JP4960327B2 - Light deflection element and light source device - Google Patents

Light deflection element and light source device Download PDF

Info

Publication number
JP4960327B2
JP4960327B2 JP2008258573A JP2008258573A JP4960327B2 JP 4960327 B2 JP4960327 B2 JP 4960327B2 JP 2008258573 A JP2008258573 A JP 2008258573A JP 2008258573 A JP2008258573 A JP 2008258573A JP 4960327 B2 JP4960327 B2 JP 4960327B2
Authority
JP
Japan
Prior art keywords
light
prism
point
light source
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008258573A
Other languages
Japanese (ja)
Other versions
JP2009020533A (en
Inventor
雅江 小野
友義 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2008258573A priority Critical patent/JP4960327B2/en
Publication of JP2009020533A publication Critical patent/JP2009020533A/en
Application granted granted Critical
Publication of JP4960327B2 publication Critical patent/JP4960327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ノートパソコン、液晶テレビ、携帯電話、携帯情報端末等において表示部として使用される液晶表示装置等を構成するエッジライト方式の光源装置およびそれに使用される光偏向素子に関するものであり、特に光源装置の導光体の光出射面側に配置される光偏向素子の改良に関するものである。   The present invention relates to an edge-light-type light source device and a light deflecting element used therefor that constitute a liquid crystal display device used as a display unit in a notebook computer, a liquid crystal television, a mobile phone, a portable information terminal, etc. In particular, the present invention relates to an improvement in a light deflection element disposed on the light exit surface side of a light guide of a light source device.

近年、カラー液晶表示装置は、携帯用ノートパソコンやパソコン等のモニターとして、あるいは液晶テレビやビデオ一体型液晶テレビ、携帯電話、携帯情報端末等の表示部として、種々の分野で広く使用されてきている。また、情報処理量の増大化、ニーズの多様化、マルチメディア対応等に伴って、液晶表示装置の大画面化、高精細化が盛んに進められている。   In recent years, color liquid crystal display devices have been widely used in various fields as monitors for portable notebook personal computers, personal computers, etc., or as display units for liquid crystal televisions, video integrated liquid crystal televisions, mobile phones, personal digital assistants, and the like. Yes. In addition, with the increase in the amount of information processing, diversification of needs, compatibility with multimedia, and the like, liquid crystal display devices have been increased in screen size and definition.

液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子部の直下に一次光源を配置した直下方式のものや導光体の側端面に対向するように一次光源を配置したエッジライト方式のものがあり、液晶表示装置のコンパクト化の観点からエッジライト方式が多用されている。   The liquid crystal display device basically includes a backlight unit and a liquid crystal display element unit. As the backlight unit, there are a direct type with a primary light source arranged directly below the liquid crystal display element unit, and an edge light type with a primary light source arranged so as to face the side end face of the light guide. From the viewpoint of downsizing, the edge light method is often used.

ところで、近年、比較的小さな画面寸法の表示装置であって観察方向範囲の比較的狭い例えば携帯電話機の表示部として使用される液晶表示装置等では、消費電力の低減の観点から、エッジライト方式のバックライト部として、一次光源から発せられる光量を有効に利用するために、画面から出射する光束の広がり角度をできるだけ小さくして所要の角度範囲に集中して光を出射させるものが利用されてきている。   By the way, in recent years, in a display device having a relatively small screen size and a relatively narrow viewing direction range, for example, a liquid crystal display device used as a display unit of a mobile phone, the edge light system is used from the viewpoint of reducing power consumption. In order to effectively use the amount of light emitted from the primary light source, a backlight unit has been used that emits light by concentrating it in a required angle range by making the spread angle of the light beam emitted from the screen as small as possible. Yes.

このように観察方向範囲が限定される表示装置であって、一次光源の光量の利用効率を高め消費電力を低減するために比較的狭い範囲に集中して光出射を行う光源装置として、特開2001−143515号公報(特許文献2)において、導光体の光出射面に隣接して両面にプリズム形成面を有するプリズムシートを使用することが提案されている。この両面プリズムシートでは、一方の面である入光面及び他方の面である出光面のそれぞれに、互いに平行な複数のプリズム列が形成されており、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置している。これにより、導光体の光出射面から該光出射面に対して傾斜した方向に出射光のピークを持ち適宜の角度範囲に分布して出射する光を、プリズムシートの入光面の一方のプリズム面から入射させ他方のプリズム面で内面反射させ、更に出光面のプリズムでの屈折作用を受けさせて、比較的狭い所要方向へ光を集中出射させることができる。   As a light source device that emits light in a concentrated manner in a relatively narrow range in order to increase the use efficiency of the light amount of the primary light source and reduce the power consumption, the display device has a limited observation direction range as described above. In Japanese Patent Laid-Open No. 2001-143515 (Patent Document 2), it is proposed to use a prism sheet having prism forming surfaces on both sides adjacent to the light emitting surface of the light guide. In this double-sided prism sheet, a plurality of prism rows parallel to each other are formed on the light incident surface that is one surface and the light exit surface that is the other surface, and the prism row direction is formed by the light incident surface and the light exit surface. And the prism rows are arranged at corresponding positions. Thus, the light emitted from the light exit surface of the light guide having a peak of the emitted light in a direction inclined with respect to the light exit surface and distributed in an appropriate angle range is transmitted to one of the light incident surfaces of the prism sheet. The light can be concentratedly emitted in a relatively narrow required direction by entering from the prism surface, reflecting the inner surface by the other prism surface, and further receiving the refracting action of the prism on the light exit surface.

しかし、このような光源装置によれば、狭い角度範囲の集中出射が可能であるが、光偏向素子として使用されるプリズムシートとして両面に互いに平行な複数のプリズム列を、入光面と出光面とでプリズム列方向を合致させ且つプリズム列どうしを対応位置に配置することが必要であり、この成形が複雑になる。   However, according to such a light source device, concentrated emission in a narrow angle range is possible, but a plurality of prism rows parallel to each other as a prism sheet used as a light deflecting element are arranged on a light incident surface and a light output surface. Therefore, it is necessary to match the prism row directions and to arrange the prism rows at corresponding positions, which complicates the molding.

特開平10−254371号公報(特許文献1)では、プリズム列を構成する一方の面の傾斜角αを4.7〜5.7度、他方の面の傾斜角βを34.2〜35度とすることで法線方向の輝度向上を図っているが、他方の面を平面としているため充分な効果が得られていない。
特開平10−254371号公報 特開2001−143515号公報
In Japanese Patent Laid-Open No. 10-254371 (Patent Document 1), the inclination angle α of one surface constituting the prism row is 4.7 to 5.7 degrees, and the inclination angle β of the other surface is 34.2 to 35 degrees. However, since the other surface is a flat surface, a sufficient effect is not obtained.
JP-A-10-254371 JP 2001-143515 A

そこで、本発明の目的は、出射光の分布が非常に狭くコントロールされ、一次光源の光量の利用効率の向上が可能となり(即ち、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率が高くなり)、しかも簡素化された構成で画像品位の向上が容易な光偏向素子および光源装置を提供することにある。   Therefore, an object of the present invention is to control the distribution of the emitted light so as to be very narrow and to improve the utilization efficiency of the light quantity of the primary light source (that is, to concentrate the light emitted from the primary light source in the required observation direction). It is an object of the present invention to provide a light deflection element and a light source device that can easily improve image quality with a simplified configuration.

本発明によれば、上記目的を達成するものとして、
光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、前記入光面には2つのプリズム面から構成されるプリズム列が互いに並列に複数配列され、該2つのプリズム面の少なくとも一方が非単一平面からなり、かつ前記プリズム列を構成する一方のプリズム面の頂部振り分け角αが2〜25度で他方のプリズム面の頂部振り分け角βが33〜40度であることを特徴とする光偏向素子、
が提供される。本発明において、非単一平面とは、単一平面からなる面以外の面をいう。
According to the present invention, the above object is achieved as follows:
A light incident surface on which light is incident, and a light exit surface on the opposite side that emits incident light. The light incident surface includes a plurality of prism rows each composed of two prism surfaces in parallel with each other. And at least one of the two prism surfaces is a non-single plane, and the top distribution angle α of one prism surface constituting the prism row is 2 to 25 degrees, and the top distribution angle β of the other prism surface An optical deflection element characterized in that the angle is 33 to 40 degrees,
Is provided. In the present invention, a non-single plane means a plane other than a plane consisting of a single plane.

特に、本発明によれば、
光を入射する入光面とその反対側に位置し入射した光を出射する出光面とを有しており、
前記入光面には2つのプリズム面から構成されるプリズム列が互いに並列に複数配列され、該2つのプリズム面の少なくとも一方が非単一平面からなり、
前記プリズム列を構成する一方のプリズム面の頂部振り分け角αが2〜25度で他方のプリズム面の頂部振り分け角βが33〜40度であり、
前記頂部振り分け角αと前記頂部振り分け角βとの差|α−β|が8〜35度であり、
前記プリズム列のピッチPと、前記プリズム列を構成する頂部振り分け角βの前記プリズム面の断面形状においてプリズム頂部と谷部とを結んだ仮想直線の長さL2とが、L2/P=1.16〜1.6の関係を満たすことを特徴とする光偏向素子、
が提供される。
In particular, according to the present invention,
It has a light incident surface on which light is incident and a light exit surface on the opposite side that emits incident light,
A plurality of prism rows composed of two prism surfaces are arranged in parallel on the light incident surface, and at least one of the two prism surfaces is a non-single plane,
The top portion distribution angle α of one prism surface constituting the prism row is 2 to 25 degrees, and the top portion distribution angle β of the other prism surface is 33 to 40 degrees,
The difference | α−β | between the top distribution angle α and the top distribution angle β is 8 to 35 degrees,
The pitch P of the prism row and the length L2 of the imaginary straight line connecting the prism top and the trough in the cross-sectional shape of the prism surface with the apex distribution angle β constituting the prism row are L2 / P = 1. An optical deflection element satisfying a relationship of 16 to 1.6,
Is provided.

本発明の一態様においては、前記非単一平面は、複数の平面及び/または凸曲面からなり、前記出光面に近い側に位置する平面または凸曲面ほど傾斜角が大きい。本発明の一態様においては、前記非単一平面は、前記プリズム列の前記頂部に近い部分で少なくとも1つの平面からなり、前記プリズム列の前記谷部に近い側で少なくとも1つの凸曲面からなり、前記平面と前記凸曲面との境界は、前記頂部から前記プリズム列の高さの3割以下に位置する。   In one aspect of the present invention, the non-single plane includes a plurality of planes and / or convex curved surfaces, and a plane or convex curved surface located closer to the light exit surface has a larger inclination angle. In one aspect of the present invention, the non-single plane includes at least one plane at a portion near the top of the prism row, and at least one convex curved surface at a side near the valley portion of the prism row. The boundary between the plane and the convex curved surface is located at 30% or less of the height of the prism row from the top.

本発明の一態様においては、前記プリズム列が、その断面において、頂点の座標を原点としたとき、点1(−11.605,65.814)、点2(0.000,0.000)、点3(9.000,11.519)、点4(15.000,19.396)の4点またはその近傍点を繋ぐ複数の平面と、前記点4と点5(36.000,50.653)の2点またはその近傍点を繋ぐ半径410.489の円弧、及び、前記点5と点6(44.895,65.814)の2点またはその近傍点を繋ぐ半径629.574の円弧、を繋いだ形状からなる。   In one aspect of the present invention, the prism row has a point 1 (-11.605, 65.814) and a point 2 (0.000, 0.000) when the coordinates of the vertex are the origin in the cross section. , Point 3 (9.00, 11.519), point 4 (15.000, 19.396), or a plurality of planes connecting points in the vicinity thereof, point 4 and point 5 (36.000, 50) .653) having a radius of 410.489 connecting the two points or its neighboring points, and having a radius of 629.574 connecting the two points of points 5 and 6 (44.895, 65.814) or their neighboring points. It consists of circular arcs.

本発明の一態様においては、前記プリズム列が、その断面において、頂点の座標を原点としたとき、点1(−6.322,72.265)、点2(0.000,0.000)、点3(12.000,14.687)、点4(15.000,18.527)の4点またはその近傍点を繋ぐ複数の平面と、前記4と点5(30.000,39.517)の2点またはその近傍点を繋ぐ半径376.827の円弧、及び、前記点5と点6(50.178,72.265)の2点またはその近傍点を繋ぐ半径490.235の円弧、を繋いだ形状からなる。   In one aspect of the present invention, the prism array has a point 1 (−6.322, 72.265) and a point 2 (0.000, 0.000) when the coordinates of the vertex are the origin in the cross section. , Point 3 (12.000, 14.687), point 4 (15.000, 18.527), or a plurality of planes connecting points in the vicinity thereof, 4 and point 5 (30.000, 39. 517) and an arc with a radius of 376.827 that connects the two points or its neighboring points, and an arc with a radius of 490.235 that connects the two points of point 5 and point 6 (50.178, 72.265) or their neighboring points. , Are connected to each other.

本発明の一態様においては、前記2つのプリズム面の一方が非単一平面からなり且つ他方が単一平面からなる。   In one aspect of the present invention, one of the two prism surfaces is a non-single plane and the other is a single plane.

本発明の一態様においては、前記非単一平面は少なくとも1つの凸曲面からなる。   In one aspect of the present invention, the non-single plane is composed of at least one convex curved surface.

本発明の一態様においては、前記非単一平面は、互いに傾斜角の異なる2つ以上の平面からなり、あるいは互いに傾斜角の異なる2つ以上の凸曲面からなり、あるいは1つ以上の平面と1つ以上の凸曲面とからなる。本発明の一態様においては、前記非単一平面は、前記出光面に近い側に位置する前記平面または前記凸曲面ほど傾斜角が大きい。   In one aspect of the present invention, the non-single plane is composed of two or more planes having different inclination angles, or two or more convex curved surfaces having different inclination angles, or one or more planes. It consists of one or more convex curved surfaces. In one aspect of the present invention, the non-single plane has a larger inclination angle as the plane or the convex curved surface located closer to the light exit surface.

本発明の一態様においては、前記非単一平面において、前記プリズム列の頂部に最も近い面の傾斜角と最も前記出光面に近い面の傾斜角との差が1°〜15°である。本発明の一態様においては、前記非単一平面を構成する前記平面および/または前記凸曲面の各面で全反射して前記出光面から出射する光において、前記各面ごとの出射光分布のピークの方向が前記プリズム列の形成されている平面の略法線方向である。   In one aspect of the present invention, in the non-single plane, a difference between an inclination angle of a surface closest to the top of the prism row and an inclination angle of a surface closest to the light exit surface is 1 ° to 15 °. In one aspect of the present invention, in the light that is totally reflected by each surface of the plane and / or the convex curved surface constituting the non-single plane and is emitted from the light exit surface, The direction of the peak is a substantially normal direction of the plane on which the prism row is formed.

本発明の一態様においては、前記プリズム列が、その断面において、頂点の座標を原点とし、前記プリズム列のピッチPの長さを1と正規化したとき、点1(−0.111,1.27)、点2(0.0,0.0)、点3(0.159,0.195)、点4(0.212,0.260)、点5(0.265,0.328)、点6(0.319,0.398)、点7(0.372,0.470)、点8(0.425,0.544)、点9(0.478,0.621)、点10(0.531,0.699)、点11(0.584,0.780)、点12(0.637,0.861)、点13(0.690,0.945)、点14(0.743,1.030)、点15(0.796,1.117)、点16(0.889,1.27)の16点またはその近傍点を繋いだ形状からなる。   In one aspect of the present invention, when the prism array has a vertex coordinate in the cross section and the length of the pitch P of the prism array is normalized to 1, point 1 (−0.111,1 .27), point 2 (0.0, 0.0), point 3 (0.159, 0.195), point 4 (0.212, 0.260), point 5 (0.265, 0.328) ), Point 6 (0.319, 0.398), point 7 (0.372, 0.470), point 8 (0.425, 0.544), point 9 (0.478, 0.621), Point 10 (0.531, 0.699), Point 11 (0.584, 0.780), Point 12 (0.637, 0.861), Point 13 (0.690, 0.945), Point 14 (0.743, 1.030), point 15 (0.796, 1.117), point 16 (0.889, 1.27) Consisting of the connected shape in the vicinity point.

本発明の一態様においては、前記プリズム列が、その断面において、頂点の座標を原点とし、前記プリズム列のピッチPの長さを1と正規化したとき、点1(−0.206,1.168)、点2(0.000,0.000)、点3(0.159,0.204)、点4(0.212,0.273)、点5(0.265,0.343)、点6(0.319,0.416)、点7(0.372,0.490)、点8(0.425,0.567)、点9(0.478,0.646)、点10(0.531,0.727)、点11(0.584,0.810)、点12(0.637,0.897)、点13(0.794,1.168)の13点を繋いだ形状からなる。   In one aspect of the present invention, when the prism array has a vertex coordinate in the cross section and the length of the pitch P of the prism array is normalized to 1, point 1 (−0.206, 1 .168), point 2 (0.000, 0.000), point 3 (0.159, 0.204), point 4 (0.212, 0.273), point 5 (0.265, 0.343). ), Point 6 (0.319, 0.416), point 7 (0.372, 0.490), point 8 (0.425, 0.567), point 9 (0.478, 0.646), 13 points of point 10 (0.531, 0.727), point 11 (0.584, 0.810), point 12 (0.637, 0.897), point 13 (0.794, 1.168) It consists of a shape that connects.

本発明の一態様においては、前記プリズム列が、その断面において、頂点の座標を原点とし、前記プリズム列のピッチPの長さを1と正規化したとき、点1(−0.284,1.059)、点2(0.000,0.000)、点3(0.212,0.278)、点4(0.265,0.350)、点5(0.319,0.423)、点6(0.372,0.501)、点7(0.425,0.581)、点8(0.478,0.663)、点9(0.531,0.748)、点10(0.584,0.834)、点11(0.637,0.922)、点12(0.716,1.059)の12点を繋いだ形状からなる。   In one aspect of the present invention, when the prism row has a vertex coordinate in the cross section and the length of the pitch P of the prism row is normalized to 1, point 1 (−0.284,1 .059), point 2 (0.000, 0.000), point 3 (0.212, 0.278), point 4 (0.265, 0.350), point 5 (0.319, 0.423). ), Point 6 (0.372, 0.501), point 7 (0.425, 0.581), point 8 (0.478, 0.663), point 9 (0.531, 0.748), It consists of 12 points of point 10 (0.584, 0.834), point 11 (0.637, 0.922), and point 12 (0.716, 1.059).

本発明の一態様においては、前記プリズム列が、その断面において、前記プリズム列のピッチPの長さを1と正規化したとき、前記16点、13点または12点から選んだ少なくとも5点についてはその点を中心とした半径0.021の円内にある前記近傍点を用いて繋いだ形状からなる。   In one aspect of the present invention, when the length of the pitch P of the prism row is normalized to 1 in the cross section of the prism row, at least 5 points selected from the 16 points, 13 points, or 12 points are used. Is formed by connecting the neighboring points in a circle having a radius of 0.021 centered on the point.

本発明の一態様においては、前記プリズム列のピッチPと、前記プリズム列を構成する頂部振り分け角βの前記プリズム面の断面形状においてプリズム頂部と谷部とを結んだ仮想直線の長さL2とが、L2/P=1.1〜1.7の関係を満たす。本発明の一態様においては、頂部振り分け角αの前記プリズム面の断面形状においてプリズム頂部と谷部とを結んだ仮想直線の長さL1と、頂部振り分け角βの前記プリズム面の断面形状においてプリズム頂部と谷部とを結んだ仮想直線の長さL2とが、L2/L1=1.1〜1.3の関係を満たす。   In one aspect of the present invention, the pitch P of the prism rows and the length L2 of an imaginary straight line connecting the prism top and the valley in the cross-sectional shape of the prism surface at the apex distribution angle β constituting the prism row, Satisfies the relationship of L2 / P = 1.1 to 1.7. In one aspect of the present invention, the length L1 of the imaginary straight line connecting the prism apex and the valley in the cross-sectional shape of the prism surface at the apex distribution angle α and the prism in the cross-sectional shape of the prism surface at the apex distribution angle β The length L2 of the virtual straight line connecting the top and the valley satisfies the relationship of L2 / L1 = 1.1 to 1.3.

本発明の一態様においては、前記プリズム列を構成する2つのプリズム面のなす稜線が、前記プリズム列のピッチPの長さを1と正規化したとき、その基準線に対して0.018〜0.354の凹凸状に形成されている。本発明の一態様においては、前記プリズム列を構成する2つのプリズム面が、前記プリズム列のピッチPの長さを1と正規化したとき、その基準面に対して0.012〜0.334の凹凸状に形成されている。   In one aspect of the present invention, when the ridge line formed by the two prism surfaces constituting the prism row normalizes the length of the pitch P of the prism row as 1, it is 0.018 to the reference line. It is formed in an uneven shape of 0.354. In one aspect of the present invention, when two prism surfaces constituting the prism row normalize the length of the pitch P of the prism row as 1, 0.012 to 0.334 with respect to the reference surface. It is formed in the uneven shape.

本発明の一態様においては、互いに隣接するプリズム列の間に平坦部が設けられている。本発明の一態様においては、前記平坦部がプリズム谷部からプリズム列の高さ方向に2〜10μmの位置に設けられている。本発明の一態様においては、前記平坦部が、前記プリズム列のピッチPの長さを1と正規化したとき、プリズム谷部からプリズム列の高さ方向に0.035〜0.18の位置に設けられている。本発明の一態様においては、前記平坦部が、頂部振り分け角βの前記プリズム面の断面形状においてプリズム頂部とプリズム谷部とを結んだ仮想直線の長さL2を1と正規化したとき、プリズム谷部からプリズム列の高さ方向に0.022〜0.16の位置に設けられている。   In one embodiment of the present invention, a flat portion is provided between adjacent prism rows. In one aspect of the present invention, the flat portion is provided at a position of 2 to 10 μm in the height direction of the prism row from the prism trough. In one aspect of the present invention, the flat portion has a position of 0.035 to 0.18 in the height direction of the prism row from the prism valley when the length of the pitch P of the prism row is normalized to 1. Is provided. In one aspect of the present invention, when the flat portion normalizes the length L2 of the imaginary straight line connecting the prism apex and the prism trough in the cross-sectional shape of the prism surface at the apex distribution angle β, It is provided at a position of 0.022 to 0.16 in the height direction of the prism row from the valley.

また、本発明によれば、上記目的を達成するものとして、
一次光源と、該一次光源から発せられた光が入射する光入射面を有し且つ入射した光を導光し且つ導光された光を出射する光出射面を有する導光体と、該導光体の前記光出射面に対向して前記入光面が位置するように配置された上記光偏向素子とを備えていることを特徴とする光源装置、
が提供される。
In addition, according to the present invention, the above-mentioned object is achieved as follows:
A primary light source, a light guide having a light incident surface on which light emitted from the primary light source is incident, and having a light emitting surface that guides the incident light and emits the guided light; and A light source device comprising: the light deflection element disposed so that the light incident surface is positioned opposite to the light emitting surface of a light body;
Is provided.

本発明の一態様においては、前記光偏向素子は、前記プリズム列の頂部振り分け角αの前記プリズム面が前記一次光源に近い側に配置され、前記プリズム列の頂部振り分け角βの前記プリズム面が前記一次光源から遠い側に配置されている。   In one aspect of the present invention, the light deflection element is arranged such that the prism surface with the top distribution angle α of the prism array is closer to the primary light source, and the prism surface with the top distribution angle β of the prism array is It is arranged on the side far from the primary light source.

本発明の一態様においては、前記一次光源が前記導光体のコーナー部に隣接して配置され、かつ前記光偏向素子のプリズム列が前記一次光源を略中心として略同心円状に配置されている。   In one aspect of the present invention, the primary light source is disposed adjacent to a corner portion of the light guide, and the prism array of the light deflection element is disposed substantially concentrically with the primary light source as a substantial center. .

本発明の一態様においては、前記光偏向素子の出光面上に隣接配置された光拡散素子を備えており、該光拡散素子は平行光を入射したときの出射光分布の半値全幅が異方性を有している。   In one aspect of the present invention, the light diffusing element is disposed adjacent to the light exit surface of the light deflecting element, and the light diffusing element has an anisotropic full width at half maximum of the outgoing light distribution when parallel light is incident thereon. It has sex.

本発明によれば、光偏向素子の入光面に形成されるプリズム列を構成するプリズム面の少なくとも一方を非単一平面とし、かつ一方のプリズム面の頂部振り分け角αを2〜25度とし、他方のプリズム面の頂部振り分け角βを33〜40度とすることで、一次光源から発せられる光を所要の観察方向へ集中して出射させる効率(一次光源の光量の利用効率)のよい光源装置を提供することができる。   According to the present invention, at least one of the prism surfaces constituting the prism array formed on the light incident surface of the light deflection element is a non-single plane, and the top distribution angle α of one prism surface is 2 to 25 degrees. A light source with good efficiency (the use efficiency of the amount of light of the primary light source) for concentrating and emitting the light emitted from the primary light source in the required observation direction by setting the apex distribution angle β of the other prism surface to 33 to 40 degrees. An apparatus can be provided.

以下、図面を参照しながら、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による面光源装置の一つの実施形態を示す模式的斜視図である。図1に示されているように、本実施形態の面光源装置は、少なくとも一つの側端面を光入射面31とし、これと略直交する一つの表面を光出射面33とする導光体3と、この導光体3の光入射面31に対向して配置され光源リフレクタ2で覆われた線状または棒状の一次光源1と、導光体3の光出射面33上に配置された光偏向素子4およびその上に配置された光拡散素子6と、導光体3の光出射面33と反対側の裏面34に対向して配置された光反射素子5とから構成される。   FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention. As shown in FIG. 1, the surface light source device of the present embodiment has a light guide 3 in which at least one side end surface is a light incident surface 31 and one surface substantially orthogonal thereto is a light emitting surface 33. And a linear or bar-shaped primary light source 1 disposed opposite to the light incident surface 31 of the light guide 3 and covered with the light source reflector 2, and light disposed on the light emitting surface 33 of the light guide 3. The deflecting element 4 and the light diffusing element 6 disposed on the deflecting element 4 and the light reflecting element 5 disposed to face the back surface 34 opposite to the light emitting surface 33 of the light guide 3 are configured.

導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちYZ面と平行な1対の側端面のうち、少なくとも一つの側端面を光入射面31とする。光入射面31は一次光源1と対向して配置されており、一次光源1から発せられた光は光入射面31から導光体3内へと入射する。本発明においては、例えば、光入射面31と反対側の側端面32等の他の側端面にも一次光源を配置してもよい。   The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end surfaces, and at least one side end surface of the pair of side end surfaces parallel to the YZ plane is a light incident surface 31. The light incident surface 31 is disposed to face the primary light source 1, and light emitted from the primary light source 1 enters the light guide 3 from the light incident surface 31. In the present invention, for example, the primary light source may be disposed on other side end surfaces such as the side end surface 32 opposite to the light incident surface 31.

導光体3の光入射面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33またはそれと反対側の裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機能部や、プリズム列、レンチキュラーレンズ列、V字状溝等の多数のレンズ列を光入射面31と略平行に並列形成したレンズ面からなる指向性光出射機能部を付与することによって、光入射面31から入射した光を導光体3中を導光させながら、光出射面33から光入射面31および光出射面33に直交する面(XZ面)内の出射光分布において指向性のある光を出射させる。このXZ面内分布における出射光分布のピークの方向が光出射面33となす角度をaとすると、この角度aは10〜40度とすることが好ましく、出射光分布の半値全幅は10〜40度とすることが好ましい。   The two principal surfaces substantially orthogonal to the light incident surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (upper surface in the drawing) serves as the light emitting surface 33. At least one of the light exit surface 33 and the back surface 34 opposite to the light exit surface 33 is provided with a rough directional light exit function unit, a prism array, a lenticular lens array, and a number of lens arrays such as a V-shaped groove. By providing a directional light emitting function unit including a lens surface formed in parallel with the light incident surface 31, the light incident surface 31 is guided while the light incident from the light incident surface 31 is guided through the light guide 3. Light having directivity is emitted from the light distribution surface 33 (XZ plane) orthogonal to the light incident surface 31 and the light emitting surface 33. If the angle formed by the peak direction of the emitted light distribution in the XZ in-plane distribution with the light emitting surface 33 is a, this angle a is preferably 10 to 40 degrees, and the full width at half maximum of the emitted light distribution is 10 to 40. It is preferable to set the degree.

導光体3の表面に形成する粗面やレンズ列は、ISO4287/1−1984による平均傾斜角θaが0.5〜15度の範囲のものとすることが、光出射面33内での輝度の均斉度を図る点から好ましい。平均傾斜角θaは、さらに好ましくは1〜12度の範囲であり、より好ましくは1.5〜11度の範囲である。この平均傾斜角θaは、導光体3の厚さ(t)と入射光が伝搬する方向の長さ(L)との比(L/t)によって最適範囲が設定されることが好ましい。すなわち、導光体3としてL/tが20を越え200以下程度のものを使用する場合は、平均傾斜角θaを0.5〜7.5度とすることが好ましく、さらに好ましくは1〜5度の範囲であり、より好ましくは1.5〜4度の範囲である。また、導光体3としてL/tが20以下程度のものを使用する場合は、平均傾斜角θaを7〜12度とすることが好ましく、さらに好ましくは8〜11度の範囲である。   The rough surface and the lens array formed on the surface of the light guide 3 have a luminance within the light emitting surface 33 that the average inclination angle θa according to ISO 4287 / 1-1984 is in the range of 0.5 to 15 degrees. It is preferable from the point of aiming at the degree of uniformity. The average inclination angle θa is more preferably in the range of 1 to 12 degrees, and more preferably in the range of 1.5 to 11 degrees. The average inclination angle θa is preferably set in an optimum range by a ratio (L / t) between the thickness (t) of the light guide 3 and the length (L) in the direction in which the incident light propagates. That is, when the light guide 3 having a L / t of more than 20 and about 200 or less is used, the average inclination angle θa is preferably 0.5 to 7.5 degrees, and more preferably 1 to 5 It is the range of degrees, More preferably, it is the range of 1.5-4 degrees. When the light guide 3 having L / t of about 20 or less is used, the average inclination angle θa is preferably 7 to 12 degrees, and more preferably 8 to 11 degrees.

導光体3に形成される粗面の平均傾斜角θaは、ISO4287/1−1984に従って、触針式表面粗さ計を用いて粗面形状を測定し、測定方向の座標をxとして、得られた傾斜関数f(x)から次の(1)式および(2)式を用いて求めることができる。ここで、Lは測定長さであり、Δaは平均傾斜角θaの正接である。   The average inclination angle θa of the rough surface formed on the light guide 3 is obtained in accordance with ISO 4287 / 1-1984 by measuring the rough surface shape using a stylus type surface roughness meter and setting the coordinate in the measurement direction as x. From the obtained gradient function f (x), the following equation (1) and equation (2) can be used. Here, L is the measurement length, and Δa is the tangent of the average inclination angle θa.

Δa=(1/L)∫ |(d/dx)f(x)|dx ・・・ (1)
θa=tan−1(Δa) ・・・ (2)
さらに、導光体3としては、その光出射率が0.5〜5%の範囲にあるものが好ましく、より好ましくは1〜3%の範囲である。これは、光出射率が0.5%より小さくなると導光体3から出射する光量が少なくなり十分な輝度が得られなくなる傾向にあり、光出射率が5%より大きくなると一次光源1の近傍で多量の光が出射して、光出射面33内でのX方向における光の減衰が著しくなり、光出射面33での輝度の均斉度が低下する傾向にあるためである。このように導光体3の光出射率を0.5〜5%とすることにより、光出射面から出射する光の出射光分布におけるピーク光の角度(ピーク角度)が光出射面の法線に対し50〜80度の範囲にあり、光入射面と光出射面との双方に垂直なXZ面における出射光分布の半値全幅が10〜40度であるような指向性の高い出射特性の光を導光体3から出射させることができ、その出射方向を光偏向素子4で効率的に偏向させることができ、高い輝度を有する面光源素子を提供することができる。
Δa = (1 / L) ∫ 0 L | (d / dx) f (x) | dx (1)
θa = tan −1 (Δa) (2)
Further, the light guide 3 preferably has a light emission rate in the range of 0.5 to 5%, and more preferably in the range of 1 to 3%. This is because when the light emission rate is smaller than 0.5%, the amount of light emitted from the light guide 3 tends to be small and sufficient luminance cannot be obtained. When the light emission rate is larger than 5%, the vicinity of the primary light source 1 is present. This is because a large amount of light is emitted, the attenuation of light in the X direction within the light emitting surface 33 becomes significant, and the luminance uniformity on the light emitting surface 33 tends to decrease. Thus, by setting the light emission rate of the light guide 3 to 0.5 to 5%, the angle (peak angle) of the peak light in the light distribution of the light emitted from the light emission surface is the normal of the light emission surface. With a high directivity, such that the full width at half maximum of the emitted light distribution in the XZ plane perpendicular to both the light incident surface and the light emitting surface is 10 to 40 degrees. Can be emitted from the light guide 3, the emission direction can be efficiently deflected by the light deflection element 4, and a surface light source element having high luminance can be provided.

本発明において、導光体3からの光出射率は次のように定義される。光出射面33の光入射面31側の端縁での出射光の光強度(I)と光入射面31側の端縁から距離Lの位置での出射光強度(I)との関係は、導光体3の厚さ(Z方向寸法)をtとすると、次の(3)式のような関係を満足する。 In the present invention, the light emission rate from the light guide 3 is defined as follows. The relationship between the light intensity (I 0 ) of the emitted light at the edge on the light incident surface 31 side of the light emitting surface 33 and the emitted light intensity (I) at a distance L from the edge on the light incident surface 31 side is If the thickness (dimension in the Z direction) of the light guide 3 is t, the following relationship (3) is satisfied.

I=I・A(1−A)L/t ・・・ (3)
ここで、定数Aが光出射率であり、光出射面33における光入射面31と直交するX方向での単位長さ(導光体厚さtに相当する長さ)当たりの導光体3から光が出射する割合(%)である。この光出射率Aは、縦軸に光出射面23からの出射光の光強度の対数をとり横軸に(L/t)をとり、これらの関係をプロットすることで、その勾配から求めることができる。
I = I 0 · A (1-A) L / t (3)
Here, the constant A is the light output rate, and the light guide 3 per unit length (a length corresponding to the light guide thickness t) in the X direction orthogonal to the light incident surface 31 on the light output surface 33. It is the ratio (%) at which light is emitted from. The light emission rate A is obtained from the gradient by plotting the relationship between the logarithm of the light intensity of the light emitted from the light exit surface 23 on the vertical axis and (L / t) on the horizontal axis. Can do.

また、指向性光出射機能部が付与されていない他の主面には、導光体3からの出射光の一次光源1と平行な面(YZ面)での指向性を制御するために、光入射面31に対して略垂直の方向(X方向)に延びる多数のレンズ列を配列したレンズ面を形成することが好ましい。図1に示した実施形態においては、光出射面33に粗面を形成し、裏面34に光入射面31に対して略垂直方向(X方向)に延びる多数のレンズ列の配列からなるレンズ面を形成している。本発明においては、図1に示した形態とは逆に、光出射面33にレンズ面を形成し、裏面34を粗面とするものであってもよい。   Moreover, in order to control the directivity on the surface (YZ plane) parallel to the primary light source 1 of the emitted light from the light guide 3 on the other main surface to which the directional light emitting function unit is not provided, It is preferable to form a lens surface in which a large number of lens rows extending in a direction substantially perpendicular to the light incident surface 31 (X direction) are arranged. In the embodiment shown in FIG. 1, a lens surface formed by an array of a large number of lens rows, in which a rough surface is formed on the light emitting surface 33 and the back surface 34 extends in a direction substantially perpendicular to the light incident surface 31 (X direction). Is forming. In the present invention, conversely to the embodiment shown in FIG. 1, a lens surface may be formed on the light emitting surface 33 and the back surface 34 may be a rough surface.

図1に示したように、導光体3の裏面34あるいは光出射面33にレンズ列を形成する場合、そのレンズ列としては略X方向に延びたプリズム列、レンチキュラーレンズ列、V字状溝等が挙げられるが、YZ断面の形状が略三角形状のプリズム列とすることが好ましい。   As shown in FIG. 1, when a lens array is formed on the back surface 34 or the light emitting surface 33 of the light guide 3, the lens array includes a prism array, a lenticular lens array, and a V-shaped groove extending substantially in the X direction. However, it is preferable that the YZ section has a substantially triangular prism array.

このプリズム列を形成する場合には、その頂角を70〜150度の範囲とすることが好ましい。これは、頂角をこの範囲とすることによって導光体3からの出射光を十分集光させることができ、面光源装置としての輝度の十分な向上を図ることができるためである。すなわち、プリズム頂角をこの範囲内とすることによって、出射光分布におけるピーク光を含みXZ面に垂直な面において出射光分布の半値全幅が35〜65度である集光された出射光を出射させることができ、面光源素子としての輝度を向上させることができる。なお、プリズム列を光出射面33に形成する場合には、頂角は80〜100度の範囲とすることが好ましく、プリズム列を裏面34に形成する場合には、頂角は70〜80度または100〜150度の範囲とすることが好ましい。   When this prism row is formed, the apex angle is preferably in the range of 70 to 150 degrees. This is because the light emitted from the light guide 3 can be sufficiently condensed by setting the apex angle within this range, and the luminance as the surface light source device can be sufficiently improved. That is, by setting the prism apex angle within this range, the condensed emitted light including the peak light in the emitted light distribution and having a full width at half maximum of 35 to 65 degrees on the surface perpendicular to the XZ plane is emitted. The luminance as a surface light source element can be improved. When the prism row is formed on the light emitting surface 33, the apex angle is preferably in the range of 80 to 100 degrees. When the prism row is formed on the back surface 34, the apex angle is 70 to 80 degrees. Or it is preferable to set it as the range of 100-150 degree | times.

なお、本発明では、上記のような光出射面33またはその裏面34に光出射機能部を形成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向性光出射機能を付与したものでもよい。また、導光体3としては、図1に示したような断面形状に限定されるものではなく、くさび状、船型状等の種々の断面形状を持つものが使用できる。   In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. What provided the directional light emission function may be used. Further, the light guide 3 is not limited to the cross-sectional shape as shown in FIG. 1, but can have various cross-sectional shapes such as a wedge shape and a hull shape.

図2は、光偏向素子4におけるプリズム列の形状の説明図であり、光偏向素子4は主表面の一方を入光面41とし他方の面を出光面42とする。入光面41には多数のプリズム列が並列に配列され、各プリズム列は光源側に位置する第1のプリズム面44と光源から遠い側に位置する第2のプリズム面45との2つのプリズム面から構成されている。図2に示した実施形態においては、第1のプリズム面44が平面であり、第2のプリズム面45が3つの互いに傾斜角の異なる平面46〜48から構成された非単一平面であり、これら3つの平面は出光面42に近い平面ほど傾斜角が大きくなっている。なお、本発明において、プリズム列の面の傾斜角とはプリズム列形成平面43に対する各面の傾斜角度をいう。   FIG. 2 is an explanatory diagram of the shape of the prism row in the light deflection element 4. The light deflection element 4 has one of the main surfaces as a light incident surface 41 and the other surface as a light emission surface 42. A large number of prism rows are arranged in parallel on the light incident surface 41, and each prism row has two prisms: a first prism surface 44 located on the light source side and a second prism surface 45 located on the side far from the light source. It is composed of surfaces. In the embodiment shown in FIG. 2, the first prism surface 44 is a plane, and the second prism surface 45 is a non-single plane composed of three planes 46 to 48 having different inclination angles, The inclination angle of these three planes increases as the plane is closer to the light exit surface 42. In the present invention, the angle of inclination of the surface of the prism array refers to the angle of inclination of each surface with respect to the prism array forming plane 43.

光偏向素子4は、第1のプリズム面44の頂部振り分け角αを2〜25度、第2のプリズム面45の頂部振り分け角βを33〜40度、αとβの差の絶対値(|α−β|)を8〜38度とすることにより、高い集光効果を発揮させることができ、光源装置として高い輝度を得ることができる。なお、本発明において、頂部振り分け角α、βとは、プリズム列の頂角のプリズム列形成平面43の法線方向に対する左右の振り分け角であり、第1のプリズム面44の頂部におけるプリズム列形成平面43の法線方向となす角度をαとし、第2のプリズム面45の頂部におけるプリズム列形成平面43の法線方向となす角度をβとしている。さらに、出光面42に近い側に位置する面ほど傾斜角が大きくなるような2つ以上の面によりプリズム面を形成し、各面で全反射して出光面42から出射する光のピーク角度をすべての面で一致させることで、極めて高い輝度を得ることができる。このとき、最も出光面に近い面と最も出光面から遠い面との傾斜角の差は1度〜15度の範囲であり、好ましくは5〜12度の範囲であり、より好ましくは7〜10度の範囲である。また、第2のプリズム面45をこのような構造にすることにより、所望の集光性を有する偏向素子を容易に設計することもできるとともに、一定の光学特性を有する光偏向素子を安定して製造することもできる。   The light deflection element 4 has a top distribution angle α of the first prism surface 44 of 2 to 25 degrees, a top distribution angle β of the second prism surface 45 of 33 to 40 degrees, and the absolute value of the difference between α and β (| By setting α-β |) to 8 to 38 degrees, a high light condensing effect can be exhibited, and high luminance as a light source device can be obtained. In the present invention, the apex distribution angles α and β are the left and right distribution angles with respect to the normal direction of the prism array forming plane 43 of the apex angle of the prism array, and the prism array formation at the top of the first prism surface 44 is performed. The angle formed with the normal direction of the plane 43 is α, and the angle formed with the normal direction of the prism array forming plane 43 at the top of the second prism surface 45 is β. Furthermore, a prism surface is formed by two or more surfaces having a larger inclination angle as the surface is closer to the light exit surface 42, and the peak angle of light emitted from the light exit surface 42 after being totally reflected by each surface is determined. Extremely high luminance can be obtained by matching all the surfaces. At this time, the difference in inclination angle between the surface closest to the light exit surface and the surface farthest from the light exit surface is in the range of 1 to 15 degrees, preferably in the range of 5 to 12 degrees, more preferably 7 to 10 degrees. It is a range of degrees. Further, by making the second prism surface 45 in such a structure, it is possible to easily design a deflecting element having a desired light condensing property, and to stabilize an optical deflecting element having a certain optical characteristic stably. It can also be manufactured.

次に、本発明の光偏向素子におけるプリズム面の形状及び機能について更に詳細に説明する。図3〜図12は、2つのプリズム面がともに単一平面からなり出光面法線方向に対しそれぞれ角度α及びβ(本発明における頂部振り分け角α及びβに対応)をなし且つ出光面法線方向に関して互いに対称に配置されており、プリズム頂角が65.4度(α=β=32.7度)である従来の光偏向素子について、導光体からの出射光分布のピーク角度が光出射面に対し20度である光が、導光体の光入射面および光出射面の両方の面に対して垂直な平面において、どのような出射光分布で光偏向素子から出射するかを示したものである。図3〜図12は、第1のプリズム面より入射した入射光が第2のプリズム面によって全反射され出光面42から出射される状態を、第2プリズム面をx方向に10個のエリアに均等に分割し、それぞれのエリアからの出射光分布を示したものである。10個のエリアは、プリズム頂部に近い方から順にPart1、Part2、・・・Part10とした。第2のプリズム面で全反射され出射する全体の光の出射光分布においては、図13に示すように、そのピーク光はプリズム列形成平面の法線方向に出射され、22度の半値全幅を有している。   Next, the shape and function of the prism surface in the optical deflection element of the present invention will be described in more detail. 3 to 12 show that the two prism surfaces are both formed from a single plane and have angles α and β (corresponding to the top distribution angles α and β in the present invention), respectively, and the light exit surface normal. With respect to a conventional light deflection element that is arranged symmetrically with respect to the direction and has a prism apex angle of 65.4 degrees (α = β = 32.7 degrees), the peak angle of the distribution of light emitted from the light guide is light. Shows the distribution of the emitted light from the light deflecting element in a plane perpendicular to both the light incident surface and the light exit surface of the light guide, which is 20 degrees with respect to the exit surface. It is a thing. 3 to 12 show a state in which incident light incident from the first prism surface is totally reflected by the second prism surface and emitted from the light exit surface 42. The second prism surface is divided into 10 areas in the x direction. The distribution of light emitted from each area is shown by equally dividing. The ten areas were Part1, Part2,... Part10 in order from the side closest to the top of the prism. In the emission light distribution of the total light that is totally reflected and emitted by the second prism surface, as shown in FIG. 13, the peak light is emitted in the normal direction of the prism array forming plane, and the full width at half maximum of 22 degrees is obtained. Have.

しかし、これらをPart1〜Part10の各エリアにおける出射光分布で見ると、そのピーク角度は、Part1およびPart2では約−9度(負の角度値は法線方向を0度として光源方向に傾いた場合を示す。)付近に出射し、Part3〜Part7では0度方向(プリズム列形成平面の法線方向)に向かってピーク光が順次シフトし、さらにPart8〜Part10ではピーク光は正の角度方向に順次シフトしているのがわかる。最も出光面42に近いエリア(Part10)で全反射される出射光のピーク角度は7度である。第2のプリズム面の各エリア(Part1〜Part10)の間ではピーク角度に16度の広がりがある。また、各エリアからのピーク光の強度は、Part1からPart10へと徐々に小さくなっている。   However, when these are seen in the emitted light distribution in each area of Part1 to Part10, the peak angle is about -9 degrees in Part1 and Part2 (the negative angle value is when the normal direction is 0 degrees and tilted toward the light source direction) In the case of Part 3 to Part 7, the peak light is sequentially shifted toward the 0 degree direction (the normal direction of the prism array forming plane), and in Part 8 to Part 10, the peak light is sequentially shifted in the positive angle direction. You can see that it is shifting. The peak angle of the outgoing light totally reflected in the area (Part 10) closest to the light outgoing surface 42 is 7 degrees. Between each area (Part1 to Part10) of the second prism surface, the peak angle has a spread of 16 degrees. Further, the intensity of the peak light from each area gradually decreases from Part 1 to Part 10.

このように、一つの平面からなるプリズム面で全反射され出射した光は、プリズム面の全反射するエリアに依存してかなり広い範囲で分散していることがわかる。この各エリアからの出射光分布におけるピーク光を、各エリアの面の傾斜角をそれぞれ調整し、すべてのエリアでピーク角度が略同方向になるように出射させることによって、大部分の出射光を特定方向に集中して出射させることが可能となる。このとき、各エリアにおけるプリズムの面の傾斜角は、Part1からPart10の順に大きくなるように、すなわち出光面42に近いエリアの面ほど傾斜角を大きくするようにする。このように、各エリアの面の傾斜角を調整することで、図14に示したようにプリズム面全体で全反射される出射光を一定の方向に集光させることができ、より指向性が高く、ピーク強度の大きな光を出射することができる。本発明は、このような着想に基づいてなされたものである。   Thus, it can be seen that the light that is totally reflected and emitted by the prism surface composed of one plane is dispersed in a considerably wide range depending on the total reflection area of the prism surface. By adjusting the inclination angle of the surface of each area and emitting the peak light in the distribution of the emitted light from each area so that the peak angles are substantially in the same direction in all areas, most of the emitted light is It is possible to emit light concentrated in a specific direction. At this time, the inclination angle of the prism surface in each area is increased in the order from Part 1 to Part 10, that is, the inclination angle is increased toward the surface of the area closer to the light exit surface 42. In this way, by adjusting the inclination angle of the surface of each area, the emitted light totally reflected by the entire prism surface can be condensed in a certain direction as shown in FIG. High and high peak intensity light can be emitted. The present invention has been made based on such an idea.

しかしながら、第1のプリズム面44の頂部振り分け角がα=32.7度では第2のプリズム面45で受ける光量があまり多くないため、ピーク強度の向上には限界がある。そこでαを2〜25度にすることで、第2のプリズム面45に当たる光量を増大させることができ、その結果ピーク強度の増加がもたらされる。これは図15と比較して図16に示すように第1のプリズム面44での屈折の効果が大きくなり、さらにプリズムが同一のピッチになるように寸法調整を行うことによりプリズム面45の断面形状における長さが長くなるためである。例えば、図16に示すようにαを5度、βを38度とすると、図15のようにα=β=32.7度の場合に比較して約1.29倍の光量を第2のプリズム面45で受けることができる。このようにαを小さくすることでプリズム面45に当たる光量は増大するが、第2のプリズム面45が単一平面であると、全反射した光を効率よく略法線方向に向けることができない。このため第2のプリズム面45を非平面例えば曲面とするかおよび/またはいくつかの面例えば平面で構成する必要がある。   However, when the apex distribution angle of the first prism surface 44 is α = 32.7 degrees, the amount of light received by the second prism surface 45 is not so much, and there is a limit to the improvement of the peak intensity. Therefore, by setting α to 2 to 25 degrees, the amount of light hitting the second prism surface 45 can be increased, and as a result, the peak intensity is increased. Compared to FIG. 15, the effect of refraction at the first prism surface 44 is increased as shown in FIG. 16, and the cross section of the prism surface 45 is adjusted by adjusting the dimensions so that the prisms have the same pitch. This is because the length in the shape becomes long. For example, if α is 5 degrees and β is 38 degrees as shown in FIG. 16, the second light amount is about 1.29 times that in the case of α = β = 32.7 degrees as shown in FIG. It can be received by the prism surface 45. Thus, by reducing α, the amount of light hitting the prism surface 45 increases. However, if the second prism surface 45 is a single plane, the totally reflected light cannot be efficiently directed in the substantially normal direction. For this reason, the second prism surface 45 needs to be a non-planar surface such as a curved surface and / or a number of surfaces such as a flat surface.

第2のプリズム面45のエリアの数に関しては、多くするとプリズム面全面にわたってピーク角度を細かく調整することができ、全体としての出光の集中度を高めることができる。しかし傾斜角の異なる平面を細かく形成しなければならず、光偏向素子のプリズム面を形成するための金型切削用のバイトの設計や製造が複雑となるとともに、一定の光学特性を有する光偏向素子を安定して得ることも難しくなる。このため、プリズム面に形成するエリア数は3〜20の範囲とすることが好ましく、より好ましくは4〜15の範囲である。このプリズム面のエリアへの分割は均等に行うことが好ましいが、必ずしも均等に分割する必要はなく、プリズム面全体の所望の出射光分布に応じて調整することができる。   With regard to the number of areas of the second prism surface 45, if the number is increased, the peak angle can be finely adjusted over the entire prism surface, and the concentration of the emitted light as a whole can be increased. However, it is necessary to form fine planes with different inclination angles, which complicates the design and manufacture of a cutting tool for forming a prism surface of an optical deflection element, and provides optical deflection with certain optical characteristics. It becomes difficult to obtain the element stably. For this reason, it is preferable to make the number of areas formed in a prism surface into the range of 3-20, More preferably, it is the range of 4-15. Although it is preferable to divide the prism surface into areas equally, it is not always necessary to divide the prism surface equally, and the prism surface can be adjusted according to a desired distribution of emitted light on the entire prism surface.

αの値としては2〜25度、好ましくは5〜20度、さらに好ましくは11〜20度、最も好ましくは12〜15度の範囲であり、βの値としては33〜40度、好ましくは33.5〜39.5度、さらに好ましくは33.5〜38度、最も好ましくは34〜38度の範囲である。またαとβの差の絶対値(|α−β|)は8〜38度、好ましくは13〜35度、さらに好ましくは13〜27度、最も好ましくは19〜26度である。αの値は小さい方がピーク強度は大きくなるが、α=0度ではピーク角度を略法線方向に向けることが困難になる。またαを小さくすると、ピーク角度を略法線方向に向けるためにはプリズム頂角(α+β)も小さくすることになるため、製造がやや難しくなる。これらを考慮すると、αは5度以上で且つ各面ごとの出射光分布のピーク角度が略法線方向になるような断面形状が最も好ましい。   The value of α is in the range of 2 to 25 degrees, preferably 5 to 20 degrees, more preferably 11 to 20 degrees, most preferably 12 to 15 degrees, and the value of β is 33 to 40 degrees, preferably 33 .5 to 39.5 degrees, more preferably 33.5 to 38 degrees, and most preferably 34 to 38 degrees. The absolute value of the difference between α and β (| α−β |) is 8 to 38 degrees, preferably 13 to 35 degrees, more preferably 13 to 27 degrees, and most preferably 19 to 26 degrees. The smaller the value of α is, the larger the peak intensity is. However, when α = 0 °, it becomes difficult to direct the peak angle in a substantially normal direction. If α is made small, the prism apex angle (α + β) is also made small in order to make the peak angle substantially in the normal direction. In view of these, it is most preferable that α is 5 degrees or more and the cross-sectional shape is such that the peak angle of the outgoing light distribution for each surface is in a substantially normal direction.

具体的なプリズム形状としては、プリズムの頂点の座標を原点としプリズム列のピッチPの長さを1と正規化したとき、(x,z)座標表示で、点1(−0.111,1.27)、点2(0.0,0.0)、点3(0.159,0.195)、点4(0.212,0.260)、点5(0.265,0.328)、点6(0.319,0.398)、点7(0.372,0.470)、点8(0.425,0.544)、点9(0.478,0.621)、点10(0.531,0.699)、点11(0.584,0.780)、点12(0.637,0.861)、点13(0.690,0.945)、点14(0.743,1.030)、点15(0.796,1.117)、点16(0.889,1.27)の16点を繋いだ断面形状の15の平面からなるものが挙げられる。また点1(−0.284,1.059)、点2(0.000,0.000)、点3(0.212,0.278)、点4(0.265,0.350)、点5(0.319,0.423)、点6(0.372,0.501)、点7(0.425,0.581)、点8(0.478,0.663)、点9(0.531,0.748)、点10(0.584,0.834)、点11(0.637,0.922)、点12(0.716,1.059)の12点を繋いだ断面形状の11の平面からなる形状も好ましい。さらに点1(−0.206,1.168)、点2(0.000,0.000)、点3(0.159,0.204)、点4(0.212,0.273)、点5(0.265,0.343)、点6(0.319,0.416)、点7(0.372,0.490)、点8(0.425,0.567)、点9(0.478,0.646)、点10(0.531,0.727)、点11(0.584,0.810)、点12(0.637,0.897)、点13(0.794,1.168)の13点を繋いだ断面形状の12の平面からなるものも好ましい。   As a specific prism shape, when the coordinate of the apex of the prism is the origin and the length of the pitch P of the prism array is normalized to 1, the point 1 (−0.111,1) is displayed in the (x, z) coordinate display. .27), point 2 (0.0, 0.0), point 3 (0.159, 0.195), point 4 (0.212, 0.260), point 5 (0.265, 0.328) ), Point 6 (0.319, 0.398), point 7 (0.372, 0.470), point 8 (0.425, 0.544), point 9 (0.478, 0.621), Point 10 (0.531, 0.699), Point 11 (0.584, 0.780), Point 12 (0.637, 0.861), Point 13 (0.690, 0.945), Point 14 (0.743, 1.030), point 15 (0.796, 1.117), cross-sectional shape connecting 16 points (0.889, 1.27) It includes those consisting of 15 planes of. Point 1 (−0.284, 1.059), Point 2 (0.000, 0.000), Point 3 (0.212, 0.278), Point 4 (0.265, 0.350), Point 5 (0.319, 0.423), Point 6 (0.372, 0.501), Point 7 (0.425, 0.581), Point 8 (0.478, 0.663), Point 9 (0.531, 0.748), point 10 (0.584, 0.834), point 11 (0.637, 0.922), point 12 (0.716, 1.059) A shape composed of eleven planes having a cross-sectional shape is also preferable. Furthermore, point 1 (−0.206, 1.168), point 2 (0.000, 0.000), point 3 (0.159, 0.204), point 4 (0.212, 0.273), Point 5 (0.265, 0.343), Point 6 (0.319, 0.416), Point 7 (0.372, 0.490), Point 8 (0.425, 0.567), Point 9 (0.478, 0.646), point 10 (0.531, 0.727), point 11 (0.584, 0.810), point 12 (0.637, 0.897), point 13 (0 .794, 1.168), which is composed of 12 planes having a cross-sectional shape connecting 13 points.

上記断面形状の16点、12点及び13点は厳密にその全てを通る必要はない。各点からの多少のずれ(即ち各点の近傍点を通るようにすること)はピーク強度に大きな影響を与えない。ただし、プリズム列のピッチPの長さを1と正規化したとき、16点、12点または13点中の少なくとも5点については、上記所定座標からのずれがそれらの点を中心とした半径0.021の円内にあるのが望ましく、好ましくは半径0.018の円内、さらに好ましくは半径0.014の円内にあるのが望ましい。また8点が半径0.014の円内にあるのが最も望ましい。   The 16 points, 12 points and 13 points of the cross-sectional shape do not need to pass through all of them. Some deviation from each point (that is, passing through a point in the vicinity of each point) does not significantly affect the peak intensity. However, when the length of the pitch P of the prism row is normalized to 1, at least 5 points out of 16 points, 12 points, or 13 points have a radius of 0 centered on those points. It is desirable to be within a circle of 0.021, preferably within a circle with a radius of 0.018, more preferably within a circle with a radius of 0.014. It is most desirable that the eight points are within a circle having a radius of 0.014.

本発明においては、例えば図17に示したように、プリズム面の上記のような異なる傾斜角を有する面の少なくとも1つを凸曲面とすることもでき、全ての面を凸曲面としてもよい。すなわち、プリズム面を1つ以上の平面と1つ以上の凸曲面とから構成してもよいし、傾斜角の異なる2つ以上の凸曲面から構成してもよい。図17では、第2のプリズム面45を、4つのエリアに分割し、2つの平面49,50と2つの凸曲面51,52とから構成している。凸曲面51は、その断面形状において中心(−5.025,4.389)半径R=6.669の円の一部をなしており、凸曲面52は、その断面形状において中心(−6.672,5.537)半径R=8.677の円の一部をなしている。このように、プリズム面を異なる傾斜角の複数の凸曲面で構成した場合には、異なる傾斜角の平面により構成する場合と比較して、エリア数をたとえば2〜10好ましくは2〜5と少なくすることができる。しかし、エリア数が少なすぎると所望の出射光分布を調整するための各凸曲面の設計が困難となるため、エリア数は3〜4の範囲とすることがより好ましい。   In the present invention, for example, as shown in FIG. 17, at least one of the prism surfaces having different inclination angles as described above may be a convex curved surface, and all the surfaces may be convex curved surfaces. That is, the prism surface may be composed of one or more planes and one or more convex curved surfaces, or may be composed of two or more convex curved surfaces having different inclination angles. In FIG. 17, the second prism surface 45 is divided into four areas, and is composed of two flat surfaces 49 and 50 and two convex curved surfaces 51 and 52. The convex curved surface 51 forms a part of a circle having a center (−5.025, 4.389) radius R = 6.669 in its cross-sectional shape, and the convex curved surface 52 is in the center (−6. 672, 5.537) forming a part of a circle with a radius R = 8.677. Thus, when the prism surface is composed of a plurality of convex curved surfaces having different inclination angles, the number of areas is reduced to 2 to 10, preferably 2 to 5, for example, compared to the case where the prism surface is constituted by planes having different inclination angles. can do. However, if the number of areas is too small, it is difficult to design each convex curved surface for adjusting the desired outgoing light distribution, so the number of areas is more preferably in the range of 3 to 4.

また、凸曲面の形状は、そのXY断面形状を円形のみならず非円形とすることができる。さらに、複数の凸曲面によりプリズム面を構成する場合には、各凸曲面の形状が異なることが好ましく、断面円形状の凸曲面と断面非円形状の凸曲面とを組み合わせることもできる。非円形状としては、楕円形状の一部、放物線形状の一部等が挙げられる。   Further, the shape of the convex curved surface can be not only circular but also non-circular in its XY cross-sectional shape. Further, when the prism surface is formed by a plurality of convex curved surfaces, the shape of each convex curved surface is preferably different, and a convex curved surface having a circular cross section and a convex curved surface having a non-circular cross section can be combined. Examples of the non-circular shape include a part of an elliptical shape and a part of a parabolic shape.

本発明において、凸曲面の場合の傾斜角とは、凸曲面の両端縁を結ぶ面(断面形状においては凸曲線部の弦に相当)のプリズム列形成平面43に対する傾斜角度をいう。また、凸曲面が頂部を構成する場合には、頂部振り分け角は、凸曲面の両端縁を結ぶ面のプリズム列形成平面43の法線方向となす角をいう。   In the present invention, the inclination angle in the case of a convex curved surface refers to the inclination angle with respect to the prism array forming plane 43 of the surface connecting the both ends of the convex curved surface (corresponding to the chord of the convex curved portion in the cross-sectional shape). When the convex curved surface constitutes the top, the top distribution angle is an angle formed with the normal direction of the prism row forming plane 43 that connects the both ends of the convex curved surface.

プリズム列のピッチPとプリズム列の頂部及び当該プリズム列のプリズム面45の谷部を結んだ長さL2との関係については、プリズム面45で受ける光量を多くし、プリズム列を構成するプリズム面の各エリアの出射光分布のピーク角度を法線方向に向け、プリズム頂角(α+β)が小さくなりすぎないようにするためには、L2/P=1.1〜1.7とすることが好ましい。より好ましくはL2/P=1.16〜1.6、さらに好ましくはL2/P=1.27〜1.56である。また、プリズム列の頂部及び当該プリズム面44の谷部を結んだ長さL1とプリズム列の頂部及びプリズム面45の谷部を結んだ長さL2との関係は、L2/L1=1.1〜1.3とすることが好ましい。より好ましくはL2/L1=1.13〜1.25、さらに好ましくはL2/L1=1.16〜1.22である。   Regarding the relationship between the pitch P of the prism array and the length L2 connecting the top of the prism array and the trough of the prism surface 45 of the prism array, the amount of light received by the prism surface 45 is increased, and the prism surfaces constituting the prism array In order to direct the peak angle of the emitted light distribution in each area in the normal direction and prevent the prism apex angle (α + β) from becoming too small, L2 / P = 1.1 to 1.7. preferable. More preferably, L2 / P = 1.16 to 1.6, and further preferably L2 / P = 1.27 to 1.56. Further, the relationship between the length L1 connecting the top of the prism row and the valley of the prism surface 44 and the length L2 connecting the top of the prism row and the valley of the prism surface 45 is L2 / L1 = 1.1. It is preferable to set it to -1.3. More preferably, L2 / L1 = 1.13 to 1.25, and further preferably L2 / L1 = 1.16 to 1.22.

本発明において、プリズム列はプリズム谷部の切込み角が小さくなる。このため、製造の際にプリズム谷部にバリが発生しやすくなり、プリズム谷部が筋のように見える欠陥が発生する場合がある。このような欠陥の発生を防止するためには、図20に示すように、隣接するプリズム列の間に平坦部59を設けることが好ましい。この平坦部59は、図示されるように、当該平坦部を形成しない場合のプリズム谷部からプリズムの高さ方向に2〜10μmの位置に設けることが好ましく、より好ましくは2.5〜5μm、さらに好ましくは3〜4μmの位置である。この位置が2μm未満では、プリズム列のパターンを型に形成する切削バイトの精密な加工が困難となる傾向にあり、10μmを超えると輝度低下を招く傾向があるためである。また、平坦部の形成位置は、プリズム列のピッチPの長さを1と正規化したとき、当該平坦部を形成しない場合のプリズム谷部から高さ方向に0.035〜0.18の範囲でもよいし、頂部振り分け角βのプリズム面の断面形状においてプリズム頂部とプリズム谷部とを結んだ仮想直線の長さL2を1と正規化したとき、プリズム谷部からプリズム列の高さ方向に0.022〜0.16の範囲でもよい。   In the present invention, the prism row has a smaller cutting angle at the prism valley. For this reason, burrs are likely to be generated in the prism valleys during manufacturing, and defects in which the prism valleys look like lines may occur. In order to prevent such a defect from occurring, it is preferable to provide a flat portion 59 between adjacent prism rows as shown in FIG. As shown in the drawing, the flat portion 59 is preferably provided at a position of 2 to 10 μm from the prism valley when the flat portion is not formed, more preferably 2.5 to 5 μm, More preferably, the position is 3 to 4 μm. This is because if the position is less than 2 μm, precise machining of the cutting tool for forming the pattern of the prism row in the mold tends to be difficult, and if it exceeds 10 μm, the brightness tends to decrease. The flat portion is formed at a position in the range of 0.035 to 0.18 in the height direction from the prism valley when the flat portion is not formed when the length of the pitch P of the prism row is normalized to 1. Alternatively, when the length L2 of the imaginary straight line connecting the prism apex and the prism valley in the cross-sectional shape of the prism surface with the apex distribution angle β is normalized to 1, the prism valley extends in the height direction of the prism row. It may be in the range of 0.022 to 0.16.

プリズム列を構成する2つのプリズム面のなす稜線を、プリズム列のピッチPの長さを1と正規化したとき、稜線の基準線(プリズム列の平均高さに位置する線)に対して0.018〜0.354の凹凸状に形成することもできる。稜線の基準線に対する凹凸の度合いは好ましくは0.018〜0.177、さらに好ましくは0.018〜0.088、より好ましくは0.035〜0.063である。稜線をZ方向に関して凹凸状にすることで、ぎらつきを防ぎ、導光板や光偏向素子の欠陥を視認しにくくし、輝度の不均一を減少させる等の品位向上に役立つ。一方稜線を凹凸状にすると、導光板と光偏向素子との間に若干の隙間が生ずる。このため導光板からの出射光は、隙間がない時あたるべきプリズム列より反光源側のプリズム列にあたることになり、特に導光体からピーク出射光よりも法線寄りに出射する光はプリズム列の主たる反射面(一次光源から遠い側のプリズム面)に当たることができなくなることがあり、その場合にはその分だけ全体の輝度が低下するおそれがある。しかし、本発明の光偏向素子では、このような稜線を凹凸状にしたことによる輝度低下分を補って大幅な輝度アップが図れるので、全体の輝度低下を防ぐことができる。しかし、本発明の光偏向素子の効果を十分に発揮するためには、稜線の凹凸の度合いは前記範囲内とすることが好ましい。稜線を凹凸状に形成する方法は、特に限定されるものではない。例えば、レンズパターンを切削形成する際に特定の振動を与えながら切削したレンズ型を使用して成形する方法や従来のレンズシートのレンズ単位の稜線部を微細なサンドペーパー等を使用して研削加工する方法等によって形成することができる。   When the length of the pitch P of the prism row is normalized to 1 with respect to the ridge line formed by the two prism surfaces constituting the prism row, the ridge line is 0 with respect to the reference line of the ridge line (a line located at the average height of the prism row). It can also be formed in a concavo-convex shape of .018 to 0.354. The degree of unevenness of the ridge line with respect to the reference line is preferably 0.018 to 0.177, more preferably 0.018 to 0.088, and more preferably 0.035 to 0.063. By making the ridge line uneven in the Z direction, glare is prevented, defects in the light guide plate and the light deflection element are made difficult to visually recognize, and it is useful for improving the quality such as reducing non-uniform luminance. On the other hand, when the ridge is uneven, a slight gap is generated between the light guide plate and the light deflection element. For this reason, the light emitted from the light guide plate hits the prism array on the side opposite to the light source from the prism array to be hit when there is no gap, and particularly the light emitted from the light guide closer to the normal line than the peak output light May not be able to hit the main reflecting surface (the prism surface far from the primary light source), and in that case, the overall luminance may be reduced accordingly. However, in the optical deflecting element of the present invention, the luminance can be significantly increased by compensating for the luminance reduction caused by the unevenness of the ridge line, and thus the overall luminance can be prevented from decreasing. However, in order to sufficiently exhibit the effect of the light deflecting element of the present invention, it is preferable that the degree of unevenness of the ridge line is within the above range. The method for forming the ridge line in an uneven shape is not particularly limited. For example, when forming a lens pattern by cutting using a lens mold that has been cut while applying specific vibration, or by grinding the ridge line part of the lens unit of a conventional lens sheet using fine sandpaper etc. It can be formed by a method or the like.

またプリズム列を構成する2つのプリズム面を、プリズム列のピッチPの長さを1と正規化したとき、プリズム面の基準面(稜線の基準線とプリズム面の底辺(谷部側の辺)の中心線を含む面)に対して0.012〜0.334の凹凸状に形成することで上記稜線を凹凸状にする場合と同様、品位向上が図れる。プリズム基準面に対する凹凸の度合いは好ましくは0.012〜0.152、さらに好ましくは0.012〜0.076、より好ましくは0.022〜0.046である。   When the two prism surfaces constituting the prism row are normalized with the length of the pitch P of the prism row as 1, the reference surface of the prism surface (the reference line of the ridge line and the base of the prism surface (side on the valley side) In the same manner as in the case where the ridgeline is made uneven, the quality can be improved. The degree of unevenness with respect to the prism reference surface is preferably 0.012 to 0.152, more preferably 0.012 to 0.076, and more preferably 0.022 to 0.046.

このように、導光体3の光出射面33上に上記のような光偏向素子4を、そのプリズム列形成面が入光面側となるように載置することによって、導光体3の光出射面33から出射する指向性出射光のXZ面内での出射光分布をより狭くすることができ、光源装置としての高輝度化を図ることができる。すなわち、本発明においては、光偏向素子4のプリズム列形成面が導光体3の光出射面33に対向して配置される光源装置において、プリズム列の主たる反射面(一次光源から遠い側のプリズム面)の形状を最適化し、その長さを長くするともに、導光体3からの出射光がプリズム列に入射する際に、入射光が光偏向素子4の出光面42から遠ざかる方向に屈折させることができるようにプリズム列の光の入射面(一次光源に近い側のプリズム面)の傾斜角を設定することによって、不要な方向への光の分散を抑止することにより光の利用効率を高め、所望の方向に集中して光を出射させることができ、光源装置としての格段の輝度の向上を図ることができたものである。   As described above, the light deflection element 4 as described above is placed on the light emitting surface 33 of the light guide 3 so that the prism array forming surface is on the light incident surface side. The distribution of the outgoing light in the XZ plane of the directional outgoing light emitted from the light outgoing surface 33 can be made narrower, and the luminance of the light source device can be increased. That is, in the present invention, in the light source device in which the prism array forming surface of the light deflecting element 4 is arranged to face the light emitting surface 33 of the light guide 3, the main reflecting surface of the prism array (on the side far from the primary light source). The shape of the prism surface) is optimized and lengthened, and when the light emitted from the light guide 3 enters the prism row, the incident light is refracted away from the light output surface 42 of the light deflection element 4. By setting the inclination angle of the light incident surface (prism surface close to the primary light source) of the prism row so that the light can be used, the light usage efficiency can be reduced by suppressing the dispersion of light in unnecessary directions. Thus, light can be emitted in a concentrated manner in a desired direction, and the luminance as a light source device can be significantly improved.

上記のような光偏向素子4において、プリズム面が傾斜角の異なる複数の平面あるいは凸曲面により構成されるとき、十分な集光特性を確保するためには、プリズム列の頂部と底部とを結ぶ仮想平面と複数の平面あるいは凸曲面(実際のプリズム面)との最大距離(d)をプリズム列のピッチ(P)に対する割合(d/P)で0.4〜5%とすることが好ましい。これは、d/Pが0.4%未満であったり、あるいは5%を越えると、集光特性が低下する傾向にあり、十分な輝度向上を図れなくなる傾向にあるためであり、より好ましくは0.4〜4.5%の範囲であり、更に好ましくは0.7〜4.0%の範囲である。また、凸曲面としては、その曲率半径(r)をプリズム列のピッチ(P)との比(r/P)が2〜50の範囲とすることが好ましく、より好ましくは5〜30、更に好ましくは6.5〜12の範囲である。このr/Pが2未満であったり50を越えると、十分な集光特性を発揮できなくなり、輝度が低下する傾向にある。   In the light deflection element 4 as described above, when the prism surface is composed of a plurality of flat surfaces or convex curved surfaces having different inclination angles, the top and bottom portions of the prism row are connected to ensure sufficient light condensing characteristics. The maximum distance (d) between the virtual plane and a plurality of planes or convex curved surfaces (actual prism surfaces) is preferably 0.4 to 5% in terms of the ratio (d / P) to the pitch (P) of the prism rows. This is because when d / P is less than 0.4% or exceeds 5%, the light condensing characteristic tends to be lowered, and sufficient luminance cannot be improved. It is in the range of 0.4 to 4.5%, more preferably in the range of 0.7 to 4.0%. Further, as the convex curved surface, the radius of curvature (r) is preferably in the range of 2 to 50 (r / P) with respect to the pitch (P) of the prism row, more preferably 5 to 30, and still more preferably. Is in the range of 6.5-12. If this r / P is less than 2 or exceeds 50, sufficient light condensing characteristics cannot be exhibited and the luminance tends to decrease.

このような光偏向素子4からの出射光のXZ面内での出射光分布の半値全幅は、5度以上25度以下であることが好ましく、より好ましくは10〜20度の範囲であり、さらに好ましくは11〜15度の範囲である。これは、この出射光分布の半値全幅を5度以上とすることによって極端な狭視野化による画像等の見づらさをなくすことができ、25度以下とすることによって高輝度化を図ることができるためである。   The full width at half maximum of the outgoing light distribution in the XZ plane of the outgoing light from such a light deflection element 4 is preferably 5 degrees or more and 25 degrees or less, more preferably in the range of 10 to 20 degrees, Preferably it is the range of 11-15 degree | times. This makes it possible to eliminate the difficulty of viewing images and the like due to an extremely narrow field of view by setting the full width at half maximum of this outgoing light distribution to 5 degrees or more, and to increase the brightness by setting it to 25 degrees or less. Because.

一次光源1はY方向に延在する線状の光源であり、該一次光源1としては例えば蛍光ランプや冷陰極管を用いることができる。なお、本発明においては、一次光源1は線状光源に限定されるものではなく、LED光源、ハロゲンランプ、メタハロランプ等のような点光源を使用することもできる。特に、携帯電話機や携帯情報端末機等の比較的小さな画面寸法の表示装置に使用する場合には、LED等の小さな点光源を使用することが好ましい。また、一次光源1は、図1に示したように、導光体3の一方の側端面に設置する場合だけでなく、必要に応じて対向する他方の側端面にもさらに設置することもできる。   The primary light source 1 is a linear light source extending in the Y direction. As the primary light source 1, for example, a fluorescent lamp or a cold cathode tube can be used. In the present invention, the primary light source 1 is not limited to a linear light source, and a point light source such as an LED light source, a halogen lamp, a metahalo lamp, or the like can also be used. In particular, when used in a display device having a relatively small screen size such as a mobile phone or a portable information terminal, it is preferable to use a small point light source such as an LED. In addition, as shown in FIG. 1, the primary light source 1 is not only installed on one side end surface of the light guide 3, but can be further installed on the other side end surface facing each other as necessary. .

本発明においては、図1に示したように、一次光源1として線状の光源を使用する場合には、光偏向素子4に形成するプリズム列は一次光源1と略平行な方向に延びるように、あるいは一次光源1と20°以下の傾きを有する方向に延びるように形成するが、光偏向素子4に形成するプリズム列の配置は使用する光源によって、導光体3中を伝搬する光の伝搬方向によって変更することができる。例えば、図18に示すように一次光源1としてLED光源等の略点状光源を導光体3のコーナー等に配置して使用する場合には、導光体3に入射した光は光出射面33と同一の平面内において一次光源1を略中心とした放射状に導光体3中を伝搬し、光出射面33から出射する出射光も同様に一次光源1を中心とした放射状に出射する。このような放射状に出射する出射光を、その出射方向に関わらず効率よく所望の方向に偏向させるためには、光偏向素子4に形成するプリズム列を一次光源1を取り囲むように略弧状に並列して配置することが好ましい。このように、プリズム列を一次光源1を取り囲むように略弧状に並列して配置することにより、光出射面33から放射状に出射する光の殆どが光偏向素子4のプリズム列に対して略垂直に入射するため、導光体3の光出射面33の全領域で出射光を効率良く特定の方向に向けることができ、輝度の均一性を向上させることができる。光偏向素子4に形成する略弧状のプリズム列は、導光体3中を伝搬する光の分布に応じてその弧状の程度を選定し、光出射面33から放射状に出射する光の殆どが光偏向素子4のプリズム列に対して略垂直に入射するようにすることが好ましい。具体的には、LED等の点状光源を略中心とした略同心円状に略円弧の半径が少しずつ大きくなるように並列して配置されたものが挙げられ、プリズム列の半径の範囲は、面光源システムにおける点状光源の位置と、液晶表示エリアに相当する面光源の有効エリアとの位置関係や大きさによって決定される。   In the present invention, as shown in FIG. 1, when a linear light source is used as the primary light source 1, the prism row formed on the light deflection element 4 extends in a direction substantially parallel to the primary light source 1. Alternatively, it is formed so as to extend in a direction having an inclination of 20 ° or less with the primary light source 1, but the arrangement of the prism rows formed in the light deflection element 4 is the propagation of light propagating in the light guide 3 depending on the light source used. It can be changed depending on the direction. For example, as shown in FIG. 18, when a substantially point light source such as an LED light source is used as the primary light source 1 arranged at the corner of the light guide 3 or the like, the light incident on the light guide 3 is a light exit surface. In the same plane as 33, the light that propagates through the light guide 3 radially about the primary light source 1 and exits from the light exit surface 33 is also emitted radially about the primary light source 1. In order to efficiently deflect the emitted light emitted radially like this in a desired direction regardless of the emission direction, the prism array formed in the light deflecting element 4 is arranged in a substantially arc shape so as to surround the primary light source 1. It is preferable to arrange them. Thus, by arranging the prism rows in parallel in a substantially arc shape so as to surround the primary light source 1, most of the light emitted radially from the light emitting surface 33 is substantially perpendicular to the prism rows of the light deflection element 4. Therefore, the emitted light can be efficiently directed in a specific direction in the entire region of the light emitting surface 33 of the light guide 3, and the uniformity of luminance can be improved. The substantially arc-shaped prism row formed on the light deflecting element 4 is selected according to the distribution of the light propagating in the light guide 3, and most of the light emitted radially from the light emitting surface 33 is light. It is preferable that the light is incident substantially perpendicular to the prism row of the deflecting element 4. Specifically, those arranged in parallel so that the radius of the substantially arc is gradually increased in a substantially concentric manner with a point light source such as an LED as the center, the radius range of the prism row is, It is determined by the positional relationship and size between the position of the point light source in the surface light source system and the effective area of the surface light source corresponding to the liquid crystal display area.

光源リフレクタ2は一次光源1の光をロスを少なく導光体3へ導くものである。材質としては、例えば表面に金属蒸着反射層有するプラスチックフィルムを用いることができる。図示されているように、光源リフレクタ2は、光反射素子5の端縁部外面から一次光源1の外面を経て光拡散素子6の出光面端縁部へと巻きつけられている。他方、光源リフレクタ2は、光拡散素子6及び光偏向素子4を避けて、光反射素子5の端縁部外面から一次光源1の外面を経て導光体3の光出射面端縁部へと巻きつけることも可能である。   The light source reflector 2 guides the light from the primary light source 1 to the light guide 3 with little loss. As a material, for example, a plastic film having a metal-deposited reflective layer on the surface can be used. As shown in the drawing, the light source reflector 2 is wound from the outer surface of the light reflecting element 5 to the light emitting surface edge of the light diffusing element 6 through the outer surface of the primary light source 1. On the other hand, the light source reflector 2 avoids the light diffusing element 6 and the light deflecting element 4 and passes from the outer surface of the light reflecting element 5 to the edge of the light emitting surface of the light guide 3 through the outer surface of the primary light source 1. It can also be wound.

このような光源リフレクタ2と同様な反射部材を、導光体3の側端面31以外の側端面に付することも可能である。光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等とすることも可能である。   A reflection member similar to the light source reflector 2 can be attached to a side end surface other than the side end surface 31 of the light guide 3. As the light reflecting element 5, for example, a plastic sheet having a metal vapor deposition reflecting layer on the surface can be used. In the present invention, the light reflecting element 5 may be a light reflecting layer or the like formed on the back surface 34 of the light guide 3 by metal vapor deposition or the like instead of the reflecting sheet.

本発明の導光体3及び光偏向素子4は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3及び光偏向素子4の粗面の表面構造やプリズム列等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂からなる粗面構造またレンズ列配列構造を表面に形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。   The light guide 3 and the light deflection element 4 of the present invention can be made of a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and vinyl chloride resins. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When forming the rough surface structure of the light guide 3 and the light deflection element 4 and the surface structure such as the prism array, the transparent synthetic resin plate is formed by hot pressing using a mold member having a desired surface structure. Alternatively, the shape may be imparted simultaneously with molding by screen printing, extrusion molding, injection molding, or the like. The structural surface can also be formed using heat or a photocurable resin. Furthermore, on a transparent substrate such as a polyester film, acrylic resin, polycarbonate resin, vinyl chloride resin, polymethacrylamide resin, or other transparent substrate or rough surface structure made of an active energy ray curable resin. Moreover, a lens array arrangement structure may be formed on the surface, or such a sheet may be bonded and integrated on a separate transparent base material by a method such as adhesion or fusion. As the active energy ray-curable resin, polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, allyl compounds, (meth) acrylic acid metal salts, and the like can be used.

以上のような一次光源1、光源リフレクタ2、導光体3、光偏向素子4および光反射素子5更には光拡散素子6からなる面光源装置の発光面(光偏向素子4の出光面42更には光拡散素子6の表面)上に、液晶表示素子を配置することにより液晶表示装置が構成される。液晶表示装置は、図1における上方から液晶表示素子を通して観察者により観察される。また、本発明においては、十分にコリメートされた狭い分布の光を面光源装置から液晶表示素子に入射させることができるため、液晶表示素子での階調反転等がなく明るさ、色相の均一性の良好な画像表示が得られるとともに、所望の方向に集中した光照射が得られ、この方向の照明に対する一次光源の発光光量の利用効率を高めることができる。   The light emitting surface of the surface light source device comprising the primary light source 1, the light source reflector 2, the light guide 3, the light deflecting element 4, the light reflecting element 5, and the light diffusing element 6 (the light exiting surface 42 of the light deflecting element 4). Is arranged on the surface of the light diffusing element 6 to constitute a liquid crystal display device. The liquid crystal display device is observed by an observer through the liquid crystal display element from above in FIG. Further, in the present invention, a sufficiently collimated narrow distribution of light can be incident on the liquid crystal display element from the surface light source device, so that there is no gradation inversion in the liquid crystal display element and the brightness and hue uniformity. Can be obtained, and light irradiation concentrated in a desired direction can be obtained, and the utilization efficiency of the light emission amount of the primary light source for the illumination in this direction can be enhanced.

さらに、本発明においては、このように光偏向素子4によって狭視野化され高輝度化された光源装置において、輝度の低下をできる限り招くことなく、視野範囲を目的に応じて適度に制御するために、光偏向素子4の出光面上に光拡散素子6を隣接配置することができる。また、本発明においては、このように光拡散素子6を配置することによって、品位低下の原因となるぎらつきや輝度斑等を抑止し品位向上を図ることもできる。   Furthermore, in the present invention, in the light source device having a narrow field of view and a high brightness as described above by the light deflecting element 4, in order to appropriately control the field of view according to the purpose without causing a decrease in brightness as much as possible. In addition, the light diffusing element 6 can be disposed adjacent to the light exit surface of the light deflecting element 4. Further, in the present invention, by disposing the light diffusing element 6 in this manner, it is possible to suppress glare, brightness spots and the like that cause deterioration in quality and to improve quality.

光拡散素子6は、光偏向素子4の出光面側にて光偏向素子4と一体化させてもよいし、光拡散素子6を個別に光偏向素子4の出光面側に載置してもよいが、個別に光拡散素子6を配置するほうが好ましい。個別に光拡散素子6を載置する場合には、光拡散素子6の光偏向素子4に隣接する側の面には、光偏向素子4とのスティッキングを防止するため、凹凸構造を付与することが好ましい。同様に、光拡散素子6の出射面においても、その上に配置される液晶表示素子との間でのスティッキングを考慮する必要があり、光拡散素子6の出射面にも凹凸構造を付与することが好ましい。この凹凸構造は、スティッキング防止の目的のみに付与する場合には、平均傾斜角が0.7度以上となるような構造とすることが好ましく、さらに好ましくは1度以上であり、より好ましくは1.5度以上である。   The light diffusing element 6 may be integrated with the light deflecting element 4 on the light exit surface side of the light deflecting element 4, or the light diffusing element 6 may be individually placed on the light exit surface side of the light deflecting element 4. Although it is good, it is preferable to dispose the light diffusing elements 6 individually. When the light diffusing elements 6 are individually mounted, a concavo-convex structure is provided on the surface of the light diffusing element 6 adjacent to the light deflecting element 4 in order to prevent sticking with the light deflecting element 4. Is preferred. Similarly, it is necessary to consider sticking between the light diffusing element 6 and the liquid crystal display element disposed thereon, and an uneven structure is also provided on the light diffusing element 6. Is preferred. In the case of providing this concavo-convex structure only for the purpose of preventing sticking, the concavo-convex structure is preferably a structure having an average inclination angle of 0.7 degrees or more, more preferably 1 degree or more, and more preferably 1 .5 degrees or more.

本発明においては、輝度特性、視認性および品位等のバランスを考慮して光偏向素子4からの出射光を適度に拡散させる光拡散特性を有する光拡散素子6を使用することが必要である。すなわち、光拡散素子6の光拡散性が低い場合には、視野角を十分に広げることが困難となり視認性を低下させるとともに、品位改善効果が十分でなくなる傾向にあり、逆に光拡散性が高すぎる場合には光偏向素子4による狭視野化の効果が損なわれるとともに、全光線透過率も低くなり輝度が低下する傾向にある。そこで、本発明の光拡散素子6においては、平行光を入射したときの出射光分布の半値全幅が1〜13度の範囲であるものが使用される。光拡散素子6の半値全幅は、好ましくは3〜11度の範囲、さらに好ましくは4〜8.5度の範囲である。なお、本発明において光拡散素子6の出射光分布の半値全幅とは、図19に示すように、光拡散素子6に入射した平行光線が出射時にどの程度拡散して広がるかを示したもので、光拡散素子6を透過拡散した出射光の光度分布におけるピーク値に対する半値での広がり角の全幅の角度(Δθ)をいう。 In the present invention, it is necessary to use a light diffusing element 6 having a light diffusing characteristic for appropriately diffusing light emitted from the light deflecting element 4 in consideration of a balance of luminance characteristics, visibility, quality, and the like. That is, when the light diffusibility of the light diffusing element 6 is low, it is difficult to sufficiently widen the viewing angle and the visibility is lowered, and the effect of improving the quality tends to be insufficient. If it is too high, the effect of narrowing the field of view by the light deflecting element 4 is impaired, and the total light transmittance is also lowered and the luminance tends to be lowered. Therefore, in the light diffusing element 6 of the present invention, one having a full width at half maximum of the outgoing light distribution when parallel light is incident is in the range of 1 to 13 degrees. The full width at half maximum of the light diffusing element 6 is preferably in the range of 3 to 11 degrees, more preferably in the range of 4 to 8.5 degrees. In the present invention, the full width at half maximum of the emitted light distribution of the light diffusing element 6 indicates how much the parallel rays incident on the light diffusing element 6 are diffused and spread when emitted, as shown in FIG. The full width angle (Δθ H ) of the divergence angle at a half value with respect to the peak value in the luminous intensity distribution of the outgoing light transmitted and diffused through the light diffusing element 6.

このような光拡散特性は、光拡散素子6中に光拡散剤を混入したり、光拡散素子6の少なくとも一方の表面に凹凸構造を付与することによって付与することができる。表面に形成する凹凸構造は、光拡散素子6の一方の表面に形成する場合と両方の表面に形成する場合とでは、その程度が異なる。光拡散素子6の一方の表面に凹凸構造を形成する場合には、その平均傾斜角を0.8〜12度の範囲とすることが好ましく、さらに好ましくは3.5〜7度であり、より好ましくは4〜6.5度である。光拡散素子6の両方の表面に凹凸構造を形成する場合には、一方の表面に形成する凹凸構造の平均傾斜角を0.8〜6度の範囲とすることが好ましく、さらに好ましくは2〜4度であり、より好ましくは2.5〜4度である。この場合、光拡散素子6の全光線透過率の低下を抑止するためには、光拡散素子6の入射面側の平均傾斜角を出射面側の平均傾斜角よりも大きくすることが好ましい。また、光拡散素子6のヘイズ値としては8〜82%の範囲とすることが、輝度特性向上と視認性改良の観点から好ましく、さらに好ましくは30〜70%の範囲であり、より好ましくは40〜65%の範囲である。   Such light diffusion characteristics can be imparted by mixing a light diffusing agent in the light diffusing element 6 or imparting a concavo-convex structure to at least one surface of the light diffusing element 6. The degree of the concavo-convex structure formed on the surface differs depending on whether it is formed on one surface of the light diffusing element 6 or on both surfaces. In the case of forming a concavo-convex structure on one surface of the light diffusing element 6, the average inclination angle is preferably in the range of 0.8 to 12 degrees, more preferably 3.5 to 7 degrees, and more Preferably it is 4 to 6.5 degrees. When the concavo-convex structure is formed on both surfaces of the light diffusing element 6, the average inclination angle of the concavo-convex structure formed on one surface is preferably in the range of 0.8 to 6 degrees, more preferably 2 to 2. It is 4 degrees, more preferably 2.5 to 4 degrees. In this case, in order to suppress a decrease in the total light transmittance of the light diffusing element 6, it is preferable to make the average inclination angle on the incident surface side of the light diffusing element 6 larger than the average inclination angle on the exit surface side. Further, the haze value of the light diffusing element 6 is preferably in the range of 8 to 82% from the viewpoint of improving luminance characteristics and improving visibility, more preferably in the range of 30 to 70%, more preferably 40. It is in the range of ~ 65%.

本発明の光源装置においては、その発光面(光拡散素子6の出射面)の法線方向から観察した場合の表示エリア内における輝度が均一であることも要求される。この輝度の均一性は光源の表示エリアの大きさにも依存し、例えば、ノートパソコンやモニター等の表示エリアが大きい大型の光源装置では、比較的広い視野角特性が要求される場合があり、発光面から出射する出射光の分布をより広くすることが要求される。一方、携帯電話や携帯情報端末等の表示エリアが小さい小型の光源装置では、高輝度や表示品位向上が優先される場合があり、発光面からの出射する出射光分布は比較的狭くてもよい。このため、光拡散素子6としては、光源装置の表示エリアの大きさに応じて適切な光拡散特性を有するものを使用することが好ましい。   The light source device of the present invention is also required to have uniform luminance in the display area when observed from the normal direction of the light emitting surface (the exit surface of the light diffusing element 6). This uniformity of brightness also depends on the size of the display area of the light source. For example, a large light source device with a large display area such as a notebook computer or a monitor may require a relatively wide viewing angle characteristic. It is required to make the distribution of outgoing light emitted from the light emitting surface wider. On the other hand, in a small light source device with a small display area such as a mobile phone or a portable information terminal, priority may be given to high brightness and display quality improvement, and the distribution of emitted light emitted from the light emitting surface may be relatively narrow. . For this reason, it is preferable to use the light diffusing element 6 having an appropriate light diffusing characteristic according to the size of the display area of the light source device.

本発明においては、光偏向素子4を用いて導光体3からの出射光を法線方向等の特定な方向に出射させ、この出射光を異方拡散性を有する光拡散素子6を用いて所望の方向に出射させることもできる。この場合、光拡散素子6に異方拡散作用と光偏向作用の両方の機能を付与することもできる。例えば、凹凸構造としてレンチキュラーレンズ列やシリンドリカルレンズ形状体を用いたものでは、その断面形状を非対称形状にすることで、異方拡散作用と光偏向作用の両機能を付与することができる。   In the present invention, the light deflecting element 4 is used to emit light emitted from the light guide 3 in a specific direction such as a normal direction, and the light emitted from the light deflecting element 6 is anisotropically diffused. The light can be emitted in a desired direction. In this case, the light diffusing element 6 can be provided with both functions of anisotropic diffusion and light deflection. For example, in the case where a lenticular lens array or a cylindrical lens shaped body is used as the concavo-convex structure, both functions of anisotropic diffusion and light deflection can be provided by making the cross-sectional shape asymmetric.

また、本発明においては、光源装置としての視野角を調整し、品位を向上させる目的で、光偏向素子4や光拡散素子6に光拡散材を含有させることもできる。このような光拡散材としては、光偏向素子4や光拡散素子6を構成する材料と屈折率が異なる透明な微粒子を使用することができ、例えば、シリコンビーズ、ポリスチレン、ポリメチルメタクリレート、フッ素化メタクリレート等の単独重合体あるいは共重合体等が挙げられる。光拡散材としては、光偏向素子4による狭視野効果や光拡散素子6による適度な拡散効果を損なわないように、含有量、粒径、屈折率等を適宜選定する必要がある。例えば、光拡散材の屈折率は、光偏向素子4や光拡散素子6を構成する材料との屈折率差が小さすぎると拡散効果が小さく、大きすぎると過剰な散乱屈折作用が生じるため、屈折率差が0.01〜0.1の範囲とすることが好ましく、さらに好ましくは0.03〜0.08、より好ましくは0.03〜0.05の範囲である。また、光拡散材の粒径は、粒径が大きすぎると散乱が強くなりぎらつきや輝度の低下を引き起こし、小さすぎると着色が発生するため、平均粒径が0.5〜20μmの範囲とすることが好ましく、さらに好ましくは2〜15μm、より好ましくは2〜10μmの範囲である。   In the present invention, the light deflection element 4 and the light diffusion element 6 may contain a light diffusing material for the purpose of adjusting the viewing angle as the light source device and improving the quality. As such a light diffusing material, transparent fine particles having a refractive index different from that of the material constituting the light deflecting element 4 or the light diffusing element 6 can be used, for example, silicon beads, polystyrene, polymethyl methacrylate, fluorinated A homopolymer such as methacrylate or a copolymer may be used. As the light diffusing material, it is necessary to appropriately select the content, the particle size, the refractive index and the like so as not to impair the narrow field effect by the light deflecting element 4 and the appropriate diffusing effect by the light diffusing element 6. For example, the refractive index of the light diffusing material is such that if the difference in refractive index from the material constituting the light deflecting element 4 or the light diffusing element 6 is too small, the diffusing effect is small. The rate difference is preferably in the range of 0.01 to 0.1, more preferably 0.03 to 0.08, and more preferably 0.03 to 0.05. Further, the particle size of the light diffusing material is such that if the particle size is too large, the scattering becomes strong, causing glare and a decrease in luminance, and if it is too small, coloring occurs, so the average particle size is in the range of 0.5 to 20 μm. Preferably, it is 2-15 micrometers, More preferably, it is the range of 2-10 micrometers.

なお、本発明のような光偏向素子を用いた光源装置の出射光分布は、ピーク位置を境に、一次光源側での出射光分布がピーク光から遠くなるにつれ急激に輝度が低下し、一次光源から遠い側での出射光分布は比較的緩やかに輝度が低下する非対称な出射光分布を示す場合がある。例えば、このような出射光分布の光源装置を10インチ以上のノート型パソコン等の比較的広い視野角を必要とする液晶表示装置に用いる場合、比較的光拡散性の高い光拡散素子を光偏向素子の出光面上に配置し、出射光分布を広げて視野角を広げることが行われている。ヘイズ値が50%以上という光拡散性の強い光拡散素子を用いる場合には、出射光分布のピーク角度が1〜3度程度一次光源から遠い側に偏向される。このため、光偏向素子からの出射光分布のピーク角度がその出光面の法線方向に位置する場合、光拡散素子により出射光分布のピーク角度が、法線方向から1〜3度程度光源から遠い側に偏光され、結果として法線方向から観察した場合の輝度を極端に低下させることになる。これは、光拡散素子を使用することにより、光偏向素子から出射した出射光分布の非対称性は幾分緩和されるものの、比較的急激に輝度が低下する出射光分布の部位が法線方向位置するためである。このような輝度の極端な低下を避けるために、あらかじめ光偏向素子からの出射光分布のピーク角度を法線方向から光源側に1〜3度傾けておくことが好ましい。   Note that the emitted light distribution of the light source device using the light deflection element as in the present invention is sharply reduced in luminance as the emitted light distribution on the primary light source side becomes farther away from the peak light at the peak position. The outgoing light distribution on the side far from the light source may show an asymmetric outgoing light distribution in which the luminance decreases relatively slowly. For example, when such a light source device having an emitted light distribution is used in a liquid crystal display device that requires a relatively wide viewing angle, such as a notebook computer of 10 inches or more, a light diffusing element having a relatively high light diffusibility is used as a light deflection device. It is arranged on the light exit surface of the element to widen the outgoing light distribution and widen the viewing angle. In the case of using a light diffusing element having a haze value of 50% or more and having a high light diffusibility, the peak angle of the emitted light distribution is deflected to the side far from the primary light source by about 1 to 3 degrees. For this reason, when the peak angle of the outgoing light distribution from the light deflection element is located in the normal direction of the light outgoing surface, the peak angle of the outgoing light distribution is about 1 to 3 degrees from the normal direction by the light diffusing element. The light is polarized to the far side, and as a result, the luminance when observed from the normal direction is extremely reduced. This is because the use of the light diffusing element slightly relaxes the asymmetry of the outgoing light distribution emitted from the light deflecting element, but the portion of the outgoing light distribution where the brightness decreases relatively rapidly is located in the normal direction position. It is to do. In order to avoid such an extreme decrease in luminance, it is preferable that the peak angle of the distribution of light emitted from the light deflection element is previously tilted by 1 to 3 degrees from the normal direction to the light source side.

以下、実施例によって本発明を具体的に説明する。なお、以下の実施例における各物性の測定は下記のようにして行った。   Hereinafter, the present invention will be described specifically by way of examples. In addition, the measurement of each physical property in the following examples was performed as follows.

面光源装置の法線輝度、光度半値全幅の測定
光源として冷陰極管を用い、インバータ(ハリソン社製HIU−742A)にDC12Vを印加して高周波点灯させた。導光体の光度半値全幅は、導光体の表面に4mmφのピンホールを有する黒色の紙をピンホールが表面の中央に位置するように固定し、輝度計の測定円が8〜9mmとなるように距離を調整し、冷陰極管の長手方向軸と垂直の方向および平行の方向でピンホールを中心にゴニオ回転軸が回転するように調節した。それぞれの方向で回転軸を+80°〜−80°まで1°間隔で回転させながら、輝度計で出射光の光度分布を測定し、ピーク角度、光度分布の半値全幅(ピーク値の1/2の分布の広がり角)を求めた。また、面光源装置の輝度半値全幅は、輝度計の視野角度を0.1度にし、面光源装置の中央の面部分に位置するよう調整し、ゴニオ回転軸が回転するように調節した。それぞれの方向で回転軸を+80°〜−80°まで1°間隔で回転させながら、輝度計で出射光の輝度分布を測定し、ピーク輝度、ピーク角度を求めた。ピーク角度は光源装置に対し法線方向を0°とし、一次光源側を負、それと反対側を正とした。
A cold cathode tube was used as a measurement light source for normal luminance and full width at half maximum of luminous intensity of the surface light source device, and DC12V was applied to the inverter (HIU-742A manufactured by Harrison Co., Ltd.) for high frequency lighting. The full width at half maximum of light intensity of the light guide is fixed with black paper having a pinhole of 4 mmφ on the surface of the light guide so that the pinhole is located at the center of the surface, and the measurement circle of the luminance meter is 8 to 9 mm. The distance was adjusted so that the gonio rotation axis was rotated about the pinhole in a direction perpendicular to and parallel to the longitudinal axis of the cold cathode tube. While rotating the rotation axis in each direction from + 80 ° to −80 ° at 1 ° intervals, the luminous intensity distribution of the emitted light is measured with a luminance meter, the peak angle, the full width at half maximum of the luminous intensity distribution (1/2 of the peak value) Distribution spread angle). Further, the full width at half maximum of the luminance of the surface light source device was adjusted so that the viewing angle of the luminance meter was 0.1 degree and positioned at the central surface portion of the surface light source device, and the gonio rotation axis was rotated. While rotating the rotation axis in each direction from + 80 ° to −80 ° at 1 ° intervals, the luminance distribution of the emitted light was measured with a luminance meter, and the peak luminance and the peak angle were obtained. The peak angle was 0 ° in the normal direction with respect to the light source device, the primary light source side was negative, and the opposite side was positive.

実施例1
アクリル樹脂(三菱レイヨン(株)製アクリペットVH5#000)を用い射出成形することによって一方の面がマット(平均傾斜角1.1度)である導光体を作製した。該導光体は、216mm×290mm、厚さ2.0mm−0.7mmのクサビ板状をなしていた。この導光体の鏡面側に、導光体の長さ216mmの辺(短辺)と平行になるように、アクリル系紫外線硬化樹脂によってプリズム列のプリズム頂角100°、ピッチ50μmのプリズム列が並列に連設配列されたプリズム層を形成した。導光体の長さ290mmの辺(長辺)に対応する一方の側端面(厚さ2.0mmの側の端面)に沿って冷陰極管を光源リフレクター(麗光社製銀反射フィルム)で覆い配置した。さらに、その他の側端面に光拡散反射フィルム(東レ社製E60)を貼付し、プリズム列配列面(裏面)に反射シートを配置した。以上の構成を枠体に組み込んだ。この導光体は、光入射面および光出射面の双方に垂直な面内での出射光光度分布の最大ピーク角度は光出射面法線方向に対して70度、半値全幅は22.5度であった。
Example 1
A light guide having one surface having a mat (average inclination angle of 1.1 degrees) was produced by injection molding using an acrylic resin (Acrypet VH5 # 000 manufactured by Mitsubishi Rayon Co., Ltd.). The light guide had a wedge plate shape of 216 mm × 290 mm and a thickness of 2.0 mm-0.7 mm. On the mirror surface side of the light guide, a prism row having a prism apex angle of 100 ° and a pitch of 50 μm is made of acrylic ultraviolet curable resin so as to be parallel to a side (short side) of 216 mm in length of the light guide. A prism layer arranged in parallel was formed. A cold-cathode tube along a side end surface (end surface on the thickness side of 2.0 mm) corresponding to the side (long side) of the light guide with a length of 290 mm is a light source reflector (silver reflection film manufactured by Reiko Co., Ltd.). Covered. Furthermore, a light diffusion reflection film (E60 manufactured by Toray Industries, Inc.) was attached to the other side end face, and a reflection sheet was placed on the prism array arrangement face (back face). The above configuration was incorporated into the frame. In this light guide, the maximum peak angle of the emitted light luminous intensity distribution in a plane perpendicular to both the light incident surface and the light emitting surface is 70 degrees with respect to the normal direction of the light emitting surface, and the full width at half maximum is 22.5 degrees. Met.

一方、屈折率1.5064のアクリル系紫外線硬化性樹脂を用いて、断面が点1(−16.031,59.828)、点2(0.000,0.000)、点3(12.000,15.695)、点4(15.000,19.750)、点5(18.000,23.925)、点6(21.000,28.320)、点7(24.000,32.818)、点8(27.000,37.455)、点9(30.000,42.238)、点10(33.000,47.114)、点11(36.000,52.087)、点12(40.469,59.828)の12点(座標値はμm単位:以下の実施例においても同様)を繋いだ形状からなる11の平面で構成したピッチ56.5μmのプリズム列が並列に連設されたプリズム列形成面を、厚さ188μmのポリエステルフィルムの一方の表面に形成したプリズムシートを作製した。   On the other hand, using an acrylic ultraviolet curable resin having a refractive index of 1.5064, the cross sections are point 1 (−16.0031, 59.828), point 2 (0.000, 0.000), point 3 (12.12). 000, 15.695), point 4 (15.000, 19.750), point 5 (18.000, 23.925), point 6 (21.000, 28.320), point 7 (24.000, 32.818), point 8 (27.000, 37.455), point 9 (30.000, 42.238), point 10 (33.000, 47.114), point 11 (36.000, 52.). 087) and 12 points (40.469, 59.828) (coordinate values are in μm units: the same applies to the following embodiments), a prism having a pitch of 56.5 μm composed of 11 planes. The prism row forming surface where the rows are arranged in parallel A prism sheet formed on one surface of a 188 μm polyester film was prepared.

このプリズムシートにおいて、頂部振り分け角αは15度であり、頂部振り分け角βは37.4度であった。点2から点12までに対応する10の平面の傾斜角は、順次、52.6度、53.5度、54.3度、55.5度、56.3度、57.1度、57.9度、58.4度、58.9度、60.0度であった。   In this prism sheet, the top distribution angle α was 15 degrees, and the top distribution angle β was 37.4 degrees. The inclination angles of the 10 planes corresponding to points 2 to 12 are 52.6, 53.5, 54.3, 55.5, 56.3, 57.1, 57, respectively. .9 degrees, 58.4 degrees, 58.9 degrees, and 60.0 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.279、L2/L1=1.167であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点12までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは2.7%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.279 and L2 / L1 = 1.167. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism array and the actual prism surface corresponding to points 2 to 12 to the prism array pitch P was 2.7%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、上記導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面(点1と点2とを結ぶ線に対応:以下の実施例においても同様)が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、後述の比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface (point 1 and point 2 The surface light source device was obtained by placing the light source on the light source side. An outgoing light luminance distribution in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, and a peak luminance ratio, a peak angle, and a peak luminance of 1 when a comparative example 1 described later is used as a reference. An angle having a luminance of / 2 (full width at half maximum) was measured, and the results are shown in Table 1.

実施例2
プリズム列を、断面が点1(−11.638,66.002)、点2(0.000,0.000)、点3(9.000,11.519)、点4(12.000,15.443)、点5(15.000,19.396)、点6(18.000,23.480)、点7(21.000,27.686)、点8(24.000,32.018)、点9(27.000,36.483)、点10(30.000,41.067)、点11(33.000,45.776)、点12(36.000,50.653)、点13(44.862,66.002)の13点を繋いだ形状からなる12の平面で構成した以外は、実施例1と同様にしてプリズムシートを作製した。
Example 2
The prism array has cross sections of point 1 (-11.638, 66.002), point 2 (0.000, 0.000), point 3 (9.0000, 11.519), point 4 (12.000, 15.443), point 5 (15.000, 19.396), point 6 (18.000, 23.480), point 7 (21.000, 27.686), point 8 (24.000, 32.). 018), point 9 (27.000, 36.483), point 10 (30.000, 41.067), point 11 (33.000, 45.776), point 12 (36.000, 50.653) A prism sheet was manufactured in the same manner as in Example 1 except that the configuration was made up of 12 planes having a shape connecting 13 points (44.862, 66.002).

このプリズムシートにおいて、頂部振り分け角αは10度であり、頂部振り分け角βは38度であった。点2から点13までに対応する11の平面の傾斜角は、順次、52.0度、52.6度、52.8度、53.7度、54.5度、55.3度、56.1度、56.8度、57.5度、58.4度、60.0度であった。   In this prism sheet, the top sorting angle α was 10 degrees, and the top sorting angle β was 38 degrees. The inclination angles of the 11 planes corresponding to the points 2 to 13 are 52.0 degrees, 52.6 degrees, 52.8 degrees, 53.7 degrees, 54.5 degrees, 55.3 degrees, 56 sequentially. .1 degrees, 56.8 degrees, 57.5 degrees, 58.4 degrees, and 60.0 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.414、L2/L1=1.192であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点13までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは3.3%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.414 and L2 / L1 = 1.192. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism row and the actual prism surface corresponding to points 2 to 13 to the prism row pitch P was 3.3%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例3
プリズム列を、断面が点1(−11.605,65.814)、点2(0.000,0.000)、点3(9.000,11.519)、点4(15.000,19.396)の4点を繋いだ3つの平面と、点4から点5(36.000,50.653)までを点A(−314.871,263.703)を中心とする半径410.489の円、点5から点6(44.895,65.814)までを点B(−502.516,376.787)を中心とする半径629.574の円でそれぞれ繋いだ2つの凸曲面とで構成した以外は、実施例2と同様にしてプリズムシートを作製した。
Example 3
The prism array has cross sections of point 1 (-11.605, 65.814), point 2 (0.000, 0.000), point 3 (9.00, 11.519), point 4 (15,000, 19.3), three planes connecting the four points, and a radius 410. from point 4 to point 5 (36.000, 50.653) centered on point A (-314.871, 263.703). 489 circles, two convex curved surfaces connecting points 5 to 6 (44.895, 65.814) with a circle of radius 629.574 centered on point B (-502.516, 376.787) A prism sheet was manufactured in the same manner as in Example 2 except that

このプリズムシートにおいて、頂部振り分け角αは10度であり、頂部振り分け角βは38度であった。点2から点4までに対応する2つの平面及び点4から点6までに対応する2つの凸曲面の傾斜角は、順次、52.0度、52.7度、56.1度、59.6度であった。   In this prism sheet, the top sorting angle α was 10 degrees, and the top sorting angle β was 38 degrees. The inclination angles of the two planes corresponding to point 2 to point 4 and the two convex curved surfaces corresponding to point 4 to point 6 are 52.0 degrees, 52.7 degrees, 56.1 degrees, 59. It was 6 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.412、L2/L1=1.194であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点6までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは3.1%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.212 and L2 / L1 = 1.194. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism row and the actual prism surface corresponding to points 2 to 6 to the prism row pitch P was 3.1%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例4
プリズム列を、断面が点1(−6.292,71.920)、点2(0.000,0.000)、点3(9.000,10.996)、点4(12.000,14.687)、点5(15.000,18.527)、点6(18.000,22.494)、点7(21.000,26.563)、点8(24.000,30.753)、点9(27.000,35.070)、点10(30.000,39.517)、点11(33.000,44.050)、点12(36.000,48.669)、点13(39.000,53.378)、点14(42.000,58.179)、点15(45.000,63.114)、点16(50.208,71.920)の16点を繋いだ形状からなる15の平面で構成した以外は、実施例1と同様にしてプリズムシートを作製した。
Example 4
The prism array has cross sections of point 1 (−6.292, 71.920), point 2 (0.000, 0.000), point 3 (9.00, 10.996), point 4 (12.000, 14.687), point 5 (15.000, 18.527), point 6 (18.000, 22.494), point 7 (21.000, 26.563), point 8 (24.000, 30. 753), point 9 (27.000, 35.070), point 10 (30.000, 39.517), point 11 (33.000, 44.050), point 12 (36.000, 48.669) , Point 13 (39.000, 53.378), point 14 (42.000, 58.179), point 15 (45.000, 63.114), point 16 (50.208, 71.920) Example 1 except that it is composed of 15 planes composed of dots connected to each other. To prepare a prism sheet in the same manner.

このプリズムシートにおいて、頂部振り分け角αは5度であり、頂部振り分け角βは39.3度であった。点2から点16までに対応する14の平面の傾斜角は、順次、50.7度、50.9度、52.0度、52.9度、53.6度、54.4度、55.2度、56.0度、56.5度、57.0度、57.5度、58.0度、58.7度、59.4度であった。   In this prism sheet, the top sorting angle α was 5 degrees, and the top sorting angle β was 39.3 degrees. The inclination angles of the 14 planes corresponding to points 2 to 16 are 50.7 degrees, 50.9 degrees, 52.0 degrees, 52.9 degrees, 53.6 degrees, 54.4 degrees, and 55, respectively. It was .2 degrees, 56.0 degrees, 56.5 degrees, 57.0 degrees, 57.5 degrees, 58.0 degrees, 58.7 degrees and 59.4 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.555、L2/L1=1.217であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点16までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは3.7%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.555 and L2 / L1 = 1.217. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism array and the actual prism surface corresponding to points 2 to 16 to the prism array pitch P was 3.7%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例5
プリズム列を、断面が点1(−6.322,72.265)、点2(0.000,0.000)、点3(12.000,14.687)、点4(15.000,18.527)の4点を繋いだ3つの平面と、点4から点5(30.000,39.517)までを点A(−283.909,247.987)を中心とする半径376.827の円、点5から点6(50.178,72.265)までを点B(−376.959,312.857)を中心とする半径490.235の円でそれぞれ繋いだ2つの凸曲面とで構成した以外は、実施例4と同様にしてプリズムシートを作製した。
Example 5
The prism array has cross sections of point 1 (−6.322, 72.265), point 2 (0.000, 0.000), point 3 (12.000, 14.687), point 4 (15,000, 18.527) three planes connecting four points, and a radius from point 4 to point 5 (30.000, 39.517) centered on point A (-283.909, 247.987) 376. 827 circles, two convex curved surfaces connecting points 5 to 6 (50.178, 72.265) with a circle of radius 490.235 centered on point B (-376.959, 312.857) A prism sheet was prepared in the same manner as in Example 4 except that

このプリズムシートにおいて、頂部振り分け角αは5度であり、頂部振り分け角βは39.3度であった。点2から点4までに対応する2つの平面及び点4から点6までに対応する2つの凸曲面の傾斜角は、順次、50.7度、52.0度、54.4度、58.4度であった。   In this prism sheet, the top sorting angle α was 5 degrees, and the top sorting angle β was 39.3 degrees. The inclination angles of the two planes corresponding to points 2 to 4 and the two convex curved surfaces corresponding to points 4 to 6 are 50.7 degrees, 52.0 degrees, 54.4 degrees, 58. It was 4 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.560、L2/L1=1.215であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点6までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは3.9%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.560 and L2 / L1 = 1.215. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism row and the actual prism surface corresponding to points 2 to 6 to the prism row pitch P was 3.9%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例6
プリズム列を、断面が点1(−11.596,65.767)、点2(0.000,0.000)の2点を繋いだ1つの平面と、点2から点3(44.904,65.767)までを点A(−361.105,294.766)を中心とする半径466.137の円で繋いだ1つの凸曲面とで構成した以外は、実施例1と同様にしてプリズムシートを作製した。
Example 6
The prism array has a cross-section of a single plane connecting two points, point 1 (-11.596, 65.767) and point 2 (0.000, 0.000), and point 2 to point 3 (44.904). , 65.767) in the same manner as in Example 1 except that the first curved surface is connected by a circle having a radius of 466.137 with the point A (-361.105, 294.766) as the center. A prism sheet was prepared.

このプリズムシートにおいて、頂部振り分け角αは10度であり、頂部振り分け角βは34.3度であった。点2から点3までに対応する1つの凸曲面の傾斜角は、55.7度であった。   In this prism sheet, the top sorting angle α was 10 degrees, and the top sorting angle β was 34.3 degrees. The inclination angle of one convex curved surface corresponding to points 2 to 3 was 55.7 degrees.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.409、L2/L1=1.192であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点3までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは3.0%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.409 and L2 / L1 = 1.192. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism row and the actual prism surface corresponding to points 2 to 3 to the prism row pitch P was 3.0%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例7
プリズム列を、断面が点1(−16.005,59.730)、点2(0.000,0.000)の2点を繋いだ1つの平面と、点2から点3(30.000,42.238)までを点A(−356.204,284.772)を中心とする半径456.044の円、点3から点4(40.495,59.730)までを点B(−531.365,390.952)を中心とする半径660.857の円でそれぞれ繋いだ2つの凸曲面とで構成した以外は、実施例1と同様にしてプリズムシートを作製した。このプリズムシートにおいて、頂部振り分け角αは15度であり、頂部振り分け角βは35.4度であった。点2から点4までに対応する2つの凸曲面の傾斜角は、順次、54.6度、59.0度であった。
Example 7
The prism array is composed of one plane connecting the two points of the point 1 (−16.005, 59.730) and the point 2 (0.000, 0.000), and the point 2 to the point 3 (30.000). , 42.238) to a circle with a radius of 456.044 centered on point A (-356.204, 284.772), and from point 3 to point 4 (40.495, 59.730) to point B (- A prism sheet was produced in the same manner as in Example 1 except that the sheet was constituted by two convex curved surfaces connected by a circle having a radius of 660.857 centered on 531.365, 390.952). In this prism sheet, the top distribution angle α was 15 degrees, and the top distribution angle β was 35.4 degrees. The inclination angles of the two convex curved surfaces corresponding to points 2 to 4 were 54.6 degrees and 59.0 degrees, respectively.

プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.277、L2/L1=1.167であった。プリズム列の頂部と底部とを結ぶ仮想平面と点2から点4までに対応する実際のプリズム面との最大距離dのプリズム列ピッチPに対する割合d/Pは2.5%であった。プリズム稜線の基準線に対する凹凸度合いは0.053であり、プリズム面の基準面に対する凹凸度合いは0.036であった。   The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.277 and L2 / L1 = 1.167. The ratio d / P of the maximum distance d between the virtual plane connecting the top and bottom of the prism row and the actual prism surface corresponding to points 2 to 4 to the prism row pitch P was 2.5%. The degree of unevenness of the prism ridge line with respect to the reference line was 0.053, and the degree of unevenness of the prism surface with respect to the reference surface was 0.036.

得られたプリズムシートを、実施例1の導光体の光出射面側にプリズム列形成面が向き、導光体の光入射面にプリズム稜線が平行であり第1のプリズム面が光源側となるように載置し、面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。   In the obtained prism sheet, the prism array forming surface faces the light exit surface side of the light guide of Example 1, the prism ridge line is parallel to the light incident surface of the light guide, and the first prism surface is the light source side. The surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

実施例8
プリズム列を、断面が点1(−14.1776,61.4101)、点2(0.000,0.000)の2点を繋いだ1つの平面と、点2から点3(42.3224,61.4101)までを点A(−392.9609,316.1078)を中心とする半径504.3237の円で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.320、L2/L1=1.183であった。
Example 8
The prism array has a cross section of a plane connecting point 2 (−14.1776, 61.4101) and point 2 (0.000, 0.000), and point 2 to point 3 (42.3224). 61.4101), a prism sheet was fabricated in the same manner as in Example 1, except that the circle was formed with a circle having a radius of 504.3237 centered on the point A (−392.9609, 316.1078). The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.320 and L2 / L1 = 1.183.

実施例9
プリズム列を、プリズムの谷部からプリズムの高さ方向に3μの位置に平坦部を設けたものとした以外は実施例8と同様にしてプリズムシートを作製した。
Example 9
A prism sheet was produced in the same manner as in Example 8 except that the prism row was provided with a flat portion at a position 3 μm in the height direction of the prism from the prism valley.

実施例10
プリズム列を、プリズムの谷部からプリズムの高さ方向に5μの位置に平坦部を設けたものとした以外は実施例8と同様にしてプリズムシートを作製した。
Example 10
A prism sheet was produced in the same manner as in Example 8 except that the prism row was provided with a flat portion at a position of 5 μ in the prism height direction from the prism valley.

実施例11
プリズム列を、プリズムの谷部からプリズムの高さ方向に7μの位置に平坦部を設けたものとした以外は実施例8と同様にしてプリズムシートを作製した。
Example 11
A prism sheet was produced in the same manner as in Example 8 except that the prism row was provided with a flat portion at a position of 7 μ in the height direction of the prism from the valley portion of the prism.

実施例12
プリズム列を、プリズムの谷部からプリズムの高さ方向に10μの位置に平坦部を設けたものとした以外は実施例8と同様にしてプリズムシートを作製した。
Example 12
A prism sheet was produced in the same manner as in Example 8 except that the prism row was provided with a flat portion at a position of 10 μm in the height direction of the prism from the prism valley.

実施例13
プリズム列を、断面が点1(−19.7523,54.2691)、点2(0.000,0.000)の2点を繋いだ1つの平面と、点2から点3(36.74767,54.2691)までを点A(−368.9514,289.4066)を中心とする半径468.9151の円で構成した以外は、実施例1と同様にしてプリズムシートを作製した。プリズムシートのプリズム列ピッチPに対してプリズム列を構成する面の長さL1およびL2はL2/P=1.160、L2/L1=1.135であった。
Example 13
The prism array has a cross-section of one plane connecting point 2 (−19.7523, 54.2691) and point 2 (0.000, 0.000), and point 2 to point 3 (36.74747). , 54.2691) was made in the same manner as in Example 1 except that it was composed of a circle with a radius of 468.9151 centered on the point A (−3688.9514, 2899.466). The lengths L1 and L2 of the surfaces constituting the prism row with respect to the prism row pitch P of the prism sheet were L2 / P = 1.160 and L2 / L1 = 1.135.

比較例1
プリズムシートのプリズム列を、2つのプリズム面がともに平面であり、プリズム頂角が65.4度である断面二等辺三角形(α=β=32.7度)とした以外は、実施例1と同様にして面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、ピーク輝度を1.00とし、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。
Comparative Example 1
The prism row of the prism sheet is the same as in Example 1 except that the two prism surfaces are both flat and the isosceles triangle section (α = β = 32.7 degrees) having a prism apex angle of 65.4 degrees. Similarly, a surface light source device was obtained. An outgoing light luminance distribution in a plane perpendicular to both the light incident surface and the light outgoing surface of the surface light source device is obtained, the peak luminance is set to 1.00, the peak angle, and the angle having a luminance half of the peak luminance. (Full width at half maximum) was measured, and the results are shown in Table 1.

比較例2
プリズムシートのプリズム列を、2つのプリズム面がともに平面であり、一方の面の頂部振り分け角αを5度、他方の面の頂部振り分け角βを38度とした以外は、実施例1と同様にして面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。
Comparative Example 2
The prism row of the prism sheet is the same as in Example 1 except that the two prism surfaces are both flat, the top distribution angle α of one surface is 5 degrees, and the top distribution angle β of the other surface is 38 degrees. Thus, a surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

比較例3
プリズムシートのプリズム列を、2つのプリズム面がともに平面であり、一方の面の頂部振り分け角αを5度、他方の面の頂部振り分け角βを35度とした以外は、実施例1と同様にして面光源装置を得た。この面光源装置の光入射面および光出射面の双方に垂直な面内での出射光輝度分布を求め、比較例1を基準とした場合のピーク輝度比率、ピーク角度、ピーク輝度の1/2の輝度を有する角度(半値全幅)を測定し、その結果を表1に示した。
Comparative Example 3
The prism row of the prism sheet is the same as in Example 1 except that the two prism surfaces are both flat, the top distribution angle α of one surface is 5 degrees, and the top distribution angle β of the other surface is 35 degrees. Thus, a surface light source device was obtained. The emission light luminance distribution in a plane perpendicular to both the light incident surface and the light emission surface of the surface light source device is obtained, and the peak luminance ratio, peak angle, and ½ of the peak luminance when Comparative Example 1 is used as a reference. The angle having the brightness of (full width at half maximum) was measured, and the results are shown in Table 1.

Figure 0004960327
Figure 0004960327

本発明による光源装置を示す模式的斜視図である。It is a typical perspective view which shows the light source device by this invention. 本発明の光偏向素子の入光面のプリズム列の形状の説明図である。It is explanatory drawing of the shape of the prism row | line | column of the light-incidence surface of the optical deflection | deviation element of this invention. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. 光偏向素子からの各種出射光分布を示す説明図である。It is explanatory drawing which shows the various emitted light distribution from an optical deflection | deviation element. プリズム面の傾斜角の違いによる光の屈折およびプリズム断面の長さの違いを示す説明図である。It is explanatory drawing which shows the difference in the refraction of light by the difference in the inclination angle of a prism surface, and the length of a prism cross section. プリズム面の傾斜角の違いによる光の屈折およびプリズム断面の長さの違いを示す説明図である。It is explanatory drawing which shows the difference in the refraction of light by the difference in the inclination angle of a prism surface, and the length of a prism cross section. 本発明の光偏向素子の入光面のプリズム列の形状の説明図である。It is explanatory drawing of the shape of the prism row | line | column of the light-incidence surface of the optical deflection | deviation element of this invention. 略点状光源を導光体のコーナー部に隣接配置した斜視図である。It is the perspective view which has arrange | positioned the substantially point light source adjacent to the corner part of a light guide. 出射光分布の半値全幅の説明図である。It is explanatory drawing of the full width at half maximum of emitted light distribution. 本発明の光偏向素子の入光面のプリズム列の形状の説明図である。It is explanatory drawing of the shape of the prism row | line | column of the light-incidence surface of the optical deflection | deviation element of this invention.

符号の説明Explanation of symbols

1 一次光源
2 光源リフレクタ
3 導光体
4 光偏向素子
5 光反射素子
6 光拡散素子
31 光入射端面
32 端面
33 光出射面
34 裏面
41 入光面
42 出光面
43 プリズム列形成平面
44 第1のプリズム面
45 第2のプリズム面
46〜50 平面
51,52 凸曲面
59 平坦部
DESCRIPTION OF SYMBOLS 1 Primary light source 2 Light source reflector 3 Light guide 4 Light deflecting element 5 Light reflecting element 6 Light diffusing element 31 Light incident end surface 32 End surface 33 Light emitting surface 34 Back surface 41 Light incident surface 42 Light emitting surface 43 Prism array forming plane 44 First Prism surface 45 Second prism surfaces 46 to 50 Planar surfaces 51 and 52 Convex surface 59 Flat portion

Claims (6)

一次光源と、該一次光源から発せられた光が入射する光入射面を有し且つ入射した光を導光し且つ導光された光を出射する光出射面を有する導光体と、該導光体の前記光出射面から出射した光が入射する入光面とその反対側に位置し入射した光を出射する出光面とを有する光偏向素子と、を備えている光源装置であって、
前記光入射面及び光出射面の双方に直交する面内での前記導光体の光出射面からの出射光の分布は、ピーク方向と前記光出射面となす角度が10〜40度で且つ半値全幅が10〜40度であり、
前記光偏向素子の入光面には2つのプリズム面から構成されるプリズム列が互いに並列に複数配列され、
前記プリズム列を構成する一方のプリズム面の頂部振り分け角αが2〜25度で他方のプリズム面の頂部振り分け角βが33〜40度であり、
前記頂部振り分け角αと前記頂部振り分け角βとの差|α−β|が8〜35度であり、
前記プリズム列の頂部振り分け角αの前記プリズム面が前記一次光源に近い側に配置され、前記プリズム列の頂部振り分け角βの前記プリズム面が前記一次光源から遠い側に配置されており、
前記頂部振り分け角βの前記プリズム面は非単一平面であり、
前記プリズム列のピッチPと、前記プリズム列を構成する頂部振り分け角βの前記プリズム面の断面形状においてプリズム頂部と谷部とを結んだ仮想直線の長さL2とが、L2/P=1.16〜1.6の関係を満たすことを特徴とする光源装置
A primary light source, a light guide having a light incident surface on which light emitted from the primary light source is incident, and having a light emitting surface that guides the incident light and emits the guided light; and A light source device comprising: a light incident surface on which light emitted from the light emitting surface of a light body is incident; and a light deflecting element located on the opposite side and having a light emitting surface that emits incident light.
The distribution of the emitted light from the light emitting surface of the light guide in a plane orthogonal to both the light incident surface and the light emitting surface is such that the angle between the peak direction and the light emitting surface is 10 to 40 degrees. The full width at half maximum is 10 to 40 degrees,
A plurality of prism rows composed of two prism surfaces are arranged in parallel with each other on the light incident surface of the light deflection element ,
The top portion distribution angle α of one prism surface constituting the prism row is 2 to 25 degrees, and the top portion distribution angle β of the other prism surface is 33 to 40 degrees,
The difference | α−β | between the top distribution angle α and the top distribution angle β is 8 to 35 degrees,
The prism surface of the prism array at the top distribution angle α is disposed on the side closer to the primary light source, and the prism surface of the prism array at the top distribution angle β is disposed on the side far from the primary light source;
The prism surface of the top distribution angle β is a non-single plane;
The pitch P of the prism row and the length L2 of the imaginary straight line connecting the prism top and the trough in the cross-sectional shape of the prism surface with the apex distribution angle β constituting the prism row are L2 / P = 1. A light source device satisfying a relationship of 16 to 1.6.
前記プリズム列の頂部と底部とを結ぶ前記非単一平面と当該頂部と底部とを結ぶ仮想平面との最大距離dの前記プリズム列のピッチPに対する割合d/Pが0.7〜5%であることを特徴とする、請求項1に記載の光源装置The ratio d / P of the maximum distance d between the non-single plane connecting the top and bottom of the prism row and the virtual plane connecting the top and bottom to the pitch P of the prism row is 0.7 to 5%. The light source device according to claim 1, wherein the light source device is provided . 前記非単一平面は、複数の平面及び/または凸曲面からなり、前記出光面に近い側に位置する平面または凸曲面ほど傾斜角が大きいことを特徴とする、請求項1または2に記載の光源装置The said non-single plane consists of a several plane and / or convex curved surface, and the inclination angle is large as the plane or convex curved surface located in the side near the said light emission surface is characterized by the above-mentioned. Light source device . 前記非単一平面は、前記プリズム列の前記頂部に近い部分で少なくとも1つの平面からなり、前記プリズム列の前記谷部に近い側で少なくとも1つの凸曲面からなり、前記平面と前記凸曲面との境界は、前記頂部から前記プリズム列の高さの3割以下に位置することを特徴とする、請求項3に記載の光源装置The non-single plane is composed of at least one plane at a portion close to the top of the prism row, and is formed of at least one convex curved surface at a side near the valley portion of the prism row, the plane and the convex curved surface. 4. The light source device according to claim 3 , wherein the boundary is positioned at 30% or less of the height of the prism row from the top. 5. 前記プリズム列が、その断面において、頂点の座標を原点としたとき、点1(−11.605,65.814)、点2(0.000,0.000)、点3(9.000,11.519)、点4(15.000,19.396)の4点またはその近傍点を繋ぐ複数の平面と、前記点4と点5(36.000,50.653)の2点またはその近傍点を繋ぐ半径410.489の円弧、及び、前記点5と点6(44.895,65.814)の2点またはその近傍点を繋ぐ半径629.574の円弧、を繋いだ形状からなることを特徴とする、請求項1に記載の光源装置In the cross section of the prism row, when the coordinates of the vertex are the origin, point 1 (-11.605, 65.814), point 2 (0.000, 0.000), point 3 (9.0,000, 11.519), point 4 (15.000, 19.396), or a plurality of planes connecting the neighboring points, and point 4 and point 5 (36.000, 50.653) or two points thereof It has a shape connecting a circular arc with a radius of 410.489 connecting neighboring points and a circular arc with a radius of 629.574 connecting the two points of the points 5 and 6 (44.895, 65.814) or its neighboring points. The light source device according to claim 1, wherein: 前記プリズム列が、その断面において、頂点の座標を原点としたとき、点1(−6.322,72.265)、点2(0.000,0.000)、点3(12.000,14.687)、点4(15.000,18.527)の4点またはその近傍点を繋ぐ複数の平面と、前記点4と点5(30.000,39.517)の2点またはその近傍点を繋ぐ半径376.827の円弧、及び、前記点5と点6(50.178,72.265)の2点またはその近傍点を繋ぐ半径490.235の円弧、を繋いだ形状からなることを特徴とする、請求項1に記載の光源装置In the cross section of the prism row, when the coordinates of the vertex are the origin, point 1 (−6.322, 72.265), point 2 (0.000, 0.000), point 3 (12.000, 14.687), four planes of point 4 (15.000, 18.527) or their neighboring points, and two points of point 4 and point 5 (30.000, 39.517) or It consists of a circular arc with a radius of 376.827 that connects neighboring points, and a circular arc with a radius of 490.235 that connects the two points of the points 5 and 6 (50.178, 72.265) or its neighboring points. The light source device according to claim 1, wherein:
JP2008258573A 2002-08-02 2008-10-03 Light deflection element and light source device Expired - Lifetime JP4960327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258573A JP4960327B2 (en) 2002-08-02 2008-10-03 Light deflection element and light source device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002226249 2002-08-02
JP2002226249 2002-08-02
JP2002355275 2002-12-06
JP2002355275 2002-12-06
JP2008258573A JP4960327B2 (en) 2002-08-02 2008-10-03 Light deflection element and light source device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003028387A Division JP2004233938A (en) 2002-08-02 2003-02-05 Optical deflection element and light source device

Publications (2)

Publication Number Publication Date
JP2009020533A JP2009020533A (en) 2009-01-29
JP4960327B2 true JP4960327B2 (en) 2012-06-27

Family

ID=40360153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258573A Expired - Lifetime JP4960327B2 (en) 2002-08-02 2008-10-03 Light deflection element and light source device

Country Status (1)

Country Link
JP (1) JP4960327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495585B2 (en) * 2009-03-03 2014-05-21 三菱レイヨン株式会社 Light deflection element and light source device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011602A (en) * 1995-11-06 2000-01-04 Seiko Epson Corporation Lighting apparatus with a light guiding body having projections in the shape of a trapezoid
JP3188430B2 (en) * 1999-06-03 2001-07-16 恵和株式会社 Lens sheet and backlight unit using the same
JP4011287B2 (en) * 2000-12-25 2007-11-21 株式会社エンプラス Light control sheet, surface light source device, and liquid crystal display

Also Published As

Publication number Publication date
JP2009020533A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4454020B2 (en) Light source device and light deflection element
JP4677019B2 (en) Light source device
US6986599B2 (en) Light source device
US7534024B2 (en) Optical deflector element and light source device
JP4544517B2 (en) Light source device
JP4889130B2 (en) Optical deflection element and surface light source device
JP2004046076A (en) Optical deflecting element and surface light source unit
KR100977941B1 (en) Light deflector and light source device
JP4242162B2 (en) Light source device
JP4400867B2 (en) Light deflection element and light source device
JP2004233938A (en) Optical deflection element and light source device
JP4960327B2 (en) Light deflection element and light source device
JP4210053B2 (en) Light source device
JP5495585B2 (en) Light deflection element and light source device
JP4160297B2 (en) Optical deflection element
JP4485416B2 (en) Light deflection element and light source device
JP2012042502A (en) Optical deflection element and surface light source device
JP4118043B2 (en) Light source device
JP4162399B2 (en) Light source device
JP2012203081A (en) Light deflecting element and surface light source device using the same
JP2012013756A (en) Optical deflection element and surface light source device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4960327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term