JP4515374B2 - LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME - Google Patents

LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME Download PDF

Info

Publication number
JP4515374B2
JP4515374B2 JP2005315283A JP2005315283A JP4515374B2 JP 4515374 B2 JP4515374 B2 JP 4515374B2 JP 2005315283 A JP2005315283 A JP 2005315283A JP 2005315283 A JP2005315283 A JP 2005315283A JP 4515374 B2 JP4515374 B2 JP 4515374B2
Authority
JP
Japan
Prior art keywords
light
control member
light control
light source
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005315283A
Other languages
Japanese (ja)
Other versions
JP2007123125A (en
Inventor
良樹 向尾
伊久雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005315283A priority Critical patent/JP4515374B2/en
Publication of JP2007123125A publication Critical patent/JP2007123125A/en
Application granted granted Critical
Publication of JP4515374B2 publication Critical patent/JP4515374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明は、液晶表示装置、看板等の透過型表示装置に用いられる照明装置のうち、いわゆる直下型面状照明装置に関する。また、該照明装置を用いた表示装置に関する。   The present invention relates to a so-called direct-type planar illumination device among illumination devices used in a transmissive display device such as a liquid crystal display device and a signboard. The present invention also relates to a display device using the lighting device.

近年、照明分野や透過型ディスプレイの分野では、特に高輝度化・薄型かつ輝度均一性が求められており、複数の線状光源と、その背面に設けられた反射板と、発光面をなす光拡散板を組み合わせた構成である直下型照明装置が好ましく用いられている。かかる直下型照明装置は、線状光源から放射される光束の有効利用効率(ランプから放射される光束のうち発光面から放射される割合)が高く、かつ使用線状光源数を増やすことができるため発光面の高輝度化が容易である。このような直下型照明装置では、線状光源の真上に比較的短い距離で光拡散板を配置することから、線状光源のランプイメージを消すことを目的に多量の光拡散性微粒子を含有した光拡散板が通常使用されていた。しかし、光拡散性微粒子を多量に含有した光拡散板では拡散特性は良好であるものの、光拡散性微粒子に起因する光ロスおよび光反射率が高く、光の利用効率が低下するという問題があった。このため近年では、光拡散性微粒子を含有させることなくランプのイメージを消す方法としてプリズムレンズ等による光制御部材の開発が行われている(特許文献1参照)。   In recent years, particularly in the field of illumination and transmissive displays, there has been a demand for high brightness, thinness, and uniform brightness, and a plurality of linear light sources, a reflector provided on the back surface thereof, and light that forms a light emitting surface. A direct illumination device having a configuration in which a diffusion plate is combined is preferably used. Such a direct illumination device has a high effective utilization efficiency of the light flux emitted from the linear light source (the ratio of the light flux emitted from the lamp radiated from the light emitting surface) and can increase the number of linear light sources used. Therefore, it is easy to increase the luminance of the light emitting surface. In such a direct illumination device, a light diffusing plate is disposed at a relatively short distance right above the linear light source, and therefore contains a large amount of light diffusing fine particles for the purpose of erasing the lamp image of the linear light source. The light diffusing plate was usually used. However, although a light diffusion plate containing a large amount of light diffusing fine particles has good diffusion characteristics, there is a problem in that light loss and light reflectance due to the light diffusing fine particles are high, and light use efficiency is reduced. It was. Therefore, in recent years, a light control member using a prism lens or the like has been developed as a method for erasing a lamp image without containing light diffusing fine particles (see Patent Document 1).

また、照明装置を薄型にした時には線状光源と光拡散板の距離がより短くなるため、あるいは、照明装置を大型化した時には光拡散板の自重が大きくなるため、光拡散板が線状光源の熱および自重等により変形するといった問題があった。そこで、上記照明装置に用いる光拡散板の線状光源方向への反りやたわみを抑える方法として、例えば、光拡散板を保持して光拡散板のたわみを抑制する目的で反射板上に突起を設ける方法が採用された照明装置が用いられていた。この場合、光拡散板等による反射率が高いため、一般には前記突起は不透明である周辺の反射板と同じ素材を用いるかあるいは同色とすることにより、その陰影が光拡散板へ投影されて観察されることを防止していた。一方、突起壁などの特殊な形状の突起を用いる場合には、透明な材料が用いられることもあった(特許文献2参照)。   In addition, when the illuminating device is made thin, the distance between the linear light source and the light diffusing plate becomes shorter, or when the illuminating device is enlarged, the light diffusing plate becomes heavy, so the light diffusing plate becomes the linear light source. There was a problem of deformation due to heat and dead weight. Therefore, as a method for suppressing warpage or deflection of the light diffusing plate used in the lighting device in the direction of the linear light source, for example, a protrusion is formed on the reflecting plate for the purpose of holding the light diffusing plate and suppressing the deflection of the light diffusing plate. An illuminating device that employs a method of providing was used. In this case, since the reflectance of the light diffusing plate or the like is high, the projections are generally made of the same material or the same color as the surrounding reflecting plate that is opaque, and the shadow is projected onto the light diffusing plate for observation. It was prevented from being done. On the other hand, when a specially shaped protrusion such as a protrusion wall is used, a transparent material may be used (see Patent Document 2).

特開2002−352611号公報(特許請求の範囲、図1等)JP 2002-352611 A (Claims, FIG. 1, etc.) 特開平5−119316号公報(特許請求の範囲、図3等)Japanese Patent Laid-Open No. 5-119316 (Claims, FIG. 3, etc.)

しかしながら、上記のプリズムレンズ等による光制御部材を用いる方法では、プリズムレンズ等の凹凸形状についての詳しい検討がないため、輝度ムラの厳密な調整は困難である。同様に出射面内の正面輝度の均一性を得ることも困難である。このため正面方向の輝度ムラが解消困難であり、結果として充分に品位の高い照明光を得ることは困難である。また、その照明装置をバックライトとして用いた表示装置においても同様の問題がある。特に照明装置の明るさを向上させる目的で、光利用効率が高く光透過率の高い光制御部材を用いた場合には、品位の高い照明光を得ることは更に困難となる。   However, in the method using the light control member such as the prism lens, it is difficult to strictly adjust the luminance unevenness because there is no detailed examination on the uneven shape of the prism lens or the like. Similarly, it is difficult to obtain the uniformity of the front luminance within the exit surface. For this reason, it is difficult to eliminate luminance unevenness in the front direction, and as a result, it is difficult to obtain sufficiently high quality illumination light. Further, a display device using the illumination device as a backlight has the same problem. In particular, when a light control member with high light utilization efficiency and high light transmittance is used for the purpose of improving the brightness of the lighting device, it becomes more difficult to obtain high-quality illumination light.

また、光透過率の高い光制御部材を用いた場合には、反りやたわみ防止のために前記反射板上に設けた突起の影が光制御部材を通して見えてしまうという問題が発生する場合があった。さらに、光学表面パターンとしてプリズムなどを使用した光制御部材を用いた場合には、突起の影が2重に見えるといった問題も新たに発生した。近年、上記照明装置に対して更なる高輝度化が求められているため、照明装置に用いられる光拡散板や光制御部材に対しても光線透過率の向上が一層求められていることから、突起に起因する陰影の改善についても求められている。   In addition, when a light control member having a high light transmittance is used, there may occur a problem that the shadow of the protrusion provided on the reflection plate can be seen through the light control member in order to prevent warping and deflection. It was. Further, when a light control member using a prism or the like is used as the optical surface pattern, a problem that the shadow of the protrusion appears double is newly generated. In recent years, since further increase in brightness has been demanded for the illuminating device, an improvement in light transmittance is further demanded for the light diffusion plate and the light control member used in the illuminating device. There is also a demand for improvement in shadows caused by protrusions.

したがって、本発明は、複数の線状光源と前記線状光源からの光を反射する反射板を有する照明装置において、光利用効率が高く、正面方向の輝度ムラを解消でき、正面輝度を高めることができ、かつ、部材を保持する目的で使用される突起が照明、表示の品位を低下させる影を実質的に投影しない材質または形状であることにより、明るくまた面均一性の高い照明装置を提供することを目的とする。また、本発明は、上記照明装置にさらに透過型表示素子を設けた表示装置を提供することを目的とする。   Therefore, the present invention provides a lighting device having a plurality of linear light sources and a reflector that reflects the light from the linear light sources, has high light utilization efficiency, can eliminate luminance unevenness in the front direction, and increase front luminance. Providing a bright and high surface uniformity illumination device because the projection used for holding the member is made of a material or shape that does not substantially project shadows that degrade the illumination and display quality. The purpose is to do. Another object of the present invention is to provide a display device in which a transmissive display element is further provided in the illumination device.

本発明者らは、上記課題について鋭意検討した結果、直下型照明装置の構成と、これに用いる光制御部材および突起の形状、構成を工夫することにより上記課題を解決できることを見出し、本発明を完成した。すなわち、本発明が提供する照明装置は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材と、前記光制御部材と接して該光制御部材を保持する突起とを少なくとも備え、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、該線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って等間隔に配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、かつ、該主面は線状光源が配列している前記仮想平面と平行であり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下である照明装置である。なお、本明細書においては、光制御部材の主面に平行な面で突起を切断した断面のことを「突起の水平断面」と称することとする。   As a result of intensive studies on the above problems, the present inventors have found that the above problems can be solved by devising the configuration of the direct type illumination device and the shape and configuration of the light control member and protrusions used therefor. completed. That is, the illumination device provided by the present invention has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, and includes a reflection plate, a plurality of linear light sources, and a plate-like light control member. And a projection that contacts the light control member and holds the light control member, the reflector is disposed in parallel to the X direction and the Y direction, and the linear light source emits from the reflector The linear light sources are arranged in one imaginary plane parallel to the X direction and the Y direction on the surface side, and the linear light source has a longitudinal direction arranged parallel to the Y direction, and along the X direction. The light control members are arranged on the emission surface side of the arranged linear light sources, and the main surface of the light control members is opposed to the linear light sources and emits light from the linear light sources. It consists of an incident surface that receives light and an exit surface that emits light received by the incident surface, and the main surface is linear Parallel to the virtual plane in which the sources are arranged, the emission surface has a plurality of bowl-shaped projections on the surface, and the projection has a bowl-shaped ridge line corresponding to the top formed in parallel to the Y direction. And the projections are made of a light-transmitting material, the projections have a circular cross section, and the diameter of the tip of the projection contacting the light control member is 1 mm or less. It is a certain lighting device. In the present specification, a cross section obtained by cutting the protrusion along a plane parallel to the main surface of the light control member is referred to as a “horizontal cross section of the protrusion”.

請求項1に記載の発明は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材と、前記光制御部材と接して該光制御部材を保持する突起とを少なくとも備える照明装置であって、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、該線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って等間隔に配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、かつ、該主面は線状光源が配列している前記仮想平面と平行であり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下であり、前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をH、該線状光源から光制御部材に入光した光の、X方向の位置座標X(光源位置をX=0とする)における出射面の法線方向への出光強度を表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxの比g(X)min/g(X)maxが0.6以上であり、
Xの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり(XminおよびXmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標)、任意の凸部のX方向の断面形状が、下記の式で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする照明装置である。
The invention according to claim 1 has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, a reflection plate, a plurality of linear light sources, a plate-like light control member, An illumination device including at least a protrusion that contacts the light control member and holds the light control member, wherein the reflector is disposed in parallel to the X direction and the Y direction, and the linear light source is the reflection The light source is disposed in one imaginary plane parallel to the X direction and the Y direction on the exit surface side of the plate, and the linear light source is disposed such that the longitudinal direction is parallel to the Y direction, and the X direction The light control members are arranged on the emission surface side of the arrayed linear light sources, and the main surface of the light control members is opposed to the linear light sources and from the linear light sources. An incident surface for receiving the light and an exit surface for emitting the light received by the incident surface, and the main surface is Parallel to the virtual plane on which the light sources are arranged, and the exit surface has a plurality of hook-shaped protrusions on the surface, and the protrusions are formed with hook-shaped ridge lines corresponding to the tops parallel to the Y direction. Are arranged along the X direction, the protrusion is made of a light-transmitting material, the horizontal cross section of the protrusion is circular, and the diameter of the protrusion tip portion in contact with the light control member is 1 mm or less D is the distance between the centers of the linear light sources, H is the distance between the center of the arbitrary linear light source and the light control member, and X of the light incident on the light control member from the linear light source. F (X) is a function representing the intensity of light emitted in the normal direction of the exit surface at the position coordinate X in the direction (the light source position is X = 0),
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max of g (X) min that is the minimum value of g (X) and g (X) max that is the maximum value is 0.6 or more,
The minimum value X min of X is in the range of −3.0D ≦ X min ≦ −0.5D, and the maximum value X max is in the range of 0.5D ≦ X max ≦ 3.0D (X min and X max are , The value of f (X) is attenuated around the linear light source where X = 0, and the coordinates of both ends when it becomes substantially 0), and the cross-sectional shape in the X direction of any convex portion is It is an illumination device characterized by comprising (2N + 1) different regions −N to N represented by the formula.

δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部の底部までの厚み
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan- 1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex portion

請求項2に記載の発明は、上記光制御部材の凸部のX方向の断面形状を表す領域−N〜NがX軸の位置座標の順に並んでいることを特徴とする請求項1に記載の照明装置である。   The invention described in claim 2 is characterized in that the regions -N to N representing the cross-sectional shape in the X direction of the convex portions of the light control member are arranged in the order of the position coordinates of the X axis. It is a lighting device.

請求項3に記載の発明は、上記光制御部材の凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする請求項1または2に記載の照明装置である。   According to a third aspect of the present invention, there is provided at least one pair of two adjacent regions out of (2N + 1) different regions in which the cross-sectional shape in the X direction of the convex portion of the light control member forms the convex portion. The illumination device according to claim 1 or 2, wherein the shape is a shape approximated by a curve.

請求項4に記載の発明は、X方向と上記光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向に対して30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上であることを特徴とする請求項1〜3のいずれか1項記載の照明装置である。   The invention described in claim 4 emits light within a range that forms an angle of 30 degrees or less with respect to the normal direction of the exit surface in a cross section parallel to the X direction and the normal direction of the main surface of the light control member. The lighting device according to any one of claims 1 to 3, wherein the ratio of light is 50% or more of the total light output.

請求項5に記載に発明は、請求項1から4のいずれか1項に記載の照明装置上に透過型表示素子を設けたことを特徴とする表示装置である。   According to a fifth aspect of the present invention, there is provided a display device characterized in that a transmissive display element is provided on the illumination device according to any one of the first to fourth aspects.

請求項1の構成によれば、突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下であるため、高い光透過性を有する光制御部材を採用した場合でも突起の陰影が見えにくく、輝度が高く明るい照明装置を提供することが可能となる。この場合従来と同様、突起により光制御部材のたわみを保持できるため、光制御部材の反りやたわみを抑えることが可能である。   According to the configuration of the first aspect, since the protrusion is made of a light-transmitting material, the horizontal cross section of the protrusion is circular, and the diameter of the protrusion tip portion in contact with the light control member is 1 mm or less, the light transmittance is high. Even when the light control member having the above is employed, it is possible to provide a lighting device that is difficult to see the shadow of the protrusion and has high brightness. In this case, since the deflection of the light control member can be held by the protrusions as in the conventional case, it is possible to suppress warping and deflection of the light control member.

また、望ましい正面方向への出光強度の分布f(X)における、凸部の形状を決める重要な要素である凸部の領域iの傾きΦとこれが占めるX方向の幅aは、線状光源の配置や光制御部材の屈折率などの構成に基いて選定される。前記凸部は、線状光源からの光を制御し出射光の正面方向への出光強度の分布を一定にするための役割をする。凸部の頂部にあたる畝状の稜線がY方向に平行に配置されており、すなわち該凸部同士は平行に位置し、光制御部材の主面である入射面と出射面とは線状光源が配置されている仮想平面と平行に配置されているため、線状光源からの光を効率良く主面に受け、輝度ムラが顕著なX方向の光の方向制御が可能となる。直下方式の照明装置では、線状光源の長手方向と垂直なX方向で、最も輝度ムラが顕著である一方、本発明の照明装置が、光制御部材の凸部の形状を好適なものとすることで、正面方向への出光強度の分布を一定とし、正面方向の輝度ムラを解消することを特徴としており、凸部の幅が最小となる方向で最もその能力が高く、したがって、該凸部の頂部にあたる畝状の稜線は線状光源と平行、すなわちY方向に平行に設けることで、輝度ムラを効率よく解消できる。したがって光利用効率低下の原因となる拡散材の使用を著しく低減、または回避することも可能である。 In addition, in the distribution f (X) of the desired intensity of light emission in the front direction, the slope Φ i of the convex region i, which is an important factor for determining the shape of the convex portion, and the width a i in the X direction occupied by this are linear. It is selected based on the arrangement of the light source and the refractive index of the light control member. The convex portion serves to control the light from the linear light source and to make the distribution of the outgoing light intensity in the front direction of the outgoing light constant. The ridge-shaped ridgeline corresponding to the top of the convex portion is arranged in parallel to the Y direction, that is, the convex portions are positioned in parallel, and the linear light source is formed between the entrance surface and the exit surface, which are the main surfaces of the light control member. Since it is arranged in parallel with the arranged virtual plane, it is possible to efficiently receive light from the linear light source on the main surface and to control the direction of the light in the X direction in which the luminance unevenness is remarkable. In the direct illumination system, the luminance unevenness is most noticeable in the X direction perpendicular to the longitudinal direction of the linear light source. On the other hand, the illumination apparatus of the present invention makes the convex shape of the light control member suitable. Therefore, it is characterized in that the distribution of the intensity of light emission in the front direction is made constant, and uneven brightness in the front direction is eliminated, and the ability is highest in the direction in which the width of the convex portion is the smallest. By providing the bowl-shaped ridge line corresponding to the top of the light source in parallel with the linear light source, that is, in parallel with the Y direction, the luminance unevenness can be efficiently eliminated. Therefore, it is possible to significantly reduce or avoid the use of a diffusing material that causes a decrease in light utilization efficiency.

また、同様の形状の凸部を平行に配列することで、光制御部材の光学的性質は一様となるので、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。したがって例えば大型の押出し成形機などで作製した望ましい凸部を施した大型の板状成形物の任意の位置を任意のサイズに切り出して光制御部材とすることができるため、生産上有利なだけでなく、照明装置のサイズ変更にも容易に対応できる。   In addition, by arranging the convex parts of the same shape in parallel, the optical properties of the light control member become uniform, so alignment is not necessary, and it is also possible to change the display size, the number of linear light sources and the arrangement The lighting device can be manufactured immediately and can be manufactured with high productivity. Therefore, for example, since it is possible to cut out an arbitrary position of a large plate-shaped molded article having a desired convex portion produced by a large extrusion molding machine to an arbitrary size to be a light control member, it is only advantageous in production. In addition, it can easily cope with the size change of the lighting device.

光制御部材の入射面には、線状光源からの光と、線状光源からの光が反射板に反射した拡散光としての光とが、入射する。このうち、該線状光源から光制御部材に入光した光について、前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をHとするとき、X方向の位置座標Xと、正面方向である出射面の法線方向への出光強度とを、光源位置をX=0として表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxとの比g(X)min/g(X)maxが0.6以上であることを本発明の照明装置は特徴とする。
Light from the linear light source and light as diffused light that is reflected from the light from the linear light source are incident on the incident surface of the light control member. Among these, with respect to light incident on the light control member from the linear light source, the distance between the centers of the linear light sources is D, and the distance between the center of the arbitrary linear light source and the light control member is H. When the position coordinate X in the X direction and the intensity of light emission in the normal direction of the exit surface, which is the front direction, are expressed as f (X) where the light source position is X = 0,
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max between g (X) min , which is the minimum value of g (X), and g (X) max , which is the maximum value, is 0.6 or more. The lighting device features.

本発明の照明装置においては、各線状光源は同様のものを用いる。そこで前記関数g(X)は隣接する線状光源3本分のf(X)の総和となる。−D/2≦X≦D/2の範囲は中心の線状光源と隣接する線状光源とのそれぞれの中間点までの範囲であり、任意の隣接する線状光源3本に関するg(X)が上記の条件を満たすとき、面内全体で正面方向の輝度ムラが解消できる。   In the illumination device of the present invention, the same linear light source is used. Therefore, the function g (X) is the sum of f (X) for three adjacent linear light sources. The range of −D / 2 ≦ X ≦ D / 2 is a range up to an intermediate point between each of the central linear light source and the adjacent linear light source, and g (X) regarding any three adjacent linear light sources. When the above condition is satisfied, the luminance unevenness in the front direction can be eliminated over the entire surface.

本発明の照明装置における光制御部材は、線状光源の周期ごとに同じ条件で光を受光し、かつ入射面上の任意の点に入射した光に対して同様に出光方向制御するので、1周期分である−D/2≦X≦D/2の範囲について出光強度の分布を制御することで全体の出光強度の分布を制御できる。
また既に述べたとおり、出光強度の分布は、各線状光源の出光強度の分布の総和であり、観察面側の任意の位置で分布がほぼ一定となれば、輝度ムラは解消される。本発明の照明装置は正面方向への出光強度の分布を出射面内でほぼ一定とすることで、正面方向の輝度ムラを解消する。
Since the light control member in the illuminating device of the present invention receives light under the same conditions for each period of the linear light source and similarly controls the light exit direction for light incident on an arbitrary point on the incident surface. By controlling the distribution of the emitted light intensity in the range of −D / 2 ≦ X ≦ D / 2, which is the period, the entire emitted light intensity distribution can be controlled.
Further, as described above, the distribution of the light intensity is the sum of the distributions of the light intensity of the respective linear light sources. If the distribution becomes almost constant at any position on the observation surface side, the luminance unevenness is eliminated. The illumination device of the present invention eliminates uneven brightness in the front direction by making the light intensity distribution in the front direction substantially constant within the exit surface.

入射光の強度は光源からの距離に反比例するため、離れた線状光源からの光の影響は小さい。このため、近接する3本の線状光源からの出光強度のみを考慮した関数g(X)を適当な範囲内とすることで正面方向への出光強度を制御でき、正面方向の輝度ムラを解消できる。また、反射板の効果によって実際の出光強度の分布は更に均一となり、観察面側の任意の位置で、各線状光源の正面方向への出光強度の分布の総和がほぼ一定となり、正面方向の輝度ムラを解消できる。   Since the intensity of incident light is inversely proportional to the distance from the light source, the influence of light from a distant linear light source is small. For this reason, the light output intensity in the front direction can be controlled by setting the function g (X) considering only the light output intensity from the three adjacent linear light sources within an appropriate range, and uneven brightness in the front direction is eliminated. it can. In addition, the distribution of the actual light intensity is further uniform due to the effect of the reflector, and the sum of the light intensity distributions in the front direction of each linear light source is almost constant at any position on the observation surface side. Unevenness can be eliminated.

図11は図9でf(X)について示したD=30mmとして線状光源を配列した本発明の照明装置のf(X)とg(X)を示す図である。中央に位置する線状光源のX方向の位置座標を0とし、X方向の距離(mm)をX座標としている。   FIG. 11 is a diagram showing f (X) and g (X) of the illumination device of the present invention in which linear light sources are arranged with D = 30 mm shown for f (X) in FIG. The position coordinate in the X direction of the linear light source located at the center is set to 0, and the distance (mm) in the X direction is set to the X coordinate.

さらに本発明者らは、正面方向への出光強度の分布をほぼ均一にするための凸部の形状について見出している。すなわち、本発明では、Xの最小値XminがXの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり、任意の凸部のX方向の断面形状が、下記の式(2)〜(8)で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする。このうち領域0は傾き0、すなわち入射面と平行になり、直下から入射した光を効率的に正面方向へ出射することができる。 Furthermore, the present inventors have found out the shape of the convex portion for making the distribution of the light emission intensity in the front direction substantially uniform. That is, in the present invention, the minimum value X min of the minimum value X min is X of X is in a range of -3.0D ≦ X min ≦ -0.5D, the maximum value X max is 0.5 D ≦ X max ≦ 3 The cross-sectional shape in the X direction of any convex portion is a range of 0.0D, and is composed of (2N + 1) different regions −N to N expressed by the following formulas (2) to (8). Features. Of these, the region 0 has an inclination of 0, that is, parallel to the incident surface, and can efficiently emit light incident from directly below in the front direction.

δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部底部までの厚み
ここで、α、β、γ、Φなどの角度はいずれも絶対値が90°未満で、基準線に対して右回りに成す角度を正、左回りに成す角度を負とする。
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan- 1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex part Here, the angles of α, β, γ, Φ, etc. are all absolute values of less than 90 °, and are angles formed clockwise with respect to the reference line. Positive and counterclockwise angles are negative.

まず、図15を用いて式(7)について説明する。
min、Xmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標である。Xmin〜Xmaxの間を等分に(2N+1)分割すると、分割した各要素の幅δは式(2)で示される。このとき任意の要素の中心座標Xiは、式(3)で示される。X=0の位置にある線状光源から座標Xの光制御部材の入射面への入射角度は法線方向に対して式(4)で示される角度αiとなる。
First, equation (7) will be described with reference to FIG.
X min and X max are the coordinates of both ends when the value of f (X) attenuates around the vicinity of the linear light source where X = 0 and becomes substantially zero. When X min to X max are equally divided (2N + 1), the width δ of each divided element is expressed by Expression (2). At this time, the center coordinates X i of an arbitrary element are expressed by Expression (3). Incident angle from the linear light sources at the position of X = 0 to the entrance surface of the light control member of coordinate X i is the angle alpha i represented by the formula (4) with respect to the normal direction.

ここで光は屈折して法線方向に対して、式(4)で示される角度γiで光制御部材内部を進む。凸部の底部に達すると再び屈折し、式(5)で示される角度βiで光制御部材内部を進み、凸部3に入射する。ここで、光制御部材の凸部と凸部が設けられている基材の屈折率が同じであってもよく、この場合凸部の底部では屈折せず、βi=γiとなる。
そのうち、式(8)で示される出射面に対する傾きΦiの斜面に到達した光のみ正面方向に向かう。
Here, the light is refracted and travels inside the light control member at an angle γ i represented by Expression (4) with respect to the normal direction. When the bottom of the convex portion is reached, the light is refracted again, travels inside the light control member at an angle β i represented by Expression (5), and enters the convex portion 3. Here, the refractive index of the light control member and the substrate on which the convex portions are provided may be the same. In this case, the light is not refracted at the bottom of the convex portion, and β i = γ i .
Among them, only the light that has reached the slope of the inclination Φ i with respect to the emission surface represented by the equation (8) is directed in the front direction.

ここで、角度Φiの斜面が占める領域iの斜面の長さをbiとし、領域iの斜面から光制御部材の凸部内部での光線方向に垂直な方向への射影の長さをeiとすると、X方向と光制御部材の主面の法線方向に平行な断面内における領域iの斜面の角度が、光制御部材の凸部内部での光線方向と垂直な角度に対して成す角度ξiは(Φi−βi)となるので、 ei=bi・cos(Φi−βi) (9)
となる。
Here, the length of the slope of the area i occupied by the slope of the angle Φ i is b i, and the length of the projection from the slope of the area i in the direction perpendicular to the light ray direction inside the convex portion of the light control member is e When i, the angle of the inclined surface area i in the normal direction parallel to a cross-section of the main surface of the X-direction and the light control member, forms with the beam direction perpendicular angles within the convex portion of the light control member Since the angle ξ i is (Φ i −β i ), e i = b i · cos (Φ i −β i ) (9)
It becomes.

またここで、角度Φiの斜面が占める領域iの入射面と平行な面への射影の長さ、すなわち領域iのX方向の幅をaiとすると、
i=ai/cosΦi (10)
である。
Here, if the length of the projection onto the plane parallel to the incident surface of the region i occupied by the slope of the angle Φ i , that is, the width of the region i in the X direction is a i ,
b i = a i / cosΦ i (10)
It is.

式(9)、式(10)から
i=ai/cosΦi・cos(Φi−βi) (11)
となる。
ここで、図16に示すように凸部のX方向の幅、すなわちaiの総和をPとすると、角度αiで光制御部材2に入射して光制御部材内部を通過して凸部3に向かう光9のうち領域iに向かう光の割合はei/(P・cosβi)である。
From equation (9) and equation (10), e i = a i / cosΦ i · cos (Φ i −β i ) (11)
It becomes.
Here, as shown in FIG. 16, when the width of the convex portion in the X direction, that is, the sum of a i is P, the convex portion 3 enters the light control member 2 at an angle α i and passes through the inside of the light control member. The proportion of the light 9 going to the region i out of the light 9 going to is e i / (P · cos β i ).

一方、角度αiで光制御部材に入射する単位面積あたりの光の強度、すなわち照度は、後で述べるようにcos2αiに比例する。 On the other hand, the intensity of light per unit area incident on the light control member at the angle α i , that is, the illuminance, is proportional to cos 2 α i as described later.

また、図17に示すように、座標Xiの点における光源の直径を見込む角度Δαiはcosαiに比例する。従って、座標Xiに入射する単位面積単位角度あたりの光の強度は、cos2αi/Δαiに比例し、このことからcos2αi/cosαi、つまりcosαiに比例する。つまり線状光源からの光がX=0の点で単位凸部に入射する光の単位角度あたりの強度に対し、座標X=Xiの点で単位凸部に入射する光の単位角度あたりの強度の割合はcosαiである。従って、正面に出光する光はcosαi・ei/(P・cosβi)であり、式(11)よりai/cosΦi・cos(Φi−βi)・cosαi/(P・cosβi)である。 Further, as shown in FIG. 17, the angle [Delta] [alpha] i anticipating the diameter of the light source in the point of coordinates X i is proportional to cos [alpha] i. Accordingly, the intensity of light per unit area unit angle incident on the coordinate X i is proportional to cos 2 α i / Δα i , and from this, is proportional to cos 2 α i / cos α i , that is, cos α i . In other words, the light from the linear light source per unit angle of the light incident on the unit convex portion at the point of the coordinate X = X i with respect to the intensity per unit angle of the light incident on the unit convex portion at the point of X = 0. The intensity ratio is cosα i . Thus, the light exiting the front is cosα i · e i / (P · cosβ i), a i / cosΦ i · cos (Φ i -β i) from equation (11) · cosα i / ( P · cosβ i ).

座標Xiに入射した光は光制御部材2の厚さがTであるとき、座標(Xi+T・tanγi)に出射するため、そのときの正面方向への出光強度はf(Xi+T・tanγi)である。 The light incident on the coordinate X i is emitted at the coordinate (X i + T · tan γ i ) when the thickness of the light control member 2 is T. Therefore, the intensity of the emitted light in the front direction at that time is f (X i + T Tan γ i ).

さらに、正面方向への出光強度は、線状光源の発光強度と正面方向への出射割合とに比例するため、
f(Xi+T・tanγi)∝ai/cosΦi・cos(Φi−βi)・cosαi/(P・cosβi)(12)
に従って、
i∝P・f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (13)
となる。ここで、凸部3の幅をPとすると、aiの総和は凸部の幅Pとなるので、
Furthermore, since the light emission intensity in the front direction is proportional to the emission intensity of the linear light source and the emission ratio in the front direction,
f (X i + T · tanγ i) αa i / cosΦ i · cos (Φ i -β i) · cosα i / (P · cosβ i) (12)
According to
a i αP · f (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (13)
It becomes. Here, if the width of the convex portion 3 is P, the sum of a i becomes the width P of the convex portion.

となる。
Pは凸部幅であり定数となるため、
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
凸部は(式7)の関係を満足するような幅aiの領域iからなる形状である。周知の通り比例縮小光学系は、ほぼ同一の指向特性を示すので自由に凸部のピッチを選定することができる。
It becomes.
P is the convex width and is a constant.
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
The convex portion has a shape composed of a region i having a width a i that satisfies the relationship of (Expression 7). As is well known, since the proportional reduction optical system exhibits almost the same directivity characteristics, the pitch of the convex portions can be freely selected.

ここで、図18を用いて光制御部材への入射角度と入射強度の関係を説明する。線状光源から光制御部材への入射角θを中心に、微小角度Δθを考慮すると、Δθが十分小さい場合には次の式(15)、式(16)および式(17)が成り立つ。   Here, the relationship between the incident angle to the light control member and the incident intensity will be described with reference to FIG. Considering the minute angle Δθ centering on the incident angle θ from the linear light source to the light control member, the following equations (15), (16), and (17) are established when Δθ is sufficiently small.

U=H’・Δθ (15)
H’=H/cosθ (16)
V=U/cosθ (17)
従って
V=H・Δθ/cos2θ (18)
つまり、Vはcos2θに反比例するので、線状光源からのΔθ内の出射光の強度がθによらず一定な場合には、光制御部材への単位面積当たり入射光の強度、すなわち照度はcos2θに比例する。
U = H '· Δθ (15)
H ′ = H / cos θ (16)
V = U / cos θ (17)
Therefore, V = H · Δθ / cos 2 θ (18)
That is, since V is inversely proportional to cos 2 θ, when the intensity of the emitted light within Δθ from the linear light source is constant regardless of θ, the intensity of incident light per unit area to the light control member, that is, the illuminance Is proportional to cos 2 θ.

次に、式(8)について説明する。
図19に本発明の照明装置で光を正面に向ける原理を示す。
線状光源から、屈折率nの光制御部材2にαの角度で入光する入射光7は該光制御部材の入射面6で屈折し、光拡散板内部を通過し、さらにこの光9は出射面側の凸部3で屈折し観察面側に出射するが、このとき出射光8が正面方向に出光するのは凸部3において、傾きが望ましい角度Φである場合である。本発明では配置に基づくαの分布と入射光7の強度を考慮し、正面方向への出光強度が一定となるよう角度Φの割合を調節することで正面方向への出光強度を調節できる。
Next, equation (8) will be described.
FIG. 19 shows the principle of directing light to the front in the lighting device of the present invention.
Incident light 7 that enters the light control member 2 having a refractive index n from the linear light source at an angle α is refracted by the incident surface 6 of the light control member, passes through the inside of the light diffusion plate, and this light 9 is The light is refracted by the convex portion 3 on the emission surface side and emitted to the observation surface side. At this time, the emitted light 8 is emitted in the front direction when the inclination of the convex portion 3 is a desirable angle Φ. In the present invention, the light emission intensity in the front direction can be adjusted by adjusting the ratio of the angle Φ so that the light emission intensity in the front direction is constant in consideration of the distribution of α based on the arrangement and the intensity of the incident light 7.

入射光7を正面に向けるための出射面の凸部3の傾きΦは、光制御部材2の屈折率と光制御部材2への光の入射角度によって決まる。入射面6の法線に対する、入射面6への光の入射する角度をα,入射面6で屈折し光制御部材内部の凸部3部分を通過する光が入射面6の法線に対して成す角度をβ、光制御部材内部を進む光が出射側の斜面の法線に対して成す角度をε、光が出射側斜面で屈折し観察面側に出射する光の斜面の法線に対して成す角度をωとし、また、光制御部材の屈折率をnとする。このとき、出射面を出た光が入射面の法線方向である正面方向に進むような、凸部の斜面の角度をΦとする。   The inclination Φ of the projection 3 on the exit surface for directing the incident light 7 is determined by the refractive index of the light control member 2 and the incident angle of light on the light control member 2. The incident angle of light on the incident surface 6 with respect to the normal of the incident surface 6 is α, and the light that is refracted at the incident surface 6 and passes through the convex portion 3 inside the light control member is relative to the normal of the incident surface 6. The angle formed by β, the angle formed by the light traveling inside the light control member with respect to the normal of the slope on the exit side, ε, the light being refracted on the slope on the exit side and the normal of the slope of the light emitted to the observation surface side And ω and the refractive index of the light control member is n. At this time, let Φ be the angle of the slope of the convex portion so that the light exiting the exit surface travels in the front direction, which is the normal direction of the entrance surface.

このとき次のような関係が成立する。
β=Sin−1(1/n・sinα) (5)’
Φ=β−ε (19)
−n・sinε=−sinω=sinΦ (ω=−Φ) (20)
式(19)および式(20)より、
−n・sin(β−Φ)=sinΦ (21)
−n・{sinΦ・cosβ−cosΦ・sinβ}=sinΦ (21)’
式(21)’の両辺をcosΦで除すると(sinΦ/cosΦ=tanΦなので)
−n{tanΦ・cosβ−sinβ}=tanΦ (21)”
これよりΦは次のように表すことができる。
Φ=Tan−1(n・sinβ)/(n・cosβ−1)) (21)'''
式(5)’、式(21)'''より
Φ=Tan−1(sinα/(n・cos(Sin−1((1/n)sinα))−1))(21)''''
At this time, the following relationship is established.
β = Sin −1 (1 / n · sin α) (5) ′
Φ = β−ε (19)
−n · sinε = −sinω = sinΦ (ω = −Φ) (20)
From equation (19) and equation (20),
−n · sin (β−Φ) = sinΦ (21)
−n · {sinΦ · cosβ−cosΦ · sinβ} = sinΦ (21) ′
Dividing both sides of equation (21) 'by cosΦ (since sinΦ / cosΦ = tanΦ)
−n {tanΦ · cosβ−sinβ} = tanΦ (21) ”
From this, Φ can be expressed as follows.
Φ = Tan −1 (n · sin β) / (n · cos β−1)) (21) ′ ″
From Equation (5) 'and Equation (21)''', Φ = Tan −1 (sin α / (n · cos (Sin −1 ((1 / n) sin α)) − 1)) (21) ″ ″

α、n、Φはこのような関係になり、光制御部材2の屈折率nと、凸部3の傾きΦによって、所望の入射角αの光を正面方向に出射することができる。式(21)'''によって、凸部の各領域の傾きΦは式(8)を満足することで、角度αで入射面に入射した光を凸部の領域iから正面方向に出射することができることが説明できる。 α, n, and Φ have such a relationship, and light having a desired incident angle α can be emitted in the front direction by the refractive index n of the light control member 2 and the inclination Φ of the convex portion 3. By the equation (21) ′ ″, the inclination Φ i of each region of the convex portion satisfies the equation (8), so that the light incident on the incident surface at the angle α i is emitted in the front direction from the region i of the convex portion. Can explain what can be done.

以上のように、望ましい正面方向への出光強度の分布f(X)における、凸部の形状を決める重要な要素である凸部の領域iの傾きΦとこれが占めるX方向の幅aは、線状光源の配置や光制御部材の屈折率などの構成に基づいて選定される。 As described above, the slope Φ i of the convex region i and the width a i in the X direction occupied by the convex region i, which are important factors that determine the shape of the convex portion, in the distribution f (X) of the desired intensity of light emission in the front direction are as follows. The light source is selected based on the arrangement of the linear light source and the refractive index of the light control member.

請求項2の構成によれば、以上の効果に加えて、前記凸部のX方向の断面形状をあらわす領域−N〜NがXの座標の順に並んでいることで、光の出射方向を制御しやすく、また、賦形しやすく生産上有利な照明装置を提供できる。   According to the configuration of claim 2, in addition to the above effects, the regions −N to N representing the cross-sectional shape of the convex portion in the X direction are arranged in the order of the coordinates of X, thereby controlling the light emission direction. It is possible to provide an illuminating device that is easy to form and that is easy to shape and advantageous in production.

請求項3に記載の構成によれば、以上の効果に加えて、前記凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状とすることで、正面方向への出光強度の分布や、出光角度の分布がよりなめらかであり、また、賦形しやすいため光制御部材の作製時に有利であり、領域の接合部が鋭い形状ではないことで破損しにくい照明装置を提供できる。   According to the configuration of claim 3, in addition to the above effects, at least one pair of adjacent regions out of the (2N + 1) different regions in which the cross-sectional shape of the convex portion in the X direction forms the convex portion. By making the shape of the two regions to be approximated by curves, the distribution of light emission intensity in the front direction and the distribution of light emission angles are smoother and easier to shape, so when creating a light control member It is advantageous, and it is possible to provide an illuminating device that is not easily damaged because the joint portion of the region is not a sharp shape.

請求項4の構成によれば、以上の効果に加えて、X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向と30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上とすることで、正面方向への出光割合が比較的高いため、テレビやパソコンモニターなど主として正面方向から照明面を観察する用途で、効率よく明るい照明光を得ることができる照明装置を提供できる。   According to the configuration of the fourth aspect, in addition to the above effects, an angle of 30 degrees or less is formed with the normal direction of the exit surface in a cross section parallel to the X direction and the normal direction of the main surface of the light control member. Since the ratio of light emitted in the range is 50% or more of the total light output, the ratio of light emitted in the front direction is relatively high, so it is efficient for applications such as TVs and PC monitors that mainly observe the illumination surface from the front direction. An illumination device that can obtain bright illumination light can be provided.

請求項5の構成によれば、照明装置上に液晶パネル等の透過型表示素子を設けたので、前記光制御部材により効率良く集光及び拡散された光線が、透過型表示素子を透過する。この結果、簡単な構成でありながら、光源位置の調整が不要であり、ランプイメージを解消でき、且つ、優れた出射面内均一な明るさを有する画像表示装置を容易に得ることができる。ここで、画像表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことを言う。   According to the fifth aspect of the present invention, since the transmissive display element such as a liquid crystal panel is provided on the lighting device, the light that is efficiently condensed and diffused by the light control member is transmitted through the transmissive display element. As a result, it is possible to easily obtain an image display device that has a simple configuration, does not require adjustment of the light source position, can eliminate the lamp image, and has excellent brightness on the exit surface. Here, the image display device refers to a display module in which a lighting device and a display element are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module.

以下、本発明を詳細に説明する。
本発明の照明装置は、X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持つ照明装置であって、前記照明装置は反射板と複数の線状光源と、出射面の表面に畝状の凸部を複数形成している板状の光制御部材と、前記光制御部材を保持する突起とから少なくとも構成される照明装置であって、該突起が光透過性材料からなり、突起の水平断面が円形形状で、光制御部材と接する突起先端部の直径が1mm以下であることを特徴とする。
Hereinafter, the present invention will be described in detail.
An illuminating device of the present invention is an illuminating device having a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, wherein the illuminating device includes a reflector, a plurality of linear light sources, and an emission surface. A lighting device comprising at least a plate-like light control member in which a plurality of ridge-shaped convex portions are formed on the surface of the light source and a protrusion for holding the light control member, wherein the protrusion is made of a light-transmitting material. Thus, the horizontal cross section of the projection is circular, and the diameter of the tip of the projection contacting the light control member is 1 mm or less.

図面を参照しながら本発明の実施形態である照明装置の構造と機能を説明する。図1に、本発明の提供する照明装置の最良の形態の例を示す。X方向とX方向に垂直なY方向とからなる矩形状の出射面を持つ照明装置であって、線状光源1は前記X方向とY方向とに平行な1つの仮想平面内に、Y方向と平行に、かつX方向に沿って配置されており、光制御部材2が前記配列した線状光源の出射面側に配置され、かつ、主面は線状光源1が配列している前記仮想平面と平行であり、出射面側に表面に畝上の凸部3を複数形成しており、該凸部3は頂部にあたる畝状の稜線がY方向に平行に形成されており、X方向に沿って配列しており、背面にX方向とY方向に平行に配置した反射板4、かつ、突起5が具備された照明装置である。   The structure and function of a lighting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of the best mode of a lighting device provided by the present invention. An illumination device having a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction, wherein the linear light source 1 is arranged in a Y virtual direction in one virtual plane parallel to the X direction and the Y direction. The light control member 2 is arranged on the emission surface side of the arranged linear light sources, and the main surface is arranged in the virtual direction where the linear light sources 1 are arranged. It is parallel to the plane, and a plurality of protrusions 3 on the surface are formed on the surface on the exit surface side, and the protrusion 3 has a hook-shaped ridge line corresponding to the top formed in parallel to the Y direction. The lighting device includes a reflector 4 and a protrusion 5 that are arranged along the back surface and arranged in parallel in the X direction and the Y direction.

次に、図2及び図3には、図1の突起5が配置された近傍部分に相当する具体的な態様拡大図を、図4には、光制御部材2を取り外した照明装置を上方から見た図をそれぞれ模式的に示す。   Next, FIGS. 2 and 3 are enlarged views of specific embodiments corresponding to the vicinity where the protrusions 5 of FIG. 1 are arranged, and FIG. 4 shows the lighting device with the light control member 2 removed from above. Each figure is shown schematically.

突起5の光制御部材2を固定する手段として、例えば、図4のように、前記照明装置の縦方向の中心部に、また、横方向には対称に取り付けられる。ただし、この突起5の位置や個数は、照明装置の大きさや光拡散板のたわみ具合などにより適宜変更され、複数設けてもよい。以下の説明では図4に示す通り、前記照明装置の縦方向の中心部に、また、横方向には左右対称に1つずつ、合計2つ取り付けた例について説明する。   As a means for fixing the light control member 2 of the protrusion 5, for example, as shown in FIG. 4, the light control member 2 is attached to the center of the lighting device in the vertical direction and symmetrically in the horizontal direction. However, the position and the number of the protrusions 5 may be appropriately changed depending on the size of the lighting device, the degree of deflection of the light diffusion plate, and the like, and a plurality of protrusions 5 may be provided. In the following description, as shown in FIG. 4, an example will be described in which a total of two are attached to the center of the lighting device in the vertical direction and symmetrically in the horizontal direction.

図2、図3、図5では、光制御部材2の入射面側に平坦である面が形成され、出射面側に畝状の凸部3が形成され、照明装置の出射面側に前記光制御部材2表面に畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している。また、上記突起5は、図2に示すように反射板4と粘着テープなどにより一体化されていてもよいし、図3に示すように反射板4に埋め込まれていてもよい。   2, 3, and 5, a flat surface is formed on the incident surface side of the light control member 2, a bowl-shaped convex portion 3 is formed on the emission surface side, and the light is emitted on the emission surface side of the illumination device. A bowl-shaped ridge line is formed on the surface of the control member 2 in parallel with the Y direction, and is arranged along the X direction. Further, the protrusion 5 may be integrated with the reflecting plate 4 and an adhesive tape as shown in FIG. 2, or may be embedded in the reflecting plate 4 as shown in FIG.

次いで、突起5によって光制御部材2に影が出る原因について説明する。前記光制御部材2の出射面側は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列している光制御部材2では、不透明材料からなる突起5により線状光源1からの光線が遮蔽されると、図5に示すようにこの光線は光制御部材2に到達することができず、その結果、光制御部材2の出光面から見ると前記突起5の影が見えることになる。特に、本発明における出射面側に畝状の凸部を形成する光制御部材2を使用した場合は、不透明材料からなる突起5の影が2重に見えるといった問題が発生する場合がある。   Next, the reason why the light control member 2 is shaded by the protrusion 5 will be described. The light control member 2 has a plurality of hook-shaped protrusions on the light exit surface side, and the protrusions have hook-shaped ridges that are parallel to the Y-direction, and in the X-direction. In the light control members 2 arranged along the line, when the light rays from the linear light source 1 are shielded by the projections 5 made of an opaque material, the light rays can reach the light control member 2 as shown in FIG. As a result, the shadow of the projection 5 can be seen from the light exit surface of the light control member 2. In particular, when the light control member 2 that forms a ridge-like convex portion on the exit surface side in the present invention is used, there may be a problem that the shadow of the projection 5 made of an opaque material looks double.

一方、従来の光制御部材の代わりに使用されていた光拡散性微粒子を多量に含む光拡散板では、光散乱作用が強いため、光拡散板の入射面に突起部による光遮蔽部があった場合でも、他の光入光部からの散乱光により、光拡散板出射面において突起部の影を認識されることはほとんどなかった。突起部の影を認識可能となる光散乱作用の度合いは、光拡散性微粒子の特性にも影響されるが、おおよそ光拡散性微粒子の濃度に依存し、1質量部未満の光拡散性微粒子を含む光拡散板である場合に突起部の影が認識されることとなる。   On the other hand, the light diffusing plate containing a large amount of light diffusing fine particles used in place of the conventional light control member has a strong light scattering action, and thus there is a light shielding portion by a protrusion on the incident surface of the light diffusing plate. Even in this case, the shadow of the protrusion was hardly recognized on the light diffusing plate exit surface by the scattered light from the other light incident portions. The degree of the light scattering action that makes it possible to recognize the shadow of the protrusion is also affected by the characteristics of the light diffusing fine particles, but generally depends on the concentration of the light diffusing fine particles, and less than 1 part by weight of the light diffusing fine particles. In the case of the light diffusing plate including, the shadow of the protrusion is recognized.

このため、本発明の照明装置に用いる突起は、光拡散性微粒子の含有量が1質量部未満である光制御部材に対してもその影を投影しない形状または材質であることが必要である。具体的に好ましい突起の形状・材質などについて以下に説明する。   For this reason, the projection used in the lighting device of the present invention needs to have a shape or material that does not project the shadow even on the light control member having a light diffusing fine particle content of less than 1 part by mass. Specific preferred shapes and materials of the protrusions will be described below.

本発明の照明装置に用いる突起の水平断面形状としては、円形であることが重要であるが、厳密な意味での円形である必要はなくほぼ円形である場合も含まれる。例えば、長軸の長さに対する短軸の長さの比が0.8以上の楕円や正16角形以上の正多角形も本発明における円形とみなすことができるがそれらの形状に限られないことはいうまでもない。本発明の一態様である照明装置では、線状光源から光制御部材に入射した光は一部は光制御部材で屈折しつつ出射面を透過し、一部は出射面で光制御部材内部に反射する。このため、突起の水平断面が四角形等の所謂エッジを有する形状の場合、エッジの両側で光線の進む方向が急激に変化するため、光制御部材の出射面で突起の影が発生し易くなる。一方、突起の水平断面が比較的扁平な楕円形状の場合、線状光源からの突起を通過した光の広がり状態が楕円の長軸方向と短軸方向で大きく異なるため、この場合にも観察する方向により突起の影が発生し易くなる。つまり、突起の水平断面形状をほぼ円形とすることにより、あらゆる方向から観察した場合であっても、突起の影を認識しがたくなり好ましい。   The horizontal cross-sectional shape of the protrusion used in the lighting device of the present invention is important to be a circle, but it is not necessary to be a circle in a strict sense, and includes a case where it is substantially a circle. For example, an ellipse in which the ratio of the length of the short axis to the length of the long axis is 0.8 or more, or a regular polygon having a regular hexagon or more can be regarded as a circle in the present invention, but is not limited to these shapes. Needless to say. In the lighting device according to one embodiment of the present invention, a part of light incident on the light control member from the linear light source is transmitted through the emission surface while being partly refracted by the light control member, and a part of the light enters the light control member inside the emission surface. reflect. For this reason, when the horizontal cross section of the projection has a shape having a so-called edge such as a quadrangle, the traveling direction of the light abruptly changes on both sides of the edge, so that the projection shadow easily occurs on the exit surface of the light control member. On the other hand, when the horizontal cross section of the protrusion is a relatively flat elliptical shape, the spreading state of the light passing through the protrusion from the linear light source is greatly different between the major axis direction and the minor axis direction of the ellipse. Depending on the direction, the shadow of the protrusion is likely to occur. That is, it is preferable to make the horizontal cross-sectional shape of the protrusions substantially circular, since it is difficult to recognize the shadows of the protrusions even when observed from all directions.

また、本発明の照明装置に用いる突起は光透過性材料で形成されていることが重要である。突起を形成する材料としては、透明材で形成するのが好ましく、いわゆる透明であれば、熱可塑性樹脂、熱硬化性樹脂のいずれでも好ましく用いられる。その具体例としては、(メタ)アクリル系樹脂、(メタ)アクリルスチレン系共重合樹脂、スチレン系樹脂、芳香族ビニル系樹脂、オレフィン系樹脂、エチレン酢酸ビニル系共重合樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、ポリカーボネート、フッ素樹脂、ウレタン樹脂、シリコン樹脂、アミド系樹脂、イミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等が挙げられる。突起が、不透明な材料から形成されている場合には、光拡散板に影を投影してしまい、好ましくない。なお、影を発生させない光透過性材料の光透過率は60%以上であることが好ましく、80%以上であることがより好ましい。   In addition, it is important that the protrusion used in the lighting device of the present invention is formed of a light transmissive material. The material for forming the protrusion is preferably formed of a transparent material, and if it is so-called transparent, either a thermoplastic resin or a thermosetting resin is preferably used. Specific examples thereof include (meth) acrylic resins, (meth) acryl styrene copolymer resins, styrene resins, aromatic vinyl resins, olefin resins, ethylene vinyl acetate copolymer resins, vinyl chloride resins, Examples thereof include vinyl ester resins, polycarbonates, fluorine resins, urethane resins, silicone resins, amide resins, imide resins, polyester resins, epoxy resins, phenol resins, urea resins, melamine resins, and the like. When the protrusion is formed of an opaque material, a shadow is projected on the light diffusion plate, which is not preferable. In addition, the light transmittance of the light transmissive material that does not generate a shadow is preferably 60% or more, and more preferably 80% or more.

そして、本発明の照明装置に用いる突起の形状としては、断面がほぼ円形で、光制御部材を保持するべく、直径1〜10mm程度、好ましくは直径1〜6mm程度のものが採用されるが、光制御部材と接する突起先端部の直径は1mm以下であることが重要であり、0.1〜0.8mmの範囲であることが好ましく、0.1〜0.5mmの範囲であることがより好ましい。前記光制御部材の入射面側に凸凹部が形成される場合には、前記凸凹部のピッチの倍以上であることが光制御部材を保持する上で好ましく、先端部の直径は0.1〜1mmの範囲であることが好ましく、0.1〜0.8mmの範囲であることがより好ましく、0.1〜0.5mmの範囲であることがさらに好ましい。線状光源からの光は一般に拡散光であるため、影となる光線の光路を考えた時、拡散光の作用により突起の影は薄くなる。しかし、光制御部材と突起が接している点では、光の拡散作用がほとんどないため、突起の影がそのまま見えることになる。従って、突起と光制御部材の接する点は、通常小さければ小さいほど好ましいといえる。また、突起の先端部は平面である場合に限らず、前記光制御部材の入射面側に形成される凹凸部と突起先端部の接触に支障のない範囲で緩やかな凹凸を有していてもよい。   And as a shape of the projection used for the lighting device of the present invention, a cross section is substantially circular, and a diameter of about 1 to 10 mm, preferably about 1 to 6 mm, is used to hold the light control member. It is important that the diameter of the tip of the protrusion contacting the light control member is 1 mm or less, preferably in the range of 0.1 to 0.8 mm, more preferably in the range of 0.1 to 0.5 mm. preferable. When a convex / concave portion is formed on the incident surface side of the light control member, it is preferable that the pitch of the convex / concave portion is at least twice as long as the light control member is held. The range is preferably 1 mm, more preferably 0.1 to 0.8 mm, and still more preferably 0.1 to 0.5 mm. Since the light from the linear light source is generally diffused light, when considering the optical path of the light ray that becomes a shadow, the shadow of the projection becomes thin by the action of the diffused light. However, since the light control member and the protrusion are in contact with each other, there is almost no light diffusing action, so that the shadow of the protrusion can be seen as it is. Therefore, it can be said that the smaller the contact point between the protrusion and the light control member, the better. In addition, the tip of the protrusion is not limited to a flat surface, and may have moderate unevenness within a range that does not hinder the contact between the protrusion and the protrusion formed on the incident surface side of the light control member. Good.

突起の配置形態としては、図2に示すような反射板4上に配置した形態の他、光制御部材2上に影となって投影されないものであれば他の形状または構造であっても構わない。例えば、図3に示すように反射板4に埋め込む形にしてもよいし、また、線状光源1と光制御部材2とを一つの突起部5で双方を支える形にしても良い。   As an arrangement form of the projection, in addition to the form arranged on the reflection plate 4 as shown in FIG. 2, any other shape or structure may be used as long as it is not projected as a shadow on the light control member 2. Absent. For example, as shown in FIG. 3, it may be embedded in the reflecting plate 4, or the linear light source 1 and the light control member 2 may be supported by one protrusion 5.

背面にX方向とY方向に平行に配置した反射板4の反射率は95%以上であることが望ましい。線状光源1から背面に向かう光や、光制御部材2で反射して背面に向かう光をさらに出射側に反射することで、光を有効に利用できるため光利用効率が高くなる。反射板の材質としては、アルミ、銀、ステンレスなどの金属泊、白色塗装、発泡PET樹脂などが挙げられる。反射板は反射率が高いものが光利用効率を高める上で望ましい。この観点からは、銀、発泡PET樹脂などが望ましい。また光を拡散反射するものが出射光の均一性を高める上で望ましい。この観点からは発泡PET樹脂などが望ましい。   It is desirable that the reflectance of the reflector 4 arranged on the back surface in parallel with the X direction and the Y direction is 95% or more. By reflecting the light traveling from the linear light source 1 to the back surface and the light reflected by the light control member 2 and traveling toward the back surface further to the emission side, the light can be used effectively, so that the light utilization efficiency is increased. Examples of the material of the reflecting plate include metal stays such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. A reflector having a high reflectance is desirable for improving the light utilization efficiency. From this viewpoint, silver, foamed PET resin, and the like are desirable. Further, it is desirable to diffuse and reflect light in order to improve the uniformity of the emitted light. From this viewpoint, foamed PET resin and the like are desirable.

本発明の線状光源1は、反射板4と光制御部材2とに挟まれるように配置されていることから、線状光源1より出射した光は、約半分が光制御部材2の方向に向かい、残りの約半分が反射板4の方向に向かう。このうち、反射板4に向かって該反射板4で拡散反射された光は、拡散光として光制御部材2に入射する。また、線状光源1から光制御部材2に入射した光の一部は、全反射されて戻り反射板4に向かう。該線状光源1を出射して反射板4に向かった光および光制御部材2で全反射して戻り反射板に向かった光は、反射板で拡散反射し拡散光として光制御部材2に再び入射する。該拡散光として入射した光は、光制御部材2の出射面上の全ての点で、正面輝度、角度分布が等しい光として出射する。したがって、反射板4を配置した状態での拡散光を含む場合の正面方向の出射光強度の最小値G(X)minと最大値G(X)maxとの比G(X)min/G(X)maxは、反射光を含まない場合の比g(X)min/g(X)maxより大きくなる。また反射板を適切に選択することで光制御部材2に入射する光の50%以上は拡散光となる。 Since the linear light source 1 of the present invention is disposed so as to be sandwiched between the reflector 4 and the light control member 2, about half of the light emitted from the linear light source 1 is directed toward the light control member 2. The other half is in the direction of the reflector 4. Among these, the light diffusely reflected by the reflecting plate 4 toward the reflecting plate 4 enters the light control member 2 as diffused light. Further, part of the light incident on the light control member 2 from the linear light source 1 is totally reflected and travels toward the return reflector 4. The light emitted from the linear light source 1 and directed to the reflection plate 4 and the light totally reflected by the light control member 2 and directed to the return reflection plate are diffusely reflected by the reflection plate and re-diffused to the light control member 2 as diffuse light. Incident. The incident light as the diffused light is emitted as light having the same front luminance and angular distribution at all points on the emission surface of the light control member 2. Accordingly, the ratio G (X) min / G () between the minimum value G (X) min and the maximum value G (X) max of the outgoing light intensity in the front direction when the diffused light is included in the state where the reflecting plate 4 is disposed. X) max is larger than the ratio g (X) min / g (X) max when no reflected light is included. Further, by appropriately selecting the reflecting plate, 50% or more of the light incident on the light control member 2 becomes diffuse light.

反射板4による輝度ムラ解消効果について以下、簡単に見積もる。線状光源1から出射した光のうち50%が反射板4で拡散反射された後、光制御部材2に入射すると仮定する。反射板4の反射率を95%とすると、線状光源1から光制御部材2に向かい正面方向に出光した光と同じ量の光のうち95%が、線状光源1から反射板4により反射された後、拡散光として光制御部材2に入射し正面方向に出光する。線状光源1から光制御部材2に向かった光のうち正面方向に出光する光をg(X)maxとg(X)minの平均と仮定すると、(g(X)max+g(X)min)/2×0.95が線状光源1から反射板4で反射し拡散光として光制御部材2に入射し正面方向に出射する。これをg(X)maxおよびg(X)minにそれぞれ加算して、反射板4を配置した場合の出光強度の最小値であるG(X)min、最大値であるG(X)maxおよびその比比G(X)min/G(X)maxをそれぞれ求めると以下のようになる。 The brightness unevenness eliminating effect by the reflector 4 will be briefly estimated below. It is assumed that 50% of the light emitted from the linear light source 1 is incident on the light control member 2 after being diffusely reflected by the reflector 4. When the reflectance of the reflector 4 is 95%, 95% of the same amount of light emitted from the linear light source 1 toward the light control member 2 in the front direction is reflected by the reflector 4 from the linear light source 1. Then, the light enters the light control member 2 as diffused light and exits in the front direction. Assuming that the light emitted from the linear light source 1 toward the light control member 2 in the front direction is the average of g (X) max and g (X) min , (g (X) max + g (X) min ) /2×0.95 is reflected by the reflecting plate 4 from the linear light source 1, enters the light control member 2 as diffused light, and exits in the front direction. This is added to g (X) max and g (X) min , respectively, and G (X) min which is the minimum value of the light output intensity when the reflector 4 is disposed, G (X) max which is the maximum value, and The ratio G (X) min / G (X) max is determined as follows.

G(X)max=g(X)max+(g(X)max+g(X)min)/2×0.95 (22)
G(X)min=g(X)min+(g(X)max+g(X)min)/2×0.95 (23)
G(X)min/G(X)max
={g(X)min+(g(X)max+g(X)min)/2×0.95}/
{g(X)max+(g(X)max+g(X)min)/2×0.95} (24)
G (X) max = g (X) max + (g (X) max + g (X) min ) /2*0.95 (22)
G (X) min = g (X) min + (g (X) max + g (X) min ) /2×0.95 (23)
G (X) min / G (X) max
= {G (X) min + (g (X) max + g (X) min ) /2×0.95} /
{G (X) max + (g (X) max + g (X) min ) /2×0.95} (24)

比G(X)min/G(X)maxが0.8以上になるためには、
g(X)min/g(X)max≧0.65 (25)
となる。
上述のように、実際には光制御部材2への入射光のうち拡散光成分は50%以上であるため、
g(X)min/g(X)max>0.6 (26)
とすればよいことがわかる。
In order for the ratio G (X) min / G (X) max to be 0.8 or more,
g (X) min / g (X) max ≧ 0.65 (25)
It becomes.
As mentioned above, since the diffused light component is actually 50% or more of the incident light to the light control member 2,
g (X) min / g (X) max > 0.6 (26)
You can see that.

図6は線状光源1を平行に配列した場合の、正面方向への出光強度と線状光源1の位置との関係を表す図である。ここに示すように、複数の線状光源1を配置して成る照明装置あっては、正面方向(図中では上)への出光強度は、各線状光源1の直上部分と、該直上部分と隣り合う線状光源1それぞれの直上の間の部分(斜め上部分)とでは大きく異なる。これは本発明の照明装置では光制御部材2の入射面への正面方向への入射強度が、各線状光源1の直上部分と、斜め上部分とで大きく異なることを意味する。   FIG. 6 is a diagram illustrating the relationship between the light output intensity in the front direction and the position of the linear light source 1 when the linear light sources 1 are arranged in parallel. As shown here, in an illuminating device in which a plurality of linear light sources 1 are arranged, the intensity of light emitted in the front direction (up in the drawing) is as follows. It is greatly different from the portion (diagonally upper portion) immediately above each of the adjacent linear light sources 1. This means that in the illumination device of the present invention, the incident intensity in the front direction on the incident surface of the light control member 2 is greatly different between the portion directly above each linear light source 1 and the obliquely upper portion.

図7は図1の照明装置の、線状光源1の位置と正面方向への出光強度との関係を示す図である。このように正面方向への出光強度の分布がほぼ一定になるため、正面方向の輝度ムラが解消される。   FIG. 7 is a diagram showing the relationship between the position of the linear light source 1 and the intensity of light emitted in the front direction in the illumination device of FIG. As described above, since the distribution of the intensity of light emission in the front direction is substantially constant, the luminance unevenness in the front direction is eliminated.

図8は、隣接する3本の線状光源1および反射板4を配置したときの、線状光源1の位置とそれぞれの正面方向への出光強度の分布を示した図である。これらの総和がほぼ一定になっていれば、正面方向の輝度ムラが解消したといえる。本発明の光制御部材2によって図7に示すように、正面方向への出光強度の分布がほぼ一定になるため、正面方向の輝度ムラが解消される。   FIG. 8 is a diagram showing the position of the linear light source 1 and the distribution of the light emission intensity in the front direction when the three adjacent linear light sources 1 and the reflecting plate 4 are arranged. If these sums are almost constant, it can be said that the luminance unevenness in the front direction has been eliminated. As shown in FIG. 7, the light intensity distribution in the front direction becomes substantially constant by the light control member 2 of the present invention, so that the luminance unevenness in the front direction is eliminated.

図10に、D=30mmとして線状光源を配列した本発明の照明装置の任意の1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す。1本の線状光源からの光による正面方向への出光は、Xmin〜Xmaxの範囲となる。図9に示すような緩やかな減衰を示す場合は、例えばf(X)の値が最大値の1/100となるときのXの値で代用することもできる。Xmin、Xmaxを定めるためのf(X)の値は、それぞれ同じであることが望ましく、最大値の1/20以下であれば問題なく、1/100以下であることがさらに望ましい。図10ではXmin=−3D、Xmax=3Dであり、f(Xmin)=f(Xmax)でf(X)の1/100以下である。このような形状では正面方向への出光強度は厳密には隣接する3本のみの総和では決まらないので、g(X)は一定であるよりも、X=0である中心付近のg(X)が周辺に比べて少し高いことが望ましい。 FIG. 10 shows an example of the distribution in the X direction of the intensity of light emitted in the front direction by light from any one linear light source of the illumination device of the present invention in which linear light sources are arranged with D = 30 mm. Light emitted in the front direction by light from one linear light source is in the range of X min to X max . In the case of showing gentle attenuation as shown in FIG. 9, for example, the value of X when the value of f (X) is 1/100 of the maximum value can be substituted. The values of f (X) for determining X min and X max are preferably the same, and if it is 1/20 or less of the maximum value, there is no problem, and 1/100 or less is more desirable. In FIG. 10, X min = −3D and X max = 3D, and f (X min ) = f (X max ) is 1/100 or less of f (X). In such a shape, since the intensity of light emission in the front direction is not strictly determined by the sum of only three adjacent ones, g (X) is not constant but g (X) near the center where X = 0. It is desirable that is slightly higher than the surrounding area.

図10に、図9の場合と同じくD=30mmとして線状光源を配列し、別の光制御部材を用いた本発明の照明装置における任意の1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す。この例ではXmin=−D、Xmax=Dである。凸部の形状によっては、ある入射角度以上の光が正面に進まないので、このように線状光源からある程度離れた部分で急激に出光強度が低下する分布となる。このような形状では正面方向への出光強度は隣接する3本のみの総和で決まるので、g(X)が一定であることが最も望ましい。このとき、Xmin〜Xmaxの範囲で光は正面方向へ出光し、その分布はf(X)となる。図9に示すXmin=−3D,Xmax=3Dである場合と、図10に示すXmin=−D,Xmax=Dである場合とを比較すると、凸部幅は限られているので、斜面の傾きの角度Φの配分により正面方向への出光強度の分布が決定する。凸部形状が図9に示すように遠方より斜め方向に入射するエネルギーの弱い光を正面方向に向けるような斜面角度を持つより、図10に示すように遠方からの光を正面に向ける角度Φはもたずに、−D<X<Dの範囲に入射した光のみ正面に向ける角度Φで構成される凸部形状の方が、正面輝度は向上する。このようにXmax〜Xminの幅を小さくすることは、より強い光を効率的に正面に向けることによって正面方向への出光割合を高める効果を持つ。 In FIG. 10, as in the case of FIG. 9, linear light sources are arranged with D = 30 mm, and in the front direction due to light from any one linear light source in the illumination device of the present invention using another light control member. 2 shows an example of the distribution in the X direction of the intensity of emitted light. In this example, X min = −D and X max = D. Depending on the shape of the convex portion, light having a certain incident angle or more does not travel forward, and thus the light emission intensity is suddenly reduced at a portion away from the linear light source to some extent. In such a shape, since the intensity of light emission in the front direction is determined by the sum of only three adjacent ones, it is most desirable that g (X) is constant. At this time, light exits in the front direction in the range of X min to X max , and its distribution is f (X). When the case where X min = −3D and X max = 3D shown in FIG. 9 is compared with the case where X min = −D and X max = D shown in FIG. 10, the convex portion width is limited. The distribution of the intensity of light emission in the front direction is determined by the distribution of the inclination angle Φ of the slope. As shown in FIG. 9, the convex shape has an inclined angle that directs light with low energy incident in an oblique direction from a far direction to the front direction, but an angle Φ that directs light from a far direction to the front as shown in FIG. Instead, the front luminance is improved in the convex shape formed by the angle Φ in which only the light incident in the range of −D <X <D is directed to the front. Thus, reducing the width of X max to X min has the effect of increasing the ratio of light emission in the front direction by efficiently directing stronger light to the front.

一方、Xmax〜Xminの幅を大きくすることは、遠くの線状光源の光を正面に向けることによって正面方向への出光割合を高める効果を持つ。したがって正面輝度を高めるにはXmax〜Xminの幅が適切な範囲にあることが望ましい。望ましいXmax〜Xminの幅はf(X)によって異なるが、例えば出光強度が最大値の1/2以上となるXの範囲を目安とできる。この範囲が大きい場合はXmax〜Xminの幅を比較的大きめに取ることが望ましく、小さい場合小さめに取ることが望ましい。このようにXmax〜Xminの幅を好適に定めることで正面輝度を高めることができる。 On the other hand, increasing the width of X max to X min has the effect of increasing the light emission ratio in the front direction by directing the light of a distant linear light source to the front. Therefore, in order to increase the front luminance, it is desirable that the width of X max to X min be in an appropriate range. Desirable widths of X max to X min vary depending on f (X). For example, a range of X in which the light emission intensity is ½ or more of the maximum value can be used as a guide. It is desirable to take the width of this range is large when the X max to X min relatively large, it is desirable to take small smaller. Width of the thus X max to X min can increase the front luminance in suitably determined that the.

図11は、図10でf(X)について示した照明装置のg(X)を示す。既に示したように、g(X)が線状光源1周期分である−D/2≦X≦D/2の範囲で一定であれば、正面方向の輝度ムラは解消され、また、Xmin、Xmaxが最適である場合には、線状光源の近傍のエネルギーの高い光を正面に向けるため、より正面方向の輝度は高くなる。
正面方向への出光強度の分布は、正面輝度の分布を測定することにより評価できる。正面輝度の分布は、輝度計と光制御部材の出射面側にある測定点との距離を一定に保った状態で、輝度計をX方向に等間隔ずつ移動しながら測定する。また、正面方向への出光割合は次のように行う。
まず、測定点の輝度を、角度を変えながら測定する。このとき光制御部材の主面の法線方向とX軸方向に平行な断面に沿って角度を変えていく。このとき輝度計と光制御部材の出射面側にある測定点との距離は一定に保つ。
次に、得られた角度ごとの輝度の値をエネルギーの値に変換し、光制御部材の主面の法線方向である正面方向と30度以内に出射したエネルギーの全出射エネルギーに対する割合を算出する。
FIG. 11 shows g (X) of the illumination device shown for f (X) in FIG. As already shown, if g (X) is constant within the range of −D / 2 ≦ X ≦ D / 2, which is one cycle of the linear light source, the luminance unevenness in the front direction is eliminated, and X min , X max is optimal, the light with high energy in the vicinity of the linear light source is directed to the front, and thus the brightness in the front direction is higher.
The light intensity distribution in the front direction can be evaluated by measuring the front luminance distribution. The distribution of front luminance is measured while moving the luminance meter at equal intervals in the X direction with the distance between the luminance meter and the measurement point on the light exit side of the light control member kept constant. Moreover, the light emission ratio in the front direction is performed as follows.
First, the brightness of the measurement point is measured while changing the angle. At this time, the angle is changed along a cross section parallel to the normal direction of the main surface of the light control member and the X-axis direction. At this time, the distance between the luminance meter and the measurement point on the emission surface side of the light control member is kept constant.
Next, the brightness value obtained for each angle is converted into an energy value, and the ratio of the energy emitted within 30 degrees to the front direction, which is the normal direction of the main surface of the light control member, is calculated. To do.

領域−N〜Nの配列順序がX軸に必ずしも沿っている必要はない。しかしそうしなかった場合には、各領域の並び方により、凸部には変曲点が存在し、角度αiで入射した光を正面に向ける角度Φiの凸部の斜面に到達する前に別の角度の斜面に到達し屈折あるいは反射によって光線方向が変わり、角度Φiの斜面に到達しなかったり、望ましくない角度で角度Φiの斜面に到達したりすることで、光の出射方向の制御が困難となり、性能が不充分となる場合がある。
−N〜Nの領域がX軸の位置座標の順に並んでいる場合、通常は凸部の形状は変曲点をもたない形状となり、凸部全体が略凸状を成す。このような形状の場合、通常、光が所望の凸部上の領域に到達する前に別の凸部上の領域に到達して反射や屈折によって光線の方向が変化することがなく、光線方向の制御が容易となり有利である。
The arrangement order of the regions -N to N is not necessarily along the X axis. However, if this is not the case, there will be an inflection point in the convex part due to the arrangement of each region, and before reaching the slope of the convex part at angle Φ i that directs the light incident at angle α i to the front rays direction depends reach refracted or reflected in a different angle of slope, may not reach the slant angle [Phi i, by or to reach the slope angle in undesirable angle [Phi i, the emission direction of the light Control may be difficult and performance may be insufficient.
When the -N to N regions are arranged in the order of the position coordinates of the X axis, the shape of the convex portion is usually a shape having no inflection point, and the entire convex portion is substantially convex. In the case of such a shape, the direction of the light beam usually does not change due to reflection or refraction by reaching the region on another convex part before the light reaches the region on the desired convex part. This is easy and advantageous.

また、凸部の各領域のX方向の幅aiがf(Xi+T・tanβi)・cosΦi・cosβi/cosαi/cos(Φi−βi) に比例することが本発明の照明装置の特徴であるが、凸部の底部から表面までの高さの影響によって、好ましい幅が少しずれる場合があるが、大きな影響はない。 The width a i in the X direction of each region of protrusions is f (X i + T · tanβ i) · cosΦ i · cosβ i / cosα i / cos be proportional to (Φ i i) of the present invention Although it is the characteristic of an illuminating device, although a preferable width | variety may shift | deviate a little by the influence of the height from the bottom part of a convex part to the surface, there is no big influence.

ここで、図12は光制御部材2と線状光源1の配置を示す断面図である。図中に入射面6から凸部の底部までの厚みTと線状光源1の中心から光制御部材2の入射面6までの距離Hと線状光源1の中心間の間隔Dとを示す。入射面6から凸部底までの厚みTは1mm〜3mmが望ましい。Tが小さいと、光制御部材の厚さが薄くなり、照明装置としての厚さも薄くなり望ましいが、薄すぎると強度が弱く、たわみ、そのため出光方向が変化することで制御できなくなり正面方向の輝度ムラが発生する。また力学的強度が弱くなり、破損する可能性もある。また、逆に厚すぎると照明装置の厚さが厚くなり、薄型化の要望に反するため望ましくない。   Here, FIG. 12 is a sectional view showing the arrangement of the light control member 2 and the linear light source 1. In the figure, a thickness T from the incident surface 6 to the bottom of the convex portion, a distance H from the center of the linear light source 1 to the incident surface 6 of the light control member 2, and a distance D between the centers of the linear light sources 1 are shown. The thickness T from the incident surface 6 to the bottom of the convex portion is preferably 1 mm to 3 mm. If T is small, the thickness of the light control member becomes thin and the thickness of the lighting device is also thin, which is desirable. However, if it is too thin, the strength is weak and the deflection is caused. Unevenness occurs. In addition, the mechanical strength is weakened and there is a possibility of breakage. On the other hand, if the thickness is too large, the thickness of the lighting device is increased, which is not desirable because it is contrary to the demand for thickness reduction.

また、Nは2以上であることが望ましい。Nが大きい場合凸部は多くの傾きからなる複雑な形状である。傾きの数が多いと、正面方向への出光の制御を効率的に精度よく行うことができ、正面方向への出光強度の分布の均一性が高い。精度の面ではNは大きい方が良いが、大きすぎると形状が複雑になり作製が困難となる。作製の容易さの観点からNが100以下であることが望ましく、10以下であることが、さらに望ましい。   N is preferably 2 or more. When N is large, the convex portion has a complicated shape composed of many inclinations. When the number of inclinations is large, the light emission in the front direction can be controlled efficiently and accurately, and the uniformity of the light emission intensity distribution in the front direction is high. In terms of accuracy, N should be large, but if it is too large, the shape becomes complicated and it becomes difficult to produce. From the viewpoint of ease of production, N is preferably 100 or less, and more preferably 10 or less.

凸部を形成する領域のうち少なくとも一組の隣接する領域の形状を曲線で近似してもよい。また二組以上の隣接する領域の形状を曲線で近似してもよい。さらに3つ以上の隣接する領域の形状を曲線で近似してもよく、凸部全体の形状を曲線で近似しても良い。図13は凸部の全領域の形状を曲線で近似した場合の光制御部材のX方向の断面形状の例を示す図である。多くの領域の形状を曲線で近似すると、正面方向への出光強度の分布や出光角度の分布をなめらかにする、賦形しやすい、破損しにくい、などの、隣接する領域の形状を曲線で近似することの効果がより高まり、望ましい。曲線への近似法としては特に制限はなく、通常よく知られている最小二乗法、スプライン補間法、ラグランジュ補間法などを用いることができる。近似に用いる点は、近似する領域から少なくとも1点を選ぶ。通常近似する領域の数より多くとる。例えば、連続する複数の領域の両端と各領域の接点を選ぶことができる。また加えて、各領域の中点を近似に用いることもできる。   You may approximate the shape of at least 1 set of adjacent area | regions among the area | regions which form a convex part with a curve. Further, the shape of two or more adjacent regions may be approximated by a curve. Further, the shape of three or more adjacent regions may be approximated by a curve, and the shape of the entire convex portion may be approximated by a curve. FIG. 13 is a diagram illustrating an example of a cross-sectional shape in the X direction of the light control member when the shape of the entire region of the convex portion is approximated by a curve. Approximating the shape of many areas with a curve approximates the shape of adjacent areas such as smoothing out the light intensity distribution and light angle distribution in the front direction, easy to shape, and difficult to break. This is more effective and desirable. The approximation method to the curve is not particularly limited, and a generally well-known least square method, spline interpolation method, Lagrange interpolation method, or the like can be used. As the points used for the approximation, at least one point is selected from the approximated region. Usually more than the number of approximated areas. For example, it is possible to select both ends of a plurality of continuous regions and contact points of each region. In addition, the midpoint of each region can be used for approximation.

X方向と光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向である正面方向と30度以内の角度に出光する光の割合が50%以上である場合には、正面輝度の高い照明装置である。高い正面輝度が要求されるパソコンなどの表示装置においては、60%以上であればより望ましく、80%以上であればさらに望ましい。一方、照明看板などの広視野角が要求される表示装置については、正面方向への出光割合が高すぎると、正面方向のみに光が向き、視野角が狭くなり望ましくない。このため、60%〜80%が望ましい。   In a cross section parallel to the normal direction of the X direction and the main surface of the light control member, the proportion of light emitted at an angle within 30 degrees with the front direction that is the normal direction of the exit surface is 50% or more Is a lighting device with high front luminance. In a display device such as a personal computer that requires high front luminance, 60% or more is more desirable, and 80% or more is more desirable. On the other hand, for a display device that requires a wide viewing angle, such as a lighting signboard, if the light emission ratio in the front direction is too high, the light is directed only in the front direction and the viewing angle becomes narrow. For this reason, 60 to 80% is desirable.

図12に示すように、本発明の照明装置では線状光源がY方向に平行に間隔Dで同一平面内に配置し、Hだけ離れた位置に光制御部材の入射面が配置している。ここで、Dが小さい方が、正面方向への出光強度の分布は一定となるため望ましい。しかし、Dが小さすぎると、同じ画面サイズの場合には線状光源の本数が増えエネルギー消費が増え、望ましくない。Dの望ましい範囲は10mm〜100mmであり、より望ましい範囲としては、15mm〜50mmである。また、Hが大きい方が、正面方向への出光強度の分布は一定となるため望ましい。しかし、Hが大きすぎると厚みが厚くなり、照明装置として要求される薄型化に反するため望ましくない。Hの望ましい範囲は5mm〜50mmであり、より望ましい範囲としては10mm〜30mmである。また、比D/Hは、DとHの兼ね合いから、0.5〜3であることが望ましく、1〜2であることがさらに望ましい。   As shown in FIG. 12, in the illuminating device of the present invention, the linear light source is arranged in the same plane at a distance D parallel to the Y direction, and the incident surface of the light control member is arranged at a position separated by H. Here, a smaller D is desirable because the distribution of the intensity of light emission in the front direction is constant. However, if D is too small, the number of linear light sources increases and energy consumption increases when the screen size is the same. A desirable range of D is 10 mm to 100 mm, and a more desirable range is 15 mm to 50 mm. Further, it is desirable that H is large because the distribution of the light emission intensity in the front direction is constant. However, if H is too large, the thickness is increased, which is not desirable because it is contrary to the thinning required for the lighting device. A desirable range of H is 5 mm to 50 mm, and a more desirable range is 10 mm to 30 mm. Further, the ratio D / H is preferably 0.5 to 3 and more preferably 1 to 2 in view of the balance between D and H.

出射面上に形成する凸部の高さは1μm〜500μmが望ましい。500μmより大きくなると、出射面を観察した際、凸部が確認されやすくなるため品位の低下を招く。また1μmより小さくなると光の回折現象により着色が発生し品位の低下を生じる。さらに、透過型液晶パネルを透過型表示装置素子として設けた本発明の画像表示装置においては、X方向の凸部の幅Pが、液晶の画素ピッチの1/100〜1/1.5であることが望ましい。これより大きくなると液晶パネルとのモアレが発生し画質を大きく低下させる。   As for the height of the convex part formed on an output surface, 1 micrometer-500 micrometers are desirable. When the thickness is larger than 500 μm, the convex portion is easily confirmed when the emission surface is observed, and the quality is deteriorated. On the other hand, if the thickness is smaller than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Furthermore, in the image display device of the present invention in which the transmissive liquid crystal panel is provided as the transmissive display device element, the width P of the convex portion in the X direction is 1/100 to 1 / 1.5 of the pixel pitch of the liquid crystal. It is desirable. If it is larger than this, moire occurs with the liquid crystal panel, and the image quality is greatly reduced.

凸部に形状を賦形するには制限はないが、押出し成形、射出成形、紫外線硬化型樹脂を用いた2P成形(Photo Polymerization Process)等があげられる。成形方法は凸部の大きさ、必要形状、量産性を考慮して適宜用いればよい。主面サイズが大きい場合は、押出し成型が適している。 It is not limited to shape the shape protrusion, extrusion, injection molding, 2P molding using an ultraviolet curable resin (P hoto P olymerization Process), and the like. The molding method may be appropriately used in consideration of the size of the projection, the required shape, and mass productivity. When the main surface size is large, extrusion molding is suitable.

また、通常凸部は連続して配列するが、凸部の間に平坦部を設けてもよい。平坦部を設けることにより、金型の凸部が変形しにくい形状となるため、有利である。また、線状光源の直上での光が正面方向に出射されるため、線状光源の直上での輝度のみを上げるときに有効である。逆に、平坦部を持たない形状の場合は、凸部の斜面の傾きの角度ですべての光を制御できるため、正面方向への出光強度の分布が均一となる。   In addition, the normal convex portions are continuously arranged, but a flat portion may be provided between the convex portions. Providing the flat portion is advantageous because the convex portion of the mold is difficult to deform. In addition, since the light directly above the linear light source is emitted in the front direction, it is effective when only the luminance immediately above the linear light source is increased. On the contrary, in the case of a shape having no flat part, all the light can be controlled by the inclination angle of the slope of the convex part, so that the light intensity distribution in the front direction becomes uniform.

また、凸部が同じ形状であることが望ましい。光制御部材の光学的性質は一様であるので、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。   Moreover, it is desirable that the convex portions have the same shape. Since the optical properties of the light control member are uniform, alignment is not necessary, and it is possible to immediately respond to changes in the display size, the number of linear light sources and the arrangement, and the lighting device can be manufactured with high productivity. .

また光制御部材は通常光学材料の基材として用いられる材料であれば望ましく用いることができ、通常、透光性の熱可塑性樹脂を用いる。たとえばメタアクリル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、シクロオレフィン樹脂、(メタ)アクリルスチレン共重合樹脂、シクロオレフィン−アルケン共重合樹脂などが挙げられる。   The light control member can be desirably used as long as it is a material usually used as a base material of an optical material, and usually a light-transmitting thermoplastic resin is used. Examples thereof include methacrylic resin, polystyrene resin, polycarbonate resin, cycloolefin resin, (meth) acrylstyrene copolymer resin, cycloolefin-alkene copolymer resin, and the like.

また光拡散手段を設けることで、更に輝度の均一性を高めることができる。
光拡散手段としては板状部材の主面にシボやエンボスなどのランダムな凹凸を設ける方法、少量の光拡散材を構造物の内部に分散する方法、拡散シートを光制御部材の入射側および/または出射側に設ける方法、あるいはこれらを組み合わせた方法が挙げられる。
Further, by providing the light diffusing means, it is possible to further improve the uniformity of luminance.
As the light diffusing means, a method of providing random irregularities such as embossing or embossing on the main surface of the plate member, a method of dispersing a small amount of light diffusing material inside the structure, a diffusion sheet on the incident side of the light control member and / or Or the method of providing in the output side, or the method of combining these is mentioned.

ランダムな凹凸の形成は微粒子を分散した溶液を主面に塗布することや、凹凸の形成された金型から転写することにより実現できる。これらは光源側よりも出射面側に設けられることが望ましく、光制御部材の光源側および/または出射面側に設けることができる。凹凸の程度は算術平均粗さRaが3μm以下であることが望ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。入射面が平坦である場合、様々な方向から入射した光が、光制御部材内に入射したとき入射面での屈折によりある程度正面付近に集光されるため、結果として正面方向への出光割合が増える。例えば、光制御部材の屈折率が1.55である場合には、入射面の法線方向と40度以内の角度範囲に集光される。入射面に凹凸を付与した場合、光制御部材に入射した光は、広い角度に屈折され進むので、正面方向への出光割合を増やす効果が低下する場合がある。また出射面に微細な凹凸を設ける場合、凹凸面で屈折されることで同様に凹凸によって正面方向への出光割合を増やす効果が低下する場合がある。得られる拡散性や輝度ムラ解消効果と正面輝度とのバランスから用いる用途に望ましい範囲に調整することができる。   The formation of random irregularities can be realized by applying a solution in which fine particles are dispersed to the main surface or transferring from a mold having irregularities. These are preferably provided on the exit surface side rather than the light source side, and can be provided on the light source side and / or the exit surface side of the light control member. As for the degree of unevenness, the arithmetic average roughness Ra is desirably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered. When the incident surface is flat, light incident from various directions is condensed to some extent near the front due to refraction at the incident surface when entering the light control member. As a result, the light emission ratio in the front direction is increased. Increase. For example, when the refractive index of the light control member is 1.55, the light is condensed in an angle range within 40 degrees with respect to the normal direction of the incident surface. When unevenness is given to the incident surface, the light incident on the light control member is refracted at a wide angle and proceeds, so that the effect of increasing the light emission ratio in the front direction may be reduced. Moreover, when providing a fine unevenness | corrugation in an output surface, the effect which increases the light emission ratio to a front direction by an unevenness | corrugation similarly may be reduced by being refracted by an uneven surface. It can be adjusted to a range desired for the intended use from the balance between the obtained diffusibility and luminance unevenness eliminating effect and front luminance.

光拡散材を構造物の内部に分散する場合は、光拡散材の濃度は比較的低く抑えることができる。これによって、透過率や正面輝度の低下を低く抑えることができる。好適な光拡散材の濃度は材料によって異なるが、透過率とヘイズを目安にすることができる。透過率80%以上かつ、ヘイズ50%以下であるような濃度で用いることが望ましい。例えば、厚さ2mmの(メタ)アクリル酸メチルスチレン共重合体に、光拡散材としてシロキサン系重合体粒子(例えば、トスパール120:GE東芝シリコーン(株)製、数平均粒子径2μm、CV値3%)を0.04Wt%含んでいるような成型板などを用いることができる。   When the light diffusing material is dispersed inside the structure, the concentration of the light diffusing material can be kept relatively low. Thereby, it is possible to suppress a decrease in transmittance and front luminance. Although the suitable concentration of the light diffusing material varies depending on the material, transmittance and haze can be used as a guide. It is desirable to use at a concentration such that the transmittance is 80% or more and the haze is 50% or less. For example, a (meth) acrylic acid methylstyrene copolymer having a thickness of 2 mm, a siloxane polymer particle (for example, Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., number average particle diameter 2 μm, CV value 3 as a light diffusing material) %)) Can be used.

本発明の光制御部材は必要に応じて異なる複数の材料を用いて作ることもできる。例えば凸部をフィルム上に形成した後、凸部を形成していないフィルム面に支持板を合わせて、光制御部材とすることもできる。これは例えば凸部の形成に紫外線硬化樹脂を用いる場合は凸部付近以外に汎用の透光性樹脂を用いることで高価な紫外線硬化樹脂の使用量を削減することができる。また少量の光拡散材を内部に分散したり、表面に塗布したりすることもできる。光拡散材の使用によって出射光の拡散性を高め、輝度均一性も高めることができる。光拡散材を塗布する場合、出射面側に塗布することがより好ましい。光拡散材としては従来光拡散板や拡散シートに用いられる無機微粒子や架橋有機微粒子を用いることができる。使用量は従来の一般的な光拡散板に比べてごく少量で同等以上の拡散性が得られるとともに、透過性も非常に高い。   The light control member of the present invention can be made using a plurality of different materials as required. For example, after forming a convex part on a film, a support plate can be match | combined with the film surface which does not form a convex part, and it can also be set as a light control member. For example, in the case of using an ultraviolet curable resin for forming the convex portion, it is possible to reduce the amount of the expensive ultraviolet curable resin used by using a general-purpose translucent resin other than the vicinity of the convex portion. Also, a small amount of light diffusing material can be dispersed inside or applied to the surface. By using the light diffusing material, the diffusibility of the emitted light can be enhanced and the luminance uniformity can be enhanced. In the case of applying the light diffusing material, it is more preferable to apply it on the exit surface side. As the light diffusing material, inorganic fine particles and cross-linked organic fine particles conventionally used for light diffusing plates and diffusing sheets can be used. The amount used is very small compared to a conventional general light diffusion plate, and a diffusibility equal to or higher than that can be obtained, and the transmittance is also very high.

支持板を用いる場合などで、光制御部材の基材部分が屈折率の異なる複数種類の板となっても問題ない。この場合、ここまで示してきた考え方に沿って、式(7)に相当する式を導くことでaiを求めることができる。しかしながらそれぞれの屈折率のばらつきが90%以内である場合は、屈折率nは各板厚の比に従って近似することで式(7)を導くことができる。例えば基材部分が、屈折率がn’、n’’、n’’’で板厚がそれぞれT’、T’’、T’’’の3枚の板によってなる場合、nは(n’・T’+n’’・T’’+n’’’・T’’’)/Tの値で近似できる。 There is no problem even when the support plate is used and the substrate portion of the light control member is a plurality of types of plates having different refractive indexes. In this case, a i can be obtained by deriving an expression corresponding to Expression (7) in accordance with the idea described so far. However, when the variation of the respective refractive indexes is within 90%, the refractive index n 2 can be approximated according to the ratio of the respective plate thicknesses to derive the equation (7). For example, when the base material portion is composed of three plates having refractive indexes of n ′, n ″, n ′ ″ and thicknesses of T ′, T ″, T ′ ″ respectively, n 2 is (n It can be approximated by the value of “· T ′ + n ″ · T ″ + n ′ ″ · T ′ ″) / T.

また屈折率の異なる光拡散材が分散している場合、本発明では光拡散材の使用量が極めて少量であるので、その屈折率の影響は考慮しなくてもよい。   Further, when light diffusing materials having different refractive indexes are dispersed, the amount of the light diffusing material used is extremely small in the present invention, and therefore the influence of the refractive index need not be considered.

なお、本発明の画像表示装置としては、照明装置上に透過型の液晶表示素子を用いる等の方法により実現され、特に制限はないが、透過型表示素子としては透過型液晶パネルがあげられ、表示面の輝度均一性に優れる画像表示装置を得ることができる。   The image display device of the present invention is realized by a method such as using a transmissive liquid crystal display element on a lighting device, and is not particularly limited, but the transmissive display element includes a transmissive liquid crystal panel, An image display device having excellent display surface luminance uniformity can be obtained.

以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

(使用した照明装置の構成)
本発明の実施例において用いた照明装置の構成を以下に示す。
本発明において好ましい態様の一例の照明装置として、市販の液晶表示装置(ソニー株式会社製 商品名KDL−L32HVX)に搭載されるバックライトユニットの基本構造を用いて評価した。前記バックライトユニットの構成を図1に沿って説明する。X方向の長さ438mm、Y方向の長さ758mm、X方向とY方向に垂直な厚さ方向の長さ19mmの開口部を持つ直方体状のハウジング中に、前記ハウジングの出射側の開口部に対向する位置にある底部を覆うように、出射側にX方向の長さ714mm、Y方向の長さ398mmの反射板4が配置されていた。
次に前記反射板の出射側に3mmの間隔をおいて、該反射板と平行に線状光源を配置されていた。線状光源1は、直径3mm、長さ700mmの16本の冷陰極管であり、X方向に沿ってY方向に平行に21.5mmずつの間隔での配置であった。
(Configuration of the lighting device used)
The structure of the illumination device used in the examples of the present invention is shown below.
As an example of a preferred embodiment of the lighting device in the present invention, evaluation was performed using a basic structure of a backlight unit mounted on a commercially available liquid crystal display device (trade name KDL-L32HVX manufactured by Sony Corporation). The configuration of the backlight unit will be described with reference to FIG. In a rectangular parallelepiped housing having an opening with a length of 438 mm in the X direction, a length of 758 mm in the Y direction, and a length of 19 mm in the thickness direction perpendicular to the X and Y directions, the opening on the output side of the housing The reflecting plate 4 having a length of 714 mm in the X direction and a length of 398 mm in the Y direction was arranged on the emission side so as to cover the bottom portion at the opposite position.
Next, a linear light source was arranged in parallel with the reflecting plate with an interval of 3 mm on the exit side of the reflecting plate. The linear light source 1 was 16 cold-cathode tubes having a diameter of 3 mm and a length of 700 mm, and was arranged at intervals of 21.5 mm in parallel with the Y direction along the X direction.

次に本発明に係る光制御部材2を開口部に被せるように配置した。前記光制御部材は前記線状光源1の出射側に13mmの間隔をおいて、該反射板4と平行に配置した。該光制御部材のサイズはY方向の長さ732mm、X方向の長さ407mmで、X方向とY方向に垂直な厚さ方向の凸部の高さを含まない厚み、すなわち該光制御部材の入射面から凸部の底部までの厚みTは2mmであった。
線状光源1の中心から光制御部材2までのHは14.5mm、隣接する線状光源1の中心同士の距離Dは25.0mmであった。
Next, the light control member 2 according to the present invention was arranged so as to cover the opening. The light control member was arranged in parallel with the reflecting plate 4 with an interval of 13 mm on the emission side of the linear light source 1. The size of the light control member is 732 mm in the Y direction and 407 mm in the X direction, and does not include the height of the convex portion in the thickness direction perpendicular to the X direction and the Y direction. The thickness T from the incident surface to the bottom of the convex portion was 2 mm.
H from the center of the linear light source 1 to the light control member 2 was 14.5 mm, and the distance D between the centers of the adjacent linear light sources 1 was 25.0 mm.

(光制御部材の作製)
実施例において用いる本発明に係る光制御部材は、線状光源と対向する光制御部材の入射面側に平坦である面が形成され、出射面側に請求項1記載の式(2)から(8)より導かれる畝状の凸部が形成されることを特徴とするものであり、前記光制御部材は以下のようにして作製した。
(Production of light control member)
In the light control member according to the present invention used in the embodiment, a flat surface is formed on the incident surface side of the light control member facing the linear light source, and from the expression (2) according to claim 1 on the emission surface side ( 8) A ridge-shaped convex portion led from 8 is formed, and the light control member was manufactured as follows.

(1) 先ず、f(x)=cosα、N=50、Xmin=−25.0、Xmax=25.0から請求項1記載の式(2)から(8)より導かれる形状を曲線近似した幅0.3mmの凹溝状の形状を切削加工によって平行に連続して形成し金型を作製した。次に、屈折率1.55の紫外線硬化樹脂を前記金型の切削面に塗布し、その上に押出し成形により作製した縦407mm、横732mm、厚さ2mmの(メタ)アクリル酸メチルスチレン共重合透明樹脂板(使用樹脂:電気化学工業株式会社製 商品名“TXポリマー”TX−800S、屈折率:1.549)を重ね、該透明樹脂板の上から紫外線を照射して前記紫外線硬化樹脂を硬化させることで、畝状の凸部が形成された光制御部材(B−1)を得た。得られた光制御部材(B−1)について、g(X)min/g(X)maxを測定したところ、0.87であった。 (1) First, from f (x) = cos α, N = 50, X min = −25.0, and X max = 25.0, the shape derived from the equations (2) to (8) according to claim 1 is curved. An approximate groove-shaped shape with a width of 0.3 mm was continuously formed in parallel by cutting to produce a mold. Next, an ultraviolet curable resin having a refractive index of 1.55 is applied to the cutting surface of the mold, and a methacrylic acid methylstyrene copolymer having a length of 407 mm, a width of 732 mm, and a thickness of 2 mm is formed thereon by extrusion molding. A transparent resin plate (used resin: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “TX polymer” TX-800S, refractive index: 1.549) is layered, and the ultraviolet curable resin is applied by irradiating ultraviolet rays on the transparent resin plate. By making it harden | cure, the light control member (B-1) in which the bowl-shaped convex part was formed was obtained. It was 0.87 when g (X) min / g (X) max was measured about the obtained light-control member (B-1).

(2) 前述の(1)で作製した金型から、屈折率1.55の紫外線硬化樹脂を前記金型の切削面に塗布し、その上に光拡散性微粒子(GE東芝シリコーン株式会社製 商品名“トスパール”2000B、屈折率:1.420)0.15質量部を前記(メタ)アクリルスチレン系共重合透明樹脂板に添加し押し出し成形により作製した縦407mm、横732mm、厚さ2mmの(メタ)アクリルスチレン系共重合樹脂板を重ね、該樹脂板の上から紫外線を照射して前記紫外線硬化樹脂を硬化させることで、畝状の凸部が形成された光制御部材(B−2)を得た。得られた光制御部材(B−2)について、g(X)min/g(X)maxを測定したところ、0.92であった。 (2) A UV curable resin having a refractive index of 1.55 is applied to the cutting surface of the mold from the mold prepared in the above (1), and light diffusing fine particles (manufactured by GE Toshiba Silicone Co., Ltd.) Name “Tospearl” 2000B, Refractive Index: 1.420) 0.15 parts by mass added to the (meth) acrylstyrene copolymer transparent resin plate and produced by extrusion molding with a length of 407 mm, a width of 732 mm, and a thickness of 2 mm ( Light control member (B-2) in which a ridge-like convex portion is formed by stacking (meth) acryl styrene copolymer resin plates and irradiating ultraviolet rays on the resin plates to cure the ultraviolet curable resin Got. It was 0.92 when g (X) min / g (X) max was measured about the obtained light-control member (B-2).

(3) また、前述の(1)で作製した金型から、屈折率1.55の紫外線硬化樹脂を前記金型の切削面に塗布し、その上に光拡散性微粒子(GE東芝シリコーン株式会社製 商品名“トスパール”2000B、屈折率:1.420)1.0質量部を前記(メタ)アクリルスチレン系共重合透明樹脂板に添加し押し出し成形により作製した縦407mm、横732mm、厚さ2mmの(メタ)アクリルスチレン系共重合樹脂板を重ね、該樹脂板の上から紫外線を照射して前記紫外線硬化樹脂を硬化させることで、畝状の凸部が形成された光制御部材(B−3)を得た。得られた光制御部材(B−3)について、g(X)min/g(X)maxxを測定したところ、0.95であった。 (3) Further, an ultraviolet curable resin having a refractive index of 1.55 is applied to the cutting surface of the mold from the mold prepared in the above (1), and then light diffusing fine particles (GE Toshiba Silicone Co., Ltd.). Product name “Tospearl” 2000B, Refractive index: 1.420) 1.0 part by mass was added to the (meth) acrylstyrene copolymer transparent resin plate and produced by extrusion, length 407 mm, width 732 mm, thickness 2 mm. The (meth) acryl styrene copolymer resin plate is stacked, and the ultraviolet curable resin is cured by irradiating ultraviolet rays from above the resin plate, whereby the light control member (B- 3) was obtained. It was 0.95 when g (X) min / g (X) maxx was measured about the obtained light-control member (B-3).

(突起の影の評価および輝度測定)
(a)突起による影については、目視での評価を行い、その結果を表1に示した。
(b)照明装置の明るさを示す正面輝度については、色彩輝度計(株式会社トプコン社製BM−5)により測定し、その結果を表1に示した。
(Evaluation of projection shadow and brightness measurement)
(A) About the shadow by a processus | protrusion, visual evaluation was performed and the result was shown in Table 1.
(B) About the front luminance which shows the brightness of an illuminating device, it measured with the color luminance meter (Topcon Co., Ltd. BM-5), and the result was shown in Table 1.

(実施例1)
前記液晶表示装置(ソニー株式会社製 商品名KDL−L32HVX)に搭載されるバックライトユニット付属の突起に代え、アクリル樹脂(株式会社クラレ製 商品名“パラグラス”透明板6mmt)を使用して、図14(a)に示す水平断面形状が円形の径3mm、先端径1mmφの突起を旋盤により切削加工し作製したものを、前記照明装置に両面テープを用いて貼り付け固定した。取り付け位置は、図4に示すように、線状光源の中間位置とした。
光制御部材(B−1)と組み合わせた時、突起と光制御部材の接する位置に、突起に起因する影は視認できなかった。また、表1に示すように測定輝度は高い値であり、輝度ムラの改良効果も良好であった。
Example 1
Instead of the projection attached to the backlight unit mounted on the liquid crystal display device (trade name KDL-L32HVX, manufactured by Sony Corporation), an acrylic resin (trade name “Paraglass” transparent board 6 mmt, manufactured by Kuraray Co., Ltd.) is used, A projection having a horizontal cross-sectional shape shown in 14 (a) having a circular diameter of 3 mm and a tip diameter of 1 mmφ cut by a lathe was attached and fixed to the lighting device using a double-sided tape. As shown in FIG. 4, the attachment position was an intermediate position of the linear light source.
When combined with the light control member (B-1), no shadow due to the protrusion was visible at the position where the protrusion and the light control member were in contact. Further, as shown in Table 1, the measured luminance was a high value, and the effect of improving luminance unevenness was also good.

(実施例2)
実施例1の突起を用い、光制御部材(B−2)と組み合わせて、実施例1と同様に評価した。突起と光制御部材の接する位置に突起に起因する影は、実施例1と同様に視認できなかった。また、表1に示すように測定輝度も比較的は高い値であり、輝度ムラの改良効果も良好であった。
(Example 2)
The protrusions of Example 1 were used and evaluated in the same manner as Example 1 in combination with the light control member (B-2). The shadow caused by the protrusion at the position where the protrusion and the light control member contacted was not visible as in Example 1. Further, as shown in Table 1, the measured luminance was also a relatively high value, and the effect of improving luminance unevenness was also good.

(比較例1)
前記液晶表示装置(ソニー株式会社製 商品名KDL−L32HVX)に搭載されるバックライトユニット付属の突起(白色不透明:形状は実施例1と同じ)を用いて、光制御部材(B−1)を組み合わせて評価を行った。その結果、突起と光制御部材の接する位置に、突起に起因する影が明瞭に発生していた。
(Comparative Example 1)
Using the protrusion (white opaque: the shape is the same as in Example 1) attached to the backlight unit mounted on the liquid crystal display device (trade name KDL-L32HVX, manufactured by Sony Corporation), the light control member (B-1) Evaluation was performed in combination. As a result, a shadow caused by the protrusion was clearly generated at a position where the protrusion and the light control member contact each other.

(比較例2)
比較例1の突起を用い、光制御部材(B−3)と組み合わせた。光制御部材(B−3)は、比較例1の光制御部材(B−1)に比べ光拡散性微粒子を多量に含有するため、突起と光制御部材とが接する位置に、突起に起因する影は視認できなかったが、表1に示すように測定輝度は低い値となった。すなわち、輝度と画質とのバランスが取れていないといえる。
(Comparative Example 2)
The protrusion of Comparative Example 1 was used and combined with the light control member (B-3). Since the light control member (B-3) contains a larger amount of light diffusing fine particles than the light control member (B-1) of Comparative Example 1, the light control member (B-3) is caused by the protrusion at the position where the protrusion and the light control member are in contact with each other. Although the shadow was not visible, the measured luminance was low as shown in Table 1. That is, it can be said that luminance and image quality are not balanced.

(比較例3)
前記液晶表示装置(ソニー株式会社製 商品名KDL−L32HVX)に搭載されるバックライトユニット付属の突起に代え、アクリル樹脂(株式会社クラレ製 商品名“パラグラス”透明板6mmt)を使用して、図14(b)に示すような水平断面の形状が円形で先端径3mmφの突起を旋盤により切削加工し作製したものを、前記照明装置に両面テープを用いて貼り付け固定した。取り付け位置は、図4に示すように、線状光源の中間位置とした。
光制御部材(B−1)と組み合わせた時、突起と光制御部材の接する位置に、突起に起因する影が明瞭に確認された。すなわち、突起の先端径が1mmφを越えたものであると、画質に悪影響があることが判る。
(Comparative Example 3)
Instead of the projection attached to the backlight unit mounted on the liquid crystal display device (trade name KDL-L32HVX, manufactured by Sony Corporation), an acrylic resin (trade name “Paraglass” transparent board 6 mmt, manufactured by Kuraray Co., Ltd.) is used, A product obtained by cutting a projection having a circular horizontal cross section and a tip diameter of 3 mmφ as shown in 14 (b) with a lathe was attached and fixed to the lighting device using a double-sided tape. As shown in FIG. 4, the attachment position was an intermediate position of the linear light source.
When combined with the light control member (B-1), a shadow caused by the protrusion was clearly confirmed at the position where the protrusion and the light control member contacted. That is, it can be seen that the image quality is adversely affected if the tip diameter of the protrusion exceeds 1 mmφ.

本発明の照明装置の好適な例の概略図である。It is the schematic of the suitable example of the illuminating device of this invention. 本発明の一実施態様である液晶表示装置用バックライト装置の横断面部分拡大図である。It is a cross-sectional partial enlarged view of the backlight apparatus for liquid crystal display devices which is one embodiment of this invention. 本発明の他の一実施態様である液晶表示装置用バックライト装置の横断面部分拡大図である。It is the cross-sectional partial enlarged view of the backlight apparatus for liquid crystal display devices which is other one Embodiment of this invention. 本発明の一実施態様である液晶表示装置用バックライト装置の光制御部材を除いた模式上面図である。It is a model top view except the light control member of the backlight apparatus for liquid crystal display devices which is one embodiment of this invention. 線状光源と光制御部材との間に突起を設けた場合の光線の進行方向を説明する模式図である。It is a schematic diagram explaining the advancing direction of the light ray when a protrusion is provided between the linear light source and the light control member. 平行に配列した線状光源からの正面方向への出光強度の分布を示す図である。It is a figure which shows distribution of the emitted light intensity to the front direction from the linear light source arranged in parallel. 図1の照明装置の、線状光源の位置と正面方向への出光強度との関係を示す図である。It is a figure which shows the relationship between the position of a linear light source, and the emitted light intensity to a front direction of the illuminating device of FIG. 隣接する3本の線状光源を配置したときの、線状光源の位置とそれぞれの正面方向への出光強度の分布を示す図である。It is a figure which shows distribution of the light emission intensity | strength to the position of each linear light source, and each front direction when arrange | positioning three adjacent linear light sources. 1本の線状光源からの光による正面方向への出光強度のX方向の分布の1例を示す図である。It is a figure which shows one example of distribution of the X direction of the emitted light intensity to the front direction by the light from one linear light source. 1本の線状光源からの光による正面方向への出光強度のX方向の分布の図11と異なる1例を示す図である。It is a figure which shows an example different from FIG. 11 of the distribution of the X direction of the emitted light intensity to the front direction by the light from one linear light source. 図10で示した照明装置のf(X)とそれに対応するg(X)を示す図である。It is a figure which shows f (X) of the illuminating device shown in FIG. 10, and g (X) corresponding to it. 本発明に用いることのできる光制御部材と線状光源との配置を示した図である。It is the figure which showed arrangement | positioning of the light control member and linear light source which can be used for this invention. 凸部の全領域の形状を曲線で近似した場合の光制御部材のX方向の断面形状の例を示す図である。It is a figure which shows the example of the cross-sectional shape of the X direction of the light control member at the time of approximating the shape of the whole area | region of a convex part with a curve. 実施例及び比較例に係る突起の形状を示す図である。It is a figure which shows the shape of the protrusion concerning an Example and a comparative example. 線状光源からの光の入射角度αと、凸部の領域iの斜面の傾きの角度Φiと領域iのX方向の幅aiとの関係を示す図である。The incident angle alpha i of the light from the linear light source is a diagram showing the relationship between the X-direction of the width a i angle [Phi i and region i of slope of the slope of the area i of the convex portion. 角度αiで凸部向かう光のうち領域iに向かう光の割合を示す図である。It is a figure which shows the ratio of the light which goes to the area | region i among the lights which go to a convex part with angle (alpha) i . 座標Xiの点における光源の直径を見込む角度Δαiを示す図である。It is a diagram showing the angle [Delta] [alpha] i anticipating the diameter of the light source in the point of coordinates X i. 光制御部材への入射角度と入射強度の関係を説明する図である。It is a figure explaining the relationship between the incident angle to a light control member, and incident intensity. 本発明の照明装置で光を正面に向ける原理を示す図である。It is a figure which shows the principle which directs light to the front with the illuminating device of this invention.

符号の説明Explanation of symbols

1:線状光源、2:光制御部材、3:凸部、4:反射板、5:突起、6:入射面、7:入射光、8:出射光、9:光制御部材内部を通過して凸部に向かう光

D:隣接する線状光源の中心間の距離
H:線状光源の中心と光制御部材の入射面との距離
f(X):線状光源の配列方向Xと照明装置の任意の1本の線状光源からの光の光制御部材の凸部から出射する正面方向への出光強度との分布の関数
N:自然数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
max:f(X)が0となるときの正方向のX座標
min:f(X)が0となるときの負方向のX座標
g(X):f(X−D)+f(X)+f(X+D); 線状光源の配列方向Xと、隣接する3本の線状光源からの光の光制御部材の凸部から出射する正面方向への出光強度との分布の関数
g(X)min:Xmin〜Xmax間のg(X)の最小値
g(X)max:Xmin〜Xmax間のg(X)の最大値
δ:δ=(Xmax−Xmin)/(2N+1)を満たす微小区間
Φi:凸部の領域iの出射面に対する斜面の傾き
i:Xmin〜Xmax間を(2N+1)等分したときの各要素のX座標の中心値
i:凸部の領域iのX方向の幅
T:光制御部材の入射面から凸部の底部までの厚み
αi:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、線状光源からの光線方向が入射面の法線に対して成す角度
βi:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材の凸部内部での光線方向が、入射面の法線に対して成す角度
γ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材の基材内部での光線方向が、入射面の法線に対して成す角度
i:X方向と光制御部材の主面の法線方向に平行な断面内における、領域iの斜面の長さ
i:X方向と光制御部材の主面の法線方向に平行な断面内における、法線方向光源から入射面に入射して光制御部材内部を通って領域iから出射する光の、光制御部材内部での光線方向に垂直な方向への領域iの斜面の射影の長さ
ξi:X方向と光制御部材の主面の法線方向に平行な断面内における、領域iの斜面の角度が、光制御部材の凸部内部での光線方向と垂直な角度に対して成す角度
θ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って出射面から出射する光の、線状光源からの光線方向が、入射面の法線に対して成す入射角度
Δθ:X方向と光制御部材の主面の法線方向に平行な断面内における、入射角度θの光を中心にした微小範囲が線状光源の中心と成す角度
H’:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から角度(θ−Δθ)で出射した光が通る光制御部材の入射面上の点と、線状光源の中心とを結ぶ軌道を、線状光源と角度θで出射した光が通る軌道上に射影に長さ(線状光源から角度θ
で出射した光が通る光制御部材の入射面上の点と線状光源の中心との距離にほぼ等しい)
V:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源からの入射角度θを中心とするΔθの光が通過する光制御部材の入射面上の領域の長さ
U:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源からの入射角度θを中心とするΔθの光が通過する光制御部材の入射面上の領域の長さVの線分の、入射角度θに垂直な角度への射影
α:X方向と光制御部材の主面の法線方向に平行な断面内における、光制御部材に入射する光が、入射面の法線に対して成す入射角度
β:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材の凸部内部での光線方向が、入射面の法線に対して成す角度
γ:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材の基材内部での光線方向が、入射面の法線に対して成す角度
ε:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、光制御部材内部での光線方向が、通過する凸部の斜面の法線に対して成す角度
ω:X方向と光制御部材の主面の法線方向に平行な断面内における、線状光源から入射面に入射して光制御部材内部を通って凸部から出射する光の、凸部から出射する光線の方向が、通過する凸部の斜面の法線に対して成す角度
P:X方向と光制御部材の主面の法線方向に平行な断面内における、凸部の幅Δαi:座標Xiより線状光源の直径を見込む角度

1: linear light source, 2: light control member, 3: convex part, 4: reflector, 5: protrusion, 6: incident surface, 7: incident light, 8: outgoing light, 9: passes through the inside of the light control member Light toward the convex

D: Distance between the centers of adjacent linear light sources H: Distance between the center of the linear light sources and the incident surface of the light control member f (X): Arrangement direction X of the linear light sources and any one of the illumination devices Function of distribution of light from linear light source and intensity of light emitted from convex part of light control member in front direction N: natural number n: refractive index n 2 of convex part of light control member: base material of light control member the refractive index of X max: positive direction of the X-coordinate at which f (X) is 0 X min: f the negative direction when (X) is 0 X-coordinate g (X): f (X -D) + F (X) + f (X + D); a function of the distribution of the arrangement direction X of the linear light sources and the intensity of the light emitted from the adjacent three linear light sources in the front direction emitted from the convex portion of the light control member g (X) min: X min ~X minimum g of g (X) between the max (X) max: maximum value of X min to X max between the g (X) δ: δ = (X max -X min ) / (2N + 1) met Small section [Phi i: slope of inclination with respect to the exit surface of the area i of the convex portion X i: X min to X max between the (2N + 1) of the X-coordinate of each element when it is equal center value a i: area of the convex portion i width X in the X direction: thickness from the incident surface of the light control member to the bottom of the convex portion α i : incident from a linear light source in a cross section parallel to the normal direction of the X direction and the main surface of the light control member The angle β i of the light incident from the linear light source and incident on the surface through the light control member and exiting from the region i with respect to the normal of the incident surface: the X direction and the main surface of the light control member The light ray direction inside the convex part of the light control member is incident on the light that enters the incident surface from the linear light source and exits from the region i through the light control member in the cross section parallel to the normal direction of angle formed with respect to the surface normal gamma i: in parallel to the cross section in the direction normal to the main surface of the X direction and the light control member, entering from the linear light source Of light incident on the surface is emitted from the area i through the interior light control member, the beam direction in the substrate inside the light control member, the angle b i forms with respect to the normal line of the incident surface: X direction and light The length e i of the slope of the region i in the cross section parallel to the normal direction of the main surface of the control member: the normal direction light source in the cross section parallel to the X direction and the normal direction of the main surface of the light control member The length of projection of the slope of the region i in the direction perpendicular to the light beam direction inside the light control member ξ i : X direction The angle θ of the slope of the region i in the cross section parallel to the normal direction of the main surface of the light control member and the angle perpendicular to the light ray direction inside the convex portion of the light control member θ: X direction In the cross section parallel to the normal direction of the main surface of the light control member and entering the light incident surface from the linear light source. In the cross section of the light emitted from the light exit surface, the light beam direction from the linear light source is an incident angle Δθ formed with respect to the normal of the light incident surface: the X direction and the normal direction of the main surface of the light control member , An angle H ′ formed by a minute range centered on the light having the incident angle θ and the center of the linear light source: an angle from the linear light source in a cross section parallel to the X direction and the normal direction of the main surface of the light control member ( The trajectory connecting the point on the incident surface of the light control member through which the light emitted by θ−Δθ) and the center of the linear light source pass is projected longer on the trajectory through which the light emitted by the linear light source and the angle θ passes. (An angle θ from the linear light source
Is approximately equal to the distance between the point on the incident surface of the light control member through which the light emitted from and the center of the linear light source passes)
V: in a region on the incident surface of the light control member through which light of Δθ around the incident angle θ from the linear light source passes in a cross section parallel to the X direction and the normal direction of the main surface of the light control member Length U: On the incident surface of the light control member through which light of Δθ from the linear light source passes in a cross section parallel to the X direction and the normal direction of the main surface of the light control member Projection of the line segment of the length V of the region to an angle perpendicular to the incident angle θ α: light incident on the light control member in a cross section parallel to the X direction and the normal direction of the main surface of the light control member The incident angle β with respect to the normal of the incident surface β: in the cross section parallel to the X direction and the normal direction of the main surface of the light control member, is incident on the incident surface from the linear light source and passes through the light control member. The angle γ of the light emitted from the convex portion inside the convex portion of the light control member with respect to the normal of the incident surface γ: the X direction and the optical control Light within the substrate of the light control member that is incident on the incident surface from the linear light source and exits from the convex portion through the light control member in a cross section parallel to the normal direction of the main surface of the member The direction is an angle ε with respect to the normal of the incident surface: The X direction and the normal direction of the main surface of the light control member in a cross section parallel to the incident surface from the linear light source. The angle ω of the light ray direction inside the light control member passing through the convex portion with respect to the normal line of the slope of the convex portion passing through the X direction and the normal direction of the main surface of the light control member In the parallel cross section, the direction of the light ray emitted from the convex portion of the light incident on the incident surface from the linear light source and passing through the inside of the light control member is normal to the slope of the convex portion through which the light passes. an angle formed with respect to P: in the X direction and the light control member in the cross section parallel to a normal direction of a principal face, the width of the convex portion [Delta] [alpha] i: the seat Angle anticipating the diameter of the linear light source than X i

Claims (5)

X方向と、X方向に垂直なY方向とからなる矩形状の出射面を持ち、反射板と、複数の線状光源と、板状の光制御部材と、前記光制御部材と接して該光制御部材を保持する突起とを少なくとも備える照明装置であって、前記反射板は前記X方向およびY方向に平行に配置しており、前記線状光源は前記反射板の出射面側の前記X方向およびY方向に平行な1つの仮想平面内に配置しており、かつ、該線状光源は長手方向がY方向に平行に配置しており、かつ、X方向に沿って等間隔に配列しており、前記光制御部材は前記配列した線状光源の出射面側に配置し、該光制御部材の主面は、線状光源に対向し該線状光源からの光を受光する入射面と前記入射面に受光した光を出光する出射面とからなり、かつ、該主面は線状光源が配列している前記仮想平面と平行であり、前記出射面は表面に畝状の凸部を複数形成しており、該凸部は頂部にあたる畝状の稜線がY方向に平行に形成されており、かつ、X方向に沿って配列しており、前記突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下であり、前記線状光源の中心間の距離をD、任意の前記線状光源の中心と前記光制御部材との距離をH、該線状光源から光制御部材に入光した光の、X方向の位置座標X(光源位置をX=0とする)における出射面の法線方向への出光強度を表した関数をf(X)とし、
g(X)=f(X−D)+f(X)+f(X+D) (1)
としたとき、
−D/2≦X≦D/2の範囲で、
g(X)の最小値であるg(X)minと最大値であるg(X)maxの比g(X)min/g(X)maxが0.6以上であり、
Xの最小値Xminが−3.0D≦Xmin≦−0.5Dの範囲であり、最大値Xmaxが0.5D≦Xmax≦3.0Dの範囲であり(XminおよびXmaxは、f(X)の値がX=0である線状光源付近を中心に減衰していき、実質0になるときの両端の座標)、任意の凸部のX方向の断面形状が、下記の式で表される(2N+1)個の傾きの異なる領域−N〜Nからなることを特徴とする照明装置。
δ=(Xmax−Xmin)/(2N+1) (2)
i=i×δ (3)
αi=Tan-1(Xi/H) (4)
βi=Sin−1((1/n)sinαi) (5)
γi=Sin−1((1/n2)sinαi) (6)
i∝f(Xi+T・tanγi)・cosΦi・cosβi/cosαi/cos(Φi−βi) (7)
Φi=Tan−1((n・sinβi)/(n・cosβi−1)) (8)
N:自然数
i:−NからNの整数
n:光制御部材の凸部の屈折率
2:光制御部材の基材の屈折率
i:領域iのX方向の幅
Φi:領域iの出射面に対する斜面の傾き
T:光制御部材の入射面から凸部の底部までの厚み
It has a rectangular emission surface composed of an X direction and a Y direction perpendicular to the X direction. The light is in contact with the reflection plate, a plurality of linear light sources, a plate-like light control member, and the light control member. An illumination device including at least a protrusion for holding a control member, wherein the reflecting plate is arranged in parallel to the X direction and the Y direction, and the linear light source is in the X direction on the exit surface side of the reflecting plate. Arranged in one virtual plane parallel to the Y direction, and the linear light sources are arranged such that the longitudinal direction thereof is parallel to the Y direction and arranged at equal intervals along the X direction. The light control member is disposed on the emission surface side of the arrayed linear light sources, and the main surface of the light control member is opposed to the linear light source and receives the light from the linear light source. It is composed of an exit surface that emits light received by the incident surface, and the main surface is before the linear light sources are arranged. Parallel to the virtual plane, the exit surface has a plurality of bowl-shaped protrusions on the surface, and the protrusion has a bowl-shaped ridge line corresponding to the top formed in parallel to the Y direction, and the X direction. The projections are made of a light-transmitting material, the projections have a circular cross section, and the tip of the projection contacting the light control member has a diameter of 1 mm or less. The distance between the centers is D, the distance between the center of the arbitrary linear light source and the light control member is H, and the position coordinate X in the X direction of the light incident on the light control member from the linear light source (light source position) F (X) is a function representing the intensity of light emitted in the normal direction of the exit surface at X = 0).
g (X) = f (X−D) + f (X) + f (X + D) (1)
When
In the range of −D / 2 ≦ X ≦ D / 2,
The ratio g (X) min / g (X) max of g (X) min that is the minimum value of g (X) and g (X) max that is the maximum value is 0.6 or more,
The minimum value X min of X is in the range of −3.0D ≦ X min ≦ −0.5D, and the maximum value X max is in the range of 0.5D ≦ X max ≦ 3.0D (X min and X max are , The value of f (X) is attenuated around the linear light source where X = 0, and the coordinates of both ends when it becomes substantially 0), and the cross-sectional shape in the X direction of any convex portion is An illumination device comprising (2N + 1) regions having different inclinations -N to N expressed by an equation.
δ = (X max −X min ) / (2N + 1) (2)
X i = i × δ (3)
α i = Tan- 1 (X i / H) (4)
β i = Sin −1 ((1 / n) sin α i ) (5)
γ i = Sin −1 ((1 / n 2 ) sin α i ) (6)
a i αf (X i + T · tanγ i) · cosΦ i · cosβ i / cosα i / cos (Φ i -β i) (7)
Φ i = Tan −1 ((n · sin β i ) / (n · cos β i −1)) (8)
N: Natural number
i: integer from -N to N
n: Refractive index of the convex portion of the light control member
n 2 : Refractive index of the base material of the light control member
a i : width of region i in X direction
Φ i : Slope inclination with respect to the exit surface of region i
T: Thickness from the incident surface of the light control member to the bottom of the convex portion
上記光制御部材の凸部のX方向の断面形状を表す領域−N〜NがX軸の位置座標の順に並んでいることを特徴とする請求項1に記載の照明装置。   2. The lighting device according to claim 1, wherein the regions −N to N representing the cross-sectional shape in the X direction of the convex portions of the light control member are arranged in the order of the position coordinates of the X axis. 上記光制御部材の凸部のX方向の断面形状が、該凸部を成す(2N+1)個の傾きの異なる領域のうち少なくとも1組の隣接する2つの領域の形状を曲線で近似した形状であることを特徴とする請求項1または2に記載の照明装置。   The cross-sectional shape in the X direction of the convex portion of the light control member is a shape that approximates the shape of at least one pair of two adjacent regions out of (2N + 1) different regions forming the convex portion by a curve. The illumination device according to claim 1, wherein X方向と上記光制御部材の主面の法線方向に平行な断面内において、出射面の法線方向に対して30度以内の角度を成す範囲に出光する光の割合が全出光の50%以上であることを特徴とする請求項1〜3のいずれか1項記載の照明装置。   In a cross section parallel to the X direction and the normal direction of the main surface of the light control member, the proportion of light that emits light in a range that forms an angle of 30 degrees or less with respect to the normal direction of the exit surface is 50% of the total light output. It is the above, The illuminating device of any one of Claims 1-3 characterized by the above-mentioned. 請求項1から4のいずれか1項に記載の照明装置上に透過型表示素子を設けたことを特徴とする表示装置。

A display device comprising a transmissive display element provided on the lighting device according to claim 1.

JP2005315283A 2005-10-28 2005-10-28 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME Expired - Fee Related JP4515374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315283A JP4515374B2 (en) 2005-10-28 2005-10-28 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315283A JP4515374B2 (en) 2005-10-28 2005-10-28 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2007123125A JP2007123125A (en) 2007-05-17
JP4515374B2 true JP4515374B2 (en) 2010-07-28

Family

ID=38146737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315283A Expired - Fee Related JP4515374B2 (en) 2005-10-28 2005-10-28 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4515374B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538763B2 (en) * 2007-08-23 2010-09-08 ソニー株式会社 Surface light emitting device and liquid crystal display device
JP5033545B2 (en) * 2007-09-05 2012-09-26 株式会社日立製作所 Video display device
JP5078524B2 (en) * 2007-09-25 2012-11-21 パナソニック株式会社 Light diffusing resin molded body and lighting fixture provided with lighting cover comprising the same
JP2009123694A (en) * 2007-10-23 2009-06-04 Asahi Kasei Corp Light control unit
JP5493312B2 (en) * 2008-08-22 2014-05-14 ソニー株式会社 Surface light emitting device and image display device
JP2010192299A (en) * 2009-02-19 2010-09-02 Victor Co Of Japan Ltd Backlight device, and liquid crystal display
US20100208161A1 (en) 2009-02-19 2010-08-19 Victor Company Of Japan, Limited Backlight device and liquid crystal display
JP2015173009A (en) * 2014-03-11 2015-10-01 コニカミノルタ株式会社 Luminaire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392336U (en) * 1989-12-30 1991-09-19
JPH0398297U (en) * 1990-01-26 1991-10-11
JP2002244572A (en) * 2001-02-14 2002-08-30 Tama Electric Co Ltd Backlight device
JP2002352611A (en) * 2001-05-24 2002-12-06 Sharp Corp Lighting system and display device equipped with it
JP2004006256A (en) * 2002-03-26 2004-01-08 Sharp Corp Backlight and liquid crystal display device
JP2004163945A (en) * 2002-11-11 2004-06-10 Samsung Electronics Co Ltd Prism sheet, method of manufacturing the same, and liquid crystal display using the same
JP2004264452A (en) * 2003-02-28 2004-09-24 Fujitsu Kasei Kk Backlight device
JP2005208408A (en) * 2004-01-23 2005-08-04 Nec Lcd Technologies Ltd Direct backlight and display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392336U (en) * 1989-12-30 1991-09-19
JPH0398297U (en) * 1990-01-26 1991-10-11
JP2002244572A (en) * 2001-02-14 2002-08-30 Tama Electric Co Ltd Backlight device
JP2002352611A (en) * 2001-05-24 2002-12-06 Sharp Corp Lighting system and display device equipped with it
JP2004006256A (en) * 2002-03-26 2004-01-08 Sharp Corp Backlight and liquid crystal display device
JP2004163945A (en) * 2002-11-11 2004-06-10 Samsung Electronics Co Ltd Prism sheet, method of manufacturing the same, and liquid crystal display using the same
JP2004264452A (en) * 2003-02-28 2004-09-24 Fujitsu Kasei Kk Backlight device
JP2005208408A (en) * 2004-01-23 2005-08-04 Nec Lcd Technologies Ltd Direct backlight and display device

Also Published As

Publication number Publication date
JP2007123125A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
TWI417612B (en) Lighting apparatus and image display apparatus using the same
JP4584133B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
US7401962B2 (en) Light deflection element and light source apparatus using the same
US7220038B2 (en) Light source device and light polarizing element
US7128456B2 (en) Light source device
JP4515374B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP2008209928A (en) Light source device and light deflector for use therein
JP2009164101A (en) Backlight
KR20090050940A (en) Light guide plate and backlight unit
JP2004046076A (en) Optical deflecting element and surface light source unit
JPWO2008029911A1 (en) Surface light source element, light control member used therefor, and image display device using the same
US20060152827A1 (en) Optical deflectro element and light source device
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP2008218418A (en) Surface light source and light guide used for same
JP4684838B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM
JP2007103325A (en) Lighting device, light control member provided for it and image display apparatus using it
JP4522937B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP4545673B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
TWI526742B (en) Curved back light module
JP6167786B2 (en) Image source unit and liquid crystal display device
JP4684791B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP2007109434A (en) Lighting system, light control member used for it, and image display device using them
JP2009164100A (en) Backlight
JP2004287415A (en) Optical deflection device and light source device
JP4210053B2 (en) Light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees