JP4684791B2 - LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM - Google Patents

LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM Download PDF

Info

Publication number
JP4684791B2
JP4684791B2 JP2005222824A JP2005222824A JP4684791B2 JP 4684791 B2 JP4684791 B2 JP 4684791B2 JP 2005222824 A JP2005222824 A JP 2005222824A JP 2005222824 A JP2005222824 A JP 2005222824A JP 4684791 B2 JP4684791 B2 JP 4684791B2
Authority
JP
Japan
Prior art keywords
light
control member
light control
light source
linear light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005222824A
Other languages
Japanese (ja)
Other versions
JP2007042321A (en
Inventor
理子 堀越
毅 神田
伊久雄 大西
茂樹 菊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005222824A priority Critical patent/JP4684791B2/en
Priority to EP06767315.2A priority patent/EP1900996B1/en
Priority to US11/994,377 priority patent/US7744235B2/en
Priority to KR1020087002272A priority patent/KR100928171B1/en
Priority to PCT/JP2006/312698 priority patent/WO2007000962A1/en
Priority to TW095123254A priority patent/TWI417612B/en
Publication of JP2007042321A publication Critical patent/JP2007042321A/en
Application granted granted Critical
Publication of JP4684791B2 publication Critical patent/JP4684791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、複数の線状光源からなる照明装置及びこれを用いた画像表示装置に関するものであり、特に大型で高輝度と輝度均一性が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる照明装置および画像表示装置に関するものである。   The present invention relates to an illuminating device including a plurality of linear light sources and an image display device using the illuminating device, and is particularly suitable for an illumination signage device, a liquid crystal display device, and the like that are large and require high luminance and luminance uniformity. The present invention relates to an illumination device and an image display device used.

画像表示装置用の照明装置を例に取ると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を光拡散板で均一化する直下方式が挙げられる。   Taking an illumination device for an image display device as an example, an edge light system that guides light of a light source arranged on the side edge of the light guide plate in the front direction with the light guide plate and makes it uniform with a diffusion sheet, and on the back side of the illumination surface There is a direct system in which a light source is arranged and light is made uniform by a light diffusion plate.

直下方式は、光源を装置の背面に備えるため、携帯電話やモバイルパソコンなどの薄さを要求される分野では光源を側端に備えることで有利となるエッジライト方式が主流であった。   In the direct method, since the light source is provided on the back surface of the apparatus, the edge light method, which is advantageous by providing the light source at the side edge, has been mainly used in fields where thinness is required such as a mobile phone and a mobile personal computer.

一方で近年、テレビやパソコンモニターなどの市場を中心に、ディスプレイの大型化および高輝度化の要求が高まってきた。大型化に伴い上記エッジライト方式では光源が配置できる表示面積に対する周辺部の長さ割合が減少するため、充分な輝度を得ることができない。そこで面光源上に複数の輝度向上フィルムを配置する方法も提案されている(例えば、特許文献1参照)。しかしながら輝度向上フィルムは、コストアップに繋がること、また使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。   On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. With the increase in size, the edge light method reduces the ratio of the length of the peripheral portion to the display area where the light source can be arranged, so that sufficient luminance cannot be obtained. Therefore, a method of arranging a plurality of brightness enhancement films on a surface light source has also been proposed (see, for example, Patent Document 1). However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to cost increase and the number of films to be used increases.

さらに、ディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。   Furthermore, there is a problem that the weight of the light guide plate increases as the display becomes larger.

このようにエッジライト方式では近年のディスプレイの大型化、高輝度化といった市場の要求に答えることは困難となってきた。   As described above, it has become difficult for the edge light system to respond to market demands such as an increase in display size and brightness in recent years.

そこで複数の光源を用いる直下方式が注目されている。図15にこの方式の照明装置の一例を示す。この例では照明装置はX方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、複数の線状光源1と、光拡散板5と、反射板4とを備え、前記線状光源1はX方向とY方向とに平行な1つの仮想平面内に配置されており、かつ、該線状光源1は長手方向がY方向に平行に配置されており、かつ、X方向に沿って等間隔に配列しており、前記光拡散板5は前記配列した線状光源1の出射面側に配置され、かつ、主面は線状光源1が配列している前記仮想平面と平行であり、前記反射板4は前記配列した線状光源1を挟んで前記光拡散板5の反対側に位置し、かつ、該反射板4の主面は線状光源が配列している前記仮想平面と平行である。また光拡散板5は通常、光拡散材が均一に分散されており、主面内で均一な光学性能を持つ。   Therefore, a direct method using a plurality of light sources is attracting attention. FIG. 15 shows an example of this type of lighting device. In this example, the illumination device has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, and includes a plurality of linear light sources 1, a light diffusion plate 5, and a reflection plate 4. The linear light source 1 is arranged in one imaginary plane parallel to the X direction and the Y direction, and the linear light source 1 has a longitudinal direction arranged parallel to the Y direction, and the X direction. The light diffusing plates 5 are arranged on the emission surface side of the arranged linear light sources 1, and the main surface is the virtual plane on which the linear light sources 1 are arranged. The reflecting plate 4 is positioned on the opposite side of the light diffusing plate 5 with the arrayed linear light sources 1 sandwiched therebetween, and the main surface of the reflecting plate 4 is arranged with linear light sources. Parallel to the virtual plane. In addition, the light diffusing plate 5 usually has a light diffusing material uniformly dispersed therein and has a uniform optical performance within the main surface.

矩形状の出射面は画像表示装置、照明看板などの本照明装置の多くの用途において最も一般的である。   A rectangular exit surface is most common in many applications of the present lighting device, such as image display devices and lighting signs.

また線状光源は、点状光源と比べて輝度ムラの解消が容易であり、配線が短く容易であるためこれらの照明装置の光源として最も一般的である。線状光源としては冷陰極管などが多く用いられる。また通常、線状光源は同じタイプのものを用いることが生産上有利であり、輝度の均一化にも有利であるが、この場合、線状光源は出射面の矩形の長い辺と平行な向きで配列することが、線状光源の本数を削減できるため望ましい。また線状光源を同一平面内に等間隔に配置することで課題である輝度ムラは線状光源の配置に伴う周期的なものとなり、主面内で均一な光学性能を持つ光拡散板での輝度ムラの解消は容易になる。反射板は必須ではないが、線状光源および光拡散板から出射方向と反対に放射された光を出射側に反射して再び出射光として利用する働きがあり、光の利用効率は高める上で有利である。   Also, the linear light source is the most common light source for these lighting devices because it is easier to eliminate luminance unevenness than the point light source and the wiring is short and easy. A cold cathode tube or the like is often used as the linear light source. In general, it is advantageous for production to use the same type of linear light source, and it is also advantageous for uniform brightness. In this case, however, the linear light source is oriented parallel to the long side of the output surface rectangle. It is desirable that the number of linear light sources can be reduced. In addition, by arranging linear light sources at equal intervals in the same plane, luminance unevenness, which is a problem, becomes periodic due to the arrangement of linear light sources, and it is a problem with light diffusing plates that have uniform optical performance within the main surface. Elimination of uneven brightness becomes easy. The reflector is not essential, but it works to reflect the light emitted from the linear light source and the light diffusing plate opposite to the exit direction to the exit side and use it again as the exit light. It is advantageous.

また直下方式は光源から放射される光の利用効率、すなわち光源から放射される光束のうち出射面から放射される光束の割合が高く、かつ、光源数を自由に増加させることができるため、要求される高輝度が容易に得られる。さらに、光を正面に向ける導光板が不要なため、軽量化を図ることができる。   In addition, the direct method requires the use efficiency of the light emitted from the light source, that is, the ratio of the light flux emitted from the light exit surface is high, and the number of light sources can be increased freely. High brightness can be easily obtained. Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.

また他の照明装置として、例えば照明看板などでは、構成が単純で輝度向上フィルムなどを用いることなく容易に高輝度が得られることから、直下方式が主流である。   Further, as another lighting device, for example, an illumination signboard or the like has a simple structure, and a high brightness can be easily obtained without using a brightness enhancement film.

しかしながら直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に画像表示装置や照明看板など照明面を観察する用途では、ランプイメージの解消のみならず、面内の輝度均一性が求められる。さらにテレビやパソコンモニターなど主として正面方向から照明面を観察する用途では、面内の正面輝度の均一性が最も重要である。ランプイメージはエッジライト方式よりもはるかに顕著な輝度ムラとして現れるため、従来エッジライト方式で用いられてきたフィルム表面に光拡散材を塗布した拡散フィルムなどの手段では解消が困難である。そこでメタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、光拡散材を分散した光拡散板が広く用いられている。光拡散板を用いた直下方式の表示装置の例は既に図15を用いて説明したとおりである。良好な拡散性と光利用効率を得るために、無機微粒子や架橋有機微粒子など種々の光拡散材が検討されている(例えば、特許文献2参照)。しかしこれら光拡散材を用いる方法では光拡散材への光の吸収や、不要な方向への光の拡散のため省エネルギーの観点から好ましくない。また、光源を近接して多数配置することでランプイメージは軽減できるが消費電力が増加する問題がある。   However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, in an application for observing an illumination surface such as an image display device or an illumination signboard, not only the elimination of the lamp image but also the in-plane luminance uniformity is required. Furthermore, in applications where the illumination surface is observed mainly from the front, such as a television or a personal computer monitor, the uniformity of the front luminance within the surface is the most important. Since the lamp image appears as significantly more uneven brightness than in the edge light system, it is difficult to eliminate it by means such as a diffusion film in which a light diffusing material is applied to the surface of a film conventionally used in the edge light system. Therefore, a light diffusing plate in which a light diffusing material is dispersed in a base resin such as a methacrylic resin, a polycarbonate resin, a styrene resin, or a vinyl chloride resin is widely used. An example of a direct display device using a light diffusing plate is as already described with reference to FIG. In order to obtain good diffusibility and light utilization efficiency, various light diffusing materials such as inorganic fine particles and crosslinked organic fine particles have been studied (for example, see Patent Document 2). However, these methods using a light diffusing material are not preferable from the viewpoint of energy saving because they absorb light into the light diffusing material and diffuse light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging a large number of light sources close to each other, there is a problem that power consumption increases.

一方、反射板に独特の形状を持たせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし反射板の形状と光源との位置合わせが必要であること、反射板の形状のため、薄型化が阻害される場合があること、などから好ましくない。   On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the shape of the reflector may hinder thinning.

さらに光源に対向して反射性部材を設置する方法(例えば、特許文献4参照)、光源ごとに例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、同様に部材と光源との正確な位置合わせが必要であることから生産性が劣るといった課題が生じる。   In addition, a method of installing a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source (for example, see Patent Document 5), etc. However, similarly, since the exact alignment of a member and a light source is required, the subject that productivity is inferior arises.

また、凹凸を表面に有する光拡散板が提案されている(例えば特許文献6参照)。これらの拡散板は光拡散材の使用を回避、もしくは削減しつつ所望の拡散性を得られるので光の利用効率を高められる。しかしながら凹凸形状についての詳しい検討がないため、輝度ムラの厳密な調整は困難である。同様に出射面内の正面輝度の均一性を得ることも困難である。   Further, a light diffusing plate having irregularities on the surface has been proposed (see, for example, Patent Document 6). These diffusing plates can obtain the desired diffusibility while avoiding or reducing the use of the light diffusing material, so that the light utilization efficiency can be enhanced. However, since there is no detailed examination on the uneven shape, it is difficult to strictly adjust the luminance unevenness. Similarly, it is difficult to obtain the uniformity of the front luminance within the exit surface.

大型照明装置においては、携帯電話やモバイルパソコンなどに比べて薄型化についての要求が厳しくないため、光源と光拡散板との距離を短くすることや、光学フィルムの枚数の削減などで対応できる。また、省エネルギーを実現するには光の利用効率を高めることが必要である。直下方式は前述のように線状光源の本数を増やすことができ高輝度を得ることが容易であるが、省エネルギーの視点からランプイメージ解消のために大量の光拡散材を用いるなどによって光の利用効率を下げることを抑制しなければならない。   In a large illuminating device, since the demand for thinning is not strict as compared with a mobile phone or a mobile personal computer, it can be dealt with by shortening the distance between the light source and the light diffusing plate or reducing the number of optical films. In order to realize energy saving, it is necessary to increase the light utilization efficiency. The direct method can increase the number of linear light sources and easily obtain high brightness as described above. However, from the viewpoint of energy saving, use of light by using a large amount of light diffusing material to eliminate the lamp image. Decreasing efficiency must be suppressed.

特開平2−17号公報Japanese Patent Laid-Open No. 2-17 特開昭54−155244号公報JP 54-155244 A 特許2852424号公報Japanese Patent No. 2852424 特開2000−338895号公報JP 2000-338895 A 特開2002−352611号公報JP 2002-352611 A 特開平10−123307号公報JP-A-10-123307

そこで本発明では、高輝度で、光の利用効率が高く、大型化に伴う光制御部材の光学設計の変更や輝度低下や輝度ムラ拡大がないことから大型化への対応が容易で、光源と他の部材の厳密な位置合わせなく正面方向の輝度ムラが解消され、光源と他の部材を近づけたりフィルム構成を単純化したりするという生産性や薄型化にも有利な照明装置、及びこれを用いた画像表示装置を提供することを目的とする。また目的に応じて正面輝度が高い照明装置、該照明装置が備える光制御部材、及び該照明装置を用いた画像表示装置を提供することを別の目的とする。   Therefore, in the present invention, high brightness, high light use efficiency, no change in the optical design of the light control member accompanying the increase in size, no decrease in luminance, and no increase in luminance unevenness, it is easy to cope with an increase in size, Luminance unevenness in the front direction is eliminated without strict alignment of other members, and an illumination device that is advantageous for productivity and thinning by bringing the light source close to other members and simplifying the film configuration, and the use thereof An object of the present invention is to provide an image display apparatus. Another object of the present invention is to provide an illumination device with high front luminance according to the purpose, a light control member provided in the illumination device, and an image display device using the illumination device.

そこで本発明者らは図15に例示したような一般的な直下方式の照明装置の光拡散板を我々が提案する光制御部材に置き換えることで、上記の課題を解決できることを見出した。上記の課題に対して、本発明では、光制御部材の出射面に好適な形状の凸部を設けることで光拡散材の利用の回避もしくは大幅な削減を実現し、光の利用効率を向上させることによって、高輝度化を達成できる。また光制御部材の入射面上の全ての点で、入射光の出光方向を同様に制御するような一様な性質を持たせることで、サイズ変更に有利なだけでなく、光源との位置合わせも不要となる。また正面方向への出光強度の分布を一定にすることで、正面方向の輝度ムラを解消することができる。さらに光制御部材の持つ輝度ムラ解消、輝度向上などの複合的な機能により、他の機能性光学フィルムの利用を解消もしくは削減でき、生産性や薄型化などにも有利となる。さらに光制御部材の正面方向への出光割合を高めることで正面強度を高めることも可能である。加えてこれらの照明装置の出射側に透過型表示素子を配置することで画像表示装置を得られる。ここで正面方向とは光制御部材の主面の法線方向を中心とした微小立体角を意味する。   Therefore, the present inventors have found that the above-described problem can be solved by replacing the light diffusing plate of a general direct-type illumination device illustrated in FIG. 15 with the light control member proposed by us. In order to solve the above problems, in the present invention, by providing a convex portion having a suitable shape on the exit surface of the light control member, the use of the light diffusing material can be avoided or greatly reduced, and the light use efficiency can be improved. Thus, high brightness can be achieved. In addition, it is not only advantageous for size change but also alignment with the light source by giving a uniform property that similarly controls the outgoing direction of incident light at all points on the incident surface of the light control member. Is also unnecessary. Further, by making the light intensity distribution in the front direction constant, luminance unevenness in the front direction can be eliminated. Furthermore, the combined functions of the light control member, such as uneven brightness and improved brightness, can eliminate or reduce the use of other functional optical films, which is advantageous for productivity and thinning. Furthermore, it is also possible to increase the front strength by increasing the light emission ratio in the front direction of the light control member. In addition, an image display device can be obtained by disposing a transmissive display element on the emission side of these illumination devices. Here, the front direction means a small solid angle centered on the normal direction of the main surface of the light control member.

すなわち、上記の課題を解決する本発明は、
X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、
反射板と、複数の線状光源と、板状の光制御部材とを備え、
前記反射板は前記X方向およびY方向に平行に配置しており、
前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、
かつ、該線状光源は長手方向がY方向に平行に配置しており、
かつ、X方向に沿って等間隔に配列しており、
前記光制御部材は前記配列した線状光源の出射面側に配置し、
かつ、主面は線状光源が配列している前記仮想平面と平行であり、
該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、
前記出射面は表面に畝状の凸部を複数形成しており、
該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している照明装置であって、
前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をH、1本の線状光源から光制御部材に入光した光の、X方向の位置座標X(光源位置をX=0とする)における出射面の法線方向への出光強度を表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxの比g(X)min/g(X)maxが0.6以上であり、
Xの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり(XminおよびXmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標)、
任意の凸部のX方向の断面形状が、下記の式で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする照明装置である。
That is, the present invention for solving the above problems
It has a rectangular exit surface composed of an X direction and a Y direction perpendicular to the X direction,
A reflector, a plurality of linear light sources, and a plate-like light control member;
The reflector is arranged in parallel to the X direction and the Y direction,
The linear light source is disposed in one imaginary plane parallel to the X direction and the Y direction on the exit surface side of the reflector,
And, the linear light source has a longitudinal direction arranged parallel to the Y direction,
And it is arranged at equal intervals along the X direction,
The light control member is disposed on an emission surface side of the arranged linear light sources,
And the main surface is parallel to the virtual plane where the linear light sources are arranged,
The main surface of the light control member is composed of an incident surface that faces the linear light source and receives light from the linear light source, and an output surface that emits light received by the incident surface,
The emission surface has a plurality of ridge-shaped projections on the surface,
The convex portion is a lighting device in which a bowl-shaped ridge line corresponding to the top portion is formed in parallel to the Y direction, and arranged along the X direction,
The distance between the centers of the linear light sources is D, the distance between the center of the arbitrary linear light source and the light control member is H, and the X direction of the light incident on the light control member from one linear light source F (X) is a function representing the intensity of light emitted in the normal direction of the exit surface at the position coordinate X (where the light source position is X = 0),
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max of g (X) min that is the minimum value of g (X) and g (X) max that is the maximum value is 0.6 or more,
The minimum value X min of X is in the range of −3.0D ≦ X min ≦ −0.5D, and the maximum value X max is in the range of 0.5D ≦ X max ≦ 3.0D (X min and X max are , F (X) is attenuated around a linear light source whose value is X = 0, and coordinates at both ends when it becomes substantially 0),
An illuminating device is characterized in that the cross-sectional shape in the X direction of an arbitrary convex portion is composed of (2N + 1) different regions −N to N expressed by the following formula.

δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cos2αi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部の底部までの厚み
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan- 1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cos 2 α i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex portion

また本発明は、上記の照明装置であって、前記凸部のX方向の断面形状を表す領域−N〜NがX軸の位置座標の順に並んでいることを特徴とする照明装置であり、また、前記凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状傾きを曲線で近似した形状であることを特徴とする照明装置であり、また、X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向に対して30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上であることを特徴とする照明装置である。   Moreover, this invention is said illuminating device, Comprising: The area | region -N-N showing the cross-sectional shape of the X direction of the said convex part is located in order of the coordinate of the X-axis, It is an illuminating device characterized by the above-mentioned. In addition, the cross-sectional shape in the X direction of the convex portion is a shape that approximates the shape inclination of at least one pair of two adjacent regions out of (2N + 1) different regions constituting the convex portion by a curve. In addition, in a cross section parallel to the normal direction of the main surface of the light control member in the X direction, the light is emitted within a range that forms an angle of 30 degrees or less with respect to the normal direction of the output surface. The illumination device is characterized in that the ratio of light to be emitted is 50% or more of the total light output.

また本発明は、上記の照明装置が備える光制御部材である。
さらに本発明は、上記の照明装置の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置である。
Moreover, this invention is a light control member with which said illuminating device is provided.
Furthermore, the present invention is an image display device characterized in that a transmissive display element is provided on the exit surface side of the above-described illumination device.

以下に本発明が提供する手段について詳細に説明する。   The means provided by the present invention will be described in detail below.

本発明で提供する照明装置はX方向と、X方向に垂直なY方向とからなる矩形状の出射面を持つ照明装置であって、前記照明装置は反射板と複数の線状光源と、板状の光制御部材とを備え、該反射板は、線状光源からの光を受けて反射し拡散光として光制御部材に入射させ、また光制御部材からの反射光を受けて反射し拡散光として再度光制御部材に入射させる役割を果たす。また、該光制御部材は、正面方向の輝度ムラを解消するための部材である。板状であることで装置が薄型化できると同時に適度な機械強度が確保できるため、好ましい。出光強度の分布がほぼ一定であれば、輝度ムラが解消され、輝度の均一性が得られる。前記のように線状光源を配列した照明装置では、出光強度の分布は、各線状光源の出光強度の分布の総和であり、観察面側の任意の位置で分布がほぼ一定となれば、輝度ムラは解消される。   An illuminating device provided in the present invention is an illuminating device having a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction. The illuminating device includes a reflector, a plurality of linear light sources, a plate A light control member, and the reflector receives and reflects light from the linear light source and enters the light control member as diffused light, and receives and reflects the reflected light from the light control member and diffuses the light. It plays the role which makes it inject into a light control member again. The light control member is a member for eliminating luminance unevenness in the front direction. The plate shape is preferable because the apparatus can be thinned and an appropriate mechanical strength can be secured. If the distribution of the outgoing light intensity is substantially constant, the luminance unevenness is eliminated and the luminance uniformity is obtained. In the illuminating device in which the linear light sources are arranged as described above, the distribution of the light output intensity is the sum of the distribution of the light output intensity of each linear light source, and if the distribution becomes almost constant at an arbitrary position on the observation surface side, the luminance Unevenness is eliminated.

本発明の照明装置は正面方向への出光強度の分布をほぼ一定とすることで、正面方向の輝度ムラを解消する。   The illuminating device of the present invention eliminates uneven brightness in the front direction by making the light intensity distribution in the front direction substantially constant.

請求項1に記載の発明は、前記照明装置であって、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、該線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って等間隔に配列している。前記光制御部材は前記配列した線状光源の出射面側に配置し、かつ、主面は線状光源が配列している前記仮想平面と平行である。   Invention of Claim 1 is the said illuminating device, Comprising: The said reflecting plate is arrange | positioned in parallel with the said X direction and a Y direction, The said linear light source is the said X direction of the output surface side of the said reflecting plate. Arranged in one virtual plane parallel to the Y direction, and the linear light sources are arranged such that the longitudinal direction thereof is parallel to the Y direction and arranged at equal intervals along the X direction. Yes. The light control member is arranged on the emission surface side of the arranged linear light sources, and the main surface is parallel to the virtual plane on which the linear light sources are arranged.

主面と線状光源が配置されている仮想平面とが平行であることで、線状光源から光制御部材までの距離が一様になるため、それぞれの線状光源の光制御部材への入光強度の分布は均等になり、全体の入光強度の分布は線状光源の配列方向であるX方向に沿って、線状光源の位置に従った周期的な分布となるため、輝度ムラの解消が容易である。   Since the main surface and the virtual plane on which the linear light source is arranged are parallel, the distance from the linear light source to the light control member becomes uniform, so that each linear light source enters the light control member. The distribution of the light intensity is uniform, and the distribution of the entire incident light intensity is a periodic distribution according to the position of the linear light source along the X direction, which is the arrangement direction of the linear light sources. It is easy to eliminate.

該光制御部材の主面は、線状光源に対向し線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなる。
前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している。該凸部は、線状光源からの光を制御し出射光の正面方向への出光強度の分布を一定にするための役割をする。凸部の頂部にあたる畝状の稜線がY方向に平行に配置されており、すなわち該凸部同士は平行に位置し、光制御部材の主面である入射面と出射面とは線状光源が配置されている仮想平面と平行に配置されているため、線状光源からの光を効率良く主面に受け、輝度ムラが顕著なX方向の光の方向制御が可能となる。直下方式の照明装置では、線状光源の長手方向と垂直なX方向で、最も輝度ムラが顕著である一方、本発明の照明装置が、光制御部材の凸部の形状を好適なものとすることで、正面方向への出光強度の分布を一定とし、正面方向の輝度ムラを解消することを特徴としており、凸部の幅が最小となる方向で最もその能力が高く、したがって、該凸部の頂部にあたる畝状の稜線は線状光源と平行、すなわちY方向に平行に設けることで、輝度ムラを効率よく解消できる。
The main surface of the light control member includes an incident surface that faces the linear light source and receives light from the linear light source, and an output surface that emits light received by the incident surface.
The emission surface has a plurality of hook-shaped protrusions on the surface, and the protrusions have hook-shaped ridgelines corresponding to the tops formed in parallel to the Y direction and arranged along the X direction. . The convex portion serves to control the light from the linear light source and to make the distribution of the emitted light intensity in the front direction of the emitted light constant. The ridge-shaped ridgeline corresponding to the top of the convex portion is arranged in parallel to the Y direction, that is, the convex portions are positioned in parallel, and the linear light source is formed between the entrance surface and the exit surface, which are the main surfaces of the light control member. Since it is arranged in parallel with the arranged virtual plane, it is possible to efficiently receive light from the linear light source on the main surface and to control the direction of the light in the X direction in which the luminance unevenness is remarkable. In the direct illumination system, the luminance unevenness is most noticeable in the X direction perpendicular to the longitudinal direction of the linear light source. On the other hand, the illumination apparatus of the present invention makes the convex shape of the light control member suitable. Therefore, it is characterized in that the distribution of the intensity of light emission in the front direction is made constant, and uneven brightness in the front direction is eliminated, and the ability is highest in the direction in which the width of the convex portion is the smallest. By providing the bowl-shaped ridge line corresponding to the top of the light source in parallel with the linear light source, that is, in parallel with the Y direction, the luminance unevenness can be efficiently eliminated.

また、同様の形状の凸部を平行に配列することで、光制御部材の光学的性質は一様となるので、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。したがって例えば大型の押出し成形機などで作成した望ましい凸部を施した大型の板状成形物の任意の位置を任意のサイズに切り出して光制御部材とすることができるため、生産上有利なだけでなく、照明装置のサイズ変更にも容易に対応できる。   In addition, by arranging the convex parts of the same shape in parallel, the optical properties of the light control member become uniform, so alignment is not necessary, and it is also possible to change the display size, the number of linear light sources and the arrangement The lighting device can be manufactured immediately and can be manufactured with high productivity. Therefore, for example, since it is possible to cut out an arbitrary position of a large plate-shaped molded article having a desired convex portion created by a large extrusion molding machine to an arbitrary size to be a light control member, it is only advantageous in production. In addition, it can easily cope with the size change of the lighting device.

光制御部材の入射面には、線状光源からの光と、線状光源からの光が反射板に反射して拡散光としての光とが、入射する。このうち、該線状光源から光制御部材に入光した光について、前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をHとするとき、X方向の位置座標Xと、正面方向である出射面の法線方向への出光強度とを、光源位置をX=0として表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxとの比g(X)min/g(X)maxが0.6以上であることを特徴とする。
The light from the linear light source and the light from the linear light source reflected by the reflecting plate are incident on the incident surface of the light control member. Among these, with respect to light incident on the light control member from the linear light source, the distance between the centers of the linear light sources is D, and the distance between the center of the arbitrary linear light source and the light control member is H. When the position coordinate X in the X direction and the intensity of light emission in the normal direction of the exit surface, which is the front direction, are expressed as f (X) where the light source position is X = 0,
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max of g (X) min that is the minimum value of g (X) and g (X) max that is the maximum value is 0.6 or more. .

本発明の照明装置においては、各線状光源は同様のものを用いる。そこで前記関数g(X)は隣接する線状光源3本分のf(X)の総和となる。−D/2≦X≦D/2の範囲は中心の線状光源と隣接する線状光源とのそれぞれの中間点までの範囲であり、任意の隣接する線状光源3本に関するg(X)が上記の条件を満たすとき、面内全体で正面方向の輝度ムラが解消できる。   In the illumination device of the present invention, the same linear light source is used. Therefore, the function g (X) is the sum of f (X) for three adjacent linear light sources. The range of −D / 2 ≦ X ≦ D / 2 is a range up to an intermediate point between each of the central linear light source and the adjacent linear light source, and g (X) regarding any three adjacent linear light sources. When the above condition is satisfied, the luminance unevenness in the front direction can be eliminated over the entire surface.

線状光源の周期ごとに同じ条件で光を受光し、かつ光制御部材は入射面上の任意の点に入射した光に対して同じ出光方向制御するので、1周期分である−D/2≦X≦D/2の範囲について出光強度の分布を制御することで全体の出光強度の分布を制御できる。
また既に述べたとおり、出光強度の分布は、各線状光源の出光強度の分布の総和であり、観察面側の任意の位置で分布がほぼ一定となれば、輝度ムラは解消される。本発明の照明装置は正面方向への出光強度の分布をほぼ一定とすることで、正面方向の輝度ムラを解消する。
Since light is received under the same conditions for each period of the linear light source, and the light control member controls the same light output direction for light incident on an arbitrary point on the incident surface, it is equivalent to one period -D / 2 By controlling the distribution of the light emission intensity in the range of ≦ X ≦ D / 2, the distribution of the whole light emission intensity can be controlled.
Further, as described above, the distribution of the light intensity is the sum of the distributions of the light intensity of the respective linear light sources. If the distribution becomes almost constant at any position on the observation surface side, the luminance unevenness is eliminated. The illuminating device of the present invention eliminates uneven brightness in the front direction by making the light intensity distribution in the front direction substantially constant.

線状光源の光の強度は距離に反比例するため離れた線状光源からの光の影響は小さい。このため、近接する3本の線状光源からの出光強度のみを考慮した関数g(X)を適当な範囲にすることで正面方向への出光強度の分布を制御でき、正面方向の輝度ムラを解消できる。g(X)を最小値であるg(X)minと最大値であるg(X)maxの比g(X)min/g(X)maxが0.6以上である範囲とすることで、反射板の効果によって実際の出光強度の分布は更に均一となり、観察面側の任意の位置で、各線状光源の正面方向への出光強度の分布の総和がほぼ一定となり、正面方向の輝度ムラを解消できる。 Since the light intensity of the linear light source is inversely proportional to the distance, the influence of the light from the distant linear light source is small. For this reason, by setting the function g (X) considering only the light output intensities from the three adjacent linear light sources within an appropriate range, the distribution of the light output intensity in the front direction can be controlled, and the luminance unevenness in the front direction can be reduced. Can be resolved. By setting g (X) to a range in which the ratio g (X) min / g (X) max of g (X) min that is the minimum value and g (X) max that is the maximum value is 0.6 or more, Due to the effect of the reflector, the actual light intensity distribution is made more uniform, and the sum of the light intensity distributions in the front direction of each linear light source is almost constant at any position on the observation surface side. Can be resolved.

図9は図7でf(X)について示したD=30mmとして線状光源を配列した本発明の照明装置のf(X)とg(X)を示す図である。中央に位置する線状光源のX方向の位置座標を0とし、X方向の距離(mm)をX座標としている。   FIG. 9 is a diagram showing f (X) and g (X) of the illumination device of the present invention in which linear light sources are arranged with D = 30 mm shown for f (X) in FIG. The position coordinate in the X direction of the linear light source located at the center is set to 0, and the distance (mm) in the X direction is set to the X coordinate.

さらに本発明者らは、正面方向への出光強度の分布をほぼ均一にするための凸部の形状について見出している。すなわち、本発明では、Xの最小値XminがXの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり、任意の凸部のX方向の断面形状が、下記の式(2)〜(8)で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする。このうち領域0は傾き0、すなわち入射面と平行になり、直下から入射した光を効率的に正面方向へ出射することができる。 Furthermore, the present inventors have found out the shape of the convex portion for making the distribution of the light emission intensity in the front direction substantially uniform. That is, in the present invention, the minimum value X min of the minimum value X min is X of X is in a range of -3.0D ≦ X min ≦ -0.5D, the maximum value X max is 0.5 D ≦ X max ≦ 3 The cross-sectional shape in the X direction of any convex portion is a range of 0.0D, and is composed of (2N + 1) different regions −N to N expressed by the following formulas (2) to (8). Features. Of these, the region 0 has an inclination of 0, that is, parallel to the incident surface, and can efficiently emit light incident from directly below in the front direction.

δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部底部までの厚み
ここで、α、β、γ、Φなどの角度はいずれも絶対値が90°未満で、基準線に対して右回りに成す角度を正、左回りに成す角度を負とする。
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan- 1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex part Here, the angles of α, β, γ, Φ, etc. are all absolute values of less than 90 °, and are angles formed clockwise with respect to the reference line. Positive and counterclockwise angles are negative.

まず、図4を用いて式(7)について説明する。
min、Xmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標である。Xmin〜Xmaxの間を等分に(2N+1)分割すると、分割した各要素の幅δは式(2)で示される。このとき任意の要素の中心座標Xiは、式(3)で示される。X=0の位置にある線状光源から座標Xの光制御部材の入射面への入射角度は法線方向に対して式(4)で示される角度αiとなる。
First, equation (7) will be described with reference to FIG.
X min and X max are the coordinates of both ends when the value of f (X) attenuates around the vicinity of the linear light source where X = 0 and becomes substantially zero. When X min to X max are equally divided (2N + 1), the width δ of each divided element is expressed by Expression (2). At this time, the center coordinates X i of an arbitrary element are expressed by Expression (3). Incident angle from the linear light source at the position of X = 0 to the incident surface of the light control member of coordinate X i is the angle alpha i represented by the formula (4) with respect to the normal direction.

ここで光は屈折して法線方向に対して、式(4)で示される角度γiで光制御部材内部を進む。凸部の底部に達すると再び屈折し、式(5)で示される角度βiで光制御部材内部を進み、凸部3に入射する。ここで、光制御部材の凸部と凸部が設けられている基材の屈折率が同じであってもよく、この場合凸部の底部では屈折せず、βi=γiとなる。
そのうち、式(8)で示される出射面に対する傾きΦiの斜面に到達した光のみ正面方向に向かう。
Here, the light is refracted and travels inside the light control member at an angle γ i represented by Expression (4) with respect to the normal direction. When the bottom of the convex portion is reached, the light is refracted again, travels inside the light control member at an angle β i represented by Expression (5), and enters the convex portion 3. Here, the refractive index of the light control member and the substrate on which the convex portions are provided may be the same. In this case, the light is not refracted at the bottom of the convex portion, and β i = γ i .
Among them, only the light that has reached the slope of the inclination Φ i with respect to the emission surface represented by the equation (8) is directed in the front direction.

ここで、角度Φiの斜面が占める領域iの斜面の長さをbiとし、領域iの斜面から光制御部材の凸部内部での光線方向に垂直な方向への射影の長さをeiとすると、X方向と光制御部材の主面の法線方向に平行な断面内における領域iの斜面の角度が、光制御部材の凸部内部での光線方向と垂直な角度に対して成す角度ξiは(Φi−βi)となるので、
i=bi・cos(Φi−βi) (9)
となる。
Here, the length of the slope of the area i occupied by the slope of the angle Φ i is b i, and the length of the projection from the slope of the area i in the direction perpendicular to the light ray direction inside the convex portion of the light control member is e When i, the angle of the inclined surface area i in the normal direction parallel to a cross-section of the main surface of the X-direction and the light control member, forms with the beam direction perpendicular angles within the convex portion of the light control member Since the angle ξ i is (Φ i −β i ),
e i = b i · cos (Φ i −β i ) (9)
It becomes.

またここで、角度Φiの斜面が占める領域iの入射面と平行な面への射影の長さ、すなわち領域iのX方向の幅をaiとすると、
i=ai/cosΦi (10)
である。
Here, if the length of the projection onto the plane parallel to the incident surface of the region i occupied by the slope of the angle Φ i , that is, the width of the region i in the X direction is a i ,
b i = a i / cosΦ i (10)
It is.

式(9)、式(10)から
i=ai/cosΦi・cos(Φi−βi) (11)
となる。
ここで、図17に示すように凸部のX方向の幅、すなわちaiの総和をPとすると、角度αiで光制御部材2に入射して光制御部材内部を通過して凸部3に向かう光9のうち領域iに向かう光の割合はei/(P・cosβi)である。
From equation (9) and equation (10), e i = a i / cosΦ i · cos (Φ i −β i ) (11)
It becomes.
Here, as shown in FIG. 17, when the width in the X direction of the convex portion, that is, the sum of a i is P, the convex portion 3 enters the light control member 2 at an angle α i and passes through the inside of the light control member. The proportion of the light 9 going to the region i out of the light 9 going to is e i / (P · cos β i ).

一方、角度αiで光制御部材に入射する単位面積あたりの光の強度、すなわち照度は、後で述べるようにcos2αiに比例する。
また、図18に示すように、座標Xiの点における光源の直径を見込む角度Δαiはcosαiに比例する。従って、座標Xiに入射する単位面積単位角度あたりの光の強度は、cos2αi/Δαiに比例し、このことからcos2αi/cosαi、つまりcosαiに比例する。つまり線状光源からの光がX=0の点で単位凸部に入射する光の単位角度あたりの強度に対し、座標X=Xiの点で単位凸部に入射する光の単位角度あたりの強度の割合はcosαiである。従って、正面に出光する光はcosαi・ei/(P・cosβi)であり、式(11)よりai/cosΦi・cos(Φi−βi)・cosαi/(P・cosβi)である。
On the other hand, the intensity of light per unit area incident on the light control member at the angle α i , that is, the illuminance, is proportional to cos 2 α i as described later.
Further, as shown in FIG. 18, the angle [Delta] [alpha] i anticipating the diameter of the light source in the point of coordinates X i is proportional to cos [alpha] i. Accordingly, the intensity of light per unit area unit angle incident on the coordinate X i is proportional to cos 2 α i / Δα i , and from this, is proportional to cos 2 α i / cos α i , that is, cos α i . In other words, the light from the linear light source per unit angle of the light incident on the unit convex portion at the point of the coordinate X = X i with respect to the intensity per unit angle of light incident on the unit convex portion at the point of X = 0. The intensity ratio is cosα i . Thus, the light exiting the front is cosα i · e i / (P · cosβ i), a i / cosΦ i · cos (Φ i -β i) from equation (11) · cosα i / ( P · cosβ i ).

座標Xiに入射した光は光制御部材2の厚さがTであるとき、座標(Xi+T・tanγi)に出射するため、そのときの正面方向への出光強度はf(Xi+T・tanγi)である。 The light incident on the coordinate X i is emitted at the coordinate (X i + T · tan γ i ) when the thickness of the light control member 2 is T. Therefore, the intensity of the emitted light in the front direction at that time is f (X i + T Tan γ i ).

さらに、正面方向への出光強度は、線状光源の発光強度と正面方向への出射割合とに比例するため、
f(Xi+T・tanγi)∝ai/cosΦi・cos(Φi−βi)・cosαi/(P・cosβi)(12)
に従って、
i∝P・f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (13)
となる。ここで、凸部3の幅をPとすると、aiの総和は凸部の幅Pとなるので、
Furthermore, since the light emission intensity in the front direction is proportional to the emission intensity of the linear light source and the emission ratio in the front direction,
f (X i + T · tanγ i) αa i / cosΦ i · cos (Φ i -β i) · cosα i / (P · cosβ i) (12)
According to
a i αP · f (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (13)
It becomes. Here, if the width of the convex portion 3 is P, the sum of a i becomes the width P of the convex portion.

Figure 0004684791
Figure 0004684791

となる。
Pは凸部幅であり定数となるため、
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
凸部は(式7)の関係を満足するような幅aiの領域iからなる形状である。周知の通り比例縮小光学系は、ほぼ同一の指向特性を示すので自由に凸部のピッチを選定することができる。
It becomes.
P is the convex width and is a constant.
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
The convex portion has a shape composed of a region i having a width a i that satisfies the relationship of (Expression 7). As is well known, since the proportional reduction optical system exhibits almost the same directivity characteristics, the pitch of the convex portions can be freely selected.

ここで、図5を用いて光制御部材への入射角度と入射強度の関係を説明する。
線状光源から光制御部材への入射角θを中心に、微小角度Δθを考慮すると、Δθが十分小さい場合には次の式(15)、式(16)および式(17)が成り立つ。
Here, the relationship between the incident angle to the light control member and the incident intensity will be described with reference to FIG.
Considering the minute angle Δθ centering on the incident angle θ from the linear light source to the light control member, the following equations (15), (16), and (17) are established when Δθ is sufficiently small.

U=H’・Δθ (15)
H’=H/cosθ (16)
V=U/cosθ (17)
従って
V=H・Δθ/cos2θ (18)
つまり、Vはcos2θに反比例するので、線状光源からのΔθ内の出射光の強度がθによらず一定な場合には、光制御部材への単位面積当たり入射光の強度、すなわち照度はcos2θに比例する。
U = H '· Δθ (15)
H ′ = H / cos θ (16)
V = U / cos θ (17)
Therefore, V = H · Δθ / cos 2 θ (18)
That is, since V is inversely proportional to cos 2 θ, when the intensity of the emitted light within Δθ from the linear light source is constant regardless of θ, the intensity of incident light per unit area to the light control member, that is, the illuminance Is proportional to cos 2 θ.

次に、式(8)について説明する。
図6に本発明の照明装置で光を正面に向ける原理を示す。
線状光源から、屈折率nの光制御部材2にαの角度で入光する入射光7は該光制御部材の入射面6で屈折し、光拡散板内部を通過し、さらにこの光9は出射面側の凸部3で屈折し観察面側に出射するが、このとき出射光8が正面方向に出光するのは凸部3において、傾きが望ましい角度Φである場合である。本発明では配置に基づくαの分布と入射光7の強度を考慮し、正面方向への出光強度が一定となるよう角度Φの割合を調節することで正面方向への出光強度を調節できる。
Next, equation (8) will be described.
FIG. 6 shows the principle of directing light to the front in the lighting device of the present invention.
Incident light 7 that enters the light control member 2 having a refractive index n from the linear light source at an angle α is refracted by the incident surface 6 of the light control member, passes through the inside of the light diffusion plate, and this light 9 is The light is refracted by the convex portion 3 on the emission surface side and emitted to the observation surface side. At this time, the emitted light 8 is emitted in the front direction when the inclination of the convex portion 3 is a desirable angle Φ. In the present invention, the light emission intensity in the front direction can be adjusted by adjusting the ratio of the angle Φ so that the light emission intensity in the front direction is constant in consideration of the distribution of α based on the arrangement and the intensity of the incident light 7.

入射光7を正面に向けるための出射面の凸部3の傾きΦは、光制御部材2の屈折率と光制御部材2への光の入射角度によって決まる。入射面6の法線に対する、入射面6への光の入射する角度をα,入射面6で屈折し光制御部材内部の凸部3部分を通過する光が入射面6の法線に対して成す角度をβ、光制御部材内部を進む光が出射側の斜面の法線に対して成す角度をε、光が出射側斜面で屈折し観察面側に出射する光の斜面の法線に対して成す角度をωとし、また、光制御部材の屈折率をnとする。このとき、出射面を出た光が入射面の法線方向である正面方向に進むような、凸部の斜面の角度をΦとする。   The inclination Φ of the projection 3 on the exit surface for directing the incident light 7 is determined by the refractive index of the light control member 2 and the incident angle of light on the light control member 2. The incident angle of light on the incident surface 6 with respect to the normal of the incident surface 6 is α, and the light that is refracted at the incident surface 6 and passes through the convex portion 3 inside the light control member is relative to the normal of the incident surface 6. The angle formed by β, the angle formed by the light traveling inside the light control member with respect to the normal of the slope on the exit side, ε, the light being refracted on the slope on the exit side and the normal of the slope of the light emitted to the observation surface side And ω and the refractive index of the light control member is n. At this time, let Φ be the angle of the slope of the convex portion so that the light exiting the exit surface travels in the front direction, which is the normal direction of the entrance surface.

このとき次のような関係が成立する。
β=Sin-1(1/n・sinα) (5)’
Φ=β−ε (19)
−n・sinε=−sinω=sinΦ (ω=−Φ) (20)
式(19)および式(20)より、
−n・sin(β−Φ)=sinΦ (21)
−n・{sinΦ・cosβ−cosΦ・sinβ}=sinΦ (21)’
式(21)’の両辺をcosΦで除すると(sinΦ/cosΦ=tanΦなので)
−n{tanΦ・cosβ−sinβ}=tanΦ (21)”
これよりΦは次のように表すことができる。
Φ=Tan-1(n・sinβ)/(n・cosβ−1)) (21)'''
式(5)’、式(21)'''より
Φ=Tan-1(sinα/(n・cos(Sin−1((1/n)sinα))−1))(21)''''
At this time, the following relationship is established.
β = Sin −1 (1 / n · sin α) (5) ′
Φ = β−ε (19)
−n · sinε = −sinω = sinΦ (ω = −Φ) (20)
From equation (19) and equation (20),
−n · sin (β−Φ) = sinΦ (21)
−n · {sinΦ · cosβ−cosΦ · sinβ} = sinΦ (21) ′
Dividing both sides of equation (21) 'by cosΦ (since sinΦ / cosΦ = tanΦ)
−n {tanΦ · cosβ−sinβ} = tanΦ (21) ”
From this, Φ can be expressed as follows.
Φ = Tan -1 (n · sinβ) / (n · cosβ-1)) (21) '''
From Equation (5) 'and Equation (21)''', Φ = Tan -1 (sin α / (n · cos (Sin −1 ((1 / n) sin α)) − 1)) (21) ″ ″

α、n、Φはこのような関係になり、光制御部材2の屈折率nと、凸部3の傾きΦによって、所望の入射角αの光を正面方向に出射することができる。式(21)'''によって、凸部の各領域の傾きΦは式(8)を満足することで、角度αで入射面に入射した光を凸部の領域iから正面方向に出射することができることが説明できる。 α, n, and Φ have such a relationship, and light having a desired incident angle α can be emitted in the front direction by the refractive index n of the light control member 2 and the inclination Φ of the convex portion 3. By the equation (21) ′ ″, the inclination Φ i of each region of the convex portion satisfies the equation (8), so that the light incident on the incident surface at the angle α i is emitted in the front direction from the region i of the convex portion. Can explain what can be done.

以上のように、望ましい正面方向への出光強度の分布f(X)における、凸部の形状を決める重要な要素である凸部の領域iの傾きΦとこれが占めるX方向の幅aは、線状光源の配置や光制御部材の屈折率などの構成に基いて選定される。 As described above, the slope Φ i of the convex region i and the width a i in the X direction occupied by the convex region i, which are important factors that determine the shape of the convex portion, in the distribution f (X) of the desired intensity of light emission in the front direction are as follows. The linear light source is selected based on the arrangement of the linear light source and the refractive index of the light control member.

請求項2に記載の発明は、請求項1に記載の照明装置であって、前記凸部のX方向の断面形状をあらわす領域−N〜NがXの座標の順に並んでいることを特徴とする照明装置である。このとき単位凸部の断面形状は変曲点がなく、凸部全体が略凸状を成す。変曲点が多いと、光が所望の凸部上の領域に到達する前に別の凸部上の領域に到達して、反射や屈折によって光線の方向が変化し、光の出射方向の制御が困難である場合がある。また、変曲点をもたない形状は変曲点をもつ形状に比べ形状が単純であるため、賦形しやすく生産上有利である。   Invention of Claim 2 is the illuminating device of Claim 1, Comprising: The area | region -N-N showing the cross-sectional shape of the X direction of the said convex part is located in order of the coordinate of X, It is characterized by the above-mentioned. It is an illuminating device. At this time, the cross-sectional shape of the unit convex portion has no inflection point, and the entire convex portion is substantially convex. When there are many inflection points, the light reaches the region on another convex part before reaching the region on the desired convex part, and the direction of the light beam is changed by reflection or refraction, and the light emission direction is controlled. May be difficult. In addition, since the shape having no inflection point is simpler than the shape having the inflection point, it is easy to shape and advantageous in production.

請求項3に記載の発明は、請求項1、2のいずれかに記載の照明装置であって、前記凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする照明装置である。請求項1で記載の凸部は(2N+1)個の角度Φの斜面よりなるが、このうち少なくとも一組の隣接する2つの領域の形状を曲線で近似した形状を示している。これによって、正面方向への出光強度の分布や、出光角度の分布がよりなめらかになるため望ましい。また、より賦形しやすいため光制御部材の作製時に有利となり望ましい。さらに、領域の接合部が鋭い形状ではないことで破損しにくい点も望ましい。該接合部の破損は光の出射方向の変化や、不必要な散乱が生じることがあり、望ましくない。 Invention of Claim 3 is an illuminating device in any one of Claim 1, 2, Comprising: The cross-sectional shape of the X direction of the said convex part differs in (2N + 1) inclination which comprises this convex part. The illumination device is characterized in that the shape of at least one pair of two adjacent regions in the region is a shape approximated by a curve. The convex portion described in claim 1 is composed of (2N + 1) inclined surfaces having an angle Φ i , and shows a shape obtained by approximating the shape of at least one pair of two adjacent regions by a curve. This is desirable because the distribution of the light emission intensity in the front direction and the distribution of the light emission angles become smoother. Moreover, since it is easier to form, it is advantageous when producing a light control member. Furthermore, it is also desirable that the bonded portion of the region is not easily broken because it is not a sharp shape. The breakage of the joint is undesirable because it may cause a change in the light emission direction and unnecessary scattering.

請求項4に記載の発明は、請求項1〜3のいずれかに記載の照明装置であり、X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向と30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上であることを特徴とする照明装置である。該照明装置は、正面方向への出光割合が比較的高いため、テレビやパソコンモニターなど主として正面方向から照明面を観察する用途で、効率よく明るい照明光を得ることができる。また、X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向と30度以内の角度を成す範囲に出光する光の割合は、光制御部材の凸部の斜面の角度を調整することで、調節できる。該凸部の斜面の角度は、Xmax〜Xminの幅を調節することで調節できる。 Invention of Claim 4 is an illuminating device in any one of Claims 1-3, and is normal of an output surface in the cross section parallel to the normal direction of the X direction and the main surface of a light control member. The illumination device is characterized in that a ratio of light emitted in a range that forms an angle within 30 degrees with a direction is 50% or more of the total light output. Since the illumination device has a relatively high light emission ratio in the front direction, bright illumination light can be efficiently obtained in applications such as a television or a personal computer monitor that mainly observe the illumination surface from the front direction. In the cross section parallel to the X direction and the normal direction of the main surface of the light control member, the ratio of the light emitted in a range that forms an angle of 30 degrees or less with the normal direction of the output surface is the convexity of the light control member. It can be adjusted by adjusting the angle of the slope of the part. The angle of the slope of the convex portion can be adjusted by adjusting the width of X max to X min .

請求項5に記載の発明は、請求項1〜4のいずれかに記載の照明装置が備える光制御部材である。該光制御部材は、入射面と出射面とを主面とする板状であり、入射面側から該入射面に入射した光を一部は反射し、一部は透過する。この機能によって出射光の輝度ムラは低下する。入射面を透過する光は、入射面で屈折して入射面の法線方向付近に集光されて、出射面に向かう。入射面を透過して出射面の凸部に向かった光は、凸部の各領域の傾きに応じて屈折する。適切な角度の領域に向かった光は正面方向に向かう。また、傾きの異なる凸部の各領域の割合を適切に選ぶことによって、任意の出射面上の点における正面方向への出光強度を一定にできる。以上の入射面と出射面凸部の機能によって、入射面側に線状光源を配置する種々の構成で出射面の法線方向である正面方向への出射光の輝度ムラを解消できる。   Invention of Claim 5 is a light control member with which the illuminating device in any one of Claims 1-4 is provided. The light control member has a plate shape having an entrance surface and an exit surface as main surfaces, and part of the light incident on the entrance surface from the entrance surface side is reflected and part of the light is transmitted. By this function, the luminance unevenness of the emitted light is reduced. The light that passes through the incident surface is refracted at the incident surface, collected near the normal direction of the incident surface, and travels toward the exit surface. The light transmitted through the incident surface and directed to the convex portion of the output surface is refracted according to the inclination of each region of the convex portion. Light that is directed to an area of the appropriate angle is directed in the front direction. Further, by appropriately selecting the ratio of each region of the convex portions having different inclinations, it is possible to make the light emission intensity in the front direction at a point on an arbitrary light exit surface constant. Due to the functions of the entrance surface and the exit surface convex portion described above, it is possible to eliminate uneven brightness of the exit light in the front direction, which is the normal direction of the exit surface, with various configurations in which a linear light source is disposed on the entrance surface side.

請求項6に記載の発明は、請求項1〜4のいずれかに記載の照明装置の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置である。該照明装置は正面方向への出光強度の分布が一定で正面方向への出光強度の分布が均一な照明装置であり、また正面方向への出光強度の割合を高めることもでき、この出射側に透過型表示素子を設けることにより、好ましい画像表示装置として利用できる。ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。   A sixth aspect of the present invention is an image display device characterized in that a transmissive display element is provided on the exit surface side of the illumination device according to any one of the first to fourth aspects. The lighting device is a lighting device in which the distribution of the light emission intensity in the front direction is constant and the distribution of the light emission intensity in the front direction is uniform, and the ratio of the light emission intensity in the front direction can be increased. By providing a transmissive display element, it can be used as a preferred image display device. Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module.

正面方向への出光強度の分布は、正面輝度の分布を測定することにより評価できる。正面輝度の分布は、輝度計と光制御部材の出射面側にある測定点との距離を一定に保った状態で、輝度計をX方向に等間隔ずつ移動しながら測定する。また、正面方向への出光割合の測定は、まず測定点の輝度を角度を変えながら測定する。このとき光制御部材の主面の法線方向とX軸方向に平行な断面に沿って角度を変えていく。このとき輝度計と光制御部材の出射面側にある測定点との距離は一定に保つ。次に得られた角度ごとの輝度の値をエネルギーの値に変換し、光制御部材の主面の法線方向である正面方向と30度以内に出射したエネルギーの全出射エネルギーに対する割合を算出する。   The light intensity distribution in the front direction can be evaluated by measuring the front luminance distribution. The distribution of front luminance is measured while moving the luminance meter at equal intervals in the X direction with the distance between the luminance meter and the measurement point on the light exit side of the light control member kept constant. In the measurement of the light emission ratio in the front direction, first, the luminance of the measurement point is measured while changing the angle. At this time, the angle is changed along a cross section parallel to the normal direction of the main surface of the light control member and the X-axis direction. At this time, the distance between the luminance meter and the measurement point on the emission surface side of the light control member is kept constant. Next, the obtained luminance value for each angle is converted into an energy value, and the ratio of the energy emitted within 30 degrees to the front direction, which is the normal direction of the main surface of the light control member, is calculated. .

本発明では、直下方式において、光の利用効率が高く、正面方向への出光強度の分布を一定とすることで、ランプイメージなどの正面方向の輝度ムラがない照明装置を提供する。また、正面方向への出光割合が50%以上と高く,高い正面輝度が得られる。また、凸部の断面形状を曲線で近似することにより、なめらかな正面方向への出光強度の分布や望ましい出光角度の分布が得られる。また、線状光源と他の部材を近づけたりフィルム構成を単純化したりすることで薄型化にも対応できる。さらに、入射面に入射した光に対して、すべての場所で同様な光学的制御を行うことが可能であるため、線状光源と光制御部材との位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。また、これを用いた画像表示装置を提供する。   The present invention provides an illumination device that has high light utilization efficiency and has a constant light intensity distribution in the front direction in the direct system, so that there is no luminance unevenness in the front direction such as a lamp image. Moreover, the light emission rate in the front direction is as high as 50% or more, and high front luminance can be obtained. Further, by approximating the cross-sectional shape of the convex portion with a curve, a smooth distribution of the light emission intensity in the front direction and a desirable distribution of the light emission angles can be obtained. Moreover, it can respond also to thickness reduction by making a linear light source and another member close, or simplifying a film structure. Furthermore, since the same optical control can be performed on the light incident on the incident surface at any place, alignment between the linear light source and the light control member is unnecessary, and the display size and linear shape are not required. Changes in the number and arrangement of light sources can be handled immediately, and a lighting device can be manufactured with high productivity. In addition, an image display apparatus using the same is provided.

図1に、本発明の提供する照明装置の最良の形態の例を示す。X方向とX方向に垂直なY方向とからなる矩形状の出射面を持つ照明装置であって、線状光源1は前記X方向とY方向とに平行な1つの仮想平面内に、Y方向と平行に、かつX方向に沿って配置されており、光制御部材2が前記配列した線状光源の出射面側に配置され、かつ、主面は線状光源1が配列している前記仮想平面と平行であり、出射面側に表面に畝上の凸部3を複数形成しており、該凸部3は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している照明装置である。背面にX方向とY方向に平行に配置した反射板4の反射率は95%以上であることが望ましい。線状光源1から背面に向かう光や、光制御部材2で反射して背面に向かう光をさらに出射側に反射することで、光を有効に利用できるため光利用効率が高くなる。反射板の材質としては、アルミ、銀、ステンレスなどの金属泊、白色塗装、発泡PET樹脂などが挙げられる。反射板は反射率が高いものが光利用効率を高める上で望ましい。この観点からは、銀、発泡PET樹脂などが望ましい。また光を拡散反射するものが出射光の均一性を高める上で望ましい。この観点からは発泡PET樹脂などが望ましい。   FIG. 1 shows an example of the best mode of a lighting device provided by the present invention. An illumination device having a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, wherein the linear light source 1 is arranged in a Y virtual direction in one virtual plane parallel to the X direction and the Y direction. The light control member 2 is arranged on the emission surface side of the arranged linear light sources, and the main surface is arranged in the virtual direction where the linear light sources 1 are arranged. It is parallel to the plane, and a plurality of protrusions 3 on the surface are formed on the surface on the exit surface side, and the protrusion 3 has a ridge-like ridgeline corresponding to the top formed in parallel to the Y direction, and X It is the illuminating device arranged along the direction. It is desirable that the reflectance of the reflector 4 arranged on the back surface in parallel with the X direction and the Y direction is 95% or more. By reflecting the light traveling from the linear light source 1 to the back surface and the light reflected by the light control member 2 and traveling toward the back surface further to the emission side, the light can be used effectively, so that the light utilization efficiency is increased. Examples of the material of the reflecting plate include metal stays such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. A reflector having a high reflectance is desirable for improving the light utilization efficiency. From this viewpoint, silver, foamed PET resin, and the like are desirable. Further, it is desirable to diffuse and reflect light in order to improve the uniformity of the emitted light. From this viewpoint, foamed PET resin and the like are desirable.

本発明の線状光源は反射板と光制御部材とに挟まれるように配置されていることから、線状光源より出射した光は、約半分が光制御部材の方向に向かい、残りの約半分が反射板の方向に向かう。このうち、反射板に向かって該反射板で拡散反射された光は、拡散光として光制御部材に入射する。また、線状光源から光制御部材に入射した光の一部は、全反射されて戻り反射板に向かう。該線状光源を出射して反射板に向かった光および光制御部材で全反射して戻り反射板に向かった光は、反射板で拡散反射し拡散光として光制御部材に再び入射する。該拡散光として入射した光は、光制御部材の出射面上の全ての点で、正面輝度、角度分布が等しい光として出射する。したがって、反射板を配置した状態での拡散光を含む場合の正面方向の出射光強度の最小値G(X)minと最大値G(X)maxとの比G(X)min/G(X)maxは、反射光を含まない場合の比g(X)min/g(X)maxより大きくなる。また反射板を適切に選択することで光制御部材に入射する光の50%以上は拡散光となる。 Since the linear light source of the present invention is disposed so as to be sandwiched between the reflector and the light control member, about half of the light emitted from the linear light source is directed toward the light control member and the remaining half is about half. Heads toward the reflector. Among these, the light diffusely reflected by the reflecting plate toward the reflecting plate enters the light control member as diffused light. Further, part of the light incident on the light control member from the linear light source is totally reflected and travels toward the return reflector. The light emitted from the linear light source toward the reflection plate and the light totally reflected by the light control member and directed toward the return reflection plate are diffusely reflected by the reflection plate and enter the light control member again as diffused light. The incident light as the diffused light is emitted as light having the same front luminance and angular distribution at all points on the emission surface of the light control member. Therefore, the ratio G (X) min / G (X) between the minimum value G (X) min and the maximum value G (X) max of the emitted light intensity in the front direction when the diffused light is included in the state where the reflector is disposed. ) Max is greater than the ratio g (X) min / g (X) max when no reflected light is included. Further, by appropriately selecting the reflector, 50% or more of the light incident on the light control member becomes diffuse light.

反射板による輝度ムラ解消効果について以下、簡単に見積もる。線状光源から出射した光のうち50%が反射板で拡散反射された後、光制御部材に入射すると仮定する。反射板の反射率を95%とすると、線状光源から光制御部材に向かい正面方向に出光した光と同じ量の光のうち95%が、線状光源から反射板により反射された後拡散光として光制御部材に入射し正面方向に出光する。線状光源から光制御部材に向かった光のうち正面方向に出光する光をg(X)maxとg(X)minの平均と仮定すると、(g(X)max+g(X)min)/2×0.95が線状光源から反射板で反射し拡散光として光制御部材に入射し正面方向に出射する。これをg(X)maxおよびg(X)minにそれぞれ加算して、反射板を配置した場合の出光強度の最小値であるG(X)min、最大値であるG(X)maxおよびその比比G(X)min/G(X)maxをそれぞれ求めると以下のようになる。 The brightness unevenness eliminating effect by the reflector will be briefly estimated below. It is assumed that 50% of the light emitted from the linear light source is diffusely reflected by the reflector and then enters the light control member. If the reflectance of the reflector is 95%, 95% of the same amount of light emitted from the linear light source toward the light control member in the front direction is reflected by the reflector from the linear light source and then diffused light The light enters the light control member and exits in the front direction. Assuming that the light emitted from the linear light source toward the light control member in the front direction is the average of g (X) max and g (X) min , (g (X) max + g (X) min ) / 2 × 0.95 is reflected by the reflector from the linear light source, enters the light control member as diffused light, and exits in the front direction. This is added to g (X) max and g (X) min , respectively, and G (X) min which is the minimum value of the light output intensity when the reflector is arranged, G (X) max which is the maximum value and When the ratio ratio G (X) min / G (X) max is obtained, it is as follows.

G(X)max=g(X)max+(g(X)max+g(X)min)/2×0.95 (22)
G(X)min=g(X)min+(g(X)max+g(X)min)/2×0.95 (23)
G(X)min/G(X)max
={g(X)min+(g(X)max+g(X)min)/2×0.95}/
{g(X)max+(g(X)max+g(X)min)/2×0.95} (24)
G (X) max = g (X) max + (g (X) max + g (X) min ) /2*0.95 (22)
G (X) min = g (X) min + (g (X) max + g (X) min ) /2×0.95 (23)
G (X) min / G (X) max
= {G (X) min + (g (X) max + g (X) min ) /2×0.95} /
{G (X) max + (g (X) max + g (X) min ) /2×0.95} (24)

比G(X)min/G(X)maxが0.8以上になるためには、
g(X)min/g(X)max≧0.65 (25)
となる。
上述のように、実際には光制御部材への入射光のうち拡散光成分は50%以上であるため、
g(X)min/g(X)max>0.6 (26)
とすればよいことがわかる。
In order for the ratio G (X) min / G (X) max to be 0.8 or more,
g (X) min / g (X) max ≧ 0.65 (25)
It becomes.
As described above, since the diffused light component is actually 50% or more of the incident light to the light control member,
g (X) min / g (X) max > 0.6 (26)
You can see that.

図16は線状光源を平行に配列した場合の、正面方向への出光強度と線状光源の位置との関係を表す図である。ここに示すように、複数の線状光源1を配置して成る照明装置にあっては、正面方向(図中では上)への出光強度は、各線状光源1の直上部分と、該直上部分と隣り合う線状光源1それぞれの直上の間の部分(斜め上部分)とでは大きく異なる。これは本発明の照明装置では光制御部材の入射面への正面方向への入射強度が、各線状光源1の直上部分と、斜め上部分とで大きく異なることを意味する。   FIG. 16 is a diagram illustrating the relationship between the light output intensity in the front direction and the position of the linear light source when the linear light sources are arranged in parallel. As shown here, in an illuminating device in which a plurality of linear light sources 1 are arranged, the intensity of light emitted in the front direction (up in the drawing) is the portion directly above each linear light source 1 and the portion directly above it. And the portion directly above each of the adjacent linear light sources 1 (an oblique upper portion) is greatly different. This means that in the illumination device of the present invention, the incident intensity in the front direction of the light control member on the incident surface is greatly different between the portion directly above each linear light source 1 and the oblique upper portion.

図2は図1の照明装置の、線状光源の位置と正面方向への出光強度との関係を示す図である。このように正面方向への出光強度の分布がほぼ一定になるため、正面方向の輝度ムラが解消される。   FIG. 2 is a diagram showing the relationship between the position of the linear light source and the intensity of light emitted in the front direction in the illumination device of FIG. As described above, since the distribution of the intensity of light emission in the front direction is substantially constant, the luminance unevenness in the front direction is eliminated.

図3は、隣接する3本の線状光源および反射板をを配置したときの、線状光源の位置とそれぞれの正面方向への出光強度の分布を示した図である。これらの総和がほぼ一定になっていれば、正面方向の輝度ムラが解消したといえる。本発明の光制御部材2によって図2に示すように、正面方向への出光強度の分布がほぼ一定になるため、正面方向の輝度ムラが解消される。   FIG. 3 is a diagram showing the positions of the linear light sources and the distribution of the light output intensity in the respective frontal directions when three adjacent linear light sources and reflectors are arranged. If these sums are almost constant, it can be said that the luminance unevenness in the front direction has been eliminated. As shown in FIG. 2, the light intensity distribution in the front direction becomes almost constant by the light control member 2 of the present invention, so that luminance unevenness in the front direction is eliminated.

図7に、D=30mmとして線状光源を配列した本発明の照明装置の任意の1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す。1本の線状光源からの光による正面方向への出光は、Xmin〜Xmaxの範囲となる。図7に示すような緩やかな減衰を示す場合は、例えばf(X)の値が最大値の1/100となるときのXの値で代用することもできる。Xmin、Xmaxを定めるためのf(X)の値は、それぞれ同じであることが望ましく、最大値の1/20以下であれば問題なく、1/100以下であることがさらに望ましい。図7ではXmin=−3D、Xmax=3Dであり、f(Xmin)=f(Xmax)でf(X)の1/100以下である。このような形状では正面方向への出光強度は厳密には隣接する3本のみの総和では決まらないので、g(X)は一定であるよりも、X=0である中心付近のg(X)が周辺に比べて少し高いことが望ましい。 FIG. 7 shows an example of the distribution in the X direction of the intensity of light emitted in the front direction by light from any one linear light source of the illumination device of the present invention in which linear light sources are arranged with D = 30 mm. Light emitted in the front direction by light from one linear light source is in the range of X min to X max . In the case of showing gentle attenuation as shown in FIG. 7, for example, the value of X when the value of f (X) is 1/100 of the maximum value can be substituted. The values of f (X) for determining X min and X max are preferably the same, and if it is 1/20 or less of the maximum value, there is no problem, and 1/100 or less is more desirable. In FIG. 7, X min = −3D and X max = 3D, and f (X min ) = f (X max ) is 1/100 or less of f (X). In such a shape, since the intensity of light emission in the front direction is not strictly determined by the sum of only three adjacent ones, g (X) is not constant but g (X) near the center where X = 0. It is desirable that is slightly higher than the surrounding area.

図8に、図7の場合と同じくD=30mmとして線状光源を配列し、別の光制御部材を用いた本発明の照明装置における任意の1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す。この例ではXmin=−D、Xmax=Dである。凸部の形状によっては、ある入射角度以上の光が正面に進まないので、このように線状光源からある程度離れた部分で急激に出光強度が低下する分布となる。このような形状では正面方向への出光強度は隣接する3本のみの総和で決まるので、g(X)が一定であることが最も望ましい。このとき、Xmin〜Xmaxの範囲で光は正面方向へ出光し、その分布はf(X)となる。図7に示すXmin=−3D,Xmax=3Dである場合と、図8に示すXmin=−D,Xmax=Dである場合とを比較すると、凸部幅は限られているので、斜面の傾きの角度Φの配分により正面方向への出光強度の分布が決定する。凸部形状が図7に示すように遠方より斜め方向に入射するエネルギーの弱い光を正面方向に向けるような斜面角度を持つより、図8に示すように遠方からの光を正面に向ける角度Φはもたずに、−D<X<Dの範囲に入射した光のみ正面に向ける角度Φで構成される凸部形状の方が、正面輝度は向上する。このようにXmax〜Xminの幅を小さくすることは、より強い光を効率的に正面に向けることによって正面方向への出光割合を高める効果を持つ。 In FIG. 8, linear light sources are arranged with D = 30 mm as in FIG. 7, and in the front direction by light from any one linear light source in the illumination device of the present invention using another light control member. 2 shows an example of the distribution in the X direction of the intensity of emitted light. In this example, X min = −D and X max = D. Depending on the shape of the convex portion, light having a certain incident angle or more does not travel forward, and thus the light emission intensity is suddenly reduced at a portion away from the linear light source to some extent. In such a shape, since the intensity of light emission in the front direction is determined by the sum of only three adjacent ones, it is most desirable that g (X) is constant. At this time, light exits in the front direction in the range of X min to X max , and its distribution is f (X). When the case where X min = −3D and X max = 3D shown in FIG. 7 is compared with the case where X min = −D and X max = D shown in FIG. 8, the convex portion width is limited. The distribution of the intensity of light emission in the front direction is determined by the distribution of the inclination angle Φ of the slope. As shown in FIG. 8, the convex shape has a slope angle that directs light with low energy incident in an oblique direction from a far direction to the front direction, but an angle Φ that directs light from a far direction to the front as shown in FIG. Instead, the front luminance is improved in the convex shape formed by the angle Φ in which only the light incident in the range of −D <X <D is directed to the front. Thus, reducing the width of X max to X min has the effect of increasing the ratio of light emission in the front direction by efficiently directing stronger light to the front.

一方、Xmax〜Xminの幅を大きくすることは、遠くの線状光源の光を正面に向けることによって正面方向への出光割合を高める効果を持つ。したがって正面輝度を高めるにはXmax〜Xminの幅が適切な範囲にあることが望ましい。望ましいXmax〜Xminの幅はf(X)によって異なるが、例えば出光強度が最大値の1/2以上となるXの範囲を目安とできる。この範囲が大きい場合はXmax〜Xminの幅を比較的大きめに取ることが望ましく、小さい場合小さめに取ることが望ましい。このようにXmax〜Xminの幅を好適に定めることで正面輝度を高めることができる。 On the other hand, increasing the width of X max to X min has the effect of increasing the light emission ratio in the front direction by directing the light of a distant linear light source to the front. Therefore, in order to increase the front luminance, it is desirable that the width of X max to X min be in an appropriate range. Desirable widths of X max to X min vary depending on f (X). For example, a range of X in which the light emission intensity is ½ or more of the maximum value can be used as a guide. It is desirable to take the width of this range is large when the X max to X min relatively large, it is desirable to take small smaller. Width of the thus X max to X min can increase the front luminance in suitably determined that the.

図10は、図8でf(X)について示した照明装置のg(X)を示す。既に示したように、g(X)が線状光源1周期分である−D/2≦X≦D/2の範囲で一定であれば、正面方向の輝度ムラは解消され、また、Xmin、Xmaxが最適である場合には、線状光源の近傍のエネルギーの高い光を正面に向けるため、より正面方向の輝度は高くなる。 FIG. 10 shows g (X) of the illumination device shown for f (X) in FIG. As already shown, if g (X) is constant within the range of −D / 2 ≦ X ≦ D / 2, which is one cycle of the linear light source, the luminance unevenness in the front direction is eliminated, and X min , X max is optimal, the light with high energy in the vicinity of the linear light source is directed to the front, and thus the brightness in the front direction is higher.

領域−N〜Nの配列順序がX軸に必ずしも沿っている必要はない。しかしそうしなかった場合には、各領域の並び方により、凸部には変曲点が存在し、角度αiで入射した光を正面に向ける角度Φiの凸部の斜面に到達する前に別の角度の斜面に到達し屈折あるいは反射によって光線方向が変わり、角度Φiの斜面に到達しなかったり、望ましくない角度で角度Φiの斜面に到達したりすることで、光の出射方向の制御が困難となり、性能が不充分となる場合がある。−N〜Nの領域がX軸の位置座標の順に並んでいる場合、通常は凸部の形状は変曲点をもたない形状となり、凸部全体が略凸状を成す。このような形状の場合、通常、光が所望の凸部上の領域に到達する前に別の凸部上の領域に到達して反射や屈折によって光線の方向が変化することがなく、光線方向の制御が容易となり有利である。 The arrangement order of the regions -N to N is not necessarily along the X axis. However, if this is not the case, there will be an inflection point in the convex part due to the arrangement of each region, and before reaching the slope of the convex part at angle Φ i that directs the light incident at angle α i to the front rays direction depends reach refracted or reflected in a different angle of slope, may not reach the slant angle [Phi i, by or to reach the slope angle in undesirable angle [Phi i, the emission direction of the light Control may be difficult and performance may be insufficient. When the -N to N regions are arranged in the order of the position coordinates of the X axis, the shape of the convex portion is usually a shape having no inflection point, and the entire convex portion is substantially convex. In the case of such a shape, the direction of the light beam usually does not change due to reflection or refraction by reaching the region on another convex part before the light reaches the region on the desired convex part. This is easy and advantageous.

また凸部の各領域のX方向の幅aiがf(Xi+T・tanβi)・cosΦi・cosβi/cosαi/cos(Φi−βi) に比例することが本発明の照明装置の特徴であるが、凸部の底部から表面までの高さの影響によって、好ましい幅が少しずれる場合があるが、大きな影響はない。 The lighting the width a i in the X direction of each region of protrusions is proportional to f (X i + T · tanβ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) is of the present invention Although it is a feature of the apparatus, the preferred width may slightly deviate due to the influence of the height from the bottom of the convex part to the surface, but there is no significant influence.

ここで、図12は光制御部材2と線状光源1の配置を示す断面図である。図中に入射面6から凸部の底部までの厚みTと線状光源1の中心から光制御部材2の入射面6までの距離Hと線状光源1の中心間の間隔Dとを示す。入射面6から凸部底までの厚みTは1mm〜3mmが望ましい。Tが小さいと、光制御部材の厚さが薄くなり、照明装置としての厚さも薄くなり望ましいが、薄すぎると強度が弱くたわみ、そのため出光方向が変化することで制御できなくなり正面方向の輝度ムラが発生する。また力学的強度が弱くなり、破損する可能性もある。また、逆に厚すぎると照明装置の厚さが厚くなり、薄型化の要望に反するため望ましくない。   Here, FIG. 12 is a sectional view showing the arrangement of the light control member 2 and the linear light source 1. In the figure, a thickness T from the incident surface 6 to the bottom of the convex portion, a distance H from the center of the linear light source 1 to the incident surface 6 of the light control member 2, and a distance D between the centers of the linear light sources 1 are shown. The thickness T from the incident surface 6 to the bottom of the convex portion is preferably 1 mm to 3 mm. If T is small, the thickness of the light control member becomes thin and the thickness of the lighting device is also thin, which is desirable. However, if it is too thin, the strength will be weak, and control will not be possible due to the change in the light output direction. Will occur. In addition, the mechanical strength is weakened and there is a possibility of breakage. On the other hand, if the thickness is too large, the thickness of the lighting device is increased, which is not desirable because it is contrary to the demand for thickness reduction.

また、Nは2以上であることが望ましい。Nが大きい場合凸部は多くの傾きからなる複雑な形状である。傾きの数が多いと、正面方向への出光の制御を効率的に精度よく行うことができ、正面方向への出光強度の分布の均一性が高い。精度の面ではNは大きい方が良いが、大きすぎると形状が複雑になり作製が困難となる。作成の容易さの観点からNが100以下であることが望ましく、10以下であることが、さらに望ましい。   N is preferably 2 or more. When N is large, the convex portion has a complicated shape composed of many inclinations. When the number of inclinations is large, the light emission in the front direction can be controlled efficiently and accurately, and the uniformity of the light emission intensity distribution in the front direction is high. In terms of accuracy, N should be large, but if it is too large, the shape becomes complicated and it becomes difficult to produce. From the viewpoint of ease of creation, N is preferably 100 or less, and more preferably 10 or less.

凸部を形成する領域のうち少なくとも一組の隣接する領域の形状を曲線で近似してもよい。また二組以上の隣接する領域の形状を曲線で近似してもよい。さらに3つ以上の隣接する領域の形状を曲線で近似してもよく、凸部全体の形状を曲線で近似しても良い。図11は凸部の全領域の形状を曲線で近似した場合の光制御部材のX方向の断面形状の例を示す図である。多くの領域の形状を曲線で近似すると、正面方向への出光強度の分布や出光角度の分布をなめらかにする、賦形しやすい、破損しにくい、などの、隣接する領域の形状を曲線で近似することの効果がより高まり、望ましい。曲線への近似法としては特に制限はなく、通常よく知られている最小二乗法、スプライン補間法、ラグランジュ補間法などを用いることができる。近似に用いる点は、近似する領域から少なくとも1点を選ぶ。通常近似する領域の数より多くとる。例えば、連続する複数の領域の両端と各領域の接点を選ぶことができる。また加えて、各領域の中点を近似に用いることもできる。   You may approximate the shape of at least 1 set of adjacent area | regions among the area | regions which form a convex part with a curve. Further, the shape of two or more adjacent regions may be approximated by a curve. Further, the shape of three or more adjacent regions may be approximated by a curve, and the shape of the entire convex portion may be approximated by a curve. FIG. 11 is a diagram illustrating an example of a cross-sectional shape in the X direction of the light control member when the shape of the entire region of the convex portion is approximated by a curve. Approximating the shape of many areas with a curve approximates the shape of adjacent areas such as smoothing out the light intensity distribution and light angle distribution in the front direction, easy to shape, and difficult to break. This is more effective and desirable. The approximation method to the curve is not particularly limited, and a generally well-known least square method, spline interpolation method, Lagrange interpolation method, or the like can be used. As the points used for approximation, at least one point is selected from the approximated region. Usually more than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. In addition, the midpoint of each region can be used for approximation.

X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向である正面方向と30度以内の角度に出光する光の割合が50%以上である場合には、正面輝度の高い照明装置である。高い正面輝度が要求されるパソコンなどの表示装置においては、60%以上であればより望ましく、80%以上であればさらに望ましい。一方、照明看板などの広視野角が要求される表示装置については、正面方向への出光割合が高すぎると、正面方向のみに光が向き、視野角が狭くなり望ましくない。このため、60%〜80%が望ましい。   In a cross section parallel to the normal direction of the X direction and the main surface of the light control member, the proportion of light emitted at an angle within 30 degrees with the front direction that is the normal direction of the exit surface is 50% or more Is a lighting device with high front luminance. In a display device such as a personal computer that requires high front luminance, 60% or more is more desirable, and 80% or more is more desirable. On the other hand, for a display device that requires a wide viewing angle, such as a lighting signboard, if the light emission ratio in the front direction is too high, the light is directed only in the front direction and the viewing angle becomes narrow. For this reason, 60 to 80% is desirable.

図12に示すように、本発明の照明装置では線状光源がY方向に平行に間隔Dで同一平面内に配置し、Hだけ離れた位置に光制御部材の入射面が配置している。ここで、Dが小さい方が、正面方向への出光強度の分布は一定となるため望ましい。しかし、Dが小さすぎると、同じ画面サイズの場合には線状光源の本数が増えエネルギー消費が増え、望ましくない。Dの望ましい範囲は10mm〜100mmであり、より望ましい範囲としては、15mm〜50mmである。また、Hが大きい方が、正面方向への出光強度の分布は一定となるため望ましい。しかし、Hが大きすぎると厚みが厚くなり、照明装置として要求される薄型化に反するため望ましくない。Hの望ましい範囲は5mm〜50mmであり、より望ましい範囲としては10mm〜30mmである。また、比D/Hは、DとHの兼ね合いから、0.5〜3であることが望ましく、1〜2であることがさらに望ましい。   As shown in FIG. 12, in the illuminating device of the present invention, the linear light source is arranged in the same plane at a distance D parallel to the Y direction, and the incident surface of the light control member is arranged at a position separated by H. Here, a smaller D is desirable because the distribution of the intensity of light emission in the front direction is constant. However, if D is too small, the number of linear light sources increases and energy consumption increases when the screen size is the same. A desirable range of D is 10 mm to 100 mm, and a more desirable range is 15 mm to 50 mm. Further, it is desirable that H is large because the distribution of the light emission intensity in the front direction is constant. However, if H is too large, the thickness is increased, which is not desirable because it is contrary to the thinning required for the lighting device. A desirable range of H is 5 mm to 50 mm, and a more desirable range is 10 mm to 30 mm. Further, the ratio D / H is preferably 0.5 to 3 and more preferably 1 to 2 in view of the balance between D and H.

出射面上に形成する凸部の高さは1μm〜500μmが望ましい。500μmより大きくなると、出射面を観察した際、凸部が確認されやすくなるため品位の低下を招く。また1μmより小さくなると光の回折現象により着色が発生し品位の低下を生じる。さらに、透過型液晶パネルを透過型表示装置素子として設けた本発明の画像表示装置においては、X方向の凸部の幅Pが、液晶の画素ピッチの1/100〜1/1.5であることが望ましい。これより大きくなると液晶パネルとのモアレが発生し画質を大きく低下させる。   As for the height of the convex part formed on an output surface, 1 micrometer-500 micrometers are desirable. When the thickness is larger than 500 μm, the convex portion is easily confirmed when the emission surface is observed, and the quality is deteriorated. On the other hand, if the thickness is smaller than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Furthermore, in the image display device of the present invention in which the transmissive liquid crystal panel is provided as the transmissive display device element, the width P of the convex portion in the X direction is 1/100 to 1 / 1.5 of the pixel pitch of the liquid crystal. It is desirable. If it is larger than this, moire occurs with the liquid crystal panel, and the image quality is greatly reduced.

凸部に形状を賦形するには制限はないが、押出し成形、射出成形、紫外線硬化型樹脂を用いた2P成形等があげられる。成形方法は凸部の大きさ、必要形状、量産性を考慮して適宜用いればよい。主面サイズが大きい場合は、押出し成型が適している。   Although there is no restriction | limiting in shaping | molding a convex part, Extrusion molding, injection molding, 2P shaping | molding using an ultraviolet curable resin, etc. are mention | raise | lifted. The molding method may be appropriately used in consideration of the size of the projection, the required shape, and mass productivity. When the main surface size is large, extrusion molding is suitable.

また、通常凸部は連続して配列するが、凸部の間に平坦部を設けてもよい。平坦部を設けることにより、金型の凸部が変形しにくい形状となるため、有利である。また、線状光源の直上での光が正面方向に出射されるため、線状光源の直上での輝度のみを上げるときに有効である。逆に、平坦部を持たない形状の場合は、凸部の斜面の傾きの角度ですべての光を制御できるため、正面方向への出光強度の分布が均一となる。   In addition, the normal convex portions are continuously arranged, but a flat portion may be provided between the convex portions. Providing the flat portion is advantageous because the convex portion of the mold is difficult to deform. In addition, since the light directly above the linear light source is emitted in the front direction, it is effective when only the luminance immediately above the linear light source is increased. On the contrary, in the case of a shape having no flat part, all the light can be controlled by the inclination angle of the slope of the convex part, so that the light intensity distribution in the front direction becomes uniform.

また、凸部が同じ形状であることが望ましい。光制御部材の光学的性質は一様であるので、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。   Moreover, it is desirable that the convex portions have the same shape. Since the optical properties of the light control member are uniform, alignment is not necessary, and it is possible to immediately respond to changes in the display size, the number of linear light sources and the arrangement, and the lighting device can be manufactured with high productivity. .

また光制御部材は通常光学材料の基材として用いられる材料であれば望ましく用いることができ、通常、透光性の熱可塑性樹脂を用いる。たとえばメタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、メタアクリル−スチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂などが挙げられる。   The light control member can be desirably used as long as it is a material usually used as a base material of an optical material, and usually a light-transmitting thermoplastic resin is used. For example, methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, methacryl-styrene copolymer resin, cycloolefin-alkene copolymer resin and the like can be mentioned.

また光拡散手段を設けることで、更に輝度の均一性を高めることができる。
光拡散手段としては板状部材の主面にシボやエンボスなどのランダムな凹凸を設ける方法、少量の光拡散材を構造物の内部に分散する方法、拡散シートを光制御部材の入射側および/または出射側に設ける方法、あるいはこれらを組み合わせた方法が挙げられる。
Further, by providing the light diffusing means, it is possible to further improve the uniformity of luminance.
As the light diffusing means, a method of providing random irregularities such as embossing or embossing on the main surface of the plate member, a method of dispersing a small amount of light diffusing material inside the structure, a diffusion sheet on the incident side of the light control member and / or Or the method of providing in the output side, or the method of combining these is mentioned.

ランダムな凹凸の形成は微粒子を分散した溶液を主面に塗布することや、凹凸の形成された金型から転写することにより実現できる。これらは光源側よりも出射面側に設けられることが望ましく、光制御部材の光源側および/または出射面側に設けることができる。凹凸の程度は算術平均粗さRaが3μm以下であることが望ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。入射面が平坦である場合、様々な方向から入射した光が、光制御部材内に入射したとき入射面での屈折によりある程度正面付近に集光されるため、結果として正面方向への出光割合が増える。例えば、光制御部材の屈折率が1.55である場合には、入射面の法線方向と40度以内の角度範囲に集光される。入射面に凹凸を付与した場合、光制御部材に入射した光は、広い角度に屈折され進むので、正面方向への出光割合を増やす効果が低下する場合がある。また出射面に微細な凹凸を設ける場合、凹凸面で屈折されることで同様に凹凸によって正面方向への出光割合を増やす効果が低下する場合がある。得られる拡散性や輝度ムラ解消効果と正面輝度とのバランスから用いる用途に望ましい範囲に調整することができる。   The formation of random irregularities can be realized by applying a solution in which fine particles are dispersed to the main surface or transferring from a mold having irregularities. These are preferably provided on the exit surface side rather than the light source side, and can be provided on the light source side and / or the exit surface side of the light control member. As for the degree of unevenness, the arithmetic average roughness Ra is desirably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered. When the incident surface is flat, light incident from various directions is condensed to some extent near the front due to refraction at the incident surface when entering the light control member. As a result, the light emission ratio in the front direction is increased. Increase. For example, when the refractive index of the light control member is 1.55, the light is condensed in an angle range within 40 degrees with respect to the normal direction of the incident surface. When unevenness is given to the incident surface, the light incident on the light control member is refracted at a wide angle and proceeds, so that the effect of increasing the light emission ratio in the front direction may be reduced. Moreover, when providing a fine unevenness | corrugation in an output surface, the effect which increases the light emission ratio to a front direction by an unevenness | corrugation similarly may be reduced by being refracted by an uneven surface. It can be adjusted to a range desired for the intended use from the balance between the obtained diffusibility and luminance unevenness eliminating effect and front luminance.

光拡散材を構造物の内部に分散する場合は、光拡散材の濃度は比較的低く抑えることができる。これによって、透過率や正面輝度の低下を低く抑えることができる。好適な光拡散材の濃度は材料によって異なるが、透過率とヘイズを目安にすることができる。透過率80%以上かつ、ヘイズ50%以下であるような濃度で用いることが望ましい。例えば、厚さ2mmのMS重合物に、光拡散材としてシロキサン系重合体粒子(例えば、トスパール120:GE東芝シリコーン(株)製、数平均粒子径2μm、CV値3%)を0.04Wt%含んでいるような成型板などを用いることができる。   When the light diffusing material is dispersed inside the structure, the concentration of the light diffusing material can be kept relatively low. Thereby, it is possible to suppress a decrease in transmittance and front luminance. Although the suitable concentration of the light diffusing material varies depending on the material, transmittance and haze can be used as a guide. It is desirable to use at a concentration such that the transmittance is 80% or more and the haze is 50% or less. For example, siloxane polymer particles (for example, Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., number average particle diameter: 2 μm, CV value: 3%) as a light diffusing material are 0.04 Wt% on an MS polymer having a thickness of 2 mm. A molded plate or the like that contains it can be used.

本発明の光制御部材は必要に応じて異なる複数の材料を用いて作ることもできる。例えば凸部をフィルム上に形成した後、凸部を形成していないフィルム面に支持板を合わせて、光拡制御部材とすることもできる。これは例えば凸部の形成に紫外線硬化樹脂を用いる場合は凸部付近以外に汎用の透光性樹脂を用いることで高価な紫外線硬化樹脂の使用量を削減することができる。また少量の光拡散材を内部に分散したり、表面に塗布したりすることもできる。光拡散材の使用によって出射光の拡散性を高め、輝度均一性も高めることができる。光拡散材を塗布する場合、出射面側に塗布することがより好ましい。光拡散材としては従来光拡散板や拡散シートに用いられる無機微粒子や架橋有機微粒子を用いることができる。使用量は従来の一般的な光拡散板に比べてごく少量で同等以上の拡散性が得られるとともに、透過性も非常に高い。   The light control member of the present invention can be made using a plurality of different materials as required. For example, after forming a convex part on a film, a support plate can be match | combined with the film surface which does not form a convex part, and it can also be set as a light expansion control member. For example, in the case of using an ultraviolet curable resin for forming the convex portion, it is possible to reduce the amount of the expensive ultraviolet curable resin used by using a general-purpose translucent resin other than the vicinity of the convex portion. Also, a small amount of light diffusing material can be dispersed inside or applied to the surface. By using the light diffusing material, the diffusibility of the emitted light can be enhanced and the luminance uniformity can be enhanced. In the case of applying the light diffusing material, it is more preferable to apply it on the exit surface side. As the light diffusing material, inorganic fine particles and cross-linked organic fine particles conventionally used for light diffusing plates and diffusion sheets can be used. The amount used is very small compared to a conventional general light diffusion plate, and a diffusibility equal to or higher than that can be obtained, and the transmittance is also very high.

支持板を用いる場合などで、光制御部材の基材部分が屈折率の異なる複数種類の板となっても問題ない。この場合、ここまで示してきた考え方に沿って、式(7)に相当する式を導くことでaiを求めることができる。しかしながらそれぞれの屈折率のばらつきが90%以内である場合は、屈折率nは各板厚の比に従って近似することで式(7)を導くことができる。例えば基材部分が、屈折率がn’、n’’、n’’’で板厚がそれぞれT’、T’’、T’’’の3枚の板によってなる場合、nは(n’・T’+n’’・T’’+n’’’・T’’’)/Tの値で近似できる。 There is no problem even when the support plate is used and the substrate portion of the light control member is a plurality of types of plates having different refractive indexes. In this case, a i can be obtained by deriving an expression corresponding to Expression (7) in accordance with the idea described so far. However, when the variation of the respective refractive indexes is within 90%, the refractive index n 2 can be approximated according to the ratio of the respective plate thicknesses to derive the equation (7). For example, when the base material portion is composed of three plates having refractive indexes of n ′, n ″, n ′ ″ and thicknesses of T ′, T ″, T ′ ″ respectively, n 2 is (n It can be approximated by the value of “· T ′ + n ″ · T ″ + n ′ ″ · T ′ ″) / T.

また屈折率の異なる光拡散材が分散している場合、本発明では光拡散材の使用量が極めて少量であるので、その屈折率の影響は考慮しなくてもよい。   Further, when light diffusing materials having different refractive indexes are dispersed, the amount of the light diffusing material used is extremely small in the present invention, and therefore the influence of the refractive index need not be considered.

なお、本発明の画像表示装置としては、照明装置上に透過型の液晶表示素子を用いる等の方法により実現され、特に制限はないが、透過型表示素子としては透過型液晶パネルがあげられ、表示面の輝度均一性に優れる画像表示装置を得ることができる。   The image display device of the present invention is realized by a method such as using a transmissive liquid crystal display element on a lighting device, and is not particularly limited, but the transmissive display element includes a transmissive liquid crystal panel, An image display device having excellent display surface luminance uniformity can be obtained.

本発明の実施例の形態を以下に示す。
本実施例の照明装置の構成は図1の略図で示される。
まず図示していないX方向の長さ458mm、Y方向の長さ730mm、X方向とY方向に垂直な厚さ方向の長さ35mmで、出射側にX方向の長さ698mm、Y方向の長さ416mmの矩形の開口部を持つ直方体状の白色のABS樹脂製のハウジングを用意する。
次に前記ハウジングの出射側の開口部に対向する位置にある底部を覆うように、発泡ペット樹脂からなる反射率95%の反射板4を配置する。
次に前記反射板の出射側に2mmの間隔をおいて、該反射板と平行に線状光源を配置する。線状光源1としては直径3mm、長さ700mmの複数の冷陰極管をX方向に沿ってY方向に平行に配置する。配置する。実施例7以外の実施例、比較例では冷陰極管16本を22mmずつの間隔をおいて配置する。実施例7では冷陰極管12本を30mmずつの間隔をおいて配置する。
The form of the Example of this invention is shown below.
The configuration of the illumination device of the present embodiment is shown by the schematic diagram of FIG.
First, the length in the X direction (not shown) is 458 mm, the length in the Y direction is 730 mm, the length in the thickness direction perpendicular to the X direction and the Y direction is 35 mm, the length in the X direction is 698 mm, and the length in the Y direction is A rectangular parallelepiped white ABS resin housing having a rectangular opening of 416 mm is prepared.
Next, the reflection plate 4 made of foamed PET resin and having a reflectance of 95% is disposed so as to cover the bottom portion at a position facing the opening on the emission side of the housing.
Next, a linear light source is arranged in parallel with the reflecting plate with an interval of 2 mm on the exit side of the reflecting plate. As the linear light source 1, a plurality of cold-cathode tubes having a diameter of 3 mm and a length of 700 mm are arranged along the X direction and parallel to the Y direction. Deploy. In Examples other than Example 7 and Comparative Examples, 16 cold cathode tubes are arranged at intervals of 22 mm. In Example 7, 12 cold cathode fluorescent lamps are arranged at intervals of 30 mm.

次に光制御部材2を開口部に被せるように配置する。前記光制御部材は前記線状光源1の出射側に14mmの間隔をおいて、該反射板4と平行となる。該光制御部材のサイズはY方向の長さ707mm、X方向の長さ436mmで、X方向とY方向に垂直な厚さ方向の凸部の高さを含まない厚み、すなわち該光制御部材の入射面から凸部の底部までの厚みTは2mmである。
線状光源1の中心から光制御部材2までのHは15.5mm、隣接する線状光源1の中心同士の距離Dは実施例6を除く実施例、比較例では25mm、実施例6では33mmである。
Next, the light control member 2 is disposed so as to cover the opening. The light control member is parallel to the reflecting plate 4 with an interval of 14 mm on the emission side of the linear light source 1. The size of the light control member is 707 mm in the Y direction and 436 mm in the X direction, and does not include the height of the convex portion in the thickness direction perpendicular to the X direction and the Y direction. A thickness T from the incident surface to the bottom of the convex portion is 2 mm.
H from the center of the linear light source 1 to the light control member 2 is 15.5 mm, and the distance D between the centers of the adjacent linear light sources 1 is 25 mm in the examples other than Example 6 and Comparative Example, and 33 mm in Example 6. It is.

光制御部材の出射面に形成する畝状の凸部3は、切削加工によって幅0.3mmの溝状の凹部を平行に連続して作製した金型を用いて形成する。屈折率1.55の紫外線硬化樹脂を前記金型の切削面に塗布し、その上にメタクリル酸メチル−スチレン共重合体である屈折率1.55の縦436mm、横707mm、厚さ2mmの透明樹脂板を重ね、該透明樹脂板の上から紫外線を照射して前記紫外線硬化樹脂を硬化させることで、光制御部材を得る。凸部の屈折率n=1.55、基材の屈折率n2=1.55である。ただし、実施例13は、透明樹脂板の代わりに、光拡散材の微粒子としてシロキサン系重合体粒子(トスパール120:GE東芝シリコーン(株)製、数平均粒子径2μm、CV値3%)を0.04Wt%含有した成型板を用いて、光制御部材を作製する。 The ridge-shaped convex part 3 formed on the emission surface of the light control member is formed by using a mold in which groove-shaped concave parts having a width of 0.3 mm are continuously formed in parallel by cutting. A UV curable resin having a refractive index of 1.55 is applied to the cutting surface of the mold, and a transparent material having a refractive index of 1.55 and a length of 436 mm, a width of 707 mm, and a thickness of 2 mm, which is a methyl methacrylate-styrene copolymer. A light control member is obtained by stacking resin plates and irradiating ultraviolet rays from above the transparent resin plates to cure the ultraviolet curable resin. The refractive index n of the convex portion is 1.55, and the refractive index n 2 of the base material is 1.55. However, in Example 13, in place of the transparent resin plate, siloxane polymer particles (Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., number average particle diameter 2 μm, CV value 3%) were used as fine particles of the light diffusing material. A light control member is produced using a molded plate containing 0.04 Wt%.

光拡散材を含有する成型板は次のようにして作製する。
他の実施例で光制御部材の作成に用いる透明樹脂板の材料と同じメタクリル酸メチル−スチレン共重合体樹脂のペレットと、光拡散材と、紫線吸収剤である2−(5−メチルー2ヒドロキシフェニル)ベンゾトリアゾール0.1質量%とをヘンシェルミキサーで混合後、押出機を用いて溶融混練し、押出樹脂温度200℃にて、幅1000mm、厚み2mmの成型板を作製する。これを切削することで、縦436mm、横707mmとする。
The molded plate containing the light diffusing material is produced as follows.
In other embodiments, the same methyl methacrylate-styrene copolymer resin pellets as the material of the transparent resin plate used for the production of the light control member, the light diffusing material, and 2- (5-methyl-2) which is a purple ray absorbent Hydroxyphenyl) benzotriazole (0.1% by mass) is mixed with a Henschel mixer and then melt-kneaded using an extruder to produce a molded plate having a width of 1000 mm and a thickness of 2 mm at an extrusion resin temperature of 200 ° C. By cutting this, it is set to 436 mm long and 707 mm wide.

また、実施例14については、透明板として一方の主面にエンボス加工を施したものを用いて、該加工を施していない面に凸部を作成することで光制御部材を得る。エンボス加工した面は該光制御部材の入射面側になる。この面の表面粗さは、JIS B 0601−1994の測定法による算術平均粗さRaで3μmである。   Moreover, about Example 14, a light control member is obtained by creating a convex part on the surface which has not embossed using the thing which embossed one main surface as a transparent plate. The embossed surface is the incident surface side of the light control member. The surface roughness of this surface is 3 μm in arithmetic average roughness Ra according to the measurement method of JIS B 0601-1994.

金型の溝部の形状は表1に示したN、f(X)、Xmin、Xmax、よって定められる傾きΦとX方向の幅aiを持つ各領域−N〜Nを同じく表1に示す領域の順序にしたがって並べるように作製する。 N shape of the grooves of the mold are shown in Table 1, f (X), X min, X max, thus each region -N~N having a width a i of inclination Φ and X direction defined the same in Table 1 It is manufactured so as to be arranged in accordance with the order of the regions shown.

実施例1〜10および実施例13〜14は各凸部の全領域を、最小二乗法で曲線に近似している。近似に用いる点としては、凸部の両端部2点及び各領域の全ての接点(2N)点を用いる。
この状態での評価結果について、表1に示す。
In Examples 1 to 10 and Examples 13 to 14, the entire region of each convex portion is approximated to a curve by the least square method. As points used for approximation, two points on both ends of the convex portion and all contact (2N) points in each region are used.
The evaluation results in this state are shown in Table 1.

Figure 0004684791
Figure 0004684791

正面方向への出光強度の分布は、正面輝度の分布を測定することにより評価する。正面輝度の分布は、輝度計と光制御部材の出射面側にある測定点との距離を一定に保った状態で、輝度計をX方向に1mmずつ移動しながら測定する。また、正面方向への出光割合の測定は、まず測定点の輝度を角度を変えながら測定する。このとき光制御部材の主面の法線方向とX軸方向に平行な断面に沿って角度を変えていく。このとき輝度計と光制御部材の出射面側にある測定点との距離は一定に保つ。次に得られた角度ごとの輝度の値をエネルギーの値に変換し、光制御部材の主面の法線方向である正面方向と30度以内に出射したエネルギーの全出射エネルギーに対する割合を算出する。   The light intensity distribution in the front direction is evaluated by measuring the front luminance distribution. The distribution of the front luminance is measured while moving the luminance meter by 1 mm in the X direction while keeping the distance between the luminance meter and the measurement point on the light emission surface side of the light control member constant. In the measurement of the light emission ratio in the front direction, first, the luminance of the measurement point is measured while changing the angle. At this time, the angle is changed along a cross section parallel to the normal direction of the main surface of the light control member and the X-axis direction. At this time, the distance between the luminance meter and the measurement point on the emission surface side of the light control member is kept constant. Next, the obtained luminance value for each angle is converted into an energy value, and the ratio of the energy emitted within 30 degrees to the front direction, which is the normal direction of the main surface of the light control member, is calculated. .

次に、実施例1の照明装置の出射側に透過型液晶パネルを載せて、画像表示装置とし、正面から観察する。この結果、ムラのない明るい画像が得られる。   Next, a transmissive liquid crystal panel is mounted on the emission side of the illumination device of Example 1 to form an image display device, which is observed from the front. As a result, a bright image without unevenness can be obtained.

(比較例)
比較例1として、頂角が90°の畝状のプリズムが出射面に形成されたプリズムシートをプリズムが線状光源と平行になるように配置する。正面方向から観察した結果、線状光源の直上部分では輝度の低下が大きくなり、面内の輝度ムラが大きくなる。
(Comparative example)
As Comparative Example 1, a prism sheet having a prismatic prism with an apex angle of 90 ° formed on the exit surface is arranged so that the prism is parallel to the linear light source. As a result of observing from the front direction, the luminance is greatly reduced in the portion directly above the linear light source, and the in-plane luminance unevenness is increased.

図13、図14に該シートの光制御の原理を示す。図13に示すようにプリズムシート11の入射面に法線方向から入射した光7は全て全反射して反射光10として光源側に戻るためこの領域の全光線透過率は原理的には0であり、実測値も5%と非常に低い。一方、図14に示すように、斜め方向から入射した光7は凸部で屈折して正面付近に向かうため、高い全光線透過率を示す。実施した構成では90%である。この例では、輝度ムラは解消しない。
またこの照明装置の出射側に透過型液晶パネルを載せて、画像表示装置とし、正面から観察する。この結果、得られた画像は輝度ムラが顕著である。
13 and 14 show the principle of light control of the sheet. As shown in FIG. 13, since all the light 7 incident on the incident surface of the prism sheet 11 from the normal direction is totally reflected and returns to the light source side as reflected light 10, the total light transmittance in this region is 0 in principle. Yes, the measured value is very low at 5%. On the other hand, as shown in FIG. 14, the light 7 incident from an oblique direction is refracted by the convex portion and travels to the vicinity of the front surface, and thus shows a high total light transmittance. The implemented configuration is 90%. In this example, luminance unevenness is not eliminated.
In addition, a transmissive liquid crystal panel is mounted on the exit side of the illumination device to form an image display device, which is observed from the front. As a result, luminance unevenness is remarkable in the obtained image.

比較例2として、該光制御部材に代えて通常の微粒子含有の光拡散板を使用する場合の、評価を実施する。
光拡散板は光拡散材としてはシロキサン系重合体粒子(トスパール2000B:GE東芝シリコーン(株)製、数平均粒子径5μm、CV値8%)1.9質量%を用いて、実施例13で光制御部材を作成するときに用いる成型板と同様にして作製する。
実施例1の照明装置の光制御部材と交換することで成る構成で照明装置を作製し、比較する。冷陰極管を点灯した状態で、前記光拡散板の明るさを正面方向から測定すると、冷陰極管の直上部分において輝度が高く、隣り合う冷陰極管同士の間(斜め上部分)では輝度が低くなる。これにより、冷陰極管の直情部分と斜め上部分とで、両者の輝度の差が大きいため、画像表示面である正面方向における輝度均一性が大きく低下する。
またこの照明装置の出射側に透過型液晶パネルを載せて、画像表示装置とし、正面から観察する。この結果、得られた画像は、前記実施例1の照明装置を用いた場合と比較してかなり暗いことがわかる。
As Comparative Example 2, evaluation is performed in the case of using a normal light diffusing plate containing fine particles instead of the light control member.
In Example 13, the light diffusion plate was 1.9% by mass using siloxane polymer particles (Tospearl 2000B: manufactured by GE Toshiba Silicone Co., Ltd., number average particle diameter: 5 μm, CV value: 8%) as a light diffusion material. It is produced in the same manner as the molding plate used when producing the light control member.
An illuminating device is produced and compared with the structure which replaces | exchanges the light control member of the illuminating device of Example 1. FIG. When the brightness of the light diffusing plate is measured from the front direction with the cold cathode tubes turned on, the luminance is high in the portion directly above the cold cathode tubes, and the luminance is between the adjacent cold cathode tubes (upper oblique portions). Lower. As a result, there is a large difference in luminance between the direct portion and the diagonally upper portion of the cold cathode tube, and the luminance uniformity in the front direction, which is the image display surface, is greatly reduced.
In addition, a transmissive liquid crystal panel is mounted on the exit side of the illumination device to form an image display device, which is observed from the front. As a result, it can be seen that the obtained image is considerably darker than the case of using the illumination device of Example 1.

比較例3として、実施例13で光制御部材を作成するときに用いる成型板と同じものを光拡散板として用いて、実施例13の照明装置の光制御部材と交換することで成る構成で照明装置を作成し、比較する。この場合、ランプイメージが顕著で比G(X)min/G(X)maxは20%で、輝度ムラが解消しない。 As Comparative Example 3, the same molding plate used when creating the light control member in Example 13 is used as the light diffusing plate, and the light control member of the illumination device of Example 13 is replaced with the light control member. Create and compare devices. In this case, the lamp image is remarkable, and the ratio G (X) min / G (X) max is 20%, and the luminance unevenness is not eliminated.

本発明の照明装置の好適な例の概略図である。It is the schematic of the suitable example of the illuminating device of this invention. 図1の照明装置の、線状光源の位置と正面方向への出光強度との関係を示す図である。It is a figure which shows the relationship between the position of a linear light source, and the emitted light intensity to a front direction of the illuminating device of FIG. 隣接する3本の線状光源を配置したときの、線状光源の位置とそれぞれの正面方向への出光強度の分布を示す図である。It is a figure which shows distribution of the light emission intensity | strength to the position of each linear light source, and each front direction when arrange | positioning three adjacent linear light sources. 線状光源からの光の入射角度αと、凸部の領域iの斜面の傾きの角度Φiと領域iのX方向の幅aiとの関係を示す図である。The incident angle alpha i of the light from the linear light source is a diagram showing the relationship between the X-direction of the width a i angle [Phi i and region i of slope of the slope of the area i of the convex portion. 光制御部材への入射角度と入射強度の関係を説明する図である。It is a figure explaining the relationship between the incident angle to a light control member, and incident intensity. 本発明の照明装置で光を正面に向ける原理を示す図である。It is a figure which shows the principle which directs light to the front with the illuminating device of this invention. 1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す図である。It is a figure which shows one example of distribution of the X direction of the emitted light intensity to the front direction by the light from one linear light source. 1本の線状光源からの光による正面方向への出光強度のX方向の分布の図7と異なる1例を示す図である。It is a figure which shows one example different from FIG. 7 of the distribution of the X direction of the emitted light intensity to the front direction by the light from one linear light source. 図7で示した照明装置のf(X)とそれに対応するg(X)を示す図である。It is a figure which shows f (X) of the illuminating device shown in FIG. 7, and g (X) corresponding to it. 図8で示した照明装置のf(X)とそれに対応するg(X)を示す図である。It is a figure which shows f (X) of the illuminating device shown in FIG. 8, and g (X) corresponding to it. 凸部の全領域の形状を曲線で近似した場合の光制御部材のX方向の断面形状の例を示す図である。It is a figure which shows the example of the cross-sectional shape of the X direction of the light control member at the time of approximating the shape of the whole area | region of a convex part with a curve. 本発明に用いることのできる光制御部材と線状光源との配置を示した図である。It is the figure which showed arrangement | positioning of the light control member and linear light source which can be used for this invention. 比較例1のプリズムシートの平滑面に線状光源の光が垂直に入射したときの光の進む様子を示す図である。It is a figure which shows a mode that the light advances when the light of a linear light source injects perpendicularly on the smooth surface of the prism sheet of the comparative example 1. 比較例1のプリズムシートの平滑面に斜め方向より線状光源の光が入射したときの光の進む様子を示す図である。It is a figure which shows a mode that the light advances when the light of a linear light source injects into the smooth surface of the prism sheet of the comparative example 1 from the diagonal direction. 従来の直下方式の照明装置の概略図である。It is the schematic of the conventional illuminating device of a direct system. 平行に配列した線状光源からの正面方向への出光強度の分布を示す図である。It is a figure which shows distribution of the emitted light intensity to the front direction from the linear light source arranged in parallel. 角度αiで凸部向かう光のうち領域iに向かう光の割合を示す図である。It is a figure which shows the ratio of the light which goes to the area | region i among the lights which go to a convex part with angle (alpha) i . 座標Xiの点における光源の直径を見込む角度Δαiを示す図である。It is a diagram showing the angle [Delta] [alpha] i anticipating the diameter of the light source in the point of coordinates X i.

符号の説明Explanation of symbols

1:線状光源、2:光制御部材、3:凸部、4:反射板、5:光拡散板、6:入射面
7:入射光、8:出射光、9:光制御部材内部を通過する光、10:反射光
11:プリズムシート

D:隣接する線状光源の中心間の距離
H:線状光源の中心と光制御部材の入射面との距離
f(X):線状光源の配列方向Xと照明装置の任意の1本の線状光源からの光の光制御部材の凸部から出射する正面方向への出光強度との分布の関数
N:自然数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
max:f(X)が0となるときの正方向のX座標
min:f(X)が0となるときの負方向のX座標
g(X):f(X−D)+f(X)+f(X+D); 線状光源の配列方向Xと、隣接する3本の線状光源からの光の光制御部材の凸部から出射する正面方向への出光強度との分布の関数
g(X)min:Xmin〜Xmax間のg(X)の最小値
g(X)max:Xmin〜Xmax間のg(X)の最大値
δ:δ=(Xmax−Xmin)/(2N+1)を満たす微小区間
Φi:凸部の領域iの出射面に対する斜面の傾き
i:Xmin〜Xmax間を(2N+1)等分したときの各要素のX座標の中心値
i:凸部の領域iのX方向の幅
T:光制御部材の入射面から凸部の底部までの厚み
αi:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、線状光源からの光線方向が入射面の法線に対して成す角度
βi:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材の凸部内部での光線方向が、入射面の法線に対して成す角度
γ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材の基材内部での光線方向が、入射面の法線に対して成す角度
i:X方向と光制御部材の主面の法線方向に平行な断面内における、領域iの斜面の長さ
i:X方向と光制御部材の主面の法線方向に平行な断面内における、法線方向光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材内部での光線方向に垂直な方向への領域iの斜面の射影の長さ
ξi:X方向と光制御部材の主面の法線方向に平行な断面内における、領域iの斜面の角度が、光制御部材の凸部内部での光線方向と垂直な角度に対して成す角度
θ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って出射面から出射する光の、線状光源からの光線方向が、入射面の法線に対して成す入射角度
Δθ:X方向と光制御部材の主面の法線方向に平行な断面内における、入射角度θの光を中心にした微小範囲が線状光源の中心と成す角度
H’:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から角度(θ−Δθ)で出射した光が通る光制御部材の入射面上の点と、線状光源の中心とを結ぶ軌道を、線状光源と角度θで出射した光が通る軌道上に射影に長さ(線状光源から角度θで出射した光が通る光制御部材の入射面上の点と線状光源の中心との距離にほぼ等しい)
V:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源からの入射角度θを中心とするΔθの光が通過する光制御部材の入射面上の領域の長さ
U:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源からの入射角度θを中心とするΔθの光が通過する光制御部材の入射面上の領域の長さVの線分の、入射角度θに垂直な角度への射影
α:X方向と光制御部材の主面の法線方向に平行な断面内における、光制御部材に入射する光が、入射面の法線に対して成す入射角度
β:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材の凸部内部での光線方向が、入射面の法線に対して成す角度
γ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材の基材内部での光線方向が、入射面の法線に対して成す角度
ε:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材内部での光線方向が、通過する凸部の斜面の法線に対して成す角度
ω:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、凸部から出射する光線の方向が、通過する凸部の斜面の法線に対して成す角度
P:X方向と光制御部材の主面の法線方向に平行な断面内における、凸部の幅
Δαi:座標Xiより線状光源の直径を見込む角度
1: linear light source, 2: light control member, 3: convex part, 4: reflector, 5: light diffusing plate, 6: incident surface 7: incident light, 8: outgoing light, 9: passing through light control member 10: reflected light 11: prism sheet

D: Distance between the centers of adjacent linear light sources H: Distance between the center of the linear light sources and the incident surface of the light control member f (X): Arrangement direction X of the linear light sources and any one of the illumination devices Function of distribution of light from linear light source and intensity of light emitted from convex part of light control member in front direction N: natural number n: refractive index n 2 of convex part of light control member: base material of light control member the refractive index of X max: positive direction of the X-coordinate at which f (X) is 0 X min: f the negative direction when (X) is 0 X-coordinate g (X): f (X -D) + F (X) + f (X + D); a function of the distribution of the arrangement direction X of the linear light sources and the intensity of the light emitted from the adjacent three linear light sources in the front direction emitted from the convex portion of the light control member g (X) min: X min ~X minimum g of g (X) between the max (X) max: maximum value of X min to X max between the g (X) δ: δ = (X max -X min ) / (2N + 1) met Small section [Phi i: slope of inclination with respect to the exit surface of the area i of the convex portion X i: X min to X max between the (2N + 1) of the X-coordinate of each element when it is equal center value a i: area of the convex portion i width X in the X direction: thickness from the incident surface of the light control member to the bottom of the convex portion α i : incident from a linear light source in a cross section parallel to the normal direction of the X direction and the main surface of the light control member The angle β i of the light incident from the linear light source and incident on the surface through the light control member and exiting from the region i with respect to the normal of the incident surface: the X direction and the main surface of the light control member The light ray direction inside the convex part of the light control member is incident on the light that enters the incident surface from the linear light source and exits from the region i through the light control member in the cross section parallel to the normal direction of angle formed with respect to the surface normal gamma i: in parallel to the cross section in the direction normal to the main surface of the X direction and the light control member, entering from the linear light source Of light incident on the surface is emitted from the area i through the interior light control member, the beam direction in the substrate inside the light control member, the angle b i forms with respect to the normal line of the incident surface: X direction and light The length e i of the slope of the region i in the cross section parallel to the normal direction of the main surface of the control member: the normal direction light source in the cross section parallel to the X direction and the normal direction of the main surface of the light control member The length of projection of the slope of the region i in the direction perpendicular to the light beam direction inside the light control member ξ i : X direction The angle θ of the slope of the region i in the cross section parallel to the normal direction of the main surface of the light control member and the angle perpendicular to the light ray direction inside the convex portion of the light control member θ: X direction In the cross section parallel to the normal direction of the main surface of the light control member and entering the light incident surface from the linear light source. In the cross section, the light ray direction from the linear light source of the light emitted from the emission surface is in the cross section parallel to the incident angle Δθ that is made with respect to the normal line of the incident surface and the normal direction of the main surface of the light control member , An angle H ′ formed by a minute range centered on the light having the incident angle θ and the center of the linear light source: an angle from the linear light source in a cross section parallel to the X direction and the normal direction of the main surface of the light control member ( The trajectory connecting the point on the incident surface of the light control member through which the light emitted by θ−Δθ) and the center of the linear light source pass is projected longer on the trajectory through which the light emitted by the linear light source and the angle θ passes. Length (approximately equal to the distance between the point on the incident surface of the light control member through which the light emitted from the linear light source at an angle θ passes and the center of the linear light source)
V: in a region on the incident surface of the light control member through which light of Δθ around the incident angle θ from the linear light source passes in a cross section parallel to the X direction and the normal direction of the main surface of the light control member Length U: On the incident surface of the light control member through which light of Δθ from the linear light source passes in a cross section parallel to the X direction and the normal direction of the main surface of the light control member Projection of the line segment of the length V of the region to an angle perpendicular to the incident angle θ α: light incident on the light control member in a cross section parallel to the X direction and the normal direction of the main surface of the light control member The incident angle β with respect to the normal of the incident surface β: in the cross section parallel to the X direction and the normal direction of the main surface of the light control member, is incident on the incident surface from the linear light source and passes through the light control member. The angle γ of the light emitted from the convex portion inside the convex portion of the light control member with respect to the normal of the incident surface γ: the X direction and the optical control Light within the substrate of the light control member that is incident on the incident surface from the linear light source and exits from the convex portion through the light control member in a cross section parallel to the normal direction of the main surface of the member The angle ε with respect to the normal of the incident surface ε: The light source enters the incident surface from the linear light source in a cross section parallel to the X direction and the normal direction of the main surface of the light control member. The angle ω of the light ray direction inside the light control member passing through the convex portion with respect to the normal line of the slope of the convex portion passing through the X direction and the normal direction of the main surface of the light control member In the parallel cross section, the direction of the light ray emitted from the convex portion of the light incident on the incident surface from the linear light source and passing through the inside of the light control member is normal to the slope of the convex portion through which the light passes. an angle formed with respect to P: in the X direction and the light control member in the cross section parallel to a normal direction of a principal face, the width of the convex portion [Delta] [alpha] i: the seat Angle anticipating the diameter of the linear light source than X i

Claims (6)

X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、
反射板と、複数の線状光源と、板状の光制御部材とを備え、
前記反射板は前記X方向およびY方向に平行に配置しており、
前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、
かつ、該線状光源は長手方向がY方向に平行に配置しており、
かつ、X方向に沿って等間隔に配列しており、
前記光制御部材は前記配列した線状光源の出射面側に配置し、
かつ、主面は線状光源が配列している前記仮想平面と平行であり、
該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、
前記出射面は表面に畝状の凸部を複数形成しており、
該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している照明装置であって、
前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をH、1本の線状光源から光制御部材に入光した光の、X方向の位置座標X(光源位置をX=0とする)における出射面の法線方向への出光強度を表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxの比g(X)min/g(X)maxが0.6以上であり、
Xの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり(XminおよびXmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標)、
任意の凸部のX方向の断面形状が、下記の式で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする照明装置。
δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部の底部までの厚み
It has a rectangular exit surface composed of an X direction and a Y direction perpendicular to the X direction,
A reflector, a plurality of linear light sources, and a plate-like light control member;
The reflector is arranged in parallel to the X direction and the Y direction,
The linear light source is disposed in one imaginary plane parallel to the X direction and the Y direction on the exit surface side of the reflector,
And, the linear light source has a longitudinal direction arranged parallel to the Y direction,
And it is arranged at equal intervals along the X direction,
The light control member is disposed on an emission surface side of the arranged linear light sources,
And the main surface is parallel to the virtual plane where the linear light sources are arranged,
The main surface of the light control member is composed of an incident surface that faces the linear light source and receives light from the linear light source, and an output surface that emits light received by the incident surface,
The emission surface has a plurality of ridge-shaped projections on the surface,
The convex portion is a lighting device in which a bowl-shaped ridge line corresponding to the top portion is formed in parallel to the Y direction, and arranged along the X direction,
The distance between the centers of the linear light sources is D, the distance between the center of the arbitrary linear light source and the light control member is H, and the X direction of the light incident on the light control member from one linear light source F (X) is a function representing the intensity of light emitted in the normal direction of the exit surface at the position coordinate X (where the light source position is X = 0),
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max of g (X) min that is the minimum value of g (X) and g (X) max that is the maximum value is 0.6 or more,
The minimum value X min of X is in the range of −3.0D ≦ X min ≦ −0.5D, and the maximum value X max is in the range of 0.5D ≦ X max ≦ 3.0D (X min and X max are , F (X) is attenuated around a linear light source whose value is X = 0, and coordinates at both ends when it becomes substantially 0),
An illuminating device characterized in that the cross-sectional shape in the X direction of an arbitrary convex portion is composed of (2N + 1) different regions −N to N with different inclinations represented by the following formula.
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan −1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex portion
請求項1に記載の照明装置であって、前記凸部のX方向の断面形状を表す領域−N〜NがX軸の位置座標の順に並んでいることを特徴とする照明装置。 It is the illuminating device of Claim 1, Comprising: Area | regions -N-N showing the cross-sectional shape of the X direction of the said convex part are located in order of the coordinate of the X-axis. 請求項1または2に記載の照明装置であって、前記凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする照明装置。 3. The lighting device according to claim 1, wherein a cross-sectional shape of the convex portion in the X direction forms at least one pair of two adjacent regions out of (2N + 1) different regions forming the convex portion. A lighting device characterized in that the shape is approximated by a curve. 請求項1〜3のいずれか1項に記載の照明装置であって、X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向に対して30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上であることを特徴とする照明装置。 The illumination device according to any one of claims 1 to 3, wherein the angle is 30 degrees with respect to the normal direction of the exit surface in a cross section parallel to the X direction and the normal direction of the main surface of the light control member. An illumination device characterized in that a ratio of light emitted within a range of within an angle is 50% or more of the total light output. 請求項1〜4のいずれか1項に記載の照明装置が備える光制御部材。 The light control member with which the illuminating device of any one of Claims 1-4 is provided. 請求項1〜4のいずれか1項に記載の照明装置の出射面側に透過型表示素子を設けたことを特徴とする画像表示装置。
An image display device comprising a transmissive display element on an exit surface side of the illumination device according to claim 1.
JP2005222824A 2005-06-29 2005-08-01 LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM Expired - Fee Related JP4684791B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005222824A JP4684791B2 (en) 2005-06-29 2005-08-01 LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
EP06767315.2A EP1900996B1 (en) 2005-06-29 2006-06-26 Lighting device with light control member and image display unit using the above
US11/994,377 US7744235B2 (en) 2005-06-29 2006-06-26 Lighting device and light control member used therefor and image display device using the lighting device and the light control member
KR1020087002272A KR100928171B1 (en) 2005-06-29 2006-06-26 Light control member used for lighting device and lighting device and image display device using them
PCT/JP2006/312698 WO2007000962A1 (en) 2005-06-29 2006-06-26 Lighting device and light control member used for this and image display unit using these
TW095123254A TWI417612B (en) 2005-06-29 2006-06-28 Lighting apparatus and image display apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005189474 2005-06-29
JP2005222824A JP4684791B2 (en) 2005-06-29 2005-08-01 LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM

Publications (2)

Publication Number Publication Date
JP2007042321A JP2007042321A (en) 2007-02-15
JP4684791B2 true JP4684791B2 (en) 2011-05-18

Family

ID=37800129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222824A Expired - Fee Related JP4684791B2 (en) 2005-06-29 2005-08-01 LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM

Country Status (1)

Country Link
JP (1) JP4684791B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059171B2 (en) * 2009-07-06 2012-10-24 住友化学株式会社 Light control plate, surface light source device, and transmissive image display device
KR20140026125A (en) * 2012-08-24 2014-03-05 삼성디스플레이 주식회사 Light diffusion plate, display appartus having the same and method of manufacturing the light diffusion plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283818A (en) * 1997-04-02 1998-10-23 Taiho Ind Co Ltd Planar illuminant and method of uniforming its luminance
JP2004319122A (en) * 2003-04-11 2004-11-11 Sumitomo Rubber Ind Ltd Light emitting device, and lamp image relaxation method in light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283818A (en) * 1997-04-02 1998-10-23 Taiho Ind Co Ltd Planar illuminant and method of uniforming its luminance
JP2004319122A (en) * 2003-04-11 2004-11-11 Sumitomo Rubber Ind Ltd Light emitting device, and lamp image relaxation method in light emitting device

Also Published As

Publication number Publication date
JP2007042321A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4584133B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
US7401962B2 (en) Light deflection element and light source apparatus using the same
TWI417612B (en) Lighting apparatus and image display apparatus using the same
TWI364600B (en) An illumination device an image display device using the illumination device and a light diffusing board used by the devices
JP3642381B2 (en) Light guide plate, surface light source device, and reflective liquid crystal display device
US7220038B2 (en) Light source device and light polarizing element
US7128456B2 (en) Light source device
JP4638752B2 (en) Light diffusion plate
JP4515374B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
US7864266B2 (en) Diffuser plate, backlight and display having the same
TW200937085A (en) Backlight unit
JPWO2008029911A1 (en) Surface light source element, light control member used therefor, and image display device using the same
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP4684838B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM
JP4522937B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP2009123397A (en) Illumination device, and image display device using it
JP4684791B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP4848511B2 (en) Backlight unit for LCD
JP2007109434A (en) Lighting system, light control member used for it, and image display device using them
JPH08146230A (en) Surface light emitting device
JP4689543B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME
JP6679465B2 (en) Surface light source element
JP2007080707A (en) Lighting system and image display device using it
JP2007103321A (en) Lighting device, light control member used for it and image display apparatus using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees