JP4689543B2 - LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME - Google Patents
LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME Download PDFInfo
- Publication number
- JP4689543B2 JP4689543B2 JP2006164765A JP2006164765A JP4689543B2 JP 4689543 B2 JP4689543 B2 JP 4689543B2 JP 2006164765 A JP2006164765 A JP 2006164765A JP 2006164765 A JP2006164765 A JP 2006164765A JP 4689543 B2 JP4689543 B2 JP 4689543B2
- Authority
- JP
- Japan
- Prior art keywords
- control member
- light control
- light
- convex portion
- lighting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
Description
本発明は、板状の光制御部材と、それを用いた複数の線状光源を有する直下方式の照明装置及びこれを用いた画像表示装置に関するものであり、特に、大型で高輝度と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる直下方式の照明装置、これが備える光制御部材及びこれを用いた画像表示装置に関するものである。 TECHNICAL FIELD The present invention relates to a plate-type light control member, a direct illumination device having a plurality of linear light sources using the plate-like light control member, and an image display device using the same, and in particular, has a large size, high luminance, and uniform luminance. The present invention relates to a lighting device of a direct type that is suitably used for an illumination signage device, a liquid crystal display device, and the like that are required to have high performance, a light control member provided in the illumination device, and an image display device using the light control member.
矩形状の出射面を持つ照明装置は、照明看板や画像表示装置のバックライトなどに用いられる。こういった矩形状の出射面を持つ照明装置は、通常、一次光源の光を矩形状の出射面内で均一化することで、矩形状の出射光を得る。それらは通常、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を拡散板で均一化する直下方式が挙げられる。 An illumination device having a rectangular emission surface is used for an illumination signboard, a backlight of an image display device, and the like. An illumination device having such a rectangular emission surface usually obtains rectangular emission light by making the light from the primary light source uniform within the rectangular emission surface. They usually use an edge light system in which light from the light source placed on the side edge of the light guide plate is guided in the front direction by the light guide plate and is made uniform by the diffusion sheet, and a light source is placed on the back side of the illumination surface, and the light is diffused. There is a direct system that makes it uniform.
直下方式は、光源を装置の背面に備えることから厚さが厚くなる傾向があり、このため、携帯電話やモバイルパソコンなどの薄さを要求される分野では、光源を側端に備えることで有利となるエッジライト方式が主流であった。
一方で、近年、テレビやパソコンモニターなどの市場を中心にディスプレイの大型化および高輝度化の要求が高まってきた。特にディスプレイの大型化に伴い、上記エッジライト方式では、光源を配置できる周辺部の長さの表示面積に対する割合が減少して、光量が不足するため、充分な輝度を得ることができない。
The direct type has a tendency to increase the thickness because the light source is provided on the back surface of the apparatus. For this reason, it is advantageous to provide the light source at the side edge in a field where thinness is required such as a mobile phone or a mobile personal computer. The edge-light method is the mainstream.
On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. In particular, with the increase in the size of the display, the edge light method reduces the ratio of the length of the peripheral portion where the light source can be arranged to the display area, and the amount of light is insufficient, so that sufficient luminance cannot be obtained.
そこで、面光源上に複数の輝度向上のためのフィルムを配置して、光の利用効率を向上させる方法が提案されている(例えば、特許文献1参照)。
しかしながら、輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。また、エッジライト方式ではディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。このように、エッジライト方式では、近年のディスプレイの大型化、高輝度化といった市場の要求に応えることは困難となってきた。
Therefore, a method has been proposed in which a plurality of films for improving luminance are arranged on a surface light source to improve the light use efficiency (see, for example, Patent Document 1).
However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases. Further, the edge light system has a problem that the weight of the light guide plate increases as the display becomes larger. As described above, in the edge light system, it has been difficult to meet market demands such as an increase in display size and brightness in recent years.
そこで、複数光源による直下方式が注目されている。この方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち発光面から放射される光束の割合が高く、かつ、光源の数を自由に増加させることができる。すなわち、光量を自由に増加させることができるため、要求される高輝度が容易に得られ、また、大型化による輝度低下や輝度均一性の低下がない。さらに、光を正面に向ける導光板が不要となるため、軽量化を図ることができる。
また、他の照明装置として、例えば照明看板などでは、構成が単純であり、輝度向上のためのフィルムなどを用いることなく、容易に高輝度が得られることから、複数光源による直下方式が主流である。
Therefore, a direct method using a plurality of light sources is attracting attention. In this method, the utilization efficiency of light emitted from the light source, that is, the ratio of the light flux emitted from the light emitting surface to the light flux emitted from the light source is high, and the number of light sources can be increased freely. That is, since the amount of light can be increased freely, the required high brightness can be easily obtained, and there is no reduction in brightness or brightness uniformity due to an increase in size. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.
Also, as other lighting devices, for example, lighting signboards, etc., have a simple configuration, and high brightness can be easily obtained without using a film for improving brightness. is there.
しかしながら、直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に、前記ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れる。このため、従来、エッジライト方式で用いられてきた手段、即ち、フィルム表面に拡散材を塗布した拡散フィルムなどの手段では、ランプイメージの解消が困難である。 However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, the lamp image appears as brightness unevenness much more remarkable than the edge light method. For this reason, it is difficult to eliminate the lamp image by means conventionally used in the edge light system, that is, means such as a diffusion film in which a diffusion material is applied to the film surface.
そこで、拡散材を含有した拡散板が広く用いられている。この方式では、たとえば、図6に示すように、背面側に反射板2を配置した線状光源1の前面側に透明な平板内部に拡散材微粒子を分散した拡散板6を設置している。そして、良好な拡散性と光利用効率を得るために、メタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、無機微粒子や架橋有機微粒子を拡散材として配合して、光拡散板を作製する方法(例えば、特許文献2参照)が検討されている。
しかし、これら拡散材を用いる方法では拡散材への光の吸収や、不要な方向への光の拡散のため光の利用効率が低下し省エネルギーの観点から好ましくない。また、光源を近接して多数配置することでランプイメージは軽減できるが、消費電力が増加する問題がある。
Therefore, a diffusion plate containing a diffusion material is widely used. In this method, for example, as shown in FIG. 6, a diffusion plate 6 in which diffusing material fine particles are dispersed inside a transparent flat plate is installed on the front side of a linear light source 1 in which a reflection plate 2 is arranged on the back side. In order to obtain good diffusibility and light utilization efficiency, inorganic fine particles and cross-linked organic fine particles are blended as a diffusing material in base resin such as methacrylic resin, polycarbonate resin, styrene resin, and vinyl chloride resin. Thus, a method for producing a light diffusion plate (for example, see Patent Document 2) has been studied.
However, the method using these diffusing materials is not preferable from the viewpoint of energy saving because the light use efficiency decreases due to the absorption of light into the diffusing material and the diffusion of light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging many light sources close to each other, there is a problem that power consumption increases.
一方、反射板に独特の形状をもたせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、反射板形状と光源との位置合わせが必要であること、反射板の形状のため、薄型化が阻害される場合があること、などから好ましくない。
また、光源に対向して反射性部材を設置する方法(例えば、特許文献4参照)、光源ごとに、例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、特許文献3に記載の方法と同様に、前記部材と光源との正確な位置合わせが必要であることから、生産性が劣るといった課題が生じる。
On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the thickness of the reflector may be hindered due to the shape of the reflector.
Also, a method of installing a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source, etc. (for example, see Patent Document 5) However, as in the method described in Patent Document 3, since accurate alignment between the member and the light source is necessary, there arises a problem that productivity is inferior.
大型照明装置においては、携帯電話やモバイルパソコンなどに比べて、薄型化についての要求は厳しくないため、光源と拡散板との距離を短くすることや、光学フィルムの枚数削減などで対応できる。
また、省エネルギーを実現するには、光利用効率を高めることが必要である。直下方式は、前述のように光源本数を増やすことができ、高輝度を得ることが容易であるが、省エネルギーの視点からは、ランプイメージ解消のために大量の拡散材を用いるなどの、光利用効率を大きく下げる手段によることは避けなければならない。
In large illuminating devices, the demand for thinning is not strict as compared with mobile phones, mobile personal computers, and the like, so it can be dealt with by shortening the distance between the light source and the diffusion plate or reducing the number of optical films.
In order to realize energy saving, it is necessary to increase the efficiency of light utilization. The direct method can increase the number of light sources as described above, and it is easy to obtain high brightness, but from the viewpoint of energy saving, use of light such as using a large amount of diffusing material to eliminate the lamp image. You must avoid measures that greatly reduce efficiency.
本発明は、複数の線状光源を有する直下型の照明装置とこれを用いた画像表示装置の出射面における正面輝度の向上、輝度均一性の向上を課題とする。また、省エネルギーに有効な線状光源の本数を削減した構成においても、これらの課題を解決することもまた課題とする。また、これらの照明装置、画像表示装置に備えることで上記の課題を解決できる光制御部材の提供を別の課題とする。また上記光制御部材は、光の利用効率を下げる要因である拡散材の使用を回避、または使用量を従来の拡散材と比べて大幅に削減することを課題とする。更に、上記光制御部材は、厳密な位置合わせをせず、簡便に照明装置や画像表示装置に組み込めることを課題とする。また、光制御部材は、傷つきによる外観悪化を防ぐことを別の課題とする。更にこれらの光制御部材の微細な凸部の配列に由来する回折光による着色の回避、画像品位の低下防止をも目的としている。 An object of the present invention is to improve the front luminance and the luminance uniformity on the exit surface of a direct illumination device having a plurality of linear light sources and an image display device using the same. It is also an object to solve these problems even in a configuration in which the number of linear light sources effective for energy saving is reduced. Another object is to provide a light control member that can solve the above-described problems by providing the lighting device and the image display device. Another object of the light control member is to avoid the use of a diffusing material, which is a factor for reducing the light utilization efficiency, or to significantly reduce the amount of use compared to a conventional diffusing material. Furthermore, it is an object of the present invention to provide a light control member that can be easily incorporated into a lighting device or an image display device without strict alignment. Another object of the light control member is to prevent deterioration in appearance due to damage. Furthermore, it aims at avoiding the coloring by the diffracted light originating in the arrangement | sequence of the fine convex part of these light control members, and preventing the fall of image quality.
本発明者らは上記課題に鑑みて、以下の検討をなし本発明に至った。
複数線状光源直下方式の照明装置では、線状光源直上では入射するエネルギーが高く、各線状光源間では入射するエネルギーは小さい。光制御部材の出射面側に凸部を配置し、線状光源間において斜め方向より入射した光を正面に向ける作用をする凸部の斜面の角度が存在すれば線状光源間において正面輝度は上昇し、線状光源直上における正面輝度との比は小さくなり、結果として輝度ムラは解消される。光制御部材の凸部形状を工夫することにより、上記課題を解決するに至った。
In view of the above-mentioned problems, the present inventors have made the following studies and have reached the present invention.
In an illumination device of a type directly below a plurality of linear light sources, the incident energy is high immediately above the linear light sources, and the incident energy is small between the linear light sources. If the convex portion is arranged on the light exit surface side of the light control member and there is an angle of the convex portion slope that acts to direct the light incident from the oblique direction between the linear light sources, the front luminance between the linear light sources is As a result, the ratio with the front luminance directly above the linear light source becomes small, and as a result, the luminance unevenness is eliminated. By devising the convex shape of the light control member, the above problems have been solved.
また、該光制御部材の出射面側に第2の光制御部材を配置し、凸部形状を最適に設計することにより、更なる輝度の向上を達成することを見出した。
請求項1に記載の照明装置は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材とを備え、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行であり、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、58度〜80度であり、前記断面における該凸部の頂部を原点としX方向と垂直でかつ入射面に向かう方向をZ方向としたとき、該凸部の形状が下記(1)式で近似されることを特徴とする照明装置を提供する。
Further, the present inventors have found that the luminance can be further improved by arranging the second light control member on the light exit surface side of the light control member and optimally designing the convex shape.
The illumination device according to claim 1 has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, a reflector, a plurality of linear light sources, a plate-like light control member, The reflecting plate is arranged in parallel to the X direction and the Y direction, and the linear light source is arranged in one imaginary plane parallel to the X direction and the Y direction on the exit surface side of the reflecting plate. And the linear light sources are arranged with the longitudinal direction parallel to the Y direction and arranged along the X direction, and the light control member is on the emission surface side of the arranged linear light sources. And the main surface is parallel to the virtual plane on which the linear light sources are arranged, and the main surface of the light control member faces the linear light source and receives light from the linear light source It consists of an entrance surface and an exit surface that emits light received by the entrance surface, and the exit surface has a plurality of bowl-shaped projections on the surface. The protrusion has a hook-shaped ridge line corresponding to the top formed in parallel to the Y direction and arranged along the X direction, and the light control member extends along the X direction and is perpendicular to the main surface. In the cross section cut by the cross section, the maximum inclination angle θ of the convex part is 58 degrees to 80 degrees, and the top part of the convex part in the cross section is the origin and perpendicular to the X direction and toward the incident surface is the Z direction. The illumination device is characterized in that the shape of the convex portion is approximated by the following equation (1) .
請求項2に記載の照明装置は、請求項1に記載の照明装置であって、(1)式においてThe lighting device according to claim 2 is the lighting device according to claim 1, wherein:
−5.031≦K≦−0.355−5.031 ≦ K ≦ −0.355
を満足することを特徴とする照明装置を提供する。An illumination device characterized by satisfying the above is provided.
請求項3に記載の照明装置は、請求項1または2に記載の照明装置であって、前記断面における該凸部の幅aと、該凸部の高さbとの比b/aが0.35〜0.8であることを特徴とする照明装置を提供する。 The lighting device according to claim 3 is the lighting device according to claim 1 or 2, wherein a ratio b / a between the width a of the convex portion and the height b of the convex portion in the cross section is 0. Provided is a lighting device characterized by being 35 to 0.8.
請求項4に記載の照明装置は、請求項1〜3に記載の照明装置であって、該凸部の幅aが10μm〜500μmであることを特徴とする照明装置を提供する。 A lighting device according to a fourth aspect is the lighting device according to the first to third aspects, wherein the width a of the convex portion is 10 μm to 500 μm.
請求項5に記載の照明装置は、請求項1〜4に記載の照明装置であって、前記光制御部材は、凸部の谷部に平坦部を有することを特徴とする照明装置を提供する。 The illuminating device according to claim 5 is the illuminating device according to claims 1 to 4, wherein the light control member has a flat portion at a valley portion of the convex portion. .
請求項6に記載の照明装置は、請求項1〜5に記載の照明装置であって、前記光制御部材は、拡散要素を有していることを特徴とする照明装置を提供する。 A lighting device according to a sixth aspect is the lighting device according to any one of the first to fifth aspects, wherein the light control member includes a diffusing element.
請求項7に記載の照明装置は、請求項6に記載の照明装置であって、前記拡散要素は、前記光制御部材の入射面に設けられたシボ形状であることを特徴とする照明装置を提供する。 The illumination device according to claim 7 is the illumination device according to claim 6, wherein the diffusing element has an embossed shape provided on an incident surface of the light control member. provide.
請求項8に記載の照明装置は、請求項1〜7に記載の照明装置であって、前記光制御部材の屈折率nは1.45〜1.65であることを特徴とする照明装置を提供する。 The illumination device according to claim 8 is the illumination device according to claims 1 to 7, wherein the refractive index n of the light control member is 1.45 to 1.65. provide.
請求項9に記載の照明装置は、請求項1〜8に記載の照明装置であって、隣接する任意の前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材の前記入射面との距離をHとしたときに、D/Hが1.8≦D/H≦3.8であることを特徴とする照明装置を提供する。 The illuminating device according to claim 9 is the illuminating device according to any one of claims 1 to 8, wherein the distance between the centers of any adjacent linear light sources is D, the center of any linear light source and the Provided is an illuminating device in which D / H is 1.8 ≦ D / H ≦ 3.8, where H is a distance from the incident surface of the light control member.
請求項10に記載の照明装置は、請求項1〜9に記載の照明装置であって、前記光制御部材の出射面側で、かつ、主面を線状光源が配列している前記仮想平面と平行に第2の光制御部材を備え、該第2の光制御部材の主面は、該光制御部材を出射した光を受光する入射面と、前記入射面より受光した光を出光する出射面とからなり、前記出射面は表面に畝状の凸部を複数形成されており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつX方向に沿って配列しており、前記第2の光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、30度〜80度であることを特徴とする照明装置を提供する。 The illuminating device according to claim 10 is the illuminating device according to any one of claims 1 to 9, wherein the virtual plane is arranged on the emission surface side of the light control member and the linear light source is arranged on the main surface. The second light control member includes a second light control member in parallel with the main surface of the second light control member, an incident surface that receives the light emitted from the light control member, and an output that emits the light received from the incident surface. A plurality of bowl-shaped projections formed on the surface, the projection has a bowl-shaped ridge line corresponding to the top formed in parallel with the Y direction, and along the X direction. In a cross section in which the second light control members are cut along a cross section along the X direction and perpendicular to the main surface, the maximum inclination angle θ of the convex portion is 30 degrees to 80 degrees. An illumination device is provided.
請求項11に記載の照明装置は、請求項10に記載の照明装置であって、前記第2の光制御部材の前記断面における該凸部の頂部を原点としX方向およびY方向と垂直でかつ入射面に向かう方向をZ方向としたとき、該凸部の形状が前記(1)式で近似されることを特徴とする照明装置を提供する。 The illumination device according to claim 11 is the illumination device according to claim 10, wherein the top of the convex portion in the cross section of the second light control member is an origin and is perpendicular to the X direction and the Y direction, and Provided is an illuminating device characterized in that when the direction toward the incident surface is the Z direction, the shape of the convex portion is approximated by the equation (1).
請求項12に記載の照明装置は、請求項10に記載の照明装置であって、前記第2の光制御部材の前記断面において、凸部の形状がプリズム形状であり、その頂角ζは80度〜120度であることを特徴とする照明装置を提供する。 The illuminating device according to claim 12 is the illuminating device according to claim 10, wherein in the cross section of the second light control member, the shape of the convex portion is a prism shape, and the apex angle ζ is 80. Provided is an illuminating device characterized in that the angle is from 120 degrees to 120 degrees.
請求項13に記載の照明装置は、請求項10〜11に記載の照明装置であって、前記第2の光制御部材の前記断面において、凸部の形状が双曲線形状であり、前記双曲線の2つの漸近線のなす角度ξが30度〜120度である双曲線形状であることを特徴とする照明装置を提供する。 A lighting device according to a thirteenth aspect is the lighting device according to any one of the tenth to eleventh aspects, wherein a convex shape is a hyperbolic shape in the cross section of the second light control member, and the hyperbolic 2 Provided is a lighting device characterized by a hyperbolic shape in which an angle ξ formed by two asymptotes is 30 to 120 degrees.
請求項14に記載の照明装置は、請求項10〜13に記載の照明装置であって、前記第2の光制御部材は、凸部の谷部に平坦部を有することを特徴とする照明装置を提供する。
請求項15に記載の照明装置は、請求項10〜14に記載の照明装置であって、前記第2の光制御部材は、入射面側にシボを有することを特徴とする照明装置を提供する。
請求項16に記載の照明装置は、請求項10〜15に記載の照明装置であって、前記第2の光制御部材の屈折率nは1.45〜1.65であることを特徴とする照明装置を提供する。
The illuminating device according to claim 14 is the illuminating device according to claims 10 to 13, wherein the second light control member has a flat portion at a valley portion of the convex portion. I will provide a.
The illuminating device according to claim 15 is the illuminating device according to claims 10 to 14, wherein the second light control member has a texture on the incident surface side. .
The illuminating device according to claim 16 is the illuminating device according to claims 10 to 15, wherein the refractive index n of the second light control member is 1.45 to 1.65. A lighting device is provided.
請求項17に記載の光制御部材は、請求項1〜16のいずれか1項に記載の照明装置が備える光制御部材を提供する。 The light control member of Claim 17 provides the light control member with which the illuminating device of any one of Claims 1-16 is provided.
請求項18に記載の画像表示装置は、請求項1〜16のいずれか1項に記載の照明装置の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置を提供する。 An image display device according to an eighteenth aspect provides an image display device characterized in that a transmissive display element is provided on the exit surface side of the illumination device according to any one of the first to sixteenth aspects.
本発明は、光制御部材の出射側に配置した凸部により斜め入射光を正面に向ける効果があり線状光源間において正面方向に光を出射するため輝度ムラ解消効果を有する。凸部の形状を最適にすることにより、線状光源の間隔が広い構成においてもランプイメージを解消することができ、省エネルギーに有利な光源本数の削減を実現することができる。また、凸部形状を最適にすることによりランプイメージを解消できるため、拡散材の使用の回避または大幅な拡散材の減少が可能となり、光の吸収や不要な方向への出光が低減されるので、光の利用効率を高め、省エネルギー化を実現できる。 The present invention has an effect of directing obliquely incident light to the front by the convex portion arranged on the emission side of the light control member, and has an effect of eliminating luminance unevenness because light is emitted in the front direction between the linear light sources. By optimizing the shape of the convex portion, the lamp image can be eliminated even in a configuration in which the interval between the linear light sources is wide, and a reduction in the number of light sources advantageous for energy saving can be realized. In addition, since the lamp image can be eliminated by optimizing the convex shape, it is possible to avoid the use of a diffusing material or to significantly reduce the diffusing material, thereby reducing light absorption and light emission in unnecessary directions. , Increase the efficiency of light usage and save energy.
請求項1記載の発明は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材とを備え、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行であり、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、58度〜80度であることを特徴とする。光制御部材出射面に配列した凸部の斜面の出射面に対する最大傾斜角度θが58度〜80度の範囲においては、十分離れた位置から入射した光、つまり斜め入射光を正面に向けることができ、そのために線状光源間において正面輝度を向上させる作用があり、輝度ムラを解消することができる。また、斜め入射光を正面に向けることにより、光を集光する作用があるため、正面輝度向上につながる。凸部の最大傾斜角度θが58度〜80度の範囲であれば、上記効果が得られる。最大斜面角度が、58度より小さくなると、集光作用が弱くなり、正面輝度が低下すると共に、輝度ムラが増大する。また、逆に最大傾斜角度θが80度以上になると、金型の作製が困難となるため望ましくない。 The invention described in claim 1 has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, and includes a reflection plate, a plurality of linear light sources, and a plate-like light control member. The reflecting plate is arranged in parallel to the X direction and the Y direction, and the linear light source is arranged in one virtual plane parallel to the X direction and the Y direction on the exit surface side of the reflecting plate. And the linear light sources are arranged with the longitudinal direction parallel to the Y direction and arranged along the X direction, and the light control member is arranged on the emission surface side of the arranged linear light sources. And the main surface is parallel to the virtual plane on which the linear light sources are arranged, and the main surface of the light control member faces the linear light source and receives the light from the linear light source. And an exit surface that emits light received by the incident surface, and the exit surface has a plurality of bowl-shaped projections on the surface. The convex portion has a ridge-like ridgeline corresponding to the top portion formed in parallel to the Y direction, and is arranged along the X direction, and the light control member has a cross section along the X direction and perpendicular to the main surface. In the cut cross section, the maximum inclination angle θ of the convex portion is 58 degrees to 80 degrees. When the maximum inclination angle θ of the slope of the convex portion arranged on the light control member emission surface with respect to the emission surface is in the range of 58 degrees to 80 degrees, it is possible to direct light incident from a sufficiently distant position, that is, oblique incident light to the front. Therefore, there is an effect of improving the front luminance between the linear light sources, and uneven luminance can be eliminated. Further, since the obliquely incident light is directed to the front, there is an effect of condensing the light, which leads to an improvement in front luminance. If the maximum inclination angle θ of the convex portion is in the range of 58 degrees to 80 degrees, the above effect can be obtained. When the maximum slope angle is smaller than 58 degrees, the light collecting action is weakened, the front luminance is lowered, and the luminance unevenness is increased. Conversely, when the maximum inclination angle θ is 80 degrees or more, it is not desirable because it becomes difficult to manufacture the mold.
また、該断面における凸部の形状が、前記した曲線の近似式(1)式で表される。断面形状が曲線で表される場合には、光制御部材を出射した光が様々な方向に向くため、滑らかな視野角特性が得られ、さらに輝度ムラの低下につながる。 Moreover, the shape of the convex part in this cross section is represented by the approximate expression (1) of the curve described above. When the cross-sectional shape is represented by a curve, the light emitted from the light control member is directed in various directions, so that a smooth viewing angle characteristic can be obtained and the luminance unevenness is further reduced.
請求項3記載の発明は、図2に示すように凸部の幅aと凸部の高さbとの比b/aが0.35〜0.8である。比b/aが小さい場合、光制御部材の作製時に金型に樹脂が入りやすく、作製が容易となる。また、比b/aが小さい場合、光の集光性能が低下し、輝度ムラが増大し、光学性能低下につながる。 In the invention according to claim 3, as shown in FIG. 2, the ratio b / a between the width a of the convex portion and the height b of the convex portion is 0.35 to 0.8. When the ratio b / a is small, the resin is easy to enter the mold when the light control member is manufactured, and the manufacturing becomes easy. On the other hand, when the ratio b / a is small, the light condensing performance is lowered, the luminance unevenness is increased, and the optical performance is lowered.
請求項4記載の発明は、凸部の幅aが10μm〜500μmの照明装置である。凸部aの幅が10μmより小さい場合、回折光による着色が生じ、品位の低下につながる。また、幅aが500μmより大きくなると、凸部の筋が目立ちやはり品位の低下につながる。 The invention according to claim 4 is an illumination device in which the width a of the convex portion is 10 μm to 500 μm. When the width of the convex part a is smaller than 10 μm, coloring due to diffracted light occurs, leading to deterioration in quality. Further, when the width a is larger than 500 μm, the streaks of the convex portions are conspicuous, and the quality is also lowered.
請求項5に記載の発明は、凸部の谷部に平坦部を有することを特徴としている。谷部に平坦部を有すると、メス型金型作製を切削加工により加工する場合に、金型の切り立った微細部分の転倒防止効果がある。 The invention according to claim 5 is characterized in that a flat portion is provided in a valley portion of the convex portion. When the valley portion has a flat portion, when a female die is manufactured by cutting, there is an effect of preventing a fine portion of the die from falling down.
請求項6記載の発明は、前記光制御部材が拡散要素を有していることを特徴とする。輝度ムラ解消効果をさらに増大する効果がある。 The invention according to claim 6 is characterized in that the light control member has a diffusing element. There is an effect of further increasing the effect of eliminating luminance unevenness.
請求項7に記載の発明は、前記光制御部材が入射面にシボを有することを特徴とする。入射面にシボを設けることで、外観欠点を防止し傷を目立たなくするなどの効果がある。シボによる表面粗さが粗すぎるとこれによる拡散性が強まり結果として好ましくない方向に出光する場合があり正面輝度の低下につながるため、適度な粗さのシボを設ける必要がある。 The invention according to claim 7 is characterized in that the light control member has a texture on the incident surface. Providing wrinkles on the incident surface has effects such as preventing appearance defects and making scratches inconspicuous. If the surface roughness due to the embossing is too rough, the resulting diffusibility becomes stronger, and as a result, light may be emitted in an unfavorable direction, leading to a decrease in front luminance. Therefore, it is necessary to provide an embossing with an appropriate roughness.
であることを特徴としている。屈折率は高い方が、光学性能は向上し、同様の光学性能を有する形状としてはb/aを低く抑えることができる。ただし、屈折率が高くなると、材料が高価となり望ましくない。また、屈折率が小さい場合は、十分な光学性能を得ることができない。最適な屈折率としては、1.45〜1.65の範囲が望ましい。 It is characterized by being. The higher the refractive index, the better the optical performance, and b / a can be kept low as a shape having the same optical performance. However, when the refractive index is high, the material becomes expensive, which is not desirable. Further, when the refractive index is small, sufficient optical performance cannot be obtained. The optimum refractive index is preferably in the range of 1.45 to 1.65.
請求項9に記載の発明は、図3に示すように、隣接する任意の前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材の前記入射面との距離をHとした時に、D/Hが1.8≦D/H≦3.8であることを特徴とする。D/Hが大きい場合、前記線状光源の本数の削減や、照明装置の薄型化につながる。ただし、D/Hが大きくなると、輝度ムラ解消の光学設計が困難となる。 In the ninth aspect of the present invention, as shown in FIG. 3, the distance between the centers of any of the adjacent linear light sources is D, the center of the arbitrary linear light source, and the incident surface of the light control member. D / H is 1.8 ≦ D / H ≦ 3.8, where H is the distance. When D / H is large, the number of the linear light sources is reduced and the lighting device is thinned. However, when D / H increases, optical design for eliminating luminance unevenness becomes difficult.
請求項10に記載の発明は、前記光制御部材の出射面側に第2の光制御部材を配置したとき、該第2の光制御部材は、該光制御部材を出射した光を受光する入射面と、前記入射面より、受光した光を出射する出射面とからなり、第2に光制御部材の出射側に形成された凸部の最大傾斜角度θは、30度〜80度であることを特徴としている。凸部の最大傾斜角度θが30度〜80度の場合には、光を集光する効果があり、正面輝度を向上することができる。斜面角度が30度より小さいと、光の集光効果が低下し、輝度向上効果が低下する。また、逆に斜面角度が80度よりも大きくなると、金型の作製が困難となる。 According to a tenth aspect of the present invention, when the second light control member is disposed on the light exit surface side of the light control member, the second light control member receives the light emitted from the light control member. A projection surface formed on the exit side of the light control member, and the maximum inclination angle θ is 30 degrees to 80 degrees. It is characterized by. When the maximum inclination angle θ of the convex portion is 30 to 80 degrees, there is an effect of condensing light, and the front luminance can be improved. If the slope angle is smaller than 30 degrees, the light condensing effect is lowered, and the luminance improving effect is lowered. On the other hand, when the slope angle is larger than 80 degrees, it becomes difficult to manufacture the mold.
請求項11に記載の発明は、前記第2の光制御部材の該断面における曲線の形状が、前記(1)式で示されることを特徴とする。断面形状が曲線で表示される場合は、光制御部材を出射した光が様々な方向に向くため、滑らかな視野特性を得ることができる。 The invention according to claim 11 is characterized in that the shape of the curved line in the cross section of the second light control member is represented by the formula (1). When the cross-sectional shape is displayed as a curve, the light emitted from the light control member is directed in various directions, so that smooth visual field characteristics can be obtained.
請求項12に記載の発明は、前記第2に光制御部材の前記断面において凸部の形状がプリズム形状であり、図5(a)に示すその頂角ζは80度〜120度である。プリズム形状は、角度をもった斜面の割合が多いということであり、斜め入射光を正面に向ける作用が大きく、輝度の向上につながる。プリズム頂角ζが120度より大きいと、光の集光作用が薄れ輝度向上の効果が低くなる。また逆に、プリズム頂角ζが80度より小さいと、プリズム先端が尖った形状となり、方向変換作用が大きくなりすぎ、非常に斜め入射光のみを正面に向けるが、大部分の光を斜め方向に出射させてしまい望ましくない。 According to the twelfth aspect of the present invention, in the second aspect, the shape of the convex portion in the cross section of the light control member is a prism shape, and the apex angle ζ shown in FIG. 5A is 80 degrees to 120 degrees. The prism shape means that the ratio of inclined surfaces having an angle is large, and the effect of directing obliquely incident light to the front is large, leading to an improvement in luminance. When the prism apex angle ζ is larger than 120 degrees, the light condensing function is diminished and the effect of improving the luminance is lowered. Conversely, if the prism apex angle ζ is smaller than 80 degrees, the prism tip has a sharp shape, the direction changing action becomes too large, and only the oblique incident light is directed to the front, but most of the light is obliquely directed. This is not desirable because
請求項13に記載の発明は、前記第2の光制御部材の凸部の前記断面形状は双曲線形状であって、図5(b)に示す2つの漸近線のなす角度ξが30度から120度であることを特徴とする。2つの漸近線の成す角度ξが大きすぎる場合には、光の集光作用が弱くなり、輝度向上効果が弱くなる。逆に2つの漸近線の成す角度ξが小さすぎる場合には、光の方向を変換しすぎるために、斜め方向への出射光の割合が増え正面輝度は低下する。 According to a thirteenth aspect of the present invention, the cross-sectional shape of the convex portion of the second light control member is a hyperbolic shape, and an angle ξ formed by two asymptotes shown in FIG. It is a degree. When the angle ξ formed by the two asymptotes is too large, the light condensing function is weakened, and the brightness enhancement effect is weakened. On the other hand, when the angle ξ formed by the two asymptotes is too small, the direction of the light is changed too much, so that the ratio of the outgoing light in the oblique direction increases and the front luminance decreases.
請求項14に記載の発明は、前記第2の光制御部材は、凸部の谷部に平坦部を有することを特徴としている。谷部に平坦部を有すると、メス型金型作製を切削加工により加工する場合に、金型の切り立った微細部分の転倒防止効果がある。 The invention described in claim 14 is characterized in that the second light control member has a flat portion in a valley portion of the convex portion. When the valley portion has a flat portion, when a female die is manufactured by cutting, there is an effect of preventing a fine portion of the die from falling down.
請求項15に記載の発明は、前記第2の光制御部材は、入射面側にシボを有することを特徴としている。入射面にシボを設けることで、外観欠点を防止し傷を目立たなくするなどの効果がある。シボによる表面粗さが粗すぎるとこれによる拡散性が強まり結果として好ましくない方向に出光する場合があり正面輝度の低下につながるため、適度な粗さのシボを設ける必要がある。 The invention described in claim 15 is characterized in that the second light control member has a texture on the incident surface side. Providing wrinkles on the incident surface has effects such as preventing appearance defects and making scratches inconspicuous. If the surface roughness due to the embossing is too rough, the resulting diffusibility becomes stronger, and as a result, light may be emitted in an unfavorable direction, leading to a decrease in front luminance. Therefore, it is necessary to provide an embossing with an appropriate roughness.
請求項16に記載の発明は、前記第2の光制御部材の屈折率nは、1.45〜1.65であることを特徴としている。屈折率は高い方が、光学性能は向上し、同様の光学性能を有する形状としてはb/aを低く抑えることができる。ただし、屈折率が高くなると、材料が高価となり望ましくない。また、屈折率が小さい場合は、十分な光学性能を得ることができない。最適な屈折率としては、1.45〜1.65の範囲が望ましい。 The invention described in claim 16 is characterized in that the refractive index n of the second light control member is 1.45 to 1.65. The higher the refractive index, the better the optical performance, and b / a can be kept low as a shape having the same optical performance. However, when the refractive index is high, the material becomes expensive, which is not desirable. Further, when the refractive index is small, sufficient optical performance cannot be obtained. The optimum refractive index is preferably in the range of 1.45 to 1.65.
請求項17に記載の光制御部材は、請求項1〜16のいずれか1項に記載の照明装置の特徴である高輝度で、省エネルギーに有利な光源本数を削減した構成においても高い輝度均一性を実現できる光制御部材を提供する。 The light control member according to claim 17 has high brightness uniformity even in a configuration in which the number of light sources that is high brightness and advantageous for energy saving is reduced, which is a feature of the lighting device according to any one of claims 1 to 16. The light control member which can implement | achieve is provided.
ここで光制御部材は、本発明の照明装置、画像表示装置が備えることができる第2の光制御部材も含む。本発明の光制御部材を複数用いることで、効果の向上や、複数方向の光制御などといった効果の変化が生じる。本発明の光制御部材を複数用いる場合、これらは同じ形状であってもよいし、別の形状であってもよい。同じ形状であれば、生産性が高くなる。また別の形状のものを組み合わせて用いれば、より精密な光の制御が可能となる。 Here, the light control member also includes a second light control member that can be included in the illumination device and the image display device of the present invention. By using a plurality of light control members of the present invention, effects such as improvement of effects and light control in a plurality of directions occur. When a plurality of light control members of the present invention are used, these may have the same shape or different shapes. If it is the same shape, productivity will become high. Further, if a combination of different shapes is used, more precise light control is possible.
また、本光制御部材は、別の構成の直下型照明装置に用いても正面輝度の向上やランプイメージの解消また視野角の制御などの高い性能を実現でき、本発明の照明装置の構成以外の構成に用いることもできる。本構成以外の構成の例としては、1本の蛍光管の構成、蛍光管の両面に光制御部材を設けた照明装置の構成、あるいは光源としてU字型蛍光管を用いた照明装置の構成などが挙げられる。 In addition, the light control member can realize high performance such as improvement of front luminance, elimination of a lamp image, and control of a viewing angle even when used in a direct type illumination device of another configuration, other than the configuration of the illumination device of the present invention. It can also be used for the configuration of Examples of configurations other than this configuration include a configuration of a single fluorescent tube, a configuration of an illumination device in which light control members are provided on both sides of the fluorescent tube, or a configuration of an illumination device using a U-shaped fluorescent tube as a light source. Is mentioned.
請求項18に記載の画像表示装置は、請求項1〜16のいずれか1項に記載の照明装置の出射面側に透過型表示素子を設けたことで、高輝度で省エネルギーに有利で画像品位の高い画像表示装置を得ることができる。 The image display device according to claim 18 is provided with a transmissive display element on the exit surface side of the illumination device according to any one of claims 1 to 16, thereby providing high brightness and energy saving, and image quality. High image display device can be obtained.
本発明は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材とを備え、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行であり、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、58度〜80度であり、前記断面における該凸部の頂部を原点としX方向と垂直でかつ入射面に向かう方向をZ方向としたとき、該凸部の形状が前記(1)式で近似されることを特徴とする照明装置であり、該凸部の幅aと、該凸部の高さbとの比b/aが0.35〜0.8であるのが好ましい。図2に該凸部の幅aと該凸部の高さbとの関係を示す。また、前記(1)式において−5.031≦K≦−0.355を満足するのが好ましい。 The present invention has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, and includes a reflection plate, a plurality of linear light sources, and a plate-like light control member. Are arranged in parallel to the X direction and the Y direction, the linear light source is arranged in one virtual plane parallel to the X direction and the Y direction on the exit surface side of the reflector, and The linear light sources are arranged in the longitudinal direction parallel to the Y direction and arranged along the X direction, the light control member is arranged on the emission surface side of the arranged linear light sources, and The main surface is parallel to the virtual plane on which linear light sources are arranged, and the main surface of the light control member is an incident surface that faces the linear light source and receives light from the linear light source, and the incident surface And a plurality of bowl-shaped projections formed on the surface, the projections being apexes. And ribbed ridges are formed in parallel in the Y direction, corresponding to, and arranged along the X direction, in a cross section taken along along and in the main surface and a cross section perpendicular to the light control member in the X direction, The maximum inclination angle θ of the convex portion is 58 degrees to 80 degrees, and the convex portion when the apex of the convex portion in the cross section is the origin, the direction perpendicular to the X direction and the direction toward the incident surface is the Z direction. The shape is approximated by the expression (1) above, and the ratio b / a between the width a of the convex portion and the height b of the convex portion is 0.35 to .0. 8 is preferred . FIG. 2 shows the relationship between the width a of the convex portion and the height b of the convex portion. In the formula (1), it is preferable that −5.031 ≦ K ≦ −0.355 is satisfied.
また、図3は光制御部材2と第2の光制御部材5と線状光源1との配置を示す断面図である。図中に、隣接する任意の線状光源の中心間の距離D、任意の前記線状光源の中心と前記光制御部材2の前記入射面との距離Hとの関係を示す。本発明の照明装置は、D/Hが1.8≦D/H≦3.8であることを特徴とするが、比D/Hが大きくなるほど、輝度ムラ解消効果のある光制御部材の凸部の幅aと凸部の高さbとの比b/aは大きくなる。これは、比D/Hが大きい程、より斜めの角度より入射する光の割合が増え、入射した光を正面に向けるための凸部の斜面の角度は大きくなるため相対的に凸部高さは高くなり、結果として輝度ムラ解消に最適な前記比b/aは大きくなる。例えば、1.8≦D/H≦2.5では、最適なb/aは0.35≦b/a≦0.6であり、2.5≦D/H≦3・5では、最適なb/aは0.5≦b/a≦0.7であり、3.5≦D/H≦3.8では、最適なb/aは0.6≦b/a≦0.8となる。 FIG. 3 is a sectional view showing the arrangement of the light control member 2, the second light control member 5, and the linear light source 1. In the drawing, the relationship between the distance D between the centers of any adjacent linear light sources and the distance H between the center of any linear light source and the incident surface of the light control member 2 is shown. The lighting device of the present invention is characterized in that D / H is 1.8 ≦ D / H ≦ 3.8, but as the ratio D / H is increased, the convexity of the light control member having the effect of eliminating the uneven brightness is increased. The ratio b / a between the width a of the portion and the height b of the convex portion is increased. This is because as the ratio D / H increases, the proportion of incident light increases from an oblique angle, and the angle of the slope of the convex portion for directing incident light to the front increases, so that the convex portion height is relatively high. As a result, the ratio b / a optimum for eliminating the luminance unevenness increases. For example, when 1.8 ≦ D / H ≦ 2.5, the optimum b / a is 0.35 ≦ b / a ≦ 0.6, and when 2.5 ≦ D / H ≦ 3.5, the optimum b / a is optimum. b / a is 0.5 ≦ b / a ≦ 0.7. When 3.5 ≦ D / H ≦ 3.8, the optimum b / a is 0.6 ≦ b / a ≦ 0.8. .
また、前記光制御部材の出射面側に第2の光制御部材を備える場合もある。前記第2の光制御部材を備える場合、前記第2の光制御部材は前記光制御部材の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行であり、該第2の光制御部材は、該光制御部材を出射した光を受光する入射面と、前記入射面より受光した光を出光する出射面とからなり、前記出射面は表面に畝状の凸部を複数形成されており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつX方向に沿って配列している。 Further, a second light control member may be provided on the light exit surface side of the light control member. When the second light control member is provided, the second light control member is disposed on the light emission surface side of the light control member, and the main surface is parallel to the virtual plane on which linear light sources are arranged. The second light control member includes an incident surface that receives light emitted from the light control member, and an output surface that emits light received from the incident surface, and the emission surface has a bowl shape on the surface. A plurality of protrusions are formed, and the protrusions have hook-shaped ridgelines corresponding to the tops formed in parallel to the Y direction and arranged along the X direction.
第2の光制御部材の凸部の最大傾斜角度は、30度〜80度であることを特徴とする。凸部の形状は、プリズム形状、楕円形状あるいは、双曲線形状などである。凸部の形状がプリズム形状である場合には凸部の最大傾斜角度は30度〜50度が望ましく、凸部の形状が双曲線形状である場合には凸部の最大傾斜角度は40度〜70度であることが望ましく、凸部の形状が楕円形状である場合には凸部の最大傾斜角度は50度〜80度であることが望ましい。 The maximum inclination angle of the convex portion of the second light control member is 30 to 80 degrees. The shape of the convex portion is a prism shape, an elliptical shape, a hyperbolic shape, or the like. When the shape of the convex portion is a prism shape, the maximum inclination angle of the convex portion is desirably 30 ° to 50 °, and when the shape of the convex portion is a hyperbolic shape, the maximum inclination angle of the convex portion is 40 ° to 70 °. Desirably, the maximum inclination angle of the convex portion is preferably 50 to 80 degrees when the convex portion has an elliptical shape.
凸部の形状がプリズム形状である場合には、図5(a)に示すプリズムの頂角ζは80度〜120度であることが望ましく、さらに90度〜115度であることがより望ましく、100度〜110度であることがさらに望ましい。 When the shape of the convex portion is a prism shape, the apex angle ζ of the prism shown in FIG. 5A is preferably 80 degrees to 120 degrees, more preferably 90 degrees to 115 degrees, It is further desirable that the angle is 100 degrees to 110 degrees.
凸部の形状が双曲線形状である場合には、図5(b)に示す2つの漸近線のなす角度ξが30度から120度であることが望ましく、2つの漸近線の成す角度ξが大きすぎる場合には、光の集光作用が弱くなり、輝度向上効果が弱くなる。逆に2つの漸近線の成す角度ξが小さすぎる場合には、光の方向を変換しすぎるために、斜め方向への出射光の割合が増え正面輝度は低下する。 When the shape of the convex portion is a hyperbolic shape, the angle ξ formed by the two asymptotes shown in FIG. 5B is preferably 30 to 120 degrees, and the angle ξ formed by the two asymptotes is large. When too large, the light condensing effect becomes weak, and the brightness enhancement effect becomes weak. On the other hand, when the angle ξ formed by the two asymptotes is too small, the direction of the light is changed too much, so that the ratio of the outgoing light in the oblique direction increases and the front luminance decreases.
背面にX方向とY方向に平行に配置した反射板4の反射率は80%以上であることが望ましく、光の利用効率の観点から高いほど、より望ましい。線状光源1から背面に向かう光や、光制御部材2で反射して背面に向かう光をさらに出射側に反射することで、光を有効に利用できるため光利用効率が高くなる。反射板の材質としては、アルミ、銀、ステンレスなどの金属泊、白色塗装、発泡PET樹脂などが挙げられる。反射板は反射率が高いものが光利用効率を高める上で望ましい。この観点からは、銀、発泡PET樹脂などが望ましい。また光を拡散反射するものが出射光の均一性を高める上で望ましい。この観点からは発泡PET樹脂などが望ましい。 The reflectance of the reflecting plate 4 arranged on the back surface in parallel with the X direction and the Y direction is preferably 80% or more, and the higher the light utilization efficiency, the more desirable. By reflecting the light traveling from the linear light source 1 to the back surface and the light reflected by the light control member 2 and traveling toward the back surface further to the emission side, the light can be used effectively, so that the light utilization efficiency is increased. Examples of the material of the reflecting plate include metal stays such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. A reflector having a high reflectance is desirable for improving the light utilization efficiency. From this viewpoint, silver, foamed PET resin, and the like are desirable. Further, it is desirable to diffuse and reflect light in order to improve the uniformity of the emitted light. From this viewpoint, foamed PET resin and the like are desirable.
また線状光源は、点状光源と比べて輝度ムラの解消が容易であり、配線が短く容易であるためこれらの照明装置の光源として最も一般的である。線状光源としては冷陰極管などが多く用いられる。また通常、線状光源は同じタイプのものを用いることが生産上有利であり、輝度の均一化にも有利であるが、この場合、線状光源は出射面の矩形の長い辺と平行な向きで配列することが、線状光源の本数を削減できるため望ましい。また線状光源を同一平面内に等間隔に配置した場合、課題である輝度ムラは線状光源の配置に伴う周期的なものとなり、主面内で均一な光学性能を持つ光拡散板での輝度ムラの解消は容易になるので望ましい。反射板は必須ではないが、線状光源および光拡散板から出射方向と反対に放射された光を出射側に反射して再び出射光として利用する働きがあり、光の利用効率を高める上で有利である。 Also, the linear light source is the most common light source for these lighting devices because it is easier to eliminate luminance unevenness than the point light source and the wiring is short and easy. A cold cathode tube or the like is often used as the linear light source. In general, it is advantageous for production to use the same type of linear light source, and it is also advantageous for uniform brightness. In this case, however, the linear light source is oriented parallel to the long side of the output surface rectangle. It is desirable that the number of linear light sources can be reduced. Also, when linear light sources are arranged at equal intervals in the same plane, the luminance unevenness that is a problem becomes periodic with the arrangement of the linear light sources, and the light diffuser plate with uniform optical performance in the main surface It is desirable because it is easy to eliminate luminance unevenness. The reflector is not essential, but it works to reflect the light emitted from the linear light source and the light diffusing plate opposite to the exit direction to the exit side and use it again as the exit light. It is advantageous.
ここで、図3に示したような、厚みTの第1の光制御部材の上に厚みT’の第2の光制御部材を載せて、第1の光制御部材で第2の光制御部材を支持するような構成にすることができる。この場合、第1の光制御部材2の厚みTは1mm〜5mmが望ましく、第2の光制御部材の厚みT’は0.2mm〜1mmが望ましい。
光制御部材2の厚みTが小さいと光制御部材の厚さが薄くなり、照明装置としての厚さも薄くなり望ましいが、薄すぎると強度が弱くたわみ、そのため出光方向が変化することで制御できなくなり正面方向の輝度ムラが発生する。また、力学的強度が弱くなり破損する可能性もある。特に大型化ディスプレイ向けとしては力学的強度が必要となり、2mm〜5mmが望ましい。また、逆に厚すぎると照明装置の厚さが厚くなり、薄型化の要望に反するため望ましくない。薄型化の観点からは、1mm〜3mmであることが望ましい。
Here, as shown in FIG. 3, the second light control member having the thickness T ′ is placed on the first light control member having the thickness T, and the second light control member is formed by the first light control member. It is possible to adopt a configuration that supports In this case, the thickness T of the first light control member 2 is desirably 1 mm to 5 mm, and the thickness T ′ of the second light control member is desirably 0.2 mm to 1 mm.
If the thickness T of the light control member 2 is small, the thickness of the light control member becomes thin and the thickness of the lighting device is also thin, which is desirable. However, if the light control member 2 is too thin, the strength of the light control member will be weak. Luminance unevenness in the front direction occurs. In addition, the mechanical strength may be weakened and may be damaged. Particularly for large-sized displays, mechanical strength is required, and 2 mm to 5 mm is desirable. On the other hand, if the thickness is too large, the thickness of the lighting device is increased, which is not desirable because it is contrary to the demand for thickness reduction. From the viewpoint of thinning, it is desirable to be 1 mm to 3 mm.
第2の光制御部材は光制御部材2の出射面側に配置するために、支持の必要がなく光源側へのたわみは回避することができるため、第の光制御部材の厚みT’は光制御部材の厚みTに比べ薄くすることができる。また、材質としてゴム強化MSなどの柔軟な材料を使用する場合は、破損の危険性も回避することができ望ましいが、0.2mmより薄くなると、皺の発生の原因となるため、0.2mm〜1mmが望ましい。 Since the second light control member is disposed on the light exit surface side of the light control member 2, it is not necessary to support it and the deflection to the light source side can be avoided, so the thickness T ′ of the first light control member is the light It can be made thinner than the thickness T of the control member. In addition, when using a flexible material such as rubber reinforced MS as a material, it is desirable to avoid the risk of breakage. However, if it is thinner than 0.2 mm, it may cause wrinkles. -1 mm is desirable.
光制御部材および第2の光制御部材の出射面上に形成する凸部の幅は10μm〜500μmが望ましい。500μmより大きくなると、出射面を観察した際、凸部の稜線である筋が確認されやすくなるため品位の低下を招く。また10μmより小さくなると光の回折現象により着色が発生し品位の低下を生じる。さらに、透過型液晶パネルを透過型表示装置素子として設けた本発明の画像表示装置においては、X方向の凸部の幅aが、液晶の画素ピッチの1/100〜1/1.5であることが望ましい。これより大きくなると液晶パネルとのモアレが発生し画質を大きく低下させる。 The width of the convex portions formed on the light emission surfaces of the light control member and the second light control member is desirably 10 μm to 500 μm. When the thickness is larger than 500 μm, the streak that is the ridge line of the convex portion is easily confirmed when the exit surface is observed, and the quality is deteriorated. On the other hand, when the thickness is smaller than 10 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Furthermore, in the image display device of the present invention in which the transmissive liquid crystal panel is provided as the transmissive display device element, the width a of the convex portion in the X direction is 1/100 to 1 / 1.5 of the pixel pitch of the liquid crystal. It is desirable. If it is larger than this, moire occurs with the liquid crystal panel, and the image quality is greatly reduced.
また、凸部谷部に平坦部を設けることにより、金型の凸部が変形しにくい形状となるため有利である。特に凸部最大傾斜角度θが70度以上の場合には、平坦部を設けたほうが望ましい。最大傾斜角度θがそれ以下の場合には設けなくてもよい。最大傾斜角度θが大きい場合には、メス型金型切削時に金型先端が細くなり転倒の危険性が生じるために、谷部の平坦部を設けたほうが望ましい。 In addition, it is advantageous to provide a flat portion in the convex valley portion because the convex portion of the mold is difficult to deform. In particular, when the convex portion maximum inclination angle θ is 70 degrees or more, it is desirable to provide a flat portion. If the maximum inclination angle θ is less than that, it may not be provided. When the maximum inclination angle θ is large, it is desirable to provide a flat portion of the valley portion because the tip of the die becomes thin when the female die is cut and there is a risk of falling.
光制御部材あるいは第2の光制御部材は入射面にシボを有することを特徴としている。入射面にシボを設けることで、外観欠点を防止し傷を目立たなくするなどの効果がある。ただし、シボによる表面粗さが粗すぎるとこれによる拡散性が強まり結果として好ましくない方向に出光する場合があり正面輝度の低下につながる。適度な粗さのシボを設ける必要がある。 The light control member or the second light control member has a texture on the incident surface. Providing wrinkles on the incident surface has effects such as preventing appearance defects and making scratches inconspicuous. However, if the surface roughness due to embossing is too rough, the diffusibility due to this increases, and as a result, light may be emitted in an unfavorable direction, leading to a decrease in front luminance. It is necessary to provide a grain having an appropriate roughness.
光制御部材あるいは第2の光制御部材の屈折率nは、1.45〜1.65であることを特徴としている。屈折率は高い方が、光学性能は向上し、同様の光学性能を有する形状としてはb/aを低く抑えることができる。光学性能を得るためには、屈折率は1.55〜1.65が望ましい。ただし、屈折率が高くなると、材料が高価となり望ましくない。また、屈折率が小さい場合は、十分な光学性能を得ることができない。一般的な材料を用いた場合の屈折率は、1.45〜1.60となる。 The light control member or the second light control member has a refractive index n of 1.45 to 1.65. The higher the refractive index, the better the optical performance, and b / a can be kept low as a shape having the same optical performance. In order to obtain optical performance, the refractive index is desirably 1.55 to 1.65. However, when the refractive index is high, the material becomes expensive, which is not desirable. Further, when the refractive index is small, sufficient optical performance cannot be obtained. The refractive index when a general material is used is 1.45 to 1.60.
光制御部材の凸部傾斜角により、斜め入射光を正面に向けることにより、線状光源間においても十分な輝度を得ることができ、輝度ムラ解消の効果があるため、拡散要素を大幅に減少することができる。ここでいう拡散要素としては、入射面および/または出射面にコートした拡散材や、入射面および/または出射面に設けたランダムな凹凸をおよび/または内部に分散する拡散材などが挙げられる。 Due to the inclination angle of the convex part of the light control member, it is possible to obtain sufficient brightness even between linear light sources by directing obliquely incident light to the front. can do. Examples of the diffusing element herein include a diffusing material coated on the incident surface and / or the emitting surface, and a random diffusing material provided on the incident surface and / or the emitting surface and / or a diffusing material dispersed inside.
ランダムな凹凸の形成は微粒子を分散した溶液を主面に塗布することや、凹凸の形成された金型から転写することにより実現できる。凹凸の程度は算術平均粗さRaが3μm以下であることが望ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。入射面が平坦である場合、様々な方向から入射した光が、光制御部材内に入射したとき入射面での屈折によりある程度正面付近に集光されるため、結果として正面方向への出光割合が増える。例えば、光制御部材の屈折率が1.55である場合には、入射面の法線方向と40度以内の角度範囲に集光される。入射面に凹凸を付与した場合、光制御部材に入射した光は、広い角度に屈折され進むので、正面方向への出光割合を増やす効果が低下する場合がある。また出射面に微細な凹凸を設ける場合、凹凸面で屈折されることで同様に凹凸によって正面方向への出光割合を増やす効果が低下する場合がある。得られる拡散性や輝度ムラ解消効果と正面輝度とのバランスから用いる用途に望ましい範囲に調整することができる。 The formation of random irregularities can be realized by applying a solution in which fine particles are dispersed to the main surface or transferring from a mold having irregularities. As for the degree of unevenness, the arithmetic average roughness Ra is desirably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered. When the incident surface is flat, light incident from various directions is condensed to some extent near the front due to refraction at the incident surface when entering the light control member. As a result, the light emission ratio in the front direction is increased. Increase. For example, when the refractive index of the light control member is 1.55, the light is condensed in an angle range within 40 degrees with respect to the normal direction of the incident surface. When unevenness is given to the incident surface, the light incident on the light control member is refracted at a wide angle and proceeds, so that the effect of increasing the light emission ratio in the front direction may be reduced. Moreover, when providing a fine unevenness | corrugation in an output surface, the effect which increases the light emission ratio to a front direction by an unevenness | corrugation similarly may be reduced by being refracted by an uneven surface. It can be adjusted to a range desired for the intended use from the balance between the obtained diffusibility and luminance unevenness eliminating effect and front luminance.
光を拡散させる微粒子を構造物の内部に設ける場合には、微粒子の濃度は通常の拡散板と比べて非常に低く抑えることが可能であり、微粒子の基材や粒径は通常の拡散材として微粒子拡散板等に用いられているものであれば好適に用いることができる。好適な微粒子の濃度は材料によって異なるが、例えば、メタアクリル酸メチル−スチレン共重合体に、シロキサン系重合体粒子を0.4重量%分散させることなどが挙げられる。 In the case where fine particles that diffuse light are provided inside the structure, the concentration of the fine particles can be kept very low compared to a normal diffusion plate. Any material used for a fine particle diffusion plate or the like can be preferably used. The preferred concentration of fine particles varies depending on the material, and examples thereof include dispersing 0.4% by weight of siloxane polymer particles in a methyl methacrylate-styrene copolymer.
また、光制御部材あるいは第2の光制御部材の光源側に重ねて、樹脂やガラス等からなる透明な支持基板を設けても良い。支持基板を配することによって、光制御部材を例えば0.1mmから1mmと薄くしても光制御部材を支持することが可能である。光制御部材を薄くすることによって、押出成形等による成形が更に容易になり、生産性が向上する。また、面光源素子が大型化するに従い次第に困難になる光制御部材の支持を容易にする。前記支持基板の厚さに特に制限は無いが、通常0.5mmから5mmであり、軽量化と強度の兼ね合いから、支持基板がガラス等の剛直な材料からなる場合は通常0.5mmから2mm程度が望ましく、熱可塑性樹脂のような軽量な材料からなる場合は2mmから4mmの範囲であることが更に望ましい。支持基板は光制御部材同様、内部に光を拡散させる微粒子を分散したり、表面に型押ししたり微粒子を塗布することによって拡散性を高めても良い。内部に微粒子を分散させる場合や表面に型押しする場合には、基材は熱可塑性樹脂であることが生産上好ましく、好適な材料は光制御部材と同等である。また支持基板は重ねて設けた光制御部材と接合されていても良く、例えば透明な接着剤等で接合することができ、これによって面光源素子の組み立て工程が簡素化し、更には重ねて設けた光制御部材のずれや皺の発生が防止できる。 In addition, a transparent support substrate made of resin, glass, or the like may be provided on the light source side of the light control member or the second light control member. By disposing the support substrate, the light control member can be supported even if the light control member is thinned, for example, from 0.1 mm to 1 mm. By reducing the thickness of the light control member, molding by extrusion molding or the like is further facilitated, and productivity is improved. In addition, it becomes easy to support the light control member that becomes increasingly difficult as the surface light source element becomes larger. The thickness of the support substrate is not particularly limited, but is usually from 0.5 mm to 5 mm. When the support substrate is made of a rigid material such as glass, it is usually about 0.5 mm to 2 mm for light weight and strength. In the case of a lightweight material such as a thermoplastic resin, it is more preferably in the range of 2 mm to 4 mm. Similar to the light control member, the support substrate may be improved in diffusibility by dispersing fine particles for diffusing light therein, embossing on the surface, or applying fine particles. In the case of dispersing fine particles inside or embossing on the surface, it is preferable for production that the base material is a thermoplastic resin, and a suitable material is equivalent to the light control member. Further, the support substrate may be joined to the light control member provided in an overlapping manner, for example, it can be joined with a transparent adhesive or the like, thereby simplifying the assembly process of the surface light source element, and further provided in an overlapping manner. The light control member can be prevented from shifting and wrinkling.
光制御部材あるいは第2の光制御部材の前記断面における凸部の傾斜角度の測定方法は、光制御部材あるいは第2の光制御部材を前記断面にて切断し、光学顕微鏡にて写真を撮影し角度を測定する方法がある。より正確な測定方法としては、SEM(走査型電子顕微鏡)にて写真を撮影し角度を測定する方法が挙げられる。 The method for measuring the inclination angle of the convex portion in the cross section of the light control member or the second light control member is to cut the light control member or the second light control member in the cross section and take a photograph with an optical microscope. There is a way to measure the angle. As a more accurate measurement method, there is a method of taking a photograph with an SEM (scanning electron microscope) and measuring an angle.
光制御部材あるいは第2の光制御部材の製造方法としては、押出成型、射出成型、紫外線硬化樹脂を使用した2P成型が挙げられるが、凸部の大きさ、凸部の形状、量産性等を考慮して適した成型方法を選択すればよい。主面が大きい場合には押出成型が適している。 Examples of the method for manufacturing the light control member or the second light control member include extrusion molding, injection molding, and 2P molding using an ultraviolet curable resin. The size of the convex portion, the shape of the convex portion, mass productivity, etc. A suitable molding method may be selected in consideration. Extrusion molding is suitable when the main surface is large.
光制御部材あるいは第2の光制御部材の凸部が同じ形状であることが望ましい。光制御部材の光学的性質は一様であるので、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。 It is desirable that the convex portions of the light control member or the second light control member have the same shape. Since the optical properties of the light control member are uniform, alignment is not necessary, and it is possible to immediately respond to changes in the display size, the number of linear light sources and the arrangement, and the lighting device can be manufactured with high productivity. .
また光制御部材は通常光学材料の基材として用いられる材料であれば望ましく用いることができ、通常、透光性の熱可塑性樹脂を用いる。たとえばメタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂などが挙げられる。 The light control member can be desirably used as long as it is a material usually used as a base material of an optical material, and usually a light-transmitting thermoplastic resin is used. For example, methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl-styrene copolymer resin, cycloolefin-alkene copolymer resin and the like can be mentioned.
第2の光制御部材の材料としては、通常光学透明材料であれば用いることが可能である例えば、メタアクリル樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂、ゴム強化MSなどが挙げられる。 As the material of the second light control member, any material that is usually optically transparent can be used. For example, methacrylic resin, polycarbonate resin, cycloolefin resin, polystyrene resin, methacryl-styrene copolymer resin, cycloolefin -Alkene copolymer resin, rubber reinforced MS, etc. are mentioned.
なお、本発明の画像表示装置としては、照明装置上に透過型の液晶表示素子を用いる等の方法により実現され、特に制限はないが、透過型表示素子としては透過型液晶パネルがあげられ、表示面の輝度均一性に優れる画像表示装置を得ることができる。ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。 The image display device of the present invention is realized by a method such as using a transmissive liquid crystal display element on a lighting device, and is not particularly limited, but the transmissive display element includes a transmissive liquid crystal panel, An image display device having excellent display surface luminance uniformity can be obtained. Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module.
以下本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
本実施例は本発明の光制御部材を備える照明装置の正面輝度と輝度均一性を測定することで評価する。結果については表1にまとめる。
Examples of the present invention will be described below, but the present invention is not limited thereto.
This embodiment is evaluated by measuring the front luminance and luminance uniformity of a lighting device including the light control member of the present invention. The results are summarized in Table 1.
まず実施例で用いる光制御部材の作製について説明する。
実施例1の照明装置が備える2枚の本発明の光制御部材のうち、線状光源に近い方に配置される光制御部材は以下の方法にて作製する。切削加工によってロール状金型の表面全体に、作製しようとする光制御部材の幅0.300mmの畝状凸部を反転させた形状の、溝状凹部を平行に、間に0.004mmの平坦部を挟んで多数設けて賦形用ロール金型とする。ポリスチレン(東洋スチレン株式会社製HRM40屈折率1.59)を、前記ロール状金型を用いて、押出成型することによってZ軸方向の厚さ1.5mmの賦形シートとし、それをX軸方向の長さ200mm、Y軸方向の長さ360mmにカットして光制御部材を得る。同様にして、実施例3、5〜7、18の光制御部材、および、実施例4、8、19が備える2枚の光制御部材のうち線状光源に近い方に配置される光制御部材を作製する。
First, production of a light control member used in the examples will be described.
Of the two light control members of the present invention provided in the lighting device of Example 1, the light control member disposed closer to the linear light source is produced by the following method. By cutting the entire surface of the roll mold, the groove-shaped recesses of the light control member to be produced are inverted with the ridge-shaped protrusions with a width of 0.300 mm in parallel, and flat with an interval of 0.004 mm. A large number of molds are provided across the section to form a shaping roll mold. Polystyrene (HRM40 refractive index 1.59 manufactured by Toyo Styrene Co., Ltd.) is extruded using the above roll mold to form a shaped sheet having a thickness of 1.5 mm in the Z-axis direction. Are cut into a length of 200 mm and a length in the Y-axis direction of 360 mm to obtain a light control member. Similarly, the light control member of Examples 3, 5-7, and 18 and the light control member disposed closer to the linear light source among the two light control members provided in Examples 4, 8, and 19 Is made.
実施例2の照明装置が備える2枚の本発明の光制御部材のうち、線状光源に近い方に配置される光制御部材は以下の方法にて作製する。本発明の光制御部材の凸部形状を得るために、切削加工によって金属板の一面全体に、作成しようとする光制御部材の畝状凸部を反転させた形状の、幅0.100mmの溝状凹部を平行に、間に0.002mmの平坦部を挟んで多数設けて賦形用金型とする。その後得られる賦形用金型を用いて、紫外線硬化樹脂で一面に凸部を有する賦形板を作成し、該凸部を有する面にニッケルを電鋳することによってスタンパを作製する。ポリスチレン(東洋スチレン株式会社製G100C屈折率1.59)を、前記スタンパを用いて射出成型することによってZ軸方向の厚さ2mm、X軸方向の長さ200mm、Y軸方向の長さ360mm光制御部材を作製する。同様にして、実施例9、16の光制御部材、および、実施例10〜15、17が備える2枚の光制御部材のうち線状光源に近い方に配置される光制御部材を作製する。 Of the two light control members of the present invention provided in the illumination device of Example 2, the light control member disposed closer to the linear light source is produced by the following method. In order to obtain the convex shape of the light control member of the present invention, a groove having a width of 0.100 mm and having a shape obtained by inverting the hook-shaped convex portion of the light control member to be created on the entire surface of the metal plate by cutting. A large number of concave portions are provided in parallel with a flat portion of 0.002 mm between them to form a shaping die. Thereafter, a shaping plate having a convex portion on one surface is prepared with an ultraviolet curable resin using the molding die obtained, and a stamper is produced by electroforming nickel on the surface having the convex portion. Polystyrene (G100C refractive index 1.59 manufactured by Toyo Styrene Co., Ltd.) is injection-molded using the stamper, so that the thickness in the Z-axis direction is 2 mm, the length in the X-axis direction is 200 mm, and the length in the Y-axis direction is 360 mm. A control member is produced. Similarly, the light control member disposed in the direction closer to the linear light source among the light control members of Examples 9 and 16 and the two light control members included in Examples 10 to 15 and 17 is manufactured.
次に実施例1,2、4、8、10〜15、17、19の照明装置が備える2枚の本発明の光制御部材のうち、線状光源から遠い方に配置される第2の光制御部材I〜VIは以下の方法にて作製する。
本発明の第2の光制御部材Iは、切削加工によってロール状金型の表面全体に、作成しようとする第2の光制御部材の幅80μmの畝状凸部を反転させた形状の、溝状凹部を平行に、間に0.05mmの平坦部を挟んで設けることで賦形用ロール状金型とする。前記賦形用ロール状金型を用いて、メタクリル酸メチル−スチレン共重合体樹脂(屈折率1.54)を押出成型することによって、Z軸方向の厚さ0.5mmの賦形シートを作製する。これを、X軸方向の長さ200mm、Y軸方向の長さ360mmにカットして光制御部材とする。同様にして、第2の光制御部材IIを作成する。
Next, of the two light control members of the present invention provided in the illumination devices of Examples 1, 2, 4, 8, 10-15, 17, and 19, the second light disposed farther from the linear light source. The control members I to VI are produced by the following method.
The second light control member I of the present invention is a groove having a shape obtained by reversing the 80 μm wide ridge-shaped convex portion of the second light control member to be formed on the entire surface of the roll-shaped mold by cutting. By forming the concave portions in parallel with a flat portion of 0.05 mm in between, a forming roll-shaped mold is obtained. Using the above-described shaping roll mold, a methyl methacrylate-styrene copolymer resin (refractive index 1.54) is extruded to produce a shaped sheet having a thickness of 0.5 mm in the Z-axis direction. To do. This is cut into a length of 200 mm in the X-axis direction and a length of 360 mm in the Y-axis direction to obtain a light control member. Similarly, the second light control member II is created.
第2の光制御部材IIIを以下の方法で作製する。出射面に形成する凸部を、切削加工によって幅80μmの溝状の凹部を平行に連続して作製した金型を用いて形成する。屈折率1.55の紫外線硬化樹脂を前記金型の切削面に塗布し、その上にメタクリル酸メチル−スチレン共重合体である屈折率1.55の縦200mm、横360mm、厚さ1mmの透明樹脂板を重ね、該透明樹脂板の上から紫外線を照射して前記紫外線硬化樹脂を硬化させることで、光制御部材を得る。同様にして、第2の光制御部材IV〜VIを作製する。
ここで、光制御部材III、IV以外の光制御部材および第2の光制御部材の凸部の形状は下記式(1)で近似される。係数C,K,A4,A6,A8,A10については、下記の表1、表2に示す。
The second light control member III is produced by the following method. The convex portion formed on the emission surface is formed by using a mold in which groove-shaped concave portions having a width of 80 μm are continuously formed in parallel by cutting. An ultraviolet curable resin having a refractive index of 1.55 is applied to the cutting surface of the mold, and a transparent material having a refractive index of 1.55, a length of 200 mm, a width of 360 mm, and a thickness of 1 mm, which is a methyl methacrylate-styrene copolymer. A light control member is obtained by stacking resin plates and irradiating ultraviolet rays from above the transparent resin plates to cure the ultraviolet curable resin. Similarly, the second light control members IV to VI are manufactured.
Here, the shapes of the convex portions of the light control members other than the light control members III and IV and the second light control member are approximated by the following formula (1). The coefficients C, K, A 4 , A 6 , A 8 , A 10 are shown in Tables 1 and 2 below.
本発明の実施例1、2、4、8、10〜15、17、19の照明装置の構成を図4に示す。他の実施例の照明装置の構成は図4から第2の光制御部材を除いたものである。なお図4では拡散シートを図示していない。本発明を実施するにあたり、バックライトユニットを作製する。X方向の長さ200mm、Y方向の長さ360mm、X方向とY方向に垂直な厚さ方向の長さ25mmで、出射側にX方向の長さ190mm、Y方向の長さ350mmの矩形の開口部を持つ直方体状の白色のABS樹脂製のハウジングを用意する。矩形の開口部の高さは18.7mmである。底部を覆うように、発泡ペット樹脂からなる反射率95%の反射シートを貼り付けて、反射板とする。 The structure of the illuminating device of Example 1, 2, 4, 8, 10-15, 17, 19 of this invention is shown in FIG. The configuration of the illumination device of another embodiment is obtained by removing the second light control member from FIG. In FIG. 4, the diffusion sheet is not shown. In carrying out the present invention, a backlight unit is produced. A rectangular shape having a length of 200 mm in the X direction, a length of 360 mm in the Y direction, a length of 25 mm in the thickness direction perpendicular to the X direction and the Y direction, a length of 190 mm in the X direction on the output side, and a length of 350 mm in the Y direction. A rectangular parallelepiped white ABS resin housing having an opening is prepared. The height of the rectangular opening is 18.7 mm. A reflection sheet made of foamed PET resin and having a reflectance of 95% is attached so as to cover the bottom portion to obtain a reflection plate.
次に前記反射板の出射側に2mmの間隔をおいて、該反射板と平行に線状光源を配置する。線状光源としては直径3mm、長さ360mmの複数の冷陰極管をX方向に沿ってY方向に平行に配置する。冷陰極管6本を28.8mmずつの間隔をおいて配置する。線状光源1の中心から光制御部材2までのHは15.2mm、隣接する線状光源1の中心同士の距離Dは31.8mmである。 Next, a linear light source is arranged in parallel with the reflecting plate with an interval of 2 mm on the exit side of the reflecting plate. As the linear light source, a plurality of cold cathode tubes having a diameter of 3 mm and a length of 360 mm are arranged along the X direction and parallel to the Y direction. Six cold cathode tubes are arranged at intervals of 28.8 mm. H from the center of the linear light source 1 to the light control member 2 is 15.2 mm, and the distance D between the centers of the adjacent linear light sources 1 is 31.8 mm.
また、全ての実施例について、光拡散手段として、光制御部材と第2の光制御部材の間に拡散シートBS−700(恵和株式会社製)を配置する。実施例1〜2、実施例4、実施例8、実施例10〜15、実施例17〜18については、正面方向に向かって、反射板、線状光源、光制御部材、拡散シート、第2の光制御部材を配置し、測定を実施する。また、それ以外の実施例では、正面方向に向かって、反射板、線状光源、光制御部材、拡散シートを配置し、正面輝度および輝度均一性の測定を実施する。 In all the examples, a diffusion sheet BS-700 (manufactured by Eiwa Co., Ltd.) is disposed between the light control member and the second light control member as the light diffusion means. About Example 1-2, Example 4, Example 8, Examples 10-15, and Examples 17-18, toward a front direction, a reflecting plate, a linear light source, a light control member, a diffusion sheet, 2nd The light control member is arranged and measurement is performed. In other examples, a reflector, a linear light source, a light control member, and a diffusion sheet are arranged in the front direction, and the front luminance and luminance uniformity are measured.
比較例として、透明な樹脂基板中に拡散材微粒子を分散した全光線透過率60%の拡散板の出射面側に拡散シートBS−700(恵和株式会社製)を配置した場合での正面輝度および輝度均一性の測定を実施する。 As a comparative example, the front luminance when a diffusion sheet BS-700 (manufactured by Eiwa Co., Ltd.) is disposed on the exit surface side of a diffuser plate having a total light transmittance of 60% in which diffuser fine particles are dispersed in a transparent resin substrate And measurement of luminance uniformity.
正面方向および輝度均一性の測定は、輝度計BM−7(株式会社トプコンテクノハウス製)で測定距離を一定にして、出射面と垂直方向より、バックライト中央部付近を、線状光源配列方向に1mm間隔で35mm(36点)測定する。輝度の平均値を正面輝度、輝度の最小値/輝度の最大値×100(%)を輝度均一性とする。ここで、表1中の正面輝度の値は、比較例での測定結果を100%としたときの、相対値として示している。 For the measurement of the front direction and luminance uniformity, the measurement distance is fixed with a luminance meter BM-7 (manufactured by Topcon Technohouse Co., Ltd.), and the vicinity of the center of the backlight is arranged in the direction of the linear light source from the direction perpendicular to the emission surface. And 35 mm (36 points) at 1 mm intervals. The average value of luminance is the front luminance, and the minimum luminance value / maximum luminance value × 100 (%) is the luminance uniformity. Here, the value of the front luminance in Table 1 is shown as a relative value when the measurement result in the comparative example is 100%.
比較例として光制御部材の代わりに全光線透過率60%の平板型微粒子拡散板1枚を配した構成では、輝度均一性が低く、高い正面輝度が得られない。 As a comparative example, in a configuration in which one flat particle diffusion plate having a total light transmittance of 60% is arranged instead of the light control member, luminance uniformity is low and high front luminance cannot be obtained.
また実施例1〜19、及び比較例の照明装置の出射面を覆うように、液晶パネルを配し、本発明の画像表示装置とする。得られる画像を目視で確認すると、全ての実施例に対して比較例の画像表示装置は輝度ムラが激しく、暗い画面である。 In addition, a liquid crystal panel is arranged so as to cover the emission surfaces of the lighting devices of Examples 1 to 19 and the comparative example, and the image display device of the present invention is obtained. When the obtained images are visually confirmed, the image display device of the comparative example has a large luminance unevenness and a dark screen for all the examples.
1:線状光源、2:光制御部材、3:凸部、4:反射板、5:第2の光制御部材、6拡散板
1: linear light source, 2: light control member, 3: convex portion, 4: reflector, 5: second light control member, 6 diffusion plate
Claims (18)
反射板と、複数の線状光源と、板状の光制御部材とを備え、
前記反射板は前記X方向およびY方向に平行に配置しており、
前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、
かつ、線状光源は長手方向がY方向に平行に配置しており、
かつ、X方向に沿って等間隔に配列しており、
前記光制御部材は前記配列した線状光源の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行であり、
該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、
前記出射面は表面に畝状の凸部を複数形成しており、
該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、
前記光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、58度〜80度であり、
前記断面における該凸部の頂部を原点としX方向と垂直でかつ入射面に向かう方向をZ方向としたとき、該凸部の形状が下記(1)式で近似されることを特徴とする照明装置。
A reflector, a plurality of linear light sources, and a plate-like light control member;
The reflector is arranged in parallel to the X direction and the Y direction,
The linear light source is disposed in one imaginary plane parallel to the X direction and the Y direction on the exit surface side of the reflector,
And the linear light source has a longitudinal direction arranged parallel to the Y direction,
And it is arranged at equal intervals along the X direction,
The light control member is disposed on the emission surface side of the arranged linear light sources, and the main surface is parallel to the virtual plane in which the linear light sources are arranged,
The main surface of the light control member is composed of an incident surface that faces the linear light source and receives light from the linear light source, and an output surface that emits light received by the incident surface,
The emission surface has a plurality of ridge-shaped projections on the surface,
The convex portion has a bowl-shaped ridge line corresponding to the top portion formed in parallel to the Y direction, and arranged along the X direction,
In section cut along and in the main surface and a cross section perpendicular to the light control member in the X direction, the maximum inclination angle θ of the convex portion, Ri 58 to 80 degrees der,
Illumination characterized in that the shape of the convex portion is approximated by the following equation (1) when the top of the convex portion in the cross section is the origin, the direction perpendicular to the X direction and the direction toward the incident surface is the Z direction. apparatus.
−5.031≦K≦−0.355−5.031 ≦ K ≦ −0.355
を満足することを特徴とする照明装置。A lighting device characterized by satisfying
該第2の光制御部材の主面は、該光制御部材を出射した光を受光する入射面と、前記入射面より受光した光を出光する出射面とからなり、
前記出射面は表面に畝状の凸部を複数形成されており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつX方向に沿って配列しており、
前記第2の光制御部材をX方向に沿いかつ主面と垂直な断面で切った断面において、該凸部の最大傾斜角度θは、30度〜80度であることを特徴とする照明装置。 It is an illuminating device of any one of Claims 1-9, Comprising: It is 2nd in parallel with the said virtual plane in which the linear light source has arranged the main surface on the output surface side of the said light control member. A light control member
The main surface of the second light control member consists of an incident surface that receives light emitted from the light control member, and an emission surface that emits light received from the incident surface,
The exit surface has a plurality of hook-shaped protrusions formed on the surface, and the protrusions have hook-shaped ridgelines corresponding to the top formed in parallel to the Y direction and arranged along the X direction,
In the cross section obtained by cutting the second light control member along the X direction and perpendicular to the main surface, the maximum inclination angle θ of the convex portion is 30 degrees to 80 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006164765A JP4689543B2 (en) | 2006-06-14 | 2006-06-14 | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006164765A JP4689543B2 (en) | 2006-06-14 | 2006-06-14 | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007335195A JP2007335195A (en) | 2007-12-27 |
JP4689543B2 true JP4689543B2 (en) | 2011-05-25 |
Family
ID=38934464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006164765A Expired - Fee Related JP4689543B2 (en) | 2006-06-14 | 2006-06-14 | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4689543B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101295551B1 (en) * | 2006-07-14 | 2013-08-12 | 삼성디스플레이 주식회사 | Light controlling assembly and fabrication method of the same and liquid crystal display having the same |
JP2009042661A (en) * | 2007-08-10 | 2009-02-26 | Dainippon Printing Co Ltd | Optical sheet, surface light source device, and transmissive display device |
JP2019030460A (en) * | 2017-08-08 | 2019-02-28 | 日立アプライアンス株式会社 | Vacuum cleaner |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432888A (en) * | 1990-05-30 | 1992-02-04 | Nippon Zeon Co Ltd | Structure of face light source |
JP2002062528A (en) * | 2000-08-21 | 2002-02-28 | Keiwa Inc | Backlight unit |
JP2005148095A (en) * | 2003-11-11 | 2005-06-09 | Toppan Printing Co Ltd | Optical sheet, and backlight unit and display using optical sheet using the same |
JP2005316091A (en) * | 2004-04-28 | 2005-11-10 | Dainippon Printing Co Ltd | Convergent sheet, convergent sheet unit and surface light source device |
JP2005322524A (en) * | 2004-05-10 | 2005-11-17 | Sumitomo Rubber Ind Ltd | Light-emitting surface member for straight down type and straight down type light-emitting device |
JP2006066074A (en) * | 2004-08-24 | 2006-03-09 | Nippon Zeon Co Ltd | Direct backlight device |
-
2006
- 2006-06-14 JP JP2006164765A patent/JP4689543B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432888A (en) * | 1990-05-30 | 1992-02-04 | Nippon Zeon Co Ltd | Structure of face light source |
JP2002062528A (en) * | 2000-08-21 | 2002-02-28 | Keiwa Inc | Backlight unit |
JP2005148095A (en) * | 2003-11-11 | 2005-06-09 | Toppan Printing Co Ltd | Optical sheet, and backlight unit and display using optical sheet using the same |
JP2005316091A (en) * | 2004-04-28 | 2005-11-10 | Dainippon Printing Co Ltd | Convergent sheet, convergent sheet unit and surface light source device |
JP2005322524A (en) * | 2004-05-10 | 2005-11-17 | Sumitomo Rubber Ind Ltd | Light-emitting surface member for straight down type and straight down type light-emitting device |
JP2006066074A (en) * | 2004-08-24 | 2006-03-09 | Nippon Zeon Co Ltd | Direct backlight device |
Also Published As
Publication number | Publication date |
---|---|
JP2007335195A (en) | 2007-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8159632B2 (en) | Surface light source element and image display apparatus including the same | |
US7744235B2 (en) | Lighting device and light control member used therefor and image display device using the lighting device and the light control member | |
US7153017B2 (en) | Light deflection element and light source apparatus using the same | |
US7804554B2 (en) | Surface emitting device and liquid crystal display | |
JP4584133B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
JP2012164583A (en) | Light guide plate, surface light source device, and transmission type display device | |
JP5364998B2 (en) | Double-sided lens sheet, optical sheet for display, backlight unit using the same, and display device | |
JP2009053623A (en) | Lens sheet, optical sheet for display, backlight unit and display apparatus using them | |
JPWO2008029911A1 (en) | Surface light source element, light control member used therefor, and image display device using the same | |
JP4522938B2 (en) | Light control member provided in illumination device and image display device using the same | |
JPWO2008047794A1 (en) | LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP2007335182A (en) | Surface light source element, light control member used therefor, and image display device using surface light source | |
JP4815930B2 (en) | Light transmissive film, backlight device, and liquid crystal display device | |
JP4689543B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP4684838B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM | |
JP4242162B2 (en) | Light source device | |
JP2010044921A (en) | Plane light source element and light control member used for this as well as image display using this | |
JPH11306830A (en) | Surface lighting system | |
JP2009123397A (en) | Illumination device, and image display device using it | |
JP5391798B2 (en) | Backlight unit and display device | |
JPH11305225A (en) | Light transmission element, surface light source device and display device using the surface light source device | |
JP5593653B2 (en) | Light guide plate, backlight unit and display device | |
JP2014086245A (en) | Light guide plate, backlight unit and display device | |
JP2007265744A (en) | Plane light source element, light control member used for it, and image display device using them | |
JP4684791B2 (en) | LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110216 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |