拡散剤の使用量を大幅に削減又は回避することも可能で、これによって光のロスが少なく、結果として省エネルギーや発熱の低減、光源点数の削減などの効果が得られる。また光拡散板の表面形状を規則的なものとすることで、大型化に伴う部材の光学設計変更や輝度低下や輝度均一性低下がないことから大型化への対応が容易で、線状光源と光拡散板との厳密な位置合わせをする必要がない。 The present invention provides an illuminating device and an image illuminating device having high luminance and high light utilization efficiency by performing condensing in one direction parallel to the linear light source depending on the shape of the reflector. In addition, by making the reflector shape regular, there is no change in the optical design of the members that accompanies the increase in size, and there is no reduction in brightness or uniformity in brightness, making it easy to cope with an increase in size, and the linear light source and reflection There is no need for exact alignment with the board. In addition, the lamp image, which is uneven brightness in the direction perpendicular to the linear light source, is eliminated by the light diffusing plate. As a result, high-quality illumination light can be obtained, and when used in an image display device, a high-quality image can be obtained. Since the use of an optical film such as a brightness enhancement film can be reduced or avoided, the configuration can be simplified. In addition, since the lamp image can be eliminated efficiently by the surface shape of the light diffusing plate, the amount of light diffusing agent used can be greatly reduced or avoided, resulting in less light loss, resulting in energy saving and heat generation. Effects such as reduction and reduction in the number of light sources can be obtained. Also, by making the surface shape of the light diffusing plate regular, there is no change in the optical design of the members accompanying the increase in size, and there is no reduction in luminance or luminance uniformity, so it is easy to cope with the increase in size, and the linear light source There is no need to strictly align the light diffusing plate.
光拡散板の材料としては透光性を有する材料を主とする。熱可塑性樹脂であれば、製造が容易で、軽量であることから望ましい。熱可塑性樹脂としては、通常光学材料の基材として用いられる材料であれば望ましく用いることができ、通常、透光性の熱可塑性樹脂を用いる。たとえばメタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂などが挙げられる。 As a material of the light diffusion plate, a material having translucency is mainly used. A thermoplastic resin is desirable because it is easy to manufacture and is lightweight. As the thermoplastic resin, any material that is usually used as a base material for optical materials can be desirably used, and a translucent thermoplastic resin is usually used. For example, methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl-styrene copolymer resin, cycloolefin-alkene copolymer resin and the like can be mentioned.
また光拡散板は種々の微粒子を内部に分散していてもよい。これは拡散材として知られる有機、無機の微粒子で、これによって輝度ムラを解消できる。また成形性や板の物性を高める等、他の目的で種々の微粒子を内部に分散していてもよい。光利用効率を高めるために、該微粒子は光の吸収が少ないことが望ましい。すなわち透明性が高い、反射率が高い、などが望ましい。また同じ理由で使用量は極力抑制すべきである。使用量を抑制することは分散性を高める上でも有利である。光拡散材の使用を抑制または削減する手段としては、光拡散板の表面形状を用いることが挙げられる。特にx軸と平行な畝部を設けることで、x軸と平行に配置した線状光源に由来する輝度ムラを効率よく解消できる。 The light diffusing plate may have various fine particles dispersed therein. This is an organic or inorganic fine particle known as a diffusing material, which can eliminate uneven brightness. Various fine particles may be dispersed therein for other purposes such as improving the formability and physical properties of the plate. In order to increase the light utilization efficiency, it is desirable that the fine particles have little light absorption. That is, high transparency and high reflectance are desirable. For the same reason, the usage should be suppressed as much as possible. Suppressing the amount used is also advantageous for improving dispersibility. As a means for suppressing or reducing the use of the light diffusing material, the surface shape of the light diffusing plate can be used. In particular, by providing a collar portion parallel to the x-axis, it is possible to efficiently eliminate luminance unevenness derived from a linear light source arranged parallel to the x-axis.
反射板の材料としては、反射性を有するアルミ、銀、ステンレスなどの金属、白色塗装、また反射率を高めるため、微細発泡させた樹脂などが挙げられる。樹脂などの基板の表面に金属を蒸着させるなど、反射性部材を表層にのみ設けてもよい。これは軽量化や原料価格の上で有利となる場合がある。反射板は反射率が高いものが光利用効率を高める上で望ましい。この観点からは、銀、発泡PET樹脂などが望ましい。また光を拡散反射するものが出射光の均一性を高める上で望ましい。この観点からは発泡PET樹脂などが望ましい。 Examples of the material of the reflecting plate include metals such as reflective aluminum, silver, and stainless steel, white coating, and a finely foamed resin for increasing the reflectance. The reflective member may be provided only on the surface layer, for example, by depositing metal on the surface of a substrate such as resin. This may be advantageous in terms of weight reduction and raw material price. A reflector having a high reflectance is desirable for improving the light utilization efficiency. From this viewpoint, silver, foamed PET resin, and the like are desirable. Further, it is desirable to diffuse and reflect light in order to improve the uniformity of the emitted light. From this viewpoint, foamed PET resin and the like are desirable.
前記反射板の主面の出光側表面の凹状および/または凸状のストライプ形状の例としては、略全面が1つまたは複数の凹状になっている形状、略全面が1つまたは複数の凸状になっている形状、1つまたは複数のプリズム状などが挙げられる。1つの形状であれば比較的製造が容易であり、複数の場合は装置を薄型にするのに有効である。規則的に配列する必要があり、同じ大きさ、形状であることが光の出光方向制御を容易にする、生産性を高めるなどの点で望ましい。 Examples of the concave and / or convex stripe shape on the light output side surface of the main surface of the reflecting plate include a shape in which substantially the entire surface is one or a plurality of concave shapes, and a substantially entire surface is one or a plurality of convex shapes. Shapes, one or more prism shapes, and the like. A single shape is relatively easy to manufacture, and a plurality of shapes are effective for making the device thin. It is necessary to arrange them regularly, and it is desirable that they have the same size and shape from the standpoint of facilitating control of the light emission direction and increasing productivity.
凹状および/または凸状のストライプ形状の傾きが大きいほど浅い角度の光を正面方向に向けることができるが、一般に浅い角度の光は光線距離が長いため、あまり影響は大きくない。また傾きを大きくすると、反射光がさらに反射板の別の位置にぶつかって反射回数が増えすぎる場合があり、結果として光のロスにつながる。またy方向の両方向から反射板全面が光を受けることで均一性を高めやすくなるが、傾きが大きすぎると一方向の光が入射しづらくなるため望ましくない。 As the inclination of the concave and / or convex stripe shape increases, light having a shallow angle can be directed to the front direction. However, light having a shallow angle generally has a long light ray distance, and thus the influence is not so great. Further, when the inclination is increased, the reflected light may further hit another position on the reflecting plate and the number of reflections may increase too much, resulting in light loss. In addition, it is easy to improve uniformity by receiving light from both sides of the y direction, but if the inclination is too large, it is not desirable because light in one direction is difficult to enter.
凹状および/または凸状のストライプ形状がプリズム形状である場合、線状光源に対向しているプリズムの頂部のyz断面の頂角は70〜130度であることが望ましく、90〜120度であることがさらに望ましく、100〜110度であることがさらに望ましい。また隣接するストライプ形状の間に平坦部を設けることで、反射回数を調整することができ、光を膳方向から受けやすくなるので望ましい。 When the concave and / or convex stripe shape is a prism shape, the apex angle of the yz cross section of the apex of the prism facing the linear light source is preferably 70 to 130 degrees, and 90 to 120 degrees. It is more desirable that the angle is 100 to 110 degrees. In addition, providing a flat portion between adjacent stripe shapes is desirable because the number of reflections can be adjusted and light can be easily received from the eaves direction.
凹部および/または凸部のサイズはy方向の幅が0.1mm〜50mmであることが望ましい。0.1mm以下だと正確な形状形成が困難となる。より望ましく0.5mm以上である。また50mm以上だと装置が厚くなるため望ましくない。より望ましくは20mm以下である。 As for the size of the concave and / or convex portions, the width in the y direction is desirably 0.1 mm to 50 mm. If the thickness is 0.1 mm or less, accurate shape formation becomes difficult. More desirably, it is 0.5 mm or more. On the other hand, if it is 50 mm or more, the device becomes thick, which is not desirable. More desirably, it is 20 mm or less.
また反射板の厚みは0.5mm〜50mmであることが望ましい。0.5mm以下だと温度による変形が起こりやすく、光線方向の制御に好ましくない影響を与える。より望ましくは1mm以上である。また50mm以上だと装置が厚くなるため望ましくない。より望ましくは20mm以下である。 The thickness of the reflector is preferably 0.5 mm to 50 mm. If the thickness is 0.5 mm or less, deformation due to temperature is likely to occur, which adversely affects the control of the light beam direction. More desirably, it is 1 mm or more. On the other hand, if it is 50 mm or more, the device becomes thick, which is not desirable. More desirably, it is 20 mm or less.
凹部および/または凸部は表面を賦形した樹脂シートを重ね合わせるなどの手段で実現できる。反射板全体が表面の凹部および/または凸部に沿った形状であってもよく、これによって板の片面に凹凸を形成する場合よりも軽量化が可能で、金属板を変形させるといった簡便な方法で製作できる。また板の片面に凹凸を形成する方法で作製することは、熱可塑性樹脂の押し出し成形やプレス成形、紫外線硬化樹脂による凹凸賦形などで作成する際便利である。金属板を変形させるといった方法よりも、より微細な形状を容易に作製でき、装置の薄型化に有利である。 The concave portion and / or the convex portion can be realized by means such as superposing resin sheets whose surfaces are shaped. The reflective plate as a whole may have a shape along the concave and / or convex portions of the surface, which makes it possible to reduce the weight compared to forming irregularities on one side of the plate, and a simple method of deforming the metal plate Can be produced. Moreover, it is convenient to produce by the method of forming unevenness on one side of the plate by extrusion molding or press molding of a thermoplastic resin, unevenness shaping with an ultraviolet curable resin, or the like. Compared with a method of deforming a metal plate, a finer shape can be easily produced, which is advantageous for thinning the apparatus.
光拡散板の片方の主面に、前記x軸に平行で、前記y軸に沿った複数の、規則的な、ストライプ状の畝部を有することで、該照明装置はx軸に平行で、前記y軸に沿った複数の、ストライプ状の畝部を有するので、同じくx軸に平行に配置された線状光源で顕著となるy軸方向の輝度ムラを効率よく解消したり、y軸方向の出光角度分布を制御したりすることができる。 By having a plurality of regular, striped collars parallel to the x-axis and along the y-axis on one main surface of the light diffusing plate, the illuminating device is parallel to the x-axis, Since it has a plurality of stripe-shaped flanges along the y-axis, luminance unevenness in the y-axis direction, which is noticeable with a linear light source arranged in parallel with the x-axis, can be effectively eliminated, or the y-axis direction It is possible to control the light emission angle distribution of the.
任意の前記線状光源Xとその最近傍にある別の線状光源Yとの間の距離をD、該線状光源Xと前記光拡散板との距離をHとした場合、前記y軸と前記z軸に平行なyz平面に平行な断面内で、前記入光面上の任意の点に前記z軸に対してα=Tan−1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入光面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜5倍とすると、線状光源の光が最も強いエネルギーで入光面に入射する線状光源直上、すなわち入射角0度の光の全光線透過率を下げて、最も弱いエネルギーで入光する、線状光源間に相当する位置、すなわち入射角α=Tan−1{(D/2)/H}の光の出射エネルギーほぼ等しく事で面内の出射エネルギーを均一化して、輝度ムラを解消する。これは畝部の形状で線状光源直上の光を反射板側に一部反射することで、全光線透過率の割合を調整する。 When the distance between the arbitrary linear light source X and another linear light source Y located in the vicinity thereof is D and the distance between the linear light source X and the light diffusion plate is H, the y-axis In a cross section parallel to the yz plane parallel to the z axis, an arbitrary point on the light incident surface is incident on the z axis at an angle of α = Tan −1 {(D / 2) / H}. The total light transmittance of light is 50% or more, and the total light transmittance is 1.05 of the total light transmittance of light when the light is incident on the point on the light incident surface from the normal direction. When the magnification is 5 to 5 times, the light from the linear light source is incident on the light incident surface with the strongest energy, that is, the total light transmittance of light having an incident angle of 0 degrees is lowered, and the light is incident with the weakest energy. The position corresponding to the position between the linear light sources, that is, the emission energy of the light at the incident angle α = Tan −1 {(D / 2) / H} is substantially equal, and is emitted in the plane. Uniform energy to eliminate uneven brightness. This adjusts the ratio of the total light transmittance by partially reflecting the light immediately above the linear light source in the shape of the collar to the reflector side.
この目的では畝部は次のような形状が望ましい。 For this purpose, the collar is preferably shaped as follows.
畝部を入光面に設ける場合、yz平面の断面が三角形であるプリズム形状であることが望ましい。最も線状光源に近いプリズム頂部の頂角は、次のように決めることができる。
図2に、光拡散板の入光面に形成したプリズム内部で全反射を生じる場合の光の進行方向を示す。光拡散板の屈折率をn、入光面の法線方向に対する入射光の入射角度をε1とすると、入光面に形成したプリズムで全反射した後、この進行光の光拡散板内部での法線方向に対する角度ε5は、以下の通り計算できる。
In the case where the collar portion is provided on the light incident surface, it is desirable to have a prism shape in which the cross section of the yz plane is a triangle. The apex angle of the prism apex closest to the linear light source can be determined as follows.
FIG. 2 shows the traveling direction of light when total reflection occurs inside the prism formed on the light incident surface of the light diffusion plate. Assuming that the refractive index of the light diffusion plate is n and the incident angle of incident light with respect to the normal direction of the light incident surface is ε1, after the total reflection by the prism formed on the light incident surface, The angle ε5 with respect to the normal direction can be calculated as follows.
ε2=δ1−ε1
ε3=Sin−1{(sinε2)/n}
ε4=δ1−ε3+δ2−90°
ε5=90°−(ε4+δ2)
ε2 = δ1−ε1
ε3 = Sin −1 {(sin ε2) / n}
ε4 = δ1-ε3 + δ2-90 °
ε5 = 90 ° − (ε4 + δ2)
本発明の主旨から、光線の出射方向は光拡散板の正面方向であることが好ましい。このためには、光拡散板内部において進行光25が出光面の法線方向に進行することが好適である。従って、ε1=αの場合、−20°≦ε5≦20°であることが望ましい。また、−10°≦ε5≦10°であることがより望ましい。さらには、−5°≦ε5≦5°となるようにδ1、δ2を選択することが好適である。これによって畝部によって輝度ムラの解消だけでなくy軸方向の出光方向制御による正面輝度の向上というも同時に達成できる。 From the gist of the present invention, it is preferable that the light emission direction is the front direction of the light diffusion plate. For this purpose, it is preferable that the traveling light 25 travels in the normal direction of the light exit surface inside the light diffusion plate. Therefore, when ε1 = α, it is desirable that −20 ° ≦ ε5 ≦ 20 °. Further, it is more desirable that −10 ° ≦ ε5 ≦ 10 °. Furthermore, it is preferable to select δ1 and δ2 so that −5 ° ≦ ε5 ≦ 5 °. As a result, not only the brightness unevenness can be eliminated by the buttocks, but also the front brightness can be improved by controlling the light exit direction in the y-axis direction.
例えば、線状光源間距離Dを33mm、線状光源中心と光拡散板間の離間距離Hを15mm、光制御部材4の屈折率nを1.54とすると、55°≦δ1≦72°であることが望ましい。また、59°≦δ1≦67°であることがより望ましい。さらには、61°≦δ1≦65°と選択することが好適である。 For example, when the distance D between the linear light sources is 33 mm, the separation distance H between the center of the linear light source and the light diffusion plate is 15 mm, and the refractive index n of the light control member 4 is 1.54, 55 ° ≦ δ1 ≦ 72 °. It is desirable to be. Further, it is more desirable that 59 ° ≦ δ1 ≦ 67 °. Furthermore, it is preferable to select 61 ° ≦ δ1 ≦ 65 °.
プリズムは連続して形成しても良いし、間に平坦部を設けても良い。平坦部によって全光線透過率を高め、全光線透過率の比率を調整できる。 The prisms may be formed continuously or a flat portion may be provided therebetween. The total light transmittance can be increased by the flat portion, and the ratio of the total light transmittance can be adjusted.
また入光面上の畝部の他に、微細な凹凸を設
けてもよい。これは拡散性を高めることで均一性を更に高めることができる。この凹凸による拡散が強すぎると反射板や光拡散板入光面の機能である光線制御の効果が低下して正面輝度や出光角度分布の制御が困難となるので、y軸に平行な頂角の120度以上のプリズムや、アスペクト比の小さいランダムな凹凸などが好ましい。該微細な凹凸は通常出光面側に設けるが、入光面側の平坦部に別のプリズムやランダムな凹凸を設けたり、入光面上のプリズム上にランダムな凹凸として設けたりすることも有効である。
Further, in addition to the flange on the light incident surface, fine irregularities may be provided. This can further increase the uniformity by increasing the diffusibility. If the unevenness due to the unevenness is too strong, the effect of light ray control, which is a function of the light entrance surface of the reflecting plate or light diffusing plate, will be reduced, and it will be difficult to control the front brightness and the light emission angle distribution. A prism of 120 degrees or more, random irregularities with a small aspect ratio, and the like are preferable. The fine unevenness is usually provided on the light exit surface side, but it is also effective to provide another prism or random unevenness on the flat part on the light entrance surface, or to provide random unevenness on the prism on the light entrance surface. It is.
また畝部を出光面に設ける場合、yz平面の断面形状は次のように決めることができる。 Moreover, when providing a collar part in a light-emitting surface, the cross-sectional shape of yz plane can be determined as follows.
前記凸部の立体形状を、鋭角θをなす2つの略斜面部と曲面部とによって構成することにより、前記略直線の部分と曲線の部分とでは、光出光面における集光および拡散の程度が互いに異なるので、出光面における集光性能および拡散性能が一層向上し、もって、出光面内輝度の均一化をより効果的に高めることができる。 By constructing the three-dimensional shape of the convex portion by two substantially inclined portions and curved surface portions forming an acute angle θ, the degree of light collection and diffusion on the light exit surface is reduced between the substantially straight portion and the curved portion. Since they are different from each other, the light condensing performance and the diffusing performance on the light exit surface are further improved, and the uniformity of the brightness within the light exit surface can be more effectively increased.
また図4、図5に示すようにこのような形状では同じ方向から入射して略直線部にあたる光は同じ方向に屈折し、または反射するので、出光方向の制御がしやすく、望ましい輝度角度分布を得るための光学設計が容易となる。図4に示すように、光拡散板の入光面に斜めに入射した斜め入射光は、断面略直線の部分において屈折作用により、光拡散板の出光面側から正面方向付近に出射させることができる。すなわち畝部によって輝度ムラの解消だけでなくy軸方向の出光方向制御による正面輝度の向上というも同時に達成できる。 In addition, as shown in FIGS. 4 and 5, in such a shape, light that is incident from the same direction and hits a substantially straight portion is refracted or reflected in the same direction, so that the light emission direction can be easily controlled, and a desirable luminance angle distribution. The optical design for obtaining the above becomes easy. As shown in FIG. 4, the obliquely incident light incident obliquely on the light incident surface of the light diffusing plate can be emitted from the light emitting surface side of the light diffusing plate to the vicinity of the front direction by a refracting action at a substantially straight section. it can. That is, not only the brightness unevenness can be eliminated by the buttocks, but also the front brightness can be improved by controlling the light emission direction in the y-axis direction.
なお輪郭線の頂部を構成する曲線の曲率半径は、無限大、すなわち直線であってもよい。また連続して形成しても良いし、間に平坦部を設けても良い。平坦部によって全光線透過率を高め、全光線透過率の比率を調整できる。 In addition, the curvature radius of the curve which comprises the top part of an outline may be infinite, ie, a straight line. Moreover, you may form continuously and you may provide a flat part in between. The total light transmittance can be increased by the flat portion, and the ratio of the total light transmittance can be adjusted.
また出光面上の畝部の他に、微細な凹凸を設けてもよい。これは拡散性を高めることで均一性を更に高めることができる。この凹凸による拡散が強すぎると反射板や光拡散板出光面の機能である光線制御の効果が低下して正面輝度や出光角度分布の制御が困難となるので、y軸に平行な頂角の120度以上のプリズムや、アスペクト比の小さいランダムな凹凸などが好ましい。該微細な凹凸は通常入光面側に設けるが、出光面側の平坦部に別のプリズムやランダムな凹凸を設けたり、出光面上のプリズム上にランダムな凹凸として設けたりすることも有効である。 In addition to the flange on the light exit surface, fine irregularities may be provided. This can further increase the uniformity by increasing the diffusibility. If the unevenness due to the unevenness is too strong, the effect of light beam control, which is a function of the light exit surface of the reflector and the light diffuser, is reduced and it becomes difficult to control the front brightness and the light output angle distribution. A prism of 120 degrees or more, random irregularities with a small aspect ratio, and the like are preferable. The fine irregularities are usually provided on the light incident surface side, but it is also effective to provide another prism or random irregularities on the flat portion on the light emitting surface side, or provide random irregularities on the prism on the light emitting surface. is there.
また畝部でのy軸方向の出光方向の制御を目的として、yz平面の断面形状を次のように決めることができる。 Further, the cross-sectional shape of the yz plane can be determined as follows for the purpose of controlling the light exit direction in the y-axis direction at the collar.
ここでは出光方向の制御として正面輝度を高めつつ正面方向の輝度分布を均一化するという、高品位で高輝度な出光を得るための畝部の断面形状設計について述べる。この効果は多くの用途の照明装置、画像表示装置の用途に好適であるが、同様に同じ思想を用いて種々のy軸方向の出光方向制御が可能である。 Here, the design of the cross-sectional shape of the collar for obtaining high-quality and high-luminance light output, in which the luminance distribution in the front direction is made uniform while controlling the light emission direction, will be described. This effect is suitable for many uses of lighting devices and image display devices, but various y-axis directions can be controlled using the same idea.
第一に正面方向の輝度分布を均一化する上では線状光源のy軸方向の正面方向への出光強度を均一化することで達成できる。これは隣接する3本の線状光源の正面方向への出光強度の最小値と最大値の比を60%以上とすることで達成できる。 First, in order to make the luminance distribution in the front direction uniform, it can be achieved by making the light output intensity in the front direction in the y-axis direction of the linear light source uniform. This can be achieved by setting the ratio of the minimum value and the maximum value of the light output intensity in the front direction of three adjacent linear light sources to 60% or more.
第二に線状光源のyz平面内での光線の軌道について、屈折率と表面の位置ごとの傾きを調節することで光を正面に向けられることは、線状光源上にyz平面で切った断面形状をフレネルレンズ状や凸レンズ状などのレンズ状として、線状光源を焦点とするように配置する手段などで既に知られているが、これら正面方向に光を向けるレンズと同じ傾き角度の分布で畝部の形状を形成すれば、線状光源と畝部の位置関係がxy平面に沿ってずれることで焦点位置を外れても正面方向に進む光の割合は変わらない。すなわち畝部を成形が容易な形状、サイズで設定できる。なお畝部の幅、すなわちy軸方向の長さは、液晶表示装置の用途では0.5mm以下であることが望ましい。 Secondly, with respect to the ray trajectory in the yz plane of the linear light source, the light can be directed to the front by adjusting the refractive index and the inclination for each position of the surface cut on the yz plane on the linear light source. Although the cross-sectional shape is already known as a lens shape such as a Fresnel lens shape or a convex lens shape, the linear light source is arranged to be focused, etc., but the distribution of the same inclination angle as these lenses that direct light in the front direction If the shape of the buttock is formed, the ratio of the light traveling in the front direction does not change even if the focal position deviates because the positional relationship between the linear light source and the buttock is shifted along the xy plane. That is, the collar portion can be set with a shape and size that can be easily molded. Note that the width of the collar portion, that is, the length in the y-axis direction is preferably 0.5 mm or less in the use of the liquid crystal display device.
これら二つの思想に基づいて、畝部の形状を設計すれば、正面方向の輝度が均一で正面輝度が高く、更に畝部の線状光源との位置あわせも不要となる。 If the shape of the buttock is designed based on these two ideas, the luminance in the front direction is uniform and the front luminance is high, and the alignment with the linear light source in the buttock becomes unnecessary.
以下、実施例を挙げて本発明を説明する。
光拡散板は溝状の平行な凹部を設けた金型を用いて、メタクリル酸メチル−スチレン共重合体を押出成形し、片面に凸部を有する主面サイズが707mm×436mmで厚さ2mmの光拡散板を得る。凸部の形状は、幅0.3mm、深さ0.2mmの蒲鉾状である。
Hereinafter, the present invention will be described with reference to examples.
The light diffusing plate was formed by extruding a methyl methacrylate-styrene copolymer using a mold provided with groove-like parallel concave portions, and the main surface size having convex portions on one side was 707 mm × 436 mm and the thickness was 2 mm. A light diffusing plate is obtained. The shape of the convex portion is a bowl shape having a width of 0.3 mm and a depth of 0.2 mm.
反射板は溝状の平行な凹部を設けた金型を用いて、メタクリル酸メチル−スチレン共重合体を射出成形し、片面に凸部を有する主面サイズが695mm×412mmで厚さ2mmの樹脂板を得る。凸部の形状は、幅1mm、頂角40度のプリズム状である。このプリズム上に接着剤を薄く塗布し、厚さ0.5mmの発泡ペット樹脂を乗せて、加圧して貼り合わせることで、反射板とする。反射板の反射率は95%である。 The reflecting plate is a resin having a main surface size of 695 mm × 412 mm and a thickness of 2 mm, which is formed by injection-molding methyl methacrylate-styrene copolymer using a mold having groove-like parallel concave portions. Get a board. The shape of the convex portion is a prism shape having a width of 1 mm and an apex angle of 40 degrees. A thin adhesive is applied onto the prism, and a foamed PET resin having a thickness of 0.5 mm is placed on the prism, and then pressed and bonded to form a reflector. The reflectivity of the reflector is 95%.
X方向の長さ458mm、Y方向の長さ730mm、X方向とY方向に垂直な厚さ方向の長さ35mmで、出射側にX方向の長さ698mm、Y方向の長さ416mmの矩形の開口部を持つ直方体状の白色のABS樹脂製のハウジングを用意する。 A rectangular shape having a length of 458 mm in the X direction, a length of 730 mm in the Y direction, a length of 35 mm in the thickness direction perpendicular to the X direction and the Y direction, a length of 698 mm in the X direction on the emission side, and a length of 416 mm in the Y direction A rectangular parallelepiped white ABS resin housing having an opening is prepared.
次に前記ハウジングの出射側の開口部に対向する位置にある底部を覆うように、前記反射板を配置する。 Next, the reflection plate is disposed so as to cover a bottom portion at a position facing the opening on the emission side of the housing.
次に前記反射板の出射側に2mmの間隔をおいて、該反射板と平行に線状光源を配置する。線状光源1としては直径3mm、長さ700mmの複数の冷陰極管をX方向に沿ってY方向に平行に配置する。冷陰極管16本を22mmずつの間隔をおいて配置する。 Next, a linear light source is arranged in parallel with the reflecting plate with an interval of 2 mm on the exit side of the reflecting plate. As the linear light source 1, a plurality of cold-cathode tubes having a diameter of 3 mm and a length of 700 mm are arranged along the X direction and parallel to the Y direction. Sixteen cold cathode tubes are arranged at intervals of 22 mm.
次に光拡散板を開口部に被せるように配置する。線状光源の中心から光拡散板までの距離は15.5mm、隣接する線状光源の中心同士の距離は25mmである。 Next, it arrange | positions so that a light diffusing plate may cover an opening part. The distance from the center of the linear light source to the light diffusion plate is 15.5 mm, and the distance between the centers of the adjacent linear light sources is 25 mm.
正面輝度として、正面方向に対して±15度以内の輝度を測定した。測定の手順を以下に示す。先ず、照明装置の測定点から500mmの位置に輝度計を設置する。次にx軸と平行な面内で、測定点から輝度計までの距離を500mmに保ち、かつ輝度計の測定点が移動しないように輝度計の位置および傾きを変えていき、各角度での輝度を測定した。前期角度は拡散板の法線方向に対し、−15度から15度までであり、角度の間隔は1度である。また輝度計の視野は1度とした。次に、前期各角度での輝度測定値の平均をとり、±15度の輝度とする。この方法で本実施例の正面輝度を測定すると、8250cd/m2である。
また光拡散板上に液晶表示素子を重ねることで、画像表示装置である液晶表示装置を得られる。この画像表示装置では輝度が高く、品位の高い画像を確認できる。
As the front luminance, luminance within ± 15 degrees with respect to the front direction was measured. The measurement procedure is shown below. First, a luminance meter is installed at a position 500 mm from the measurement point of the lighting device. Next, within the plane parallel to the x axis, keep the distance from the measurement point to the luminance meter at 500 mm and change the position and inclination of the luminance meter so that the measurement point of the luminance meter does not move. Luminance was measured. The initial angle is -15 degrees to 15 degrees with respect to the normal direction of the diffusion plate, and the angle interval is 1 degree. The field of view of the luminance meter was 1 degree. Next, the average of the luminance measurement values at each angle in the previous period is taken to obtain a luminance of ± 15 degrees. When the front luminance of this example is measured by this method, it is 8250 cd / m 2 .
In addition, a liquid crystal display device which is an image display device can be obtained by overlapping a liquid crystal display element on a light diffusion plate. In this image display device, it is possible to confirm an image with high brightness and high quality.
<比較例1>
反射板を、メタクリル酸メチル−スチレン共重合体の射出成形により、平滑な主面を持つ主面サイズが695mm×412mmで厚さ2mmの樹脂板の主面の片方に、接着剤を薄く塗布し、厚さ0.5mmの発泡ペット樹脂を乗せて、加圧して貼り合わせることで、反射板とする以外は同じ条件で、照明装置を作成する。同じように正面輝度を測定すると、7420cd/m2である。また光拡散板上に液晶表示素子を重ねて、画像表示装置である液晶表示装置を得る。画像を確認すると、実施例と比較して暗い画像である。
<Comparative Example 1>
Apply a thin adhesive to one of the main surfaces of a 2 mm thick resin plate with a smooth main surface size of 695 mm x 412 mm by injection molding of methyl methacrylate-styrene copolymer. The lighting device is created under the same conditions except that a reflecting plate is obtained by placing a foamed PET resin having a thickness of 0.5 mm and applying pressure to the resin. Similarly, when the front luminance is measured, it is 7420 cd / m 2 . A liquid crystal display device, which is an image display device, is obtained by overlapping a liquid crystal display element on a light diffusion plate. When an image is confirmed, it is a dark image compared with an Example.
Claims (6)
該照明装置は、複数の線状光源と、反射板と、前記線状光源および前記反射板からの光を出光方向に透過する光拡散板とを少なくとも備えており、
前記反射板、線状光源、光拡散板が、前記正面方向に向かって反射板、線状光源、光拡散板の順に配置され、
前記線状光源は、前記xy平面と平行な1つの仮想平面内に、前記x軸に平行に、かつ、前記y軸に沿って等間隔に配列して配置されており、
前記反射板および前記光拡散板の主面の外周は前記xy平面に平行な矩形であり、
前記反射板の主面の出光側表面の略全面が前記y軸に平行で、前記x軸に沿った、規則的な、凹状および/または凸状のストライプ形状であることを特徴とする照明装置。 An illuminating device having one direction parallel to a z-axis perpendicular to an xy plane parallel to an x-axis and a y-axis perpendicular to the x-axis as a front direction which is a main light exit direction,
The lighting device includes at least a plurality of linear light sources, a reflecting plate, and a light diffusing plate that transmits light from the linear light source and the reflecting plate in a light exit direction,
The reflecting plate, the linear light source, and the light diffusing plate are arranged in the order of the reflecting plate, the linear light source, and the light diffusing plate toward the front direction,
The linear light sources are arranged in one imaginary plane parallel to the xy plane, arranged in parallel to the x axis and at equal intervals along the y axis,
The outer peripheries of the main surfaces of the reflecting plate and the light diffusing plate are rectangular parallel to the xy plane,
An illuminating device characterized in that substantially the entire surface of the light-emitting side of the main surface of the reflecting plate is in a regular, concave and / or convex stripe shape parallel to the y-axis and along the x-axis. .
前記少なくとも片方の前記主面に、前記x軸に平行で、前記y軸に沿った複数の、規則的な、ストライプ状の畝部を有することを特徴とする請求項1に記載の照明装置。 The main surface of the light diffusing plate is located on the light incident surface that receives light from the linear light source and the light exit side facing the linear light source side, and the light received from the light incident surface is emitted to the light exit side. It consists of a light-emitting surface that
2. The lighting device according to claim 1, wherein the at least one main surface has a plurality of regular, striped flange portions parallel to the x-axis and along the y-axis.
A transmissive display element is provided on the illuminating device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267976A JP2007080707A (en) | 2005-09-15 | 2005-09-15 | Lighting system and image display device using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005267976A JP2007080707A (en) | 2005-09-15 | 2005-09-15 | Lighting system and image display device using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007080707A true JP2007080707A (en) | 2007-03-29 |
Family
ID=37940775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005267976A Pending JP2007080707A (en) | 2005-09-15 | 2005-09-15 | Lighting system and image display device using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007080707A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010050003A (en) * | 2008-08-22 | 2010-03-04 | Sony Corp | Surface illuminating device and image display apparatus |
JP2010153256A (en) * | 2008-12-25 | 2010-07-08 | Cheil Industries Inc | Illuminating device |
WO2015064744A1 (en) * | 2013-11-01 | 2015-05-07 | シャープ株式会社 | Light source device, and electric signboard |
-
2005
- 2005-09-15 JP JP2005267976A patent/JP2007080707A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010050003A (en) * | 2008-08-22 | 2010-03-04 | Sony Corp | Surface illuminating device and image display apparatus |
JP2010153256A (en) * | 2008-12-25 | 2010-07-08 | Cheil Industries Inc | Illuminating device |
WO2015064744A1 (en) * | 2013-11-01 | 2015-05-07 | シャープ株式会社 | Light source device, and electric signboard |
JP2015087727A (en) * | 2013-11-01 | 2015-05-07 | シャープ株式会社 | Illumination signboard |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4584133B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
US7237930B2 (en) | Lighting system image display apparatus using the same and light diffusion plate used therefor | |
JP4425164B2 (en) | LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME | |
WO2003098100A1 (en) | Planar light source and light guide for use therein | |
WO2007000962A1 (en) | Lighting device and light control member used for this and image display unit using these | |
JP2009164101A (en) | Backlight | |
JP5820609B2 (en) | Surface light source device and liquid crystal display device | |
JP4515374B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
WO2010058845A1 (en) | Planar light source device and light guide used for the same | |
JPWO2008029911A1 (en) | Surface light source element, light control member used therefor, and image display device using the same | |
JP4522938B2 (en) | Light control member provided in illumination device and image display device using the same | |
JP2004111352A (en) | Surface light source device and light guide used therefor | |
JP2008218418A (en) | Surface light source and light guide used for same | |
JPWO2008047794A1 (en) | LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP2006065277A (en) | Diffusing sheet, surface light source unit, and transmission type display | |
JP2010266611A (en) | Optical equalizing element, optical sheet, backlight unit and display device | |
JP4684838B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM | |
JP2007080707A (en) | Lighting system and image display device using it | |
JP2010044921A (en) | Plane light source element and light control member used for this as well as image display using this | |
JP5391798B2 (en) | Backlight unit and display device | |
JP2009123397A (en) | Illumination device, and image display device using it | |
JP5272508B2 (en) | Optical sheet, backlight unit and display device | |
JP4689543B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP2009158468A (en) | Backlight | |
JP4684791B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM |