JP4545673B2 - LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME - Google Patents
LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME Download PDFInfo
- Publication number
- JP4545673B2 JP4545673B2 JP2005301941A JP2005301941A JP4545673B2 JP 4545673 B2 JP4545673 B2 JP 4545673B2 JP 2005301941 A JP2005301941 A JP 2005301941A JP 2005301941 A JP2005301941 A JP 2005301941A JP 4545673 B2 JP4545673 B2 JP 4545673B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- control member
- light control
- incident
- linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Securing Globes, Refractors, Reflectors Or The Like (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
Description
本発明は、複数の線状光源と、前記線状光源からの光を反射する反射板と、光入射面及び/又は光出射面に凹凸形状を有し、前記線状光源および前記反射板からの光を屈折透過および反射する光制御部材と、光制御部材を保持する突起とから少なくとも構成される照明装置、並びに該照明装置上に透過型表示素子を設けた表示装置に関する。 The present invention has a plurality of linear light sources, a reflecting plate that reflects light from the linear light source, and a light incident surface and / or a light emitting surface that has a concavo-convex shape, from the linear light source and the reflecting plate. The present invention relates to an illuminating device including at least a light control member that refracts and transmits the light of light and a protrusion that holds the light control member, and a display device in which a transmissive display element is provided on the illuminating device.
近年、照明分野や透過型ディスプレイの分野では、特に高輝度化・薄型かつ輝度均一性が求められており、複数の線状光源と、その背面に設けられた反射板と、発光面をなす光拡散板を組み合わせた構成である直下型照明装置が好ましく用いられている。かかる直下型照明装置は、線状光源から放射される光束の有効利用効率(ランプから放射される光束のうち発光面から放射される割合)が高く、かつ使用する線状光源数を増やすことができるため発光面の高輝度化が容易である。このような直下型照明装置では、線状光源の真上に比較的短い距離で光拡散板を配置することから、線状光源のランプイメージを消すことを目的に多量の光拡散性微粒子を含有した光拡散板が通常使用されていた。しかし、光拡散性微粒子を多量に含有した光拡散板では拡散特性は良好であるものの、光拡散性微粒子に起因する光ロスおよび光反射率が高く、光の利用効率が低下するという問題があった。このため近年では、光拡散性微粒子を含有させることなくランプのイメージを消す方法としてプリズムレンズ等による光制御部材の開発が行われている(特許文献1参照)。 In recent years, particularly in the field of illumination and transmissive displays, there has been a demand for high brightness, thinness, and uniform brightness, and a plurality of linear light sources, a reflector provided on the back surface thereof, and light that forms a light emitting surface. A direct illumination device having a configuration in which a diffusion plate is combined is preferably used. Such a direct illumination device has a high effective utilization efficiency of the light beam emitted from the linear light source (the ratio of the light beam emitted from the lamp radiated from the light emitting surface) and can increase the number of linear light sources used. Therefore, the luminance of the light emitting surface can be easily increased. In such a direct illumination device, a light diffusing plate is disposed at a relatively short distance right above the linear light source, and therefore contains a large amount of light diffusing fine particles for the purpose of erasing the lamp image of the linear light source. The light diffusing plate was usually used. However, although a light diffusion plate containing a large amount of light diffusing fine particles has good diffusion characteristics, there is a problem in that light loss and light reflectance due to the light diffusing fine particles are high, and light use efficiency is reduced. It was. Therefore, in recent years, a light control member using a prism lens or the like has been developed as a method for erasing a lamp image without containing light diffusing fine particles (see Patent Document 1).
また、照明装置を薄型にしたときには線状光源と光拡散板の距離がより短くなるため、また、照明装置を大型化したときには光拡散板の自重が大きくなるため、光拡散板が線状光源の熱および自重等により変形するといった問題があった。そこで、上記照明装置に用いる光拡散板の線状光源方向への反りやたわみを抑える方法として、光拡散板を保持して光拡散板のたわみを抑制する目的で、例えば、反射板上に突起を設けた照明装置が用いられていた。この場合、光拡散板等による反射率が高いため、一般には前記突起は不透明である周辺の反射板と同じ素材を用いるかあるいは同色とすることにより、その陰影が光拡散板へ投影されること防止していた。一方、突起壁などの特殊な形状の突起を用いる場合には、透明な材料が用いられることもあった(特許文献2参照)。 Moreover, since the distance between the linear light source and the light diffusing plate becomes shorter when the lighting device is made thin, and the weight of the light diffusing plate becomes larger when the lighting device is enlarged, the light diffusing plate becomes a linear light source. There was a problem of deformation due to heat and dead weight. Therefore, as a method of suppressing warpage or deflection of the light diffusion plate used in the illumination device in the direction of the linear light source, for example, a protrusion on the reflection plate is used for the purpose of holding the light diffusion plate and suppressing the deflection of the light diffusion plate. An illuminating device provided with was used. In this case, since the reflectance by the light diffusing plate or the like is high, generally, the projection is projected on the light diffusing plate by using the same material or the same color as the surrounding reflecting plate which is opaque. It was preventing. On the other hand, when a specially shaped protrusion such as a protrusion wall is used, a transparent material may be used (see Patent Document 2).
しかしながら、照明装置の明るさを向上する目的で、光利用効率が高く光透過率の高い光制御部材を用いた場合には、前記反射板上に設けた突起の影が光制御部材を通して見えてしまうという問題が発生する場合があった。さらに、光学表面パターンとしてプリズムなどを使用した光制御部材を用いた場合には、突起の影が2重に見えるといった問題も新たに発生した。近年、上記照明装置に対して更なる高輝度が求められているため、照明装置に用いられる光制御部材に対しても光線透過率の向上が一層求められていることから突起に起因する陰影の改善についても求められている。 However, when a light control member with high light utilization efficiency and high light transmittance is used for the purpose of improving the brightness of the lighting device, the shadow of the protrusion provided on the reflector can be seen through the light control member. There was a case where the problem of end. Further, when a light control member using a prism or the like is used as the optical surface pattern, a problem that the shadow of the protrusion appears double is newly generated. In recent years, there has been a demand for higher brightness for the above-mentioned lighting device, and therefore there is a further demand for an improvement in light transmittance for a light control member used in the lighting device. There is also a need for improvement.
したがって、本発明は、複数の線状光源と前記線状光源からの光を反射する反射板を有する照明装置において、線状光源のイメージを消す目的に使用される光制御部材の光透過率が高い場合であっても、光制御部材を保持する目的で使用される突起が光制御部材に対して実質的に影を投影しない材質または形状であることにより、明るくまた面均一性の高い照明装置を提供することを目的とする。また、本発明は、上記照明装置にさらに透過型表示素子を設けた表示装置を提供することを目的とする。 Therefore, the present invention provides a lighting device having a plurality of linear light sources and a reflecting plate that reflects light from the linear light sources, and the light transmittance of the light control member used for the purpose of erasing the image of the linear light sources. Even if it is high, the projection used for the purpose of holding the light control member is made of a material or shape that does not substantially project a shadow on the light control member, so that it is bright and has high surface uniformity. The purpose is to provide. Another object of the present invention is to provide a display device in which a transmissive display element is further provided in the illumination device.
本発明者らは、上記課題について鋭意検討した結果、直下型照明装置に用いる突起の形状あるいは光制御部材の構成を工夫することにより解決できることを見出し、本発明を完成した。
すなわち、本発明は、複数の線状光源と、前記線状光源からの光を反射する反射板と、光入射面及び/又は光出射面に凹凸形状を有し、前記線状光源および前記反射板からの光を屈折透過および反射する光制御部材と、光制御部材を保持する突起とから少なくとも構成される照明装置において、該突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下である照明装置である。なお、本明細書においては、光制御部材の主面に平行な面で突起を切断した断面のことを「突起の水平断面」と称することとする。
As a result of intensive studies on the above problems, the present inventors have found that the problem can be solved by devising the shape of the protrusions used in the direct illumination device or the configuration of the light control member, and completed the present invention.
That is, the present invention has a plurality of linear light sources, a reflecting plate that reflects light from the linear light sources, and a light incident surface and / or a light exit surface having an uneven shape, and the linear light sources and the reflections In an illumination device comprising at least a light control member that refracts and transmits light from a plate and a protrusion that holds the light control member, the protrusion is made of a light-transmitting material, and the horizontal cross section of the protrusion has a circular shape. In this illumination device, the diameter of the tip of the protrusion that contacts the light control member is 1 mm or less. In the present specification, a cross section obtained by cutting the protrusion along a plane parallel to the main surface of the light control member is referred to as a “horizontal cross section of the protrusion”.
請求項1に記載の発明は、複数の線状光源と、前記線状光源からの光を反射する反射板と、前記線状光源および前記反射板からの光を屈折透過および反射する光制御部材と、前記光制御部材を保持する突起とから少なくとも構成される照明装置において、光入射側から光出射側に向かって前記反射板、線状光源及び光制御部材がこの順に配置され、前記突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下であり、該光制御部材が主として受光する光入射面と、主として出光する光出射面とを備え、光入射面及び/又は光出射面に凹凸形状を有し、任意の線状光源Mとその最近傍にある別の線状光源Nとの間の距離をD、該線状光源Mと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であることを特徴とする照明装置である。 The invention according to claim 1 includes a plurality of linear light sources, a reflecting plate that reflects light from the linear light source, and a light control member that refracts and transmits light from the linear light source and the reflecting plate. And a projection that holds at least the light control member, the reflector, the linear light source, and the light control member are arranged in this order from the light incident side to the light emission side, and the projection is It is made of a light-transmitting material, and the projection has a circular horizontal cross section, and the diameter of the tip of the projection in contact with the light control member is 1 mm or less, and the light control member mainly receives light, and mainly emits light. A light exit surface, the light entrance surface and / or the light exit surface has a concavo-convex shape, and the distance between an arbitrary linear light source M and another linear light source N nearest to it is D, When the distance between the linear light source M and the light control member is H In the alpha = Tan at any point with respect to the normal direction of the incident surface of the incident surface -1 {(D / 2) / H} angle total light transmittance of the incident light is 50% or more And the total light transmittance is 1.05 to 3 times the total light transmittance of light when light enters the point on the incident surface from the normal direction. Device.
請求項2に記載の発明は、上記光制御部材の入射面の法線方向に対し角度αで入射した光の10〜50%は、出射面の法線方向と成す角度が−15°〜+15°の範囲で出射することを特徴とする請求項1に記載の照明装置である。 According to the second aspect of the present invention, 10 to 50% of the light incident at an angle α with respect to the normal direction of the incident surface of the light control member has an angle formed with the normal direction of the output surface of −15 ° to +15. The illumination device according to claim 1, wherein the illumination device emits light in a range of °.
請求項3に記載の発明は、上記光制御部材の入射面が平坦であり、出射面に前記凹凸形状が形成されており、該出射面に直交し、該凹凸形状の頂部を含む、少なくとも所定の一方向における断面の光出射部分における輪郭線が、該光制御部材の屈折率がnであるとき、該輪郭線の傾きθ2が0≦|Sin−1(n・sin(θ2−Sin−1((1/n)・sinα)))―θ2|≦(π/12)を満たし、前記傾きθ2がSin−1(1/n)未満である領域Xを含み、該領域Xは前記凹凸形状の頂部を含み、該領域Xの出射面と平行な方向成分の長さxと輪郭線全体の該出射面と平行な方向成分の長さPの割合が0.15〜0.80であることを特徴とする請求項1または2に記載の照明装置である。 According to a third aspect of the present invention, the light control member has a flat entrance surface, the exit surface is formed with the concavo-convex shape, is orthogonal to the exit surface, and includes the top of the concavo-convex shape. The contour line in the light exit portion of the cross section in one direction is such that when the refractive index of the light control member is n, the slope θ2 of the contour line is 0 ≦ | Sin −1 (n · sin (θ2−Sin −1 ((1 / n) · sin α))) − θ2 | ≦ (π / 12) is satisfied, and the slope θ2 includes a region X that is less than Sin −1 (1 / n). The ratio of the length x of the direction component parallel to the exit surface of the region X and the length P of the direction component parallel to the exit surface of the entire contour line is 0.15 to 0.80. The illumination device according to claim 1, wherein:
請求項4に記載の発明は、上記光制御部材は、上記出射面に直交し、かつ、上記凹凸形状の頂部を含む、少なくとも所定の一方向に沿った断面の光出射部分における輪郭線が、延長線の交差する角度θが鋭角である2つの略直線と、該2つの略直線の各一端同士を結ぶ凸状の曲線とを含むことを特徴とする請求項1〜3のいずれか1項記載の照明装置である。 According to a fourth aspect of the present invention, the light control member has a contour line in a light emission portion of a cross section along at least a predetermined direction that is orthogonal to the emission surface and includes the top of the uneven shape. 4. The method according to claim 1, comprising two substantially straight lines having an acute angle θ at which the extension lines intersect, and a convex curve connecting the ends of the two substantially straight lines. It is an illuminating device of description.
請求項5に記載の発明は、上記光制御部材の出射面上に複数の凹凸形状が形成され、該出射面に直交し、かつ、該出射面上の前記凹凸形状の頂部を含む、前記線状光源と平行な方向で断面した光出射部分における稜線が、前記線状光源に対して平行な方向に延びる直線であることを特徴とする請求項1〜4のいずれか1項に記載の照明装置である。 According to a fifth aspect of the present invention, the line includes a plurality of concave and convex shapes formed on the light exit surface of the light control member, perpendicular to the light exit surface, and including the top of the corrugated shape on the light exit surface. 5. The illumination according to claim 1, wherein a ridge line in a light emitting portion sectioned in a direction parallel to the linear light source is a straight line extending in a direction parallel to the linear light source. Device.
請求項6に記載に発明は、請求項1〜5のいずれか1項に記載の照明装置上に透過型表示素子を設けたことを特徴とする表示装置である。 The invention described in claim 6 is a display device characterized in that a transmissive display element is provided on the illumination device according to any one of claims 1 to 5.
請求項1の構成によれば、突起が光透過性材料からなり、突起の水平断面が円形形状であって、光制御部材と接する突起先端部の直径が1mm以下であるため、高い光透過性を有する光制御部材を採用した場合でも突起の陰影が見えにくく、輝度が高く明るい照明装置を提供することが可能となる。この場合従来と同様、突起により光制御部材のたわみを保持できるため、光制御部材の反りやたわみを抑えることが可能である。
また、上記光制御部材の入射面の法線方向に対して所定の角度α=Tan-1{(D/2)/H}で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記法線方向から入射した光の場合の全光線透過率の1.05倍〜3倍、即ち、上記線状光源に対向する真上位置に入射する光の全光線透過率よりも適度に高くなる。従って、前記光制御部材から出射する光エネルギーの出射面内分布が均一化される。また、入射面上の任意の点で好ましい光学的性質が得られる。
According to the configuration of the first aspect, since the protrusion is made of a light-transmitting material, the horizontal cross section of the protrusion is circular, and the diameter of the protrusion tip portion in contact with the light control member is 1 mm or less, the light transmittance is high. Even when the light control member having the above is employed, it is possible to provide a lighting device that is difficult to see the shadow of the protrusion and has high brightness. In this case, since the deflection of the light control member can be held by the protrusions as in the conventional case, it is possible to suppress warping and deflection of the light control member.
The total light transmittance of light incident at a predetermined angle α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface of the light control member is 50% or more, and The total light transmittance is 1.05 to 3 times the total light transmittance in the case of light incident from the normal direction, that is, the total light incident on the position directly above the linear light source. It is appropriately higher than the light transmittance. Therefore, the in-plane distribution of light energy emitted from the light control member is made uniform. Further, preferable optical properties can be obtained at any point on the incident surface.
請求項2の構成によれば、以上の効果に加えて、多くの照明装置として好ましい正面輝度の高い照明装置を提供できる。 According to the structure of Claim 2, in addition to the above effect, the illuminating device with high front luminance preferable as many illuminating devices can be provided.
請求項3に記載の構成によれば、以上の効果に加えて、出射面の法線に対して(−π/12)〜(π/12)の範囲の角度に出光を制御しやすいので、多くの照明装置として好ましい正面輝度の高い照明装置を提供できる。 According to the configuration of claim 3, in addition to the above effects, it is easy to control the emitted light at an angle in the range of (−π / 12) to (π / 12) with respect to the normal of the emission surface. It is possible to provide a lighting device with high front luminance that is preferable as many lighting devices.
請求項4の構成によれば、以上の効果に加えて、凹凸形状の直線部と曲線部で異なる光制御をすることで、拡散性と出光方向制御を容易に両立できる。 According to the configuration of the fourth aspect, in addition to the above effects, diffusivity and light exit direction control can be easily achieved by performing different light control on the concavo-convex linear portion and the curved portion.
請求項5の構成によれば、以上の効果に加えて、線状光源の最も顕著にムラが発生する線状光源と垂直な方向の輝度ムラを、線状光源と平行な畝状の凹凸形状によって効率よく解消できる。 According to the configuration of claim 5, in addition to the above effects, the luminance unevenness in the direction perpendicular to the linear light source in which the most noticeable unevenness of the linear light source occurs is a bowl-shaped uneven shape parallel to the linear light source. Can be solved efficiently.
請求項6の構成によれば、照明装置上に液晶パネル等の透過型表示素子を設けたので、前記光制御部材により効率良く集光及び拡散された光線が、透過型表示素子を透過する。この結果、簡単な構成でありながら、光源位置の調整が不要であり、ランプイメージを解消でき、かつ、優れた出射面内均一な明るさを有する表示装置を容易に得ることができる。ここで、表示装置とは、照明装置と表示素子を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも表示機能を有する機器のことを言う。 According to the configuration of the sixth aspect, since the transmissive display element such as a liquid crystal panel is provided on the illuminating device, the light rays that are efficiently condensed and diffused by the light control member are transmitted through the transmissive display element. As a result, it is possible to easily obtain a display device that has a simple configuration, does not require adjustment of the light source position, can eliminate the lamp image, and has excellent brightness on the exit surface. Here, the display device refers to a display module in which a lighting device and a display element are combined, and a device having at least a display function such as a television or a personal computer monitor using the display module.
以下、本発明を詳細に説明する。
本発明の照明装置は、複数の線状光源と、前記線状光源からの光を反射する反射板と、光入射面及び/又は光出射面に凹凸形状を有し、前記線状光源および前記反射板からの光を屈折透過および反射する光制御部材と、光制御部材を保持する突起とから少なくとも構成される照明装置であって、該突起が光透過性材料からなり、突起の水平断面が円形形状で、光制御部材と接する突起先端部の直径が1mm以下であることを特徴とする。
Hereinafter, the present invention will be described in detail.
The illuminating device of the present invention has a plurality of linear light sources, a reflector that reflects light from the linear light sources, a light incident surface and / or a light exit surface having an uneven shape, and the linear light source and the light source An illumination device comprising at least a light control member that refracts and reflects light from a reflector, and a protrusion that holds the light control member, the protrusion made of a light-transmitting material, and the horizontal cross section of the protrusion It is circular, and the diameter of the tip of the protrusion in contact with the light control member is 1 mm or less.
次に、図面を参照しながら本発明の実施形態である照明装置の構造と機能を説明する。
まず、図1に、本発明の一つの実施形態例である液晶表示装置用バックライト照明装置の横断面図を示す。図1に示された実施態様においては、バックライト照明装置(バックライトモジュール)Aは冷陰極管等の線状光源C、光制御部材B、反射板D、及び突起Eから構成される。
次に、図2及び図3には、図1の突起が配置された近傍部分に相当する具体的な態様の拡大図を、図4には、光制御部材を取り外したバックライト装置を上方から見た図を、そして、図5には、好ましい態様の光制御部材を取り付けた状態のバックライト装置を斜め上方から見た部分拡大図をそれぞれ模式的に示す。
Next, the structure and function of a lighting device according to an embodiment of the present invention will be described with reference to the drawings.
First, FIG. 1 shows a cross-sectional view of a backlight illumination device for a liquid crystal display device which is an embodiment of the present invention. In the embodiment shown in FIG. 1, the backlight illumination device (backlight module) A is composed of a linear light source C such as a cold cathode tube, a light control member B, a reflector D, and a protrusion E.
Next, FIG. 2 and FIG. 3 are enlarged views of specific embodiments corresponding to the vicinity where the protrusions of FIG. 1 are arranged, and FIG. 4 shows the backlight device with the light control member removed from above. FIG. 5 and FIG. 5 schematically show partial enlarged views of the backlight device with the light control member of a preferred embodiment attached as seen from obliquely above.
図示の如く、本発明の上記実施態様で示したバックライト照明装置は、冷陰極管等の線状光源Cと、光制御部材Bと、反射板Dと、突起Eより構成されるが、突起Eは、光制御部材Bを固定する手段として、例えば、図4のように、バックライト照明装置の縦方向の中心部に、また、横方向には対称に取り付けられる。ただし、この突起の位置や個数は、バックライト照明装置の大きさや光制御部材のたわみ具合などにより適宜変更され、複数設けてもよい。以下の説明では図4に示す通り、バックライト照明装置の縦方向の中心部に、また、横方向には左右対称に1つずつ、合計2つ取り付けた例について説明する。 As shown in the figure, the backlight illumination device shown in the above embodiment of the present invention includes a linear light source C such as a cold cathode tube, a light control member B, a reflecting plate D, and a protrusion E. E is attached as a means for fixing the light control member B, for example, as shown in FIG. 4, at the center in the vertical direction of the backlight illumination device and symmetrically in the horizontal direction. However, the position and number of the protrusions may be appropriately changed depending on the size of the backlight illumination device, the degree of deflection of the light control member, and the like, and a plurality of protrusions may be provided. In the following description, as shown in FIG. 4, an example will be described in which a total of two are attached to the center of the backlight illuminating device in the longitudinal direction and one in the lateral direction symmetrically.
光制御部材Bは、光入射面及び/又は光出射面に凹凸形状を有するものであれば使用可能であり、後述するように少量の光拡散性微粒子が混合されていてもよいが、任意の線状光源Mとその最近傍にある別の線状光源Nとの間の距離をD、該線状光源Mと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であるものが好ましく採用される。図2、図3、図5、図6及び図7では、光制御部材Bの入光面に平坦である面が形成され、出光面に図8における2つの略直線10の延長線がなす角θ=50°、P1=260μm、A1=182μmのシリンドリカル状の突起が形成され、入光面を線状光源側に向け、線状光源である冷陰極管の長手方向と出光面のプリズム稜線が略一致する方向に配置されている。また、上記突起Eは、図2に示すように反射板Dと粘着テープなどにより一体化されていてもよいし、図3に示すように反射板に埋め込まれていてもよい。 The light control member B can be used as long as it has a concavo-convex shape on the light incident surface and / or light output surface, and a small amount of light diffusing fine particles may be mixed as described later. When the distance between the linear light source M and another linear light source N nearest to the linear light source M is D and the distance between the linear light source M and the light control member is H, any distance on the incident surface is set. The total light transmittance of light incident on the point at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface is 50% or more, and the total light transmission Preferably, the rate is 1.05 to 3 times the total light transmittance of light when light enters the point on the incident surface from the normal direction. 2, 3, 5, 6, and 7, a flat surface is formed on the light incident surface of the light control member B, and an angle formed by the extended lines of the two substantially straight lines 10 in FIG. 8 on the light exit surface. Cylindrical projections of θ = 50 °, P1 = 260 μm, and A1 = 182 μm are formed, the light incident surface faces the linear light source, and the longitudinal direction of the cold cathode tube that is a linear light source and the prism ridge line of the light exit surface It is arranged in a direction that substantially matches. Further, the protrusion E may be integrated with the reflecting plate D and an adhesive tape as shown in FIG. 2, or may be embedded in the reflecting plate as shown in FIG.
次いで、突起Eによって光制御部材に影が出る原因について説明する。本発明の好ましい態様で示すような光制御部材では、図6、7に示すように、線状光源からの光の方向を光の屈折透過および反射の原理を利用して制御し、明るい面線状光源としている。このとき、不透明材料からなる突起により線状光源からの光線が遮蔽されると、図9に示すようにこの光線は光制御部材に到達することができず、その結果、光制御部材の出光面から見ると前記突起の影が見えることになる。特に、本発明における少なくても一方の面に凹凸形状を形成する光制御部材を使用した場合は、不透明材料からなる突起の影が2重に見えるといった問題が発生する場合がある。 Next, the cause of the shadow on the light control member caused by the protrusion E will be described. In the light control member as shown in the preferred embodiment of the present invention, as shown in FIGS. 6 and 7, the direction of the light from the linear light source is controlled using the principle of light refraction and reflection, and a bright surface line is obtained. A light source. At this time, if the light beam from the linear light source is blocked by the projection made of an opaque material, the light beam cannot reach the light control member as shown in FIG. 9, and as a result, the light exit surface of the light control member When viewed from above, the shadow of the protrusion can be seen. In particular, when a light control member that forms a concavo-convex shape on at least one surface in the present invention is used, there may be a problem that the shadow of a projection made of an opaque material appears double.
一方、従来の光制御部材の代わりに使用されていた光拡散性微粒子を多量に含む光拡散板では、光散乱作用が強いため、光拡散板の入射面に突起部による光遮蔽部があった場合でも、他の光入光部からの散乱光により、光拡散板出射面において突起部の影を認識されることはほとんどなかった。突起部の影を認識可能となる光散乱作用の度合いは、光拡散性微粒子の特性にも影響されるが、おおよそ光拡散性微粒子の濃度に依存し、1質量部未満の光拡散性微粒子を含む光拡散板である場合に突起部の影が認識されることとなる。 On the other hand, the light diffusing plate containing a large amount of light diffusing fine particles used in place of the conventional light control member has a strong light scattering action, and thus there is a light shielding portion by a protrusion on the incident surface of the light diffusing plate. Even in this case, the shadow of the protrusion was hardly recognized on the light diffusing plate exit surface by the scattered light from the other light incident portions. The degree of the light scattering action that makes it possible to recognize the shadow of the protrusion is also affected by the characteristics of the light diffusing fine particles, but generally depends on the concentration of the light diffusing fine particles, and less than 1 part by weight of the light diffusing fine particles. In the case of the light diffusing plate including, the shadow of the protrusion is recognized.
このため、本発明の照明装置に用いる突起は、光拡散性微粒子の含有量が1質量部未満である光制御部材に対してもその影を投影しない形状または材質であることが必要である。具体的に好ましい突起の形状・材質などについて以下に説明する。 For this reason, the projection used in the lighting device of the present invention needs to have a shape or material that does not project the shadow even on the light control member having a light diffusing fine particle content of less than 1 part by mass. Specific preferred shapes and materials of the protrusions will be described below.
本発明の照明装置に用いる突起の水平断面形状としては、円形であることが重要であるが、厳密な意味での円形である必要はなくほぼ円形である場合も含まれる。例えば、長軸の長さに対する短軸の長さの比が0.8以上の楕円や正16角形以上の正多角形も本発明における円形とみなすことができるがそれらの形状に限られないことはいうまでもない。
本発明の一態様である照明装置では、図6、7に示すように線状光源からの光は光制御部材で直接屈折透過および反射して進む。このため、突起の水平断面が四角形等の所謂エッジを有する形状の場合、エッジの両側で光線の進む方向が急激に変化するため、光制御部材の出射面で突起の影が発生し易くなる。一方、突起の水平断面が比較的扁平な楕円形状の場合、線状光源からの突起を通過した光の広がり状態が楕円の長軸方向と短軸方向で大きく異なるため、この場合にも観察する方向により突起の影が発生し易くなる。つまり、突起の水平断面形状をほぼ円形とすることにより、あらゆる方向から観察した場合であっても、突起の影を認識しがたくなり好ましい。
The horizontal cross-sectional shape of the protrusion used in the lighting device of the present invention is important to be a circle, but it is not necessary to be a circle in a strict sense, and includes a case where it is substantially a circle. For example, an ellipse in which the ratio of the length of the short axis to the length of the long axis is 0.8 or more, or a regular polygon having a regular hexagon or more can be regarded as a circle in the present invention, but is not limited to these shapes. Needless to say.
In the lighting device which is one embodiment of the present invention, as shown in FIGS. 6 and 7, the light from the linear light source travels by being directly refracted and reflected and reflected by the light control member. For this reason, when the horizontal cross section of the projection has a shape having a so-called edge such as a quadrangle, the traveling direction of the light abruptly changes on both sides of the edge, so that the projection shadow easily occurs on the exit surface of the light control member. On the other hand, when the horizontal cross section of the protrusion is a relatively flat elliptical shape, the spreading state of the light passing through the protrusion from the linear light source is greatly different between the major axis direction and the minor axis direction of the ellipse. Depending on the direction, the shadow of the protrusion is likely to occur. That is, it is preferable to make the horizontal cross-sectional shape of the protrusions substantially circular, since it is difficult to recognize the shadows of the protrusions even when observed from all directions.
また、本発明の照明装置に用いる突起は光透過性材料で形成されていることが重要である。突起を形成する材料としては、透明材で形成するのが好ましく、いわゆる透明であれば、熱可塑性樹脂、熱硬化性樹脂のいずれでも好ましく用いられる。その具体例としては、(メタ)アクリル系樹脂、(メタ)アクリルスチレン系共重合樹脂、スチレン系樹脂、芳香族ビニル系樹脂、オレフィン系樹脂、エチレン酢酸ビニル系共重合樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、ポリカーボネート、フッ素樹脂、ウレタン樹脂、シリコン樹脂、アミド系樹脂、イミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等が挙げられる。突起が、不透明な材料から形成されている場合には、光制御部材に影を投影してしまい、好ましくない。なお、影を発生させない光透過性材料の光透過率は60%以上であることが好ましく、80%以上であることがより好ましい。 In addition, it is important that the protrusion used in the lighting device of the present invention is formed of a light transmissive material. The material for forming the protrusion is preferably formed of a transparent material, and if it is so-called transparent, either a thermoplastic resin or a thermosetting resin is preferably used. Specific examples thereof include (meth) acrylic resins, (meth) acryl styrene copolymer resins, styrene resins, aromatic vinyl resins, olefin resins, ethylene vinyl acetate copolymer resins, vinyl chloride resins, Examples thereof include vinyl ester resins, polycarbonates, fluorine resins, urethane resins, silicone resins, amide resins, imide resins, polyester resins, epoxy resins, phenol resins, urea resins, melamine resins, and the like. When the protrusion is formed of an opaque material, a shadow is projected on the light control member, which is not preferable. In addition, the light transmittance of the light transmissive material that does not generate a shadow is preferably 60% or more, and more preferably 80% or more.
そして、本発明の照明装置に用いる突起の形状としては、断面がほぼ円形で、光制御部材を保持するべく、直径1〜10mm程度、好ましくは直径1〜6mm程度のものが採用されるが、光制御部材と接する突起先端部の直径は1mm以下であることが重要であり、0.1〜0.8mmの範囲であることが好ましく、0.1〜0.5mmの範囲であることがより好ましい。光制御部材の光入射面側にプリズムが形成される場合には、プリズムピッチの倍以上であることが光制御部材を保持する上で好ましく、先端部の直径は0.1〜1mmの範囲であることが好ましく、0.1〜0.8mmの範囲であることがより好ましく、0.1〜0.5mmの範囲であることがさらに好ましい。線状光源からの光は一般に拡散光であるため、影となる光線の光路を考えたとき、拡散光の作用により突起の影は薄くなる。しかし、光制御部材と突起が接している点では、光の拡散作用がほとんどないため、突起の影がそのまま見えることになる。従って、突起と光制御部材の接する点は、通常小さければ小さいほど好ましいといえる。また、突起の先端部は平面である場合に限らず、光入射面及び/又は光出射面に形成される凹凸形状と突起先端部の接触に支障のない範囲で緩やかな凹凸形状を有していてもよい。 And as a shape of the projection used for the lighting device of the present invention, a cross section is substantially circular, and a diameter of about 1 to 10 mm, preferably about 1 to 6 mm, is used to hold the light control member. It is important that the diameter of the tip of the protrusion contacting the light control member is 1 mm or less, preferably in the range of 0.1 to 0.8 mm, more preferably in the range of 0.1 to 0.5 mm. preferable. When the prism is formed on the light incident surface side of the light control member, it is preferable to hold the light control member at least twice the prism pitch, and the diameter of the tip portion is in the range of 0.1 to 1 mm. Preferably, it is in the range of 0.1 to 0.8 mm, more preferably in the range of 0.1 to 0.5 mm. Since the light from the linear light source is generally diffused light, when considering the optical path of the light ray that becomes a shadow, the shadow of the protrusion becomes thin by the action of the diffused light. However, since the light control member and the protrusion are in contact with each other, there is almost no light diffusing action, so that the shadow of the protrusion can be seen as it is. Therefore, it can be said that the smaller the contact point between the protrusion and the light control member, the better. In addition, the tip of the protrusion is not limited to a flat surface, and has a concavo-convex shape as long as it does not interfere with the contact between the protrusion and the protrusion formed on the light incident surface and / or the light exit surface. May be.
突起の配置形態としては、図2に示すような反射板D上に配置した形態の他光制御部材B上に影となって投影されないものであれば他の形状または構造であっても構わない。例えば、図3に示すように反射板Dに埋め込む形にしてもよいし、また、線状光源Cと光制御部材Bとを一つの突起部Eで双方を支える形にしても良い。 As an arrangement form of the protrusions, other shapes or structures may be used as long as they are not projected as a shadow on the other light control member B in the form arranged on the reflector D as shown in FIG. . For example, as shown in FIG. 3, it may be embedded in the reflecting plate D, or the linear light source C and the light control member B may be supported by one protrusion E.
また、本発明の照明装置に用いる光制御部材としては、任意の線状光源Mとその最近傍にある別の線状光源Nとの間の距離をD、該線状光源Mと前記光制御部材との距離をHとした場合、前記入射面上の任意の点に該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で入射した光の全光線透過率が50%以上であり、かつ、該全光線透過率が、前記入射面上の点に法線方向から光が入射した場合の光の全光線透過率の1.05倍〜3倍であるものが好ましい。このような光制御部材としては、図5、図6及び図7に示すように光入射面に平坦面を設け、光出射面に凹凸形状を設けている。この平坦な入射面と出射面の凹凸形状により、線状光源の真上の部分つまり光制御部材に対して垂直に入射する光の一部は屈折透過するが、一部は全反射により透過せずに線状光源側へ戻ってくる。さらに、線状光源間部に入射してくる光も光制御部材に対してほぼ垂直に出射されることから、光制御部材からの出射光は面内に一様に分散され、照明装置は高い輝度を得ることができる。 Further, as a light control member used in the illumination device of the present invention, the distance between an arbitrary linear light source M and another linear light source N nearest to the linear light source M is D, the linear light source M and the light control. When the distance from the member is H, the light incident on an arbitrary point on the incident surface at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface. The total light transmittance is 50% or more, and the total light transmittance is 1.05 times to 3 times the total light transmittance of light when light is incident on a point on the incident surface from the normal direction. Those that are doubled are preferred. As such a light control member, as shown in FIGS. 5, 6, and 7, a flat surface is provided on the light incident surface, and an uneven shape is provided on the light emitting surface. Due to the uneven shape of the flat entrance surface and exit surface, a portion directly above the linear light source, that is, a part of the light incident perpendicularly to the light control member is refracted and transmitted, but a part is transmitted by total reflection. Without returning to the linear light source side. Furthermore, since the light incident on the linear light source is also emitted almost perpendicularly to the light control member, the light emitted from the light control member is uniformly distributed in the plane, and the illumination device is expensive. Brightness can be obtained.
図5に示すように、光入射側から光出射側に向かって反射板、線状光源、および光制御部材がこの順序で配置され、該光制御部材は規則的な複数の凹凸形状:出射面凹凸を有する。このように、反射板と光制御部材の間に複数の線状光源を配置して成る照明装置にあっては、図10に示す様に、前記光制御部材の入射面に相当する仮想面へ入射した光は、各線状光源の直上部分と、隣り合う線状光源同士の間の部分とでは光入射エネルギーが異なる。 As shown in FIG. 5, the reflector, the linear light source, and the light control member are arranged in this order from the light incident side to the light emission side, and the light control member has a plurality of regular uneven shapes: emission surface It has irregularities. In this way, in the illumination device in which a plurality of linear light sources are arranged between the reflector and the light control member, as shown in FIG. 10, to the virtual surface corresponding to the incident surface of the light control member. The incident light has different light incident energies between the portion directly above each linear light source and the portion between adjacent linear light sources.
即ち、各線状光源位置に対向する真上領域では、線状光源に近いため入射エネルギーが大きい一方、複数の線状光源同士の間の位置に対向する非真上領域(各線状光源の斜上部分)では、線状光源から離れているため入射エネルギーは小さい。 That is, in the region directly above each linear light source position, the incident energy is large because it is close to the linear light source. On the other hand, the non-directly above region facing the position between the plurality of linear light sources (slantly above each linear light source) In (part), since it is away from the linear light source, the incident energy is small.
また、図11に示す様に、前記仮想面に対する入射エネルギーの角度分布図、即ち、入射角度に対する輝度の分布図では、仮想面に対し垂直方向に入射した光線の輝度が最大値を示す。一方、図12に示す様に、仮想面に対する出射エネルギーの角度分布図、即ち、出射角度に対する輝度の分布図では、仮想面に対し斜め方向に入射した光線の輝度、特に、前記隣り合う線状光源同士の間の中央位置近傍における光線の輝度が最大値を示す。 Further, as shown in FIG. 11, in the angular distribution diagram of the incident energy with respect to the virtual surface, that is, the luminance distribution diagram with respect to the incident angle, the luminance of the light beam incident in the direction perpendicular to the virtual surface shows the maximum value. On the other hand, as shown in FIG. 12, in the angular distribution diagram of the emission energy with respect to the virtual surface, that is, the luminance distribution diagram with respect to the emission angle, the luminance of the light ray incident in an oblique direction with respect to the virtual surface, The brightness of the light beam in the vicinity of the center position between the light sources shows the maximum value.
本発明に係る照明装置においては、図13に示すように、任意の線状光源Mと、該線状光源Mに対し最近傍に位置する別の線状光源Nとの距離をD、該線状光源Mと光制御部材との距離をHとした場合、該光制御部材の入射面上における任意の点について、該入射面に入光した光が該光制御部材の出射面から出光する割合であるところの全光線透過率に関しては、50%以上乃至100%の範囲であって、かつ、次のような関係を有する。 In the illuminating device according to the present invention, as shown in FIG. 13, the distance between an arbitrary linear light source M and another linear light source N located nearest to the linear light source M is D, the line When the distance between the light source M and the light control member is H, the ratio of light incident on the incident surface from the exit surface of the light control member at any point on the incident surface of the light control member The total light transmittance is in the range of 50% to 100%, and has the following relationship.
すなわち、該入射面の法線方向に対してα=Tan-1{(D/2)/H}の角度で光が入射した場合の該光の全光線透過率R1は、該入射面に対して垂直方向に光が入射した場合の該光の全光線透過率R2の1.05倍〜3.00倍であることを特徴としている。また、該全光線透過率の割合R1/R2は1.05〜2.00倍であることが、光利用効率の観点からより好ましい。 That is, when light is incident at an angle of α = Tan −1 {(D / 2) / H} with respect to the normal direction of the incident surface, the total light transmittance R1 of the light is relative to the incident surface. The total light transmittance R2 of the light when the light is incident in the vertical direction is 1.05 to 3.00 times. The ratio R1 / R2 of the total light transmittance is more preferably 1.05 to 2.00 times from the viewpoint of light utilization efficiency.
ここで、前述の全光線透過率の測定に際し、測定対象物への平行光の光束の幅は、光制御部材の表面に凹凸形状を形成している場合において、例えば、凹凸形状の一斜面のみといった微小領域に入射する程度のものではなく、該凹凸形状の特徴を全光線透過率に反映するために、少なくとも凹凸形状部のピッチ以上の広い領域に入射する程度のものである必要がある。 Here, when measuring the total light transmittance described above, the width of the parallel light beam to the measurement object is, for example, a concavo-convex shape on the surface of the light control member. In order to reflect the feature of the uneven shape on the total light transmittance, it is necessary that the light is incident on a wide region at least larger than the pitch of the uneven portion.
図14に、平坦な入射面を有する測定対象物へ入射角βで入射した平行光における全光線透過率の測定方法を示す。同図に示すように、積分球の開口部の下側にこれを閉鎖するように測定対象物を設置し、レーザー光もしくはレンズでコリメートした平行光を、測定対象物の法線方向に対しβの角度で入射させる。 FIG. 14 shows a method for measuring the total light transmittance of parallel light incident on a measurement object having a flat incident surface at an incident angle β. As shown in the figure, the object to be measured is placed so as to close the opening of the integrating sphere, and the collimated light collimated with the laser beam or the lens is converted into β with respect to the normal direction of the object to be measured. Incident at an angle of.
而して、測定対象物を透過した光は積分球内で乱反射され、図示していないフォトマルチプライヤーに代表される検出器でその反射エネルギーを測定する。ここで、測定対象物を図示のように設置して、角度βで平行光を入射した場合の検出器の出力をV(β)、測定対象物が設置されていない場合の検出器の出力をV0とすると、角度βにおける全光線透過率はV(β)/V0で得られる。 Thus, the light transmitted through the measurement object is diffusely reflected in the integrating sphere, and the reflected energy is measured by a detector (not shown) represented by a photomultiplier. Here, the measurement object is installed as shown in the figure, and the output of the detector when parallel light is incident at an angle β is V (β), and the output of the detector when the measurement object is not installed is Assuming V0, the total light transmittance at an angle β is obtained by V (β) / V0.
図13に示す様に、前記角度αは、線状光源Mまたは線状光源Nから発した光が、該線状光源Mと線状光源Nとの中間点の直上位置の光制御部材に入射した場合の光線の入射角度に相当する。全光線透過率については、光制御部材に対し垂直方向から入射したときの光の全光線透過率R2よりも、光制御部材に対し斜め方向から入射角α(≠0)で入射したときの光の全光線透過率R1の方が高い。このため、各線状光源M,Nの真上の部分と、線状光源Mと線状光源Nの間の部分において、光制御部材の出射光エネルギーを全体として均一化することができる。 As shown in FIG. 13, the angle α indicates that the light emitted from the linear light source M or the linear light source N is incident on the light control member at a position just above the midpoint between the linear light source M and the linear light source N. This corresponds to the incident angle of the light beam. With respect to the total light transmittance, the light when incident on the light control member at an incident angle α (≠ 0) from an oblique direction, rather than the total light transmittance R2 of the light when incident on the light control member from the vertical direction. The total light transmittance R1 is higher. For this reason, the emitted light energy of the light control member can be made uniform as a whole in the portion directly above each of the linear light sources M and N and the portion between the linear light source M and the linear light source N.
さらに、前記光制御部材の全光線透過率は入射角度のみに依存し、光制御部材に対する入射位置には依存しないため、複数の各線状光源と光制御部材との位置調整が不要である。つまり、照明装置の組立時に、光制御部材の面内方向における位置を厳密に設定する必要はない。従って、本発明の光制御部材を大面積で作製した後、必要寸法に応じて任意の位置から切出したものを使用することができるため、照明装置の生産性を著しく向上させることができる。 Furthermore, since the total light transmittance of the light control member depends only on the incident angle and does not depend on the incident position with respect to the light control member, it is not necessary to adjust the positions of the plurality of linear light sources and the light control member. That is, it is not necessary to strictly set the position of the light control member in the in-plane direction when the lighting device is assembled. Therefore, after the light control member of the present invention is manufactured with a large area, it is possible to use a light control member cut out from an arbitrary position according to a required dimension, so that the productivity of the lighting device can be remarkably improved.
以下、光制御部材に対して光が垂直方向および斜め方向から入射したときにおける全光線透過率の調整の具体的手段の例について説明する。先ず、該具体的手段の第1の例としては、図5に示したように、光制御部材の出射面に複数の凹凸形状を設けた態様が挙げられる。凹凸形状9がストライプ状に形成された好適な断面形状を、図8に示す。 Hereinafter, an example of specific means for adjusting the total light transmittance when light enters the light control member from the vertical direction and the oblique direction will be described. First, as a first example of the specific means, as shown in FIG. 5, there may be mentioned an aspect in which a plurality of uneven shapes are provided on the exit surface of the light control member. FIG. 8 shows a suitable cross-sectional shape in which the uneven shape 9 is formed in a stripe shape.
該凹凸形状の断面形状は、光制御部材の出射面に直交し、凹凸形状の頂部を含む少なくとも所定の一方向に沿って断面した場合の輪郭線から成る。該輪郭線は、延長線が交差する角度θが鋭角である2つの略直線(部)と、該2つの略直線(部)の各一端同士を結ぶ曲線(部)とから構成され、かつ、輪郭線の頂部が凸状の曲線である。 The concavo-convex cross-sectional shape is composed of a contour line in a case where the concavo-convex cross-section is orthogonal to the emission surface of the light control member and is crossed along at least one predetermined direction including the top of the concavo-convex shape. The outline is composed of two substantially straight lines (parts) having an acute angle θ at which the extension lines intersect, and a curve (part) connecting each end of the two substantially straight lines (parts), and The top of the contour line is a convex curve.
ここで、前記所定の一方向とは、線状光源Mから線状光源Nへの方向に平行な方向を意味する。また、輪郭線の頂部を構成する曲線の曲率半径は、無限大、すなわち直線であってもよい。 Here, the predetermined one direction means a direction parallel to the direction from the linear light source M to the linear light source N. Further, the radius of curvature of the curve constituting the top of the contour line may be infinite, that is, a straight line.
図15、図16に出射面に断面が略楕円形状の凹凸形状2を形成した場合の光線の挙動を示した。凹凸形状を略楕円形状で構成することで、凹凸形状裾部11の傾きの絶対値を0≦|Sin−1(n・sin(θ2−Sin−1((1/n)・sinα)))―θ2|≦(π/12)を満たすθ2以下であるようにとっている。 FIG. 15 and FIG. 16 show the behavior of the light beam when the concavo-convex shape 2 having a substantially elliptical cross section is formed on the emission surface. By configuring the concavo-convex shape in a substantially elliptical shape, the absolute value of the inclination of the concavo-convex shape skirt 11 is 0 ≦ | Sin −1 (n · sin (θ 2 −Sin −1 ((1 / n) · sin α))). −θ2 | ≦ (π / 12) that satisfies θ2 or less.
図18では、法線に対して角度αで入射する斜め入射光は凹凸形状裾部において屈折作用により光制御部材Bから略正面方向に出射させることができる。 In FIG. 18, oblique incident light incident at an angle α with respect to the normal can be emitted from the light control member B in a substantially front direction by refraction at the concavo-convex bottom.
これは次の理由による。
凹凸形状裾部の傾きをγ、光制御部材への入射角度をφ1、光制御部材の屈折率をnとすると図10に示す様に、光制御部材の凹凸形状の一方の裾部から透過する光の光制御部材法線方向に対する角度φ5は下記の通り求めることが出来る。
φ2=Sin−1{(sinφ1)/n}
φ3=γ−φ2
φ4=Sin−1(n×sinφ3)
φ5=φ4−γ
すなわち、φ5=Sin−1(n・sin(γ−Sin−1((1/n)・sinφ1)))―γ
本発明の主旨から光線の出射方向は正面方向であることが好ましい。従って、φ1=αの場合、−15°≦φ5≦15°であることが望ましい。また−10°≦φ5≦10°であることがより望ましい。さらには−5°≦φ5≦5°となるようにγを選択することが好適である。
This is due to the following reason.
As shown in FIG. 10, when the slope of the concavo-convex shape is γ, the incident angle to the light control member is φ1, and the refractive index of the light control member is n, the light is transmitted from one skirt of the concavo-convex shape of the light control member. The angle φ5 of the light with respect to the normal direction of the light control member can be obtained as follows.
φ 2 = Sin −1 {(sin φ 1 ) / n}
φ 3 = γ−φ 2
φ 4 = Sin −1 (n × sin φ 3 )
φ 5 = φ 4 −γ
That is, φ 5 = Sin −1 (n · sin (γ−Sin −1 ((1 / n) · sin φ 1 ))) − γ
From the gist of the present invention, it is preferable that the light emission direction is the front direction. Therefore, when φ 1 = α, it is desirable that −15 ° ≦ φ 5 ≦ 15 °. Further, it is more desirable that −10 ° ≦ φ 5 ≦ 10 °. Furthermore, it is preferable to select γ so that −5 ° ≦ φ 5 ≦ 5 °.
例えば、線状光源間距離Dを33mm、線状光源中心から光制御部材までの最短距離Hを15mm、光制御部材の屈折率nを1.54とすると、52°≦γ≦69°(42°≦θ2≦76°)であることが望ましい。また、57°≦γ≦68°(44°≦θ2≦66°)であることがより望ましい。さらには、62°≦γ≦67°(46°≦θ2≦56°)となるように、γを選択することが好適である。 For example, assuming that the distance D between the linear light sources is 33 mm, the shortest distance H from the center of the linear light source to the light control member is 15 mm, and the refractive index n of the light control member is 1.54, 52 ° ≦ γ ≦ 69 ° (42 It is desirable that ° ≦ θ2 ≦ 76 °). Further, it is more preferable that 57 ° ≦ γ ≦ 68 ° (44 ° ≦ θ2 ≦ 66 °). Furthermore, it is preferable to select γ so that 62 ° ≦ γ ≦ 67 ° (46 ° ≦ θ2 ≦ 56 °).
凹凸形状頂部は出射面に対する傾きの絶対値θ2がSin−1(1/n)未満である領域Xを持っている。このように領域Xの傾きθ2は複数の値を取る事ができる。曲線部であることで連続的にθ2が変化することで、分散方向を連続的に変化させることができ、より高い輝度均一性が得られる。また望ましくは凹凸形状頂部の任意の点の傾きは凹凸形状裾部の出射面に対する傾きの絶対値以下である。これは成形の容易性、光の方向制御の容易性から望ましい。 The top of the concavo-convex shape has a region X in which the absolute value θ2 of the inclination with respect to the exit surface is less than Sin −1 (1 / n). As described above, the slope θ2 of the region X can take a plurality of values. Since θ2 continuously changes due to the curved portion, the dispersion direction can be continuously changed, and higher luminance uniformity can be obtained. Desirably, the slope of an arbitrary point on the top of the concavo-convex shape is equal to or less than the absolute value of the slope of the skirt of the concavo-convex shape with respect to the exit surface. This is desirable from the viewpoint of easy molding and easy control of light direction.
また図16に示す様に光制御部材Bに垂直に入射した光14は一部が方向を分散しつつ出射すると同時に、凹凸形状表面に入射した光の一部は反射光16として入射側に戻ることで、全光線透過率を抑えることが可能となる。これによって輝度均一性が高く、高輝度な照明装置を得ることができる。 Further, as shown in FIG. 16, a part of the light 14 incident perpendicularly to the light control member B is emitted while being dispersed in the direction, and at the same time, a part of the light incident on the irregular surface returns to the incident side as reflected light 16. As a result, the total light transmittance can be suppressed. Accordingly, it is possible to obtain a lighting device with high luminance uniformity and high luminance.
凹凸形状の形状としては、2つの断面略直線と断面曲線を有する立体形状に形成することもできる。この理由について以下に説明する。図6に示す様に、前記凹凸形状の立体形状を、鋭角θをなす2つの略斜面部(断面略直線に相当)と曲面部(断面曲線に相当)とによって構成することにより、光制御部材の入射面に斜めに入射した斜め入射光は、断面略直線の部分において屈折作用により、光制御部材の出射面側から略垂直方向(入射面の略垂直方向と同方向)に出射させることができる。 The uneven shape can be formed into a three-dimensional shape having two substantially straight cross sections and a cross section curve. The reason for this will be described below. As shown in FIG. 6, the three-dimensional shape of the concavo-convex shape is constituted by two substantially sloped portions (corresponding to a substantially straight section) and a curved surface portion (corresponding to a sectional curve) forming an acute angle θ, thereby providing a light control member. The obliquely incident light obliquely incident on the incident surface of the light can be emitted in a substantially vertical direction (same direction as the substantially vertical direction of the incident surface) from the light emission surface side of the light control member by a refracting action at a substantially straight section. it can.
また、図8に示す様に、光制御部材に垂直に入射した光は、前記凹凸形状の曲面部において出射方向を分散すると同時に、凹凸形状の表面に当たった光の一部は、全反射を起こし出射しないため、該光の全光線透過率を抑えることが可能となる。光制御部材に垂直に入射した垂直光の全光線透過率が小さくなることによって、輝度均一性が高く、かつ、高輝度な照明装置を容易に得ることができる。 Further, as shown in FIG. 8, the light incident perpendicularly to the light control member disperses the emission direction in the curved surface portion of the uneven shape, and at the same time, a part of the light hitting the uneven surface is totally reflected. Since the light is not raised and emitted, the total light transmittance of the light can be suppressed. By reducing the total light transmittance of the vertical light incident perpendicularly to the light control member, it is possible to easily obtain a lighting device with high luminance uniformity and high luminance.
前記光制御部材の凹凸形状の投影面積Pに対する曲線部の投影面積Aの割合A/Pについては、40〜80%であることが望ましい。例えば、図8中の面積割合A1/P1が前記面積割合A/Pに相当する。面積割合A/Pが40%未満であると、光の分散効果が小さくなり、輝度均一性が低下する。また、面積割合A/Pが80%を越えると、略直線部10の面積が減少することにより、斜め入射光のうち正面方向へ出射する光の割合が減少するため、上記と同様に、出射面内の輝度均一性が低下する。 The ratio A / P of the projected area A of the curved portion to the projected area P of the uneven shape of the light control member is preferably 40 to 80%. For example, the area ratio A1 / P1 in FIG. 8 corresponds to the area ratio A / P. When the area ratio A / P is less than 40%, the light dispersion effect is reduced, and the luminance uniformity is lowered. Further, when the area ratio A / P exceeds 80%, the area of the substantially straight line portion 10 decreases, so that the ratio of the light emitted in the front direction out of the oblique incident light decreases. In-plane brightness uniformity decreases.
図17に、本発明で実施可能な凹凸形状の別の形状を示す。この場合、凹凸形状の谷部分に断面曲線(部)を設けている。この断面曲線部により光の出射方向が多方向に分散され、輝度均一性の高い照明装置を得ることができる。さらに、光制御部材内部で様々な方向に光を伝搬させて分散効果を高めるための手段としては、光制御部材の入射面に平行光を複数の角度に偏向させる手段を用いてもよい。具体的には、光制御部材の入射面に、ランダムまたは周期性を有する凹凸構造を形成することが挙げられる。 FIG. 17 shows another shape of the concavo-convex shape that can be implemented in the present invention. In this case, a cross-sectional curve (part) is provided in the uneven valley portion. With this cross-sectional curve portion, the light emission direction is dispersed in multiple directions, and an illumination device with high luminance uniformity can be obtained. Furthermore, as means for propagating light in various directions within the light control member to enhance the dispersion effect, means for deflecting parallel light at a plurality of angles on the incident surface of the light control member may be used. Specifically, a concavo-convex structure having random or periodicity is formed on the incident surface of the light control member.
また光制御部材の入射面に凹凸形状を形成し、出射面が平坦である場合は、前記入射面上に周期的に凸部が形成されており、該凸部の頂部を含み入射面に直交する面で切った少なくとも所定の一方向の断面の輪郭線が凸部の2つの直線部を持ち、該2直線が頂部もしくは該頂部の入射側で角度(π/9)以上の鋭角θ’で交差していることが、全光線透過率を制御する上で好ましい。また前記入射面の凸部の間に該入射面に対する傾きの絶対値が該光拡散板の屈折率がnであるとき、0≦Sin−1(n・sin(θ2’−Sin−1(1/n・sinθ2’)))≦(π/12)を満たす角度θ2’である領域Yを有することことで、法線方向から領域Yに入射した光を効率よく法線に対して(−π/12)〜(π/12)の範囲の角度に出光することができるので、正面輝度を効率よく高めることが出来る。領域Yの割合を好適な範囲に調整することで、全光線透過率の制御も更に容易になる。 In addition, when the light control member has an uneven surface on the incident surface and the output surface is flat, a convex portion is periodically formed on the incident surface, and includes the top of the convex portion and is orthogonal to the incident surface. The contour line of the cross section in at least one predetermined direction cut by the surface to be cut has two straight portions of the convex portion, and the two straight lines are at the apex portion or at an acute angle θ ′ of an angle (π / 9) or more on the incident side of the apex portion. Crossing is preferable in controlling the total light transmittance. Further, when the refractive index of the light diffusing plate is n between the convex portions of the incident surface and the absolute value of the inclination with respect to the incident surface is 0 ≦ Sin −1 (n · sin (θ2′−Sin −1 (1 / N · sin θ2 ′))) ≦≦ (π / 12) by having the region Y having the angle θ2 ′, the light incident on the region Y from the normal direction is efficiently (−π Since the light can be emitted at an angle in the range of / 12) to (π / 12), the front luminance can be increased efficiently. By adjusting the ratio of the region Y to a suitable range, the control of the total light transmittance is further facilitated.
上記出射面側に形成する凹凸形状の高さまたは深さは、1μm以上かつ500μm以下が望ましい。500μmを越えると、凹凸形状が観察されるため品位の低下を招く。また、1μm未満であると、光の回折現象により着色が発生して品位の低下を生じる。さらに、特に液晶パネルを利用する際には、液晶の画素の配列方向と平行な方向の凹凸の平均幅が、液晶の画素ピッチの2/3以下であることが望ましい。平均幅が画素ピッチの2/3を越えると、液晶パネルの表面によりモアレ現象が発生し、液晶パネルの画質を大きく低下させる。 The height or depth of the concavo-convex shape formed on the emission surface side is desirably 1 μm or more and 500 μm or less. If the thickness exceeds 500 μm, the uneven shape is observed, and the quality is degraded. On the other hand, when the thickness is less than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates. Further, particularly when using a liquid crystal panel, it is desirable that the average width of the unevenness in the direction parallel to the arrangement direction of the pixels of the liquid crystal is 2/3 or less of the pixel pitch of the liquid crystal. When the average width exceeds 2/3 of the pixel pitch, a moire phenomenon occurs on the surface of the liquid crystal panel, and the image quality of the liquid crystal panel is greatly deteriorated.
本発明の照明装置に用いる光制御部材を形成する樹脂には、光拡散性微粒子を含有させても良い。含有された光拡散性微粒子により入射面側及び/又は出射面の凹凸形状のイメージが拡散され、モアレを解消する効果を発揮することができる。かかる光拡散性微粒子の粒子径は1〜50μmの範囲であることが好ましく、光透過性材料である透光性樹脂100質量部に対して1質量部未満含有させることが好ましく、0.5質量部未満含有させることがより好ましい。 The resin forming the light control member used in the lighting device of the present invention may contain light diffusing fine particles. The light diffusing fine particles contained in the light diffuse the uneven surface image on the incident surface side and / or the exit surface, and can exhibit an effect of eliminating moire. The particle diameter of the light diffusing fine particles is preferably in the range of 1 to 50 μm, preferably less than 1 part by mass with respect to 100 parts by mass of the light transmissive resin as the light transmissive material, and 0.5 mass. It is more preferable to contain less than part.
光制御部材の入射面側の凹凸形状および出射面側の凹凸形状は、押出成形法、射出成形法、紫外線硬化型樹脂を用いた2P成形法等で形成することができ、これらの成形方法は、凹凸形状の大きさ、要求形状、量産性などを考慮して適宜採用することができる。 The uneven shape on the incident surface side and the uneven shape on the exit surface side of the light control member can be formed by an extrusion molding method, an injection molding method, a 2P molding method using an ultraviolet curable resin, and the like. It is possible to appropriately adopt the shape in consideration of the size of the uneven shape, the required shape, mass productivity, and the like.
以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。
(光制御部材の作製)
線状光源と対向する光入射面に平坦である面が形成され、出光面に図8における2つの略直線の延長線がなす角θ=50°、P1=260μm、A1=182μmのシリンドリカル状の突起が形成されることを特徴とする光制御部材は、以下のようにして作製した。
Examples of the present invention will be described below, but the present invention is not limited thereto.
(Production of light control member)
A flat surface is formed on the light incident surface facing the linear light source, and a cylindrical shape having an angle θ = 50 °, P1 = 260 μm, and A1 = 182 μm formed by two substantially straight line extensions in FIG. The light control member characterized by the formation of protrusions was produced as follows.
(1)先ず、図8における2つの略直線の延長線がなす角θ=50°、P1=260μm、A1=182μmのシリンドリカル状の溝を有する雌金型を切削加工により作製した。プリズムの形状は金型表面に対し対称形状とし、深さも面内で一定とした。次に金型から、紫外線硬化樹脂でポリカーボネートフィルム表面上にプリズム形状をそれぞれ成形した。さらにこのポリカーボネートフィルムのプリズムを形成していない面を厚さ2mmの透明なアクリル板の両面に貼り合せて、凸形状のプリズムが形成された光制御部材(B−1)を得た。 (1) First, a female die having a cylindrical groove with angles θ = 50 °, P1 = 260 μm, and A1 = 182 μm formed by two substantially straight lines in FIG. 8 was produced by cutting. The shape of the prism was symmetric with respect to the mold surface, and the depth was constant in the plane. Next, prism shapes were molded from the mold onto the surface of the polycarbonate film using an ultraviolet curable resin. Furthermore, the surface of the polycarbonate film on which the prism was not formed was bonded to both surfaces of a transparent acrylic plate having a thickness of 2 mm to obtain a light control member (B-1) on which a convex prism was formed.
(2)前記透明な厚さ2mmのアクリル板に代え、光拡散性微粒子(GE東芝シリコーン
株式会社製 商品名“トスパール”2000B、屈折率:1.420)を0.15質量部添加した厚み2mmの(メタ)アクリルスチレン系共重合樹脂板(使用樹脂:電気化学工業株式会社製 商品名“TXポリマー”TX−800S、屈折率:1.549)を押し出し成形により作製し、前記プリズム形状を紫外線硬化樹脂で転写したポリカーボネートフィルムを同様に貼り合わせて、凸形状のプリズムが形成された光制御部材(B−2)を得た。
(2) In place of the transparent acrylic plate having a thickness of 2 mm, a thickness of 2 mm in which 0.15 parts by mass of light diffusing fine particles (trade name “Tospearl” 2000B, refractive index: 1.420) manufactured by GE Toshiba Silicone Co., Ltd.) is added. (Meth) acryl styrene copolymer resin plate (used resin: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “TX polymer” TX-800S, refractive index: 1.549) was prepared by extrusion molding, and the prism shape was made ultraviolet A polycarbonate film transferred with a curable resin was bonded together in the same manner to obtain a light control member (B-2) on which convex prisms were formed.
(3)また、前記透明な厚さのアクリル板に代え、光拡散性微粒子(GE東芝シリコーン
株式会社製 商品名“トスパール”2000B、屈折率:1.420)を1.0質量部添加した厚み2mmの(メタ)アクリルスチレン系共重合樹脂板(使用樹脂:電気化学工業株式会社製 商品名“TXポリマー”TX−800S、屈折率:1.549)を押し出し成形により作製し、前記プリズム形状を紫外線硬化樹脂で転写したポリカーボネートフィルムを同様に貼り合わせて、凸形状のプリズムが形成された光制御部材(B−3)を得た。
(3) Moreover, it replaced with the acrylic board of the said transparent thickness, and the thickness which added 1.0 mass part of light diffusible fine particles (GE Toshiba Silicone Co., Ltd. brand name "Tospearl" 2000B, refractive index: 1.420). A 2 mm (meth) acryl styrene copolymer resin plate (resin used: manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “TX polymer” TX-800S, refractive index: 1.549) was prepared by extrusion molding, and the prism shape was The polycarbonate film transferred with the ultraviolet curable resin was bonded in the same manner to obtain a light control member (B-3) on which convex prisms were formed.
(使用したバックライト装置の構成)
上記で得られた光制御部材を、凸状プリズムが形成された面を線状光源側と反対に向け、線状光源である冷陰極管の長手方向と凸状プリズム稜線が略一致する方向に設置し、図18に示すようにその上に光拡散シートF(恵和株式会社製 商品名“オパル”BS−700)を重ね合わせた。なお、線状光源Cならびに反射板Dは市販の液晶テレビセット(ソニー株式会社製 商品名KDL−L32HVX)のバックライト装置を用いた。
(Configuration of the backlight device used)
With the light control member obtained above facing the surface on which the convex prism is formed opposite to the linear light source side, the longitudinal direction of the cold cathode tube, which is a linear light source, and the convex prism ridge line substantially coincide with each other. As shown in FIG. 18, a light diffusion sheet F (trade name “Opal” BS-700, manufactured by Keiwa Co., Ltd.) was overlaid thereon. In addition, the linear light source C and the reflecting plate D used the backlight apparatus of the commercially available liquid crystal television set (The product name KDL-L32HVX by Sony Corporation).
(突起の影の評価および輝度測定)
(a)突起による影については、目視での評価を行い、その結果を表1に示した。
(b)バックライトの明るさを示す輝度については、色彩輝度計(株式会社トプコン社製 BM−5A)により測定し、その結果を表1に示した。
(Evaluation of projection shadow and brightness measurement)
(A) About the shadow by a processus | protrusion, visual evaluation was performed and the result was shown in Table 1.
(B) About the brightness | luminance which shows the brightness of a backlight, it measured with the color luminance meter (BM-5A by Topcon Corporation), and the result was shown in Table 1.
(実施例1)
バックライト装置(ソニー株式会社製 商品名KDL−L32HVX)付属の突起に代え、アクリル樹脂(株式会社クラレ製 商品名“パラグラス”透明板6mmt)を使用して、図19(a)に示す水平断面形状が円形の径3mm、先端径1mmφの突起を旋盤により切削加工し作製した。この突起を前記バックライト装置に両面テープを用いて貼り付け固定した。取り付け位置は、図1に示すように、線状光源の中間位置とした。
光制御部材(B−1)と組み合わせたとき、突起と光制御部材の接する位置に、突起に起因する影は視認できなかった。また、表1に示すように測定輝度は高い値であった。
Example 1
A horizontal section shown in FIG. 19 (a) using an acrylic resin (trade name “Paragrass” manufactured by Kuraray Co., Ltd., trade name: 6 mmt) instead of the protrusion attached to the backlight device (trade name KDL-L32HVX, manufactured by Sony Corporation). A circular protrusion having a diameter of 3 mm and a tip diameter of 1 mmφ was cut and produced using a lathe. The protrusions were attached and fixed to the backlight device using a double-sided tape. As shown in FIG. 1, the attachment position was an intermediate position of the linear light source.
When combined with the light control member (B-1), no shadow due to the protrusion was visible at the position where the protrusion and the light control member contacted. Further, as shown in Table 1, the measured luminance was a high value.
(実施例2)
実施例1の突起を用い、光制御部材(B−2)と組み合わせて、実施例1と同様に評価した。突起と光制御部材の接する位置に突起に起因する影は、実施例1と同様に視認できなかった。また、表1に示すように測定輝度も比較的は高い値であった。
(Example 2)
The protrusions of Example 1 were used and evaluated in the same manner as Example 1 in combination with the light control member (B-2). The shadow caused by the protrusion at the position where the protrusion and the light control member contacted was not visible as in Example 1. Further, as shown in Table 1, the measured luminance was also a relatively high value.
(比較例1)
実施例1で使用したバックライト装置に付属の突起(白色不透明:形状は実施例1と同じ)を用いて、光制御部材(B−1)を組み合わせて評価を行った。その結果、突起と光制御部材の接する位置に、突起に起因する影が明瞭に発生していた。
(Comparative Example 1)
Evaluation was performed by combining the light control member (B-1) using the protrusions (white opaque: the shape is the same as in Example 1) attached to the backlight device used in Example 1. As a result, a shadow caused by the protrusion was clearly generated at a position where the protrusion and the light control member contact each other.
(比較例2)
比較例1の突起を用い、光制御部材(B−3)と組み合わせた。突起と光制御部材の接する位置に突起に起因する影は視認できなかったが、表1に示すように測定輝度は低い値となった。
(Comparative Example 2)
The protrusion of Comparative Example 1 was used and combined with the light control member (B-3). Although the shadow caused by the protrusion was not visible at the position where the protrusion and the light control member were in contact, the measured luminance was a low value as shown in Table 1.
(比較例3)
実施例1で使用したバックライト装置付属の突起に代え、アクリル樹脂(株式会社クラレ製 商品名“パラグラス”透明板6mmt)を使用して、図19(b)に示すような水平断面の形状が円形で先端径3mmφの突起を旋盤により切削加工し作製した。この突起を前記バックライト装置に両面テープを用いて貼り付け固定した。取り付け位置は、図1に示すように、線状光源の中間位置とした。
光制御部材(B−1)と組み合わせたとき、突起と光制御部材の接する位置に、突起に起因する影が明瞭に確認された。
(Comparative Example 3)
Instead of the projections attached to the backlight device used in Example 1, acrylic resin (trade name “Paragrass” transparent plate 6 mmt manufactured by Kuraray Co., Ltd.) is used, and the shape of the horizontal cross section as shown in FIG. A circular projection having a tip diameter of 3 mmφ was cut by a lathe and produced. The protrusions were attached and fixed to the backlight device using a double-sided tape. As shown in FIG. 1, the attachment position was an intermediate position of the linear light source.
When combined with the light control member (B-1), a shadow caused by the protrusion was clearly confirmed at the position where the protrusion and the light control member contacted.
A バックライトモジュール
B 光制御部材
C 線状光源(冷陰極管)
D 反射板
E 突起
2 凹凸形状
10 凹凸形状頂部
11 凹凸形状裾部
12 入射光
13 出射光
14 垂直入射光
15 入射面
16 反射光
A Backlight module B Light control member C Linear light source (cold cathode tube)
D Reflector E Projection 2 Concave and convex shape 10 Concave and convex shape top 11 Concave and convex shape skirt 12 Incident light 13 Emitted light 14 Vertical incident light 15 Incident surface 16 Reflected light
Claims (6)
A transmissive display element is provided on the illumination device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301941A JP4545673B2 (en) | 2005-10-17 | 2005-10-17 | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005301941A JP4545673B2 (en) | 2005-10-17 | 2005-10-17 | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007109608A JP2007109608A (en) | 2007-04-26 |
JP4545673B2 true JP4545673B2 (en) | 2010-09-15 |
Family
ID=38035305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005301941A Expired - Fee Related JP4545673B2 (en) | 2005-10-17 | 2005-10-17 | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4545673B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2040119B1 (en) | 2006-07-07 | 2011-04-13 | Kuraray Co., Ltd. | Laminate sheet and display screen |
JP2008282736A (en) * | 2007-05-11 | 2008-11-20 | Dainippon Printing Co Ltd | Optical sheet, planar light source, translucent display device |
JP2010192299A (en) * | 2009-02-19 | 2010-09-02 | Victor Co Of Japan Ltd | Backlight device, and liquid crystal display |
US20100208161A1 (en) | 2009-02-19 | 2010-08-19 | Victor Company Of Japan, Limited | Backlight device and liquid crystal display |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05119316A (en) * | 1991-10-25 | 1993-05-18 | Canon Inc | Back light device |
JP2002122863A (en) * | 2000-10-17 | 2002-04-26 | Hitachi Ltd | Liquid crystal display device |
JP2002352611A (en) * | 2001-05-24 | 2002-12-06 | Sharp Corp | Lighting system and display device equipped with it |
JP2004186080A (en) * | 2002-12-05 | 2004-07-02 | Tama Electric Co Ltd | Backlight device |
JP2004219838A (en) * | 2003-01-16 | 2004-08-05 | Tama Electric Co Ltd | Back light system |
JP2005108776A (en) * | 2003-10-01 | 2005-04-21 | Nippon Leiz Co Ltd | Plane lighting device |
JP2005173546A (en) * | 2003-11-18 | 2005-06-30 | Toray Ind Inc | Light reflective film and surface light source using the same |
JP2006195276A (en) * | 2005-01-14 | 2006-07-27 | Nippon Zeon Co Ltd | Direct-type backlight |
-
2005
- 2005-10-17 JP JP2005301941A patent/JP4545673B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05119316A (en) * | 1991-10-25 | 1993-05-18 | Canon Inc | Back light device |
JP2002122863A (en) * | 2000-10-17 | 2002-04-26 | Hitachi Ltd | Liquid crystal display device |
JP2002352611A (en) * | 2001-05-24 | 2002-12-06 | Sharp Corp | Lighting system and display device equipped with it |
JP2004186080A (en) * | 2002-12-05 | 2004-07-02 | Tama Electric Co Ltd | Backlight device |
JP2004219838A (en) * | 2003-01-16 | 2004-08-05 | Tama Electric Co Ltd | Back light system |
JP2005108776A (en) * | 2003-10-01 | 2005-04-21 | Nippon Leiz Co Ltd | Plane lighting device |
JP2005173546A (en) * | 2003-11-18 | 2005-06-30 | Toray Ind Inc | Light reflective film and surface light source using the same |
JP2006195276A (en) * | 2005-01-14 | 2006-07-27 | Nippon Zeon Co Ltd | Direct-type backlight |
Also Published As
Publication number | Publication date |
---|---|
JP2007109608A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3530631B2 (en) | LCD display with brightness enhancement film illuminated from the front | |
JP4638752B2 (en) | Light diffusion plate | |
JP4584133B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
JP4425164B2 (en) | LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME | |
JP5293191B2 (en) | Optical sheet, surface light source device, transmissive display device | |
KR20030025817A (en) | Apparatus of surface light source | |
JP2005071610A (en) | Light guide plate and plane light source device | |
US20070274103A1 (en) | Light guide panel and a backlight unit using the same | |
JP4515374B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
JP4172008B2 (en) | Surface light source device | |
JP5533310B2 (en) | Light guide plate, surface light source device and display device | |
JP4522938B2 (en) | Light control member provided in illumination device and image display device using the same | |
JP2005085671A (en) | Light guide plate and plane light source device | |
JP4545673B2 (en) | LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME | |
JP2006202639A (en) | Backlight device | |
JP2006202639A5 (en) | ||
JP2010044921A (en) | Plane light source element and light control member used for this as well as image display using this | |
US20190391450A1 (en) | Planar lighting device | |
JP2004006245A (en) | Light source device | |
JP4400867B2 (en) | Light deflection element and light source device | |
WO2014017488A1 (en) | Illumination device and display device | |
JP2006261107A (en) | Lighting system and display device using it | |
JP2017059365A (en) | Light guide plate, surface light source device, video source unit, and display device | |
JP4730339B2 (en) | Surface light source device, transmissive display device | |
JP4960327B2 (en) | Light deflection element and light source device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100630 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |