JPWO2008047794A1 - LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME - Google Patents

LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME Download PDF

Info

Publication number
JPWO2008047794A1
JPWO2008047794A1 JP2008539824A JP2008539824A JPWO2008047794A1 JP WO2008047794 A1 JPWO2008047794 A1 JP WO2008047794A1 JP 2008539824 A JP2008539824 A JP 2008539824A JP 2008539824 A JP2008539824 A JP 2008539824A JP WO2008047794 A1 JPWO2008047794 A1 JP WO2008047794A1
Authority
JP
Japan
Prior art keywords
light
control means
direction control
light source
diffusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008539824A
Other languages
Japanese (ja)
Inventor
向尾 良樹
良樹 向尾
伊久雄 大西
伊久雄 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPWO2008047794A1 publication Critical patent/JPWO2008047794A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/16Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 series; tandem

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)

Abstract

高輝度で、特に正面輝度が高く、光の利用効率が高く、装置の大型化が容易で、光源と他の部材との厳密な位置合わせなく正面方向の輝度ムラが解消され、視野角が広く、生産性や薄型化にも有利な照明装置を提供することを目的とする。第一光線方向制御手段により幅方向の視野角を絞り正面エネルギーを正面方向に集中させ、前記第一光線方向制御手段の出射面上に配置される第二光線方向制御手段により高さ方向の視野角を絞り正面エネルギーを正面方向に集中させる同時に、前記第一光線制御手段により絞った幅方向の視野角を適度に広げることにより、上記課題を解決する。High brightness, particularly high front brightness, high light utilization efficiency, easy device enlargement, elimination of uneven brightness in the front direction without strict alignment between the light source and other components, and wide viewing angle An object of the present invention is to provide a lighting device that is advantageous for productivity and thinning. The first light direction control means narrows the viewing angle in the width direction and concentrates the front energy in the front direction, and the second light direction control means disposed on the exit surface of the first light direction control means has a height field of view. The above-mentioned problem is solved by concentrating the angle and concentrating the front energy in the front direction, and at the same time appropriately widening the viewing angle in the width direction narrowed by the first light beam control means.

Description

本発明は、複数の線状光源からなる照明装置と、これを用いた画像表示装置に関するものであり、特に大型で高輝度、輝度均一性、高視野角が要求される照明看板装置、液晶ディスプレイ装置等に好適に用いられる照明装置および画像表示装置に関するものである。   The present invention relates to an illuminating device including a plurality of linear light sources and an image display device using the illuminating device, and particularly, an illuminating signboard device and a liquid crystal display that are large and require high luminance, luminance uniformity, and high viewing angle. The present invention relates to an illuminating device and an image display device that are preferably used in a device or the like.

画像表示装置用の照明装置を例に取ると、導光板の側端に配した光源の光を導光板で正面方向に誘導し、拡散シートで均一化するエッジライト方式と、照明面の裏側に光源を配し、光を光拡散版で均一化する直下方式とが挙げられる。   Taking an illumination device for an image display device as an example, an edge light system that guides light of a light source arranged on the side edge of the light guide plate in the front direction with the light guide plate and makes it uniform with a diffusion sheet, and on the back side of the illumination surface There is a direct system in which a light source is arranged and light is made uniform by a light diffusion plate.

直下方式は、光源を装置の側面に備えるため、携帯電話やモバイルパソコンなどの薄さを要求される分野では光源を側端に備えることで有利となるエッジライト方式が主流であった。   In the direct method, since the light source is provided on the side surface of the apparatus, the edge light method, which is advantageous by providing the light source at the side edge, has been mainly used in fields where thinness is required such as mobile phones and mobile personal computers.

一方で近年、テレビやパソコンモニターなどの市場を中心に、ディスプレイの大型化および高輝度化の要求が高まってきた。大型化に伴い上記エッジライト方式では光源が配置できる表示面積に対する周辺部の長さ割合が減少するため、十分な輝度を得ることができない。そこで面光源上に複数の輝度向上フィルムを配置する方法も提案されている(例えば、特許文献1参照)。しかしながら、輝度向上フィルムは、コストアップに繋がること、また、使用するフィルムの数が多くなることから、生産性や薄型化の観点から必ずしも有利とはいえない。   On the other hand, in recent years, there has been an increasing demand for larger displays and higher brightness mainly in the market of televisions and personal computer monitors. With the increase in size, in the edge light system, since the ratio of the length of the peripheral portion to the display area where the light source can be arranged decreases, sufficient luminance cannot be obtained. Therefore, a method of arranging a plurality of brightness enhancement films on a surface light source has also been proposed (see, for example, Patent Document 1). However, the brightness enhancement film is not necessarily advantageous from the viewpoint of productivity and thinning because it leads to an increase in cost and the number of films to be used increases.

さらに、ディスプレイの大型化に伴い導光板の重量が増加するといった問題もある。   Furthermore, there is a problem that the weight of the light guide plate increases as the display becomes larger.

このようにエッジライト方式では近年のディスプレイの大型化、高輝度化といった市場の要求に応えることは困難であった。   As described above, it has been difficult for the edge light system to meet market demands such as an increase in display size and brightness in recent years.

そこで複数の光源を用いる直下方式が注目されている。図1にこの方式の照明方式の一例を示す。この例では照明装置は幅方向と、幅方向に垂直な高さ方向からなる矩形状の出射面を持ち、複数の線状光源1と、拡散手段2(光拡散板)と、反射板6とを備え、前記線状光源1は幅方向と高さ方向とに平行な1つの仮想平面内に配置されており、かつ、該線状光源1は長手方向が幅方向に平行に配置されており、かつ、高さ方向に沿って等間隔に配列しており、前記拡散手段2(光拡散板)は前記配列した線状光源1の出射面側に配置され、かつ、主面は線状光源1が配列している前記仮想平面と平行であり、前記反射板4は前記配列した線状光源1を挟んで前記拡散手段2(光拡散板)の反対側に位置し、かつ、該反射板6の主面は線状光源1が配列している前記仮想平面と平行である。また、拡散手段2(光拡散板)は通常、光拡散剤が均一に分散されており、主面内で均一な光学性能を持つ。   Therefore, a direct method using a plurality of light sources is attracting attention. FIG. 1 shows an example of this type of illumination system. In this example, the illuminating device has a rectangular emission surface having a width direction and a height direction perpendicular to the width direction, a plurality of linear light sources 1, a diffusion means 2 (light diffusion plate), and a reflection plate 6. The linear light source 1 is disposed in one imaginary plane parallel to the width direction and the height direction, and the linear light source 1 is disposed such that the longitudinal direction thereof is parallel to the width direction. And the diffusing means 2 (light diffusing plate) are arranged on the emission surface side of the arranged linear light sources 1 and the main surface is a linear light source. 1 is parallel to the virtual plane on which the array is arranged, and the reflector 4 is located on the opposite side of the diffuser 2 (light diffuser) across the arrayed linear light sources 1 and the reflector The main surface 6 is parallel to the virtual plane on which the linear light sources 1 are arranged. Further, in the diffusing means 2 (light diffusing plate), the light diffusing agent is usually uniformly dispersed and has a uniform optical performance in the main surface.

矩形上の出射面は画像表紙装置、照明看板などの本照明装置の多くの用途において最も一般的である。   The exit surface on the rectangle is most common in many applications of the present illumination device such as an image cover device or an illumination sign.

また線状光源は、点状光源と比べて輝度ムラの解消が容易であり、配線が短く容易であるため、これらの照明装置の光源として最も一般的である。線状光源としては冷陰極管などが多く用いられる。また通常、線状光源は同じタイプのものを用いることが生産上有利であり、輝度の均一化にも有利であるが、この場合、線状光源は出射面の矩形の幅方向と平行に配列することが、線状光源の本数を削減できるため好ましい。また、線状光源を同一平面内に等間隔に配置することで課題である輝度ムラは、線状光源の配置に伴う周期的なものとなり、主面内で均一な光学性能を持つ光拡散板での輝度ムラの解消は容易になる。反射板は必須ではないが、線状光源および光拡散板から出射方向と反対に放射された光を出射側に反射して再び出射光として利用する働きがあり、光の利用効率を高める上で有利である。   Also, the linear light source is the most common light source for these illumination devices because it can easily eliminate unevenness of brightness and the wiring is short and easy compared to the point light source. A cold cathode tube or the like is often used as the linear light source. In general, it is advantageous for production to use the same type of linear light source, and it is also advantageous for uniform brightness. In this case, the linear light source is arranged in parallel to the width direction of the rectangular surface of the emission surface. It is preferable to reduce the number of linear light sources. In addition, luminance unevenness, which is a problem by arranging linear light sources at equal intervals in the same plane, becomes periodic with the arrangement of linear light sources, and a light diffusing plate having uniform optical performance in the main surface It is easy to eliminate luminance unevenness in The reflector is not essential, but it works to reflect the light emitted from the linear light source and the light diffusing plate opposite to the exit direction to the exit side and use it again as the exit light. It is advantageous.

また直下方式は、光源から放射される光の利用効率、即ち光源から放射される光束のうち出射面から放射される光束の割合が高く、かつ、光減数を自由に増加させることができるため、要求される高輝度が容易に得られる。   In addition, the direct method has a high utilization efficiency of the light emitted from the light source, that is, the ratio of the light flux emitted from the light exiting surface out of the light flux emitted from the light source, and can freely increase the light reduction number. The required high brightness can be easily obtained.

さらに、光を正面に向ける導光板が不要なため、軽量化を図ることができる。   Furthermore, since a light guide plate that directs light to the front is not necessary, the weight can be reduced.

また他の照明装置として、例えば照明看板などでは、構成が単純で輝度向上フィルムなどを用いることなく容易に高輝度が得られることから、直下方式が主流である。   Further, as another lighting device, for example, an illumination signboard or the like has a simple structure, and a high brightness can be easily obtained without using a brightness enhancement film.

しかしながら直下方式では、ランプイメージの解消、薄型化、省エネルギーといった独特の課題を解決しなければならない。特に画像表示装置や照明看板などの照明面を観察する用途では、ランプイメージの解消のみならず、面内の輝度均一性が求められている。さらにテレビやパソコンモニターなど主として正面方向から照明面を観察する用途では、面内の正面輝度の均一性が最も重要である。ランプイメージは、エッジライト方式よりもはるかに顕著な輝度ムラとして現れるため、従来エッジライト方式で用いられてきたフィルム表面に光拡散剤を塗布した拡散フィルムなどの手段では解消が困難である。そこでメタクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、塩化ビニル系樹脂等の基材樹脂に、光拡散剤を分散した光拡散板が広く用いられている。光拡散板を用いた直下方式の表示装置の例は、既に図1を用いて説明した通りである。しかしこれらの光拡散剤を用いる方法では、光拡散剤への光の吸収や不要な方向への光の拡散のため、省エネルギーの観点から好ましくない。また、光源を接近して多数配置することでランプイメージは軽減できるが、消費電力が増加する問題がある。   However, the direct system has to solve unique problems such as elimination of lamp image, thinning, and energy saving. In particular, in applications where an illumination surface such as an image display device or an illumination signboard is observed, not only the elimination of the lamp image but also the in-plane luminance uniformity is required. Furthermore, in applications where the illumination surface is observed mainly from the front, such as a television or a personal computer monitor, the uniformity of the front luminance within the surface is the most important. Since the lamp image appears as significantly more uneven brightness than the edge light method, it is difficult to eliminate the problem by means such as a diffusion film in which a light diffusing agent is applied to the film surface that has been used in the conventional edge light method. Therefore, a light diffusing plate in which a light diffusing agent is dispersed in a base resin such as a methacrylic resin, a polycarbonate resin, a styrene resin, or a vinyl chloride resin is widely used. An example of a direct display device using a light diffusing plate is as already described with reference to FIG. However, methods using these light diffusing agents are not preferable from the viewpoint of energy saving because they absorb light into the light diffusing agent and diffuse light in unnecessary directions. Moreover, although a lamp image can be reduced by arranging a large number of light sources close to each other, there is a problem that power consumption increases.

一方、反射板に独特の形状を持たせて、ランプイメージを消去する方法も提案されている(例えば、特許文献3参照)。しかし、反射板の形状と光源との位置合わせが必要であること、反射板の形状のため薄型化が阻害される場合があること、などから好ましくない。   On the other hand, a method of erasing the lamp image by giving the reflector a unique shape has been proposed (see, for example, Patent Document 3). However, it is not preferable because it is necessary to align the shape of the reflector and the light source, and the thickness of the reflector may be hindered due to the shape of the reflector.

さらに光源に対向して反射性部材を配置する方法(例えば、特許文献4参照)、光源ごとに例えばフレネルレンズのような光線方向変換素子を配す方法など(例えば、特許文献5参照)も提案されているが、同様に部材と光源との正確な位置合わせが必要であることから生産性が劣るといった課題が生じる。 Furthermore, a method of arranging a reflective member facing the light source (for example, see Patent Document 4), a method of arranging a light beam direction conversion element such as a Fresnel lens for each light source, etc. (for example, see Patent Document 5) are also proposed. However, similarly, since the exact alignment of a member and a light source is required, the subject that productivity is inferior arises.

また、凹凸を表面に有する光拡散板が提案されている(例えば、特許文献6参照)。これらの拡散板は、拡散剤の使用を回避、もしくは削減しつつ所望の拡散性を得られるので光の利用効率を高められる。しかしながら、凹凸形状についての詳しい検討がないため、輝度ムラの厳密な調整は困難である。同様に出射面内の正面輝度の均一性を得ることも困難である。   Moreover, a light diffusing plate having irregularities on the surface has been proposed (see, for example, Patent Document 6). These diffusing plates can obtain desired diffusibility while avoiding or reducing the use of a diffusing agent, so that the light utilization efficiency can be enhanced. However, since there is no detailed examination on the uneven shape, it is difficult to strictly adjust the luminance unevenness. Similarly, it is difficult to obtain the uniformity of the front luminance within the exit surface.

また、光量損失が少ないプリズムシートも提案されている(例えば、特許文献7参照)。これは、シートの両面に断面が三角形または波型で一方向に連続して伸びる多数の凸部を形成している。しかしながら、これらのプリズムシートは拡散光を正面に向けることで光量損失を低減することを目的としているため、直下方式で生じるランプイメージを解消することはできない。   In addition, a prism sheet with little light loss has been proposed (see, for example, Patent Document 7). This forms a large number of convex portions on both sides of the sheet, each having a triangular or corrugated cross section and continuously extending in one direction. However, these prism sheets aim to reduce the light loss by directing the diffused light to the front, so it is not possible to eliminate the lamp image generated by the direct method.

大型照明装置においては、携帯電話やモバイルパソコンなどに比べて薄型化についての要求が厳しくないため、光源と光拡散版との距離を短くすることや、光学フィルムの枚数の削減などで対応できる。また、省エネルギーを実現するには、光の利用効率を高めることが必要である。直下方式は前述のように線状光源の本数を増やすことができ、高輝度を得ることが容易であるが、省エネルギーの視点からランプイメージ解消のために大量の光拡散剤を用いるなどによって光の利用効率を下げることを抑制しなければならない。   In a large illuminating device, since the demand for thinning is not strict as compared with a mobile phone or a mobile personal computer, it can be dealt with by shortening the distance between the light source and the light diffusion plate or reducing the number of optical films. In addition, in order to realize energy saving, it is necessary to increase the utilization efficiency of light. As described above, the direct method can increase the number of linear light sources, and it is easy to obtain high luminance. However, from the viewpoint of energy saving, a large amount of light diffusing agent is used to eliminate the lamp image. It must be suppressed to reduce the use efficiency.

特開平2−17号公報参照See JP-A-2-17 特開昭54−155244号公報参照See JP-A-54-155244 特許2852424号公報参照See Japanese Patent No. 2852424 特開2000−338895号公報参照See JP 2000-338895 A 特開2002−352611号公報参照See JP 2002-352611 A 特開平10−123307号公報参照See JP-A-10-123307 特許3455884号公報参照See Japanese Patent No. 3455844

そこで本発明では、高輝度で、特に正面輝度が高く、視野角が広く、光利用効率が高く、装置の大型化への対応が容易で、光源と他の部材との厳密な位置合わせなく正面方向の輝度ムラが解消され、生産性や薄型化にも有利な照明装置、および、これを用いた画像表示装置を提供することを目的とする。   Therefore, in the present invention, high brightness, particularly high front brightness, wide viewing angle, high light utilization efficiency, easy response to the increase in size of the apparatus, and the front without exact alignment between the light source and other members. An object of the present invention is to provide an illuminating device in which uneven luminance in a direction is eliminated and which is advantageous for productivity and thinning, and an image display device using the same.

そこで本発明者らは図1に例示したような一般的な直下方式の照明装置に我々が提案する第一光線制御手段と第二光線方向制御手段とを配置することで、上記の課題を解決することを見出した。上記の課題に対して、本発明では、第一光線制御手段により幅方向の視野角を絞り正面エネルギーを正面方向に集中させ、前記第一光線制御手段の出射面上に配置される第二光線制御手段により高さ方向の視野角を絞り正面エネルギーを正面方向に集中させる同時に、前記第一光線制御手段により絞った幅方向の視野角を適度に広げることにより、光の利用効率を高めると同時に、高輝度化、広視野角化、特に多くの用途で好適な正面輝度の向上を達成できる。   Therefore, the present inventors solve the above-mentioned problem by arranging the first light beam control means and the second light beam direction control means that we propose in a general direct lighting system as illustrated in FIG. I found out. In response to the above problem, in the present invention, the first light beam control means narrows the viewing angle in the width direction and concentrates the front energy in the front direction, and the second light beam arranged on the emission surface of the first light beam control means. At the same time as increasing the viewing angle in the height direction by the control means and concentrating the front energy in the front direction, and at the same time increasing the use efficiency of light by appropriately widening the viewing angle in the width direction narrowed by the first light control means. Thus, it is possible to achieve high brightness and wide viewing angle, and particularly to improve frontal brightness suitable for many applications.

そして、第二光線方向制御手段を畝状の複数の凸部とし、その断面形状を最適化することで、第二光線方向制御手段へ光が入射する面上の全ての点で、入射光の出光方向を同様に制御するような一様な性質を持たせることができ、サイズ変更に有利なだけではなく、光源との位置合わせも不要となる。また、正面方向への出光強度の分布を一定にすることで、正面方向の輝度ムラを解消することができる。さらに第二光線方向制御手段の持つ輝度ムラ解消、輝度向上などの複合的な機能により、他の機能性光学フィルムの利用を解消もしくは削減でき、生産性や薄型化などにも有利である。さらに第二光線方向制御手段の正面方向への出光割合を高めることで正面強度を高めることも可能である。加えてこれらの照明装置の出射光側に透過型表示素子を配置することで画像表示装置を得られる。
ここで、「畝状の複数の凸部」とは、断面が曲線または多角形(三角は除く)で、一方向に延在する凸部を示しており、断面が主面を除き2つの直線で構成されるいわゆる「プリズム」は含まれない。
Then, the second light beam direction control means has a plurality of bowl-shaped convex portions, and by optimizing the cross-sectional shape thereof, the incident light is incident at all points on the surface where light enters the second light beam direction control means. It is possible to provide a uniform property that similarly controls the light exit direction, which is not only advantageous for size change, but also does not require alignment with the light source. Further, by making the light intensity distribution in the front direction constant, luminance unevenness in the front direction can be eliminated. Furthermore, the combined functions of the second light direction control means, such as elimination of luminance unevenness and improvement of luminance, can eliminate or reduce the use of other functional optical films, which is advantageous for productivity and thinning. Furthermore, it is also possible to increase the front intensity by increasing the light emission ratio in the front direction of the second light direction control means. In addition, an image display device can be obtained by disposing a transmissive display element on the outgoing light side of these illumination devices.
Here, “a plurality of ridge-shaped convex portions” indicates a convex portion that has a curved or polygonal cross section (excluding triangles) and extends in one direction, and the cross section has two straight lines excluding the main surface. The so-called “prism” composed of is not included.

本発明で提供する照明装置は、互いに垂直に交わる幅、高さ、厚さを持つ略直方体状の照明装置であって、前記照明装置は、複数の線状光源と、第一光線方向制御手段と第二光線方向制御手段とを備え、該第一光線方向制御手段は、幅方向の視野角特性を絞るための部材であり、該第二光線方向制御手段は、幅方向の視野角特性を適度に広げるとともに、輝度ムラを解消するための部材である。   An illumination device provided by the present invention is a substantially rectangular parallelepiped illumination device having a width, a height, and a thickness that intersect perpendicularly to each other, and the illumination device includes a plurality of linear light sources and first light direction control means. And a second light direction control means, wherein the first light direction control means is a member for narrowing the viewing angle characteristic in the width direction, and the second light direction control means has a viewing angle characteristic in the width direction. It is a member for spreading appropriately and eliminating uneven brightness.

出光強度の分布がほぼ一定であれば、輝度ムラは解消され、輝度の均一性が得られる。前記のように線状光源を配列した照明装置では、出光強度の分布は、各線状光源の出光強度分布の総和であり、出射側面の任意の位置で分布がほぼ一定となれば、輝度ムラは解消される。   If the distribution of the outgoing light intensity is almost constant, the luminance unevenness is eliminated and the luminance uniformity is obtained. In the illuminating device in which the linear light sources are arranged as described above, the distribution of the light output intensity is the sum of the light output intensity distributions of the respective linear light sources. It will be resolved.

本発明の照明装置は正面方向への出光強度の分布をほぼ一定とすることで、正面方向の輝度ムラを解消する。加えてこれらの照明装置の出射側に透過型表示素子を配置することで画像表示装置を得られる。ここで正面方向とは第二光線方向制御手段の主面の法線方向を中心とした微小立体角を意味する。   The illuminating device of the present invention eliminates uneven brightness in the front direction by making the light intensity distribution in the front direction substantially constant. In addition, an image display device can be obtained by disposing a transmissive display element on the emission side of these illumination devices. Here, the front direction means a minute solid angle centered on the normal direction of the main surface of the second light direction control means.

以下に、本発明が提供する手段について詳細に説明する。
本発明は、
互いに垂直に交わる幅、高さ、厚さを持つ略直方体状の照明装置であって、
前記幅、高さ、厚さの値はこの順に大きく、
厚さ方向出射側に向けて、線状光源、第一光線方向制御手段、第二光線方向制御手段を、この順に備えており、
前記線状光源は、全領域に渡り複数平行に配列しており、
前記第一光線方向制御手段と第二光線方向制御手段とがそれぞれ複数の畝状の凸部であって、
前記第一光線方向制御手段は前記線状光源からの光を幅方向に沿って光線方向を制御して前記第二光線方向制御手段に向け、
前記第二光線方向制御手段は、前記第一光線方向制御手段からの光を高さ方向に沿って光線方向を制御し、
かつ一部の光を前記第一光線方向制御手段に向けて戻す
ことを特徴とする照明装置である。
Hereinafter, the means provided by the present invention will be described in detail.
The present invention
A substantially rectangular parallelepiped lighting device having a width, a height, and a thickness perpendicular to each other,
The width, height and thickness values are larger in this order,
To the thickness direction emission side, linear light source, first light direction control means, second light direction control means, in this order,
A plurality of the linear light sources are arranged in parallel over the entire area,
Each of the first light direction control means and the second light direction control means is a plurality of bowl-shaped protrusions,
The first light direction control means controls the light direction along the width direction of the light from the linear light source and directs it to the second light direction control means.
The second light direction control means controls the light direction along the height direction of the light from the first light direction control means,
And it is an illuminating device characterized by returning a part of light toward the first light beam direction control means.

また、本発明は上記の照明装置において、前記線状光源と前記第一光線方向制御手段との間に拡散手段を有してもよい。   Moreover, this invention WHEREIN: You may have a spreading | diffusion means between said linear light source and said 1st light direction control means in said illuminating device.

また、本発明は上記の照明装置において、該第一光線方向制御手段および第二光線方向制御手段の畝状凸部の長手方向に垂直な断面形状が互いに略同一であってもよい。   In the illumination device according to the present invention, the first light beam direction control unit and the second light beam direction control unit may have substantially the same cross-sectional shape perpendicular to the longitudinal direction of the hook-shaped projections.

さらに本発明は上記の照明装置において、前記拡散手段が前記第一光線方向制御手段と一体であるシート状部材に設けられていてもよいし、あるいは前記拡散手段が前記第一光線方向制御手段とが異なるシート状部材に設けられていてもよい。   Furthermore, in the illumination device according to the aspect of the invention, the diffusing unit may be provided on a sheet-like member that is integral with the first light direction control unit, or the diffusing unit may be the first light direction control unit. May be provided on different sheet-like members.

また、本発明は上記の照明装置において、前記拡散手段がシート状部材の内部及び/または表面に分散した微粒子であってもよいし、あるいは前記拡散手段がシート状部材の表面に設けられた微細凹凸形状であってもよい。   Further, in the illumination device according to the present invention, the diffusing unit may be fine particles dispersed in and / or on the surface of the sheet-like member, or the diffusing unit may be finely provided on the surface of the sheet-like member. An uneven shape may be used.

また、本発明は上記の照明装置において、前記複数の線状光源が、前記照明装置の幅方向に平行かつ幅方向の略全域に渡るように配置され、高さ方向に沿って配列されていてもよい。   In the illumination device according to the present invention, the plurality of linear light sources are arranged so as to be parallel to the width direction of the illumination device and over substantially the entire width direction, and are arranged along the height direction. Also good.

さらに、本発明は上記の照明装置に対し、前記第二光線方向制御手段が設けられた側の面に該面を覆うように透過型表示素子を備えることを特徴とする画像表示装置である。   Furthermore, the present invention is an image display device characterized in that a transmissive display element is provided on the surface on which the second light beam direction control means is provided so as to cover the illumination device.

次に、本発明が提供する手段による効果を詳細に説明する。
本発明は、直下方式において、光の利用効率が高く、視野角が広く、正面方向への出光強度の分布を一定とすることで、ランプイメージなどの正面方向の輝度ムラがなく、かつ正面方向の輝度が高い照明装置を提供する。さらに、第一光線方向制御手段と第二光線方向制御手段と反射板に入射した光に対して、すべての場所で同様な光学的制御を行うことが可能であるため、線状光源と他の部材との位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく製造できる照明装置を提供する。また、第一光線方向制御手段および第二光線方向制御手段を有する照明装置を用いた画像表示装置を提供する。
Next, the effects of the means provided by the present invention will be described in detail.
The present invention, in the direct system, has high light utilization efficiency, wide viewing angle, and constant light output intensity distribution in the front direction, so that there is no uneven brightness in the front direction such as a lamp image and the front direction. Provided is a lighting device with high brightness. Furthermore, since it is possible to perform the same optical control at all places on the light incident on the first light direction control means, the second light direction control means and the reflector, the linear light source and other light sources Provided is a lighting device that does not require alignment with a member, can respond immediately to changes in the display size and the number and arrangement of linear light sources, and can be manufactured with high productivity. Moreover, the image display apparatus using the illuminating device which has a 1st light direction control means and a 2nd light direction control means is provided.

本発明による効果は、次のようなものである。幅、高さ、厚さの値がこの順に大きく幅と高さ方向が照明面となるので薄くて大画面で、幅方向を水平に配置することで多くの表示装置などに好適である。第一光線方向制御手段は、幅方向に沿って光線方向を制御することで高い正面輝度が得られ、かつ、好ましい水平視野角が得られる。第二光線方向制御手段は、高さ方向に沿って光線方向を制御することで好ましい垂直視野角が得られる。さらに第二光線方向制御手段は第一光線方向制御手段に一部光を戻すことで水平方向の拡散性を高め、多くの用途で望ましい輝度ムラは解消され、輝度の均一性が得られる。   The effects of the present invention are as follows. Since the width, height, and thickness values increase in this order and the width and height directions become the illumination surface, the display is thin and has a large screen, and the width direction is arranged horizontally, which is suitable for many display devices. The first light direction control means can control the light direction along the width direction to obtain high front luminance and obtain a preferable horizontal viewing angle. The second light direction control means can obtain a preferable vertical viewing angle by controlling the light direction along the height direction. Further, the second light direction control means improves the diffusibility in the horizontal direction by returning a part of the light to the first light direction control means, thereby eliminating unevenness in brightness desirable in many applications and obtaining brightness uniformity.

また、前記線状光源と前記第一光線方向制御手段との間に拡散手段を用いることにより、線状光源のイメージをより消去しやすくなる。   Further, by using a diffusing unit between the linear light source and the first light beam direction control unit, it becomes easier to erase the image of the linear light source.

また、第一光線方向制御手段および第二光線方向制御手段を構成する畝状凸部の断面形状が互いに同一であることで、製造上有利となる。   Moreover, it becomes advantageous on manufacture because the cross-sectional shape of the hook-shaped convex part which comprises a 1st light direction control means and a 2nd light direction control means is mutually the same.

あるいは、前記拡散手段が前記第一光線方向制御手段と一体であるシート状の部材に設けられていることで、部材点数も減らせて薄型化にも有利である。   Alternatively, since the diffusing unit is provided on a sheet-like member that is integral with the first light beam direction controlling unit, the number of members can be reduced, which is advantageous for thinning.

また、前記拡散手段を支持体とできることで、第一光線方向制御手段を薄く作製できるので、反りに伴い発生する光学特性の変化を軽減することができ、第一光線方向制御手段の製造上有利である。あるいは、前記拡散手段がシート状部材とすることで、機械的強度が確保でき、かつ、前記微粒子の濃度、サイズ、屈折率などの調整で光拡散性の制御しやすく、正面方向の輝度ムラを解消するにあたり有利である。   Further, since the first light beam direction control means can be made thin by making the diffusing means as a support, it is possible to reduce changes in optical characteristics caused by warping, which is advantageous in manufacturing the first light beam direction control means. It is. Alternatively, when the diffusing means is a sheet-like member, mechanical strength can be ensured, and light diffusibility can be easily controlled by adjusting the concentration, size, refractive index, etc. of the fine particles, and uneven brightness in the front direction can be achieved. It is advantageous in eliminating it.

さらに、前記拡散手段をシート状部材の表面に設けられた微細凹凸形状とすることで、製造が容易となる。   Furthermore, manufacture becomes easy by making the said spreading | diffusion means into the fine uneven | corrugated shape provided in the surface of the sheet-like member.

また、線状光源は同じタイプのものを用いることが生産上有利であり、輝度の均一化にも有利であるが、この場合、線状光源を出射面の矩形の幅方向と平行に配列することが、線状光源の本数を削減することができるため好ましい。また、線状光源を同一平面内に等間隔に配置することで、本発明の課題である輝度ムラは、線状光源の配置に伴う周期的なものとなり、主面内で均一な光学性能を持つ光線方向制御手段での輝度ムラの解消は容易になる。また、線状光源は幅方向に平行に配置することで、高さ方向に配置するよりも部品点数を削減できる。   In addition, it is advantageous in production to use the same type of linear light source, and it is also advantageous for uniforming the luminance. In this case, the linear light source is arranged in parallel with the width direction of the rectangle of the emission surface. This is preferable because the number of linear light sources can be reduced. Further, by arranging the linear light sources at equal intervals in the same plane, the luminance unevenness which is the subject of the present invention becomes periodic due to the arrangement of the linear light sources, and uniform optical performance in the main surface. It is easy to eliminate luminance unevenness by the light beam direction control means. Further, by arranging the linear light source in parallel with the width direction, the number of parts can be reduced as compared with the arrangement in the height direction.

また、該照明装置は正面輝度が高く、正面方向の輝度分布が均一な照明装置であり、この照明装置の出射側に透過型表示素子を設けることにより、好ましい画像表示装置として利用できる。ここで、画像表示装置とは、照明装置と表示装置を組み合わせた表示モジュール、さらには、この表示モジュールを用いたテレビ、パソコンモニターなどの少なくとも画像表示機能を有する機器のことをいう。   The lighting device is a lighting device with high front luminance and uniform luminance distribution in the front direction. By providing a transmissive display element on the emission side of the lighting device, the lighting device can be used as a preferable image display device. Here, the image display device refers to a display module in which an illumination device and a display device are combined, and a device having at least an image display function such as a television or a personal computer monitor using the display module.

従来の直下方式の照明装置の概略図である。It is the schematic of the conventional illuminating device of a direct system. 本発明の照明装置の好適な例の概略図、かつ、実施例2および実施例4に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the schematic of the suitable example of the illuminating device of this invention, and the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on Example 2 and Example 4. FIG. 実施例1および実施例3に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on Example 1 and Example 3. FIG. 実施例5に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。FIG. 10 is a configuration diagram of a backlight device for a liquid crystal display device according to Embodiment 5 as viewed from obliquely above. 実施例6に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。FIG. 10 is a configuration diagram of a backlight device for a liquid crystal display device according to Example 6 as viewed from obliquely above. 比較例1に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 1. FIG. 比較例2に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 2. FIG. 比較例3に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 3. FIG. 比較例4に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 4. FIG. 比較例5に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 5. FIG. 比較例6に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 6. FIG. 比較例7に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 7. FIG. 比較例8に係る液晶表示装置用バックライト装置の斜め上から見た構成図である。It is the block diagram seen from diagonally upward of the backlight apparatus for liquid crystal display devices which concerns on the comparative example 8. FIG.

符号の説明Explanation of symbols

1 線状光源
2 拡散手段(光拡散板)
3 第一光線方向制御手段
4 第二光線方向制御手段
5 拡散手段(光拡散シート)
6 反射板
1 linear light source 2 diffusion means (light diffusion plate)
3 First light direction control means 4 Second light direction control means 5 Diffusion means (light diffusion sheet)
6 reflector

図2に、本発明の提供する照明装置の実施形態の例を示す。幅方向とそれ垂直な高さ方向とからなる矩形状の出射面を持つ照明装置であって、線状光源1は前記幅方向と高さ方向とに平行な1つの仮想平面内に、高さ方向と平行に、かつ幅方向に沿って配置されている。そして、前記幅方向と高さ方向とに平行な1つの仮想平面内に、高さ方向と平行に、前記線状光源1から出射面へ向けて、第一光線方向制御手段3を備える第一光線方向制御部材、第二光線方向制御手段4を備える第二光線方向制御部材の順に配置される。図2における拡散手段2は、本発明においては必ずしも必須ではないが、線状光源のイメージをより消去しやすくなる効果があり好適に用いられる。また、拡散手段2は後述するとおり、図2のような光拡散板には限定されないのは当然である。   FIG. 2 shows an example of an embodiment of a lighting device provided by the present invention. An illumination device having a rectangular emission surface composed of a width direction and a height direction perpendicular thereto, wherein the linear light source 1 has a height in one virtual plane parallel to the width direction and the height direction. It is arranged in parallel with the direction and along the width direction. The first light direction control means 3 is provided with first light direction control means 3 in a single virtual plane parallel to the width direction and the height direction, parallel to the height direction, from the linear light source 1 to the exit surface. The light beam direction control member and the second light beam direction control member including the second light beam direction control means 4 are arranged in this order. The diffusing means 2 in FIG. 2 is not necessarily essential in the present invention, but is preferably used because it has an effect of easily erasing the image of the linear light source. Naturally, the diffusion means 2 is not limited to the light diffusion plate as shown in FIG.

第一光線方向制御手段3の好適な例としては、厚さ方向に垂直に主面が設けられた板状部材の主面の少なくとも一面に、高さ方向に平行に複数配列した微小な畝状の凸部が挙げられる。   As a suitable example of the first light beam direction control means 3, a plurality of small bowl-like shapes arranged in parallel in the height direction on at least one of the principal surfaces of the plate-like member provided with the principal surface perpendicular to the thickness direction. The convex part is mentioned.

また、第二光線方向制御手段4の好適な例としては、厚さ方向に垂直に主面が設けられた板状部材の主面の少なくとも一面に、幅方向に平行に複数配列した微小な畝状の凸部が挙げられる。   As a preferred example of the second light beam direction control means 4, a plurality of small ridges arranged in parallel in the width direction on at least one of the main surfaces of the plate-like member provided with the main surface perpendicular to the thickness direction. Shaped protrusions.

以下、光線方向制御手段が、上述の板状部材の主面に設けられた凸部によってなる場合の好適な形態を更に詳しく述べる。   Hereinafter, a preferred embodiment in which the light beam direction control means is constituted by a convex portion provided on the main surface of the plate-like member will be described in more detail.

前記、光線方向制御手段は、照明装置の線状光源側に位置する入射面および/または出光面側に位置する出射面に設けることができる。   The light beam direction control means can be provided on the incident surface located on the linear light source side of the illumination device and / or the exit surface located on the light exit surface side.

前記、凸部の断面形状は、多角形(三角形は除く)、曲線、これらを組み合わせた形状などから選ぶことができる。比較的角の多い多角形であるとき、光の出射方向を制御しつつ分散することができるので、均一性の高い出光を得ることができる。また、隣接する辺の角度を比較的広く取ることができるので、破損しにくく、好ましい。曲面であるときは、その上記均一性、破損しにくさなどの観点でさらに好ましい。好ましい曲面形状に特に制限はないが、略半円状、楕円状、放物線状、などで変曲点が実質的にない形状や、谷部付近で緩やかにカーブするウェーブ状の形状などが挙げられる。変曲点が少ない方が、光線方向の制御も容易で乱反射もおきにくい。逆に拡散性を高めるためには、変曲点を複数設けることもできる。   The cross-sectional shape of the convex portion can be selected from polygons (excluding triangles), curved lines, and combinations of these. When the polygon has a relatively large number of corners, it can be dispersed while controlling the light emission direction, so that highly uniform light emission can be obtained. Moreover, since the angle of an adjacent side can be taken comparatively widely, it is hard to damage and is preferable. When it is a curved surface, it is more preferable from the viewpoints of the uniformity and resistance to breakage. There are no particular restrictions on the preferred curved surface shape, but examples include a substantially semicircular shape, an elliptical shape, a parabolic shape, and a shape that does not substantially have an inflection point, and a wave shape that gently curves near the valley. . When the number of inflection points is small, the direction of the light beam can be easily controlled, and irregular reflection is less likely to occur. Conversely, in order to increase the diffusibility, a plurality of inflection points can be provided.

また、前記凸部は連続して配列するが、凸部の間に平坦部を設けてもよい。平坦部を設けることにより、金型の凸部が変形しにくい形状となるため、有利である。また、線状光源の直上での光が正面方向に出射されるため、線状光源の直上での輝度のみを上げるときに有利である。逆に、平坦部を持たない形状の場合には、凸部の斜面の傾きですべての光を制御できるため、正面方向への出光強度の分布が均一となる。   Moreover, although the said convex part is arranged continuously, you may provide a flat part between convex parts. Providing the flat portion is advantageous because the convex portion of the mold is difficult to deform. Further, since the light directly above the linear light source is emitted in the front direction, it is advantageous when only the luminance immediately above the linear light source is increased. On the contrary, in the case of a shape having no flat part, all light can be controlled by the inclination of the slope of the convex part, so that the light intensity distribution in the front direction becomes uniform.

出光方向分布は、前記凸部の斜面角度分布によって決定される。従って、斜面角度分布の調整によって、例えば、正面輝度を面内で均一化することができるので、好適な面光源となる。また、第二光線方向制御手段は、高さ方向の光線方向を制御するので、幅方向に平行に配置した線状光源の輝度ムラを緩和することができる。第二光線方向制御手段は、ランプイメージの原因となる線状光源からの直進光、つまり、小さい入射角で該第二光線方向制御手段へ入射する光を反射し、該第二光線方向制御手段へ大きい入射角で入射した光を透過することで輝度ムラが緩和される。なお、前記第二光線方向制御手段は、斜面角度分布によって第一光線方向制御手段への反射の割合を決めることができる。第二光線方向制御部材で反射した光は、第一光線方向制御部材に当たって透過および反射することで拡散性を増し、輝度ムラを更に緩和するとともに、幅方向の輝度均一性も高まる。   The light exit direction distribution is determined by the slope angle distribution of the convex portion. Therefore, by adjusting the slope angle distribution, for example, the front luminance can be made uniform in the plane, so that a suitable surface light source is obtained. Further, since the second light beam direction control unit controls the light beam direction in the height direction, it is possible to alleviate luminance unevenness of the linear light source arranged in parallel with the width direction. The second light direction control means reflects straight light from the linear light source causing the lamp image, that is, light incident on the second light direction control means at a small incident angle, and the second light direction control means. Luminance unevenness is mitigated by transmitting light incident at a large incident angle. The second light beam direction control means can determine the ratio of reflection to the first light beam direction control means by the slope angle distribution. The light reflected by the second light direction control member impinges on the first light direction control member to be transmitted and reflected, thereby increasing diffusibility, further reducing luminance unevenness, and improving luminance uniformity in the width direction.

第一光線方向制御手段および/または第二光線方向制御手段である凸部形状を賦形する方法には制限はないが、押出成形、射出成形、紫外線硬化型樹脂を用いた2P成形(hoto olymerization Process)などが挙げられる。成形方法は凸部の大きさ、必要形状、量産性を考慮して適宜用いればよい。主面サイズが大きい場合は、押出成形が適している。Although there is no limitation on the method for shaping the convex shape is the first light beam direction control means and / or the second light beam direction control means, extrusion molding, injection molding, 2P molding using an ultraviolet curable resin (P hoto P olymerization Process) and the like. The molding method may be appropriately used in consideration of the size of the projection, the required shape, and mass productivity. When the main surface size is large, extrusion molding is suitable.

また、第一光線方向制御手段および/または第二光線方向制御手段である凸部が同じ断面形状であることが好ましい。第二光線方向制御手段の光学的性質は一様であるため、位置合わせが不要で、ディスプレイサイズや線状光源の本数や配置の変更にも即座に対応でき、生産性よく照明装置を製造することができる。   Moreover, it is preferable that the convex part which is a 1st light direction control means and / or a 2nd light direction control means has the same cross-sectional shape. Since the optical properties of the second light direction control means are uniform, alignment is not required, and it is possible to respond immediately to changes in the display size and the number and arrangement of linear light sources, and to produce a lighting device with high productivity be able to.

また、第一光線方向制御手段および/または第二光線方向制御手段が畝状凸部である場合、第一光線方向制御手段および第二光線方向制御手段は、光学部材の基材として用いられる材料を好ましく用いることができ、通常、透光性の熱可塑性樹脂が用いられる。例えば、(メタ)アクリル系樹脂、(メタ)アクリルスチレン系共重合樹脂、スチレン系樹脂、芳香族ビニル系樹脂、オレフィン系樹脂、エチレン酢酸ビニル系共重合樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、ポリカーボネート、フッ素樹脂、ウレタン樹脂、シリコーン樹脂、アミド系樹脂、イミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等が挙げられる。また基材となるフィルムやシート上に第一光線方向制御手段または第二光線方向制御手段を紫外線硬化樹脂により2P成形することも可能である。   Further, when the first light direction control means and / or the second light direction control means is a hook-shaped convex portion, the first light direction control means and the second light direction control means are materials used as a base material of the optical member. Can be preferably used, and usually a light-transmitting thermoplastic resin is used. For example, (meth) acrylic resin, (meth) acryl styrene copolymer resin, styrene resin, aromatic vinyl resin, olefin resin, ethylene vinyl acetate copolymer resin, vinyl chloride resin, vinyl ester resin , Polycarbonate, fluorine resin, urethane resin, silicone resin, amide resin, imide resin, polyester resin, epoxy resin, phenol resin, urea resin, melamine resin, and the like. Moreover, it is also possible to perform 2P molding of the first light direction control means or the second light direction control means with a UV curable resin on a film or sheet as a substrate.

本発明の第一光線方向制御手段および/または第二光線方向制御手段は、必要に応じて異なる複数の材料を用いて作ることもできる。例えば第一光線方向制御手段および/または第二光線方向制御手段である畝状凸部をフィルム上に成形した後、凸部を形成していないフィルム面に支持板を合わせて、光線方向制御部材とすることもできる。これは例えば凸部の形成に紫外線硬化樹脂を用いる場合は、凸部付近以外に汎用の透光性樹脂を用いることで高価な紫外線硬化樹脂の使用量を削減できる。   The first light direction control means and / or the second light direction control means of the present invention can be made using a plurality of different materials as required. For example, the first light direction control means and / or the second light direction control means is formed with a ridge-shaped convex portion on the film, and then the support plate is aligned with the film surface on which the convex portion is not formed, and the light direction control member It can also be. For example, when an ultraviolet curable resin is used for forming the convex portion, the amount of the expensive ultraviolet curable resin used can be reduced by using a general-purpose translucent resin other than the vicinity of the convex portion.

前記光拡散手段が板状部材に有り、第一光線方向制御手段および第二光線方向制御手段が板状構造物である時、これらは同じ板であってよい。   When the light diffusing means is in a plate-like member and the first light beam direction control means and the second light beam direction control means are plate-like structures, these may be the same plate.

支持板を用いる場合などで、第一光線方向制御手段および/または第二光線方向制御手段の基材部分や第一光線方向制御手段および/または第二光線方向制御手段の線状光源側に配置される部材が屈折率の異なる複数種類の板となっても良い。   When using a support plate, it is arranged on the base part of the first light direction control means and / or the second light direction control means or on the linear light source side of the first light direction control means and / or the second light direction control means. The member to be formed may be a plurality of types of plates having different refractive indexes.

また本発明の第一光線方向制御手段および/または第二光線方向制御手段に対し、光拡散手段を設けることで、更に輝度の均一性を高めることができる。
光拡散手段としては、板状部材の主面にシボやエンボスなどのランダムな凹凸を設ける方法、少量の光拡散剤を構造物の内部に分散させる方法、拡散シートを光制御部材の入射側および/または出射側に設ける方法、あるいはこれらを組み合わせた方法が挙げられる。
Further, by providing the light diffusing means for the first light direction control means and / or the second light direction control means of the present invention, it is possible to further improve the luminance uniformity.
As the light diffusing means, a method of providing random unevenness such as embossing or embossing on the main surface of the plate member, a method of dispersing a small amount of light diffusing agent inside the structure, a diffusion sheet on the incident side of the light control member and Examples thereof include a method provided on the emission side, or a method combining these.

ランダムな凹凸の形成は、微粒子を分散させた溶液を主面に塗布することや、凹凸の形成された金型から転写することにより実現できる。これらは、光制御部材の光源側および/または出射面側に設けることができる。凹凸の程度は算術平均荒さRaが3μm以下であることが好ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。入射面が平坦である場合、様々な方向から入射した光が、光制御部材内に入射したとき入射面での屈折により、ある程度正面付近に集光されるため、結果として正面方向への出光割合が増える。例えば、光制御部材の屈折率が1.55である場合には、入射面の法線方向と40度以内の角度範囲に集光される。入射面に凹凸を付与した場合、光制御部材に入射した光は、広い角度に屈折され進むので、正面方向への出光割合を増やす効果が低下する場合がある。また出射面に微細な凹凸を設ける場合、凹凸面で屈折されることで、同様に凹凸によって正面方向への出光割合を増やす効果が低下する場合がある。得られる拡散性や輝度ムラ解消効果と正面輝度とのバランスから用いる用途に好ましい範囲に調整することができる。   Random irregularities can be formed by applying a solution in which fine particles are dispersed to the main surface or by transferring from a mold having irregularities. These can be provided on the light source side and / or the emission surface side of the light control member. As for the degree of unevenness, the arithmetic average roughness Ra is preferably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered. When the incident surface is flat, light incident from various directions is condensed near the front to some extent due to refraction at the incident surface when entering the light control member. Will increase. For example, when the refractive index of the light control member is 1.55, the light is condensed in an angle range within 40 degrees with respect to the normal direction of the incident surface. When unevenness is given to the incident surface, the light incident on the light control member is refracted at a wide angle and proceeds, so that the effect of increasing the light emission ratio in the front direction may be reduced. Moreover, when providing a fine unevenness | corrugation in an output surface, the effect which increases the light emission ratio to a front direction similarly by an unevenness | corrugation may be reduced by being refracted by an uneven surface. It can adjust to the range preferable for the use used from the balance of the diffusibility obtained, the brightness nonuniformity elimination effect, and front brightness.

光拡散剤を塗布する場合、出射面側に塗布することがより好ましい。光拡散剤としては、従来の光拡散板や拡散シートに用いられる無機微粒子や架橋有機微粒子を用いることができる。使用量は従来の一般的な光拡散板に比べて極少量で同等以上の拡散性が得られるとともに、透過性も非常に高い。   When applying the light diffusing agent, it is more preferable to apply it on the light exit surface side. As the light diffusing agent, inorganic fine particles and crosslinked organic fine particles used in conventional light diffusing plates and diffusion sheets can be used. The amount used is extremely small compared to the conventional general light diffusion plate, and the same or better diffusibility can be obtained, and the transmittance is very high.

第一光線方向制御手段および第二光線方向制御手段の畝状凸部の高さは1μm〜500μmが望ましい。500μmより大きくなると、出射面を観察した際、畝方凸部が確認されやすくなるため、品位の低下を招く。また、1μmより小さくなると光の回折現象により着色が発生し品位の低下を生じる。   As for the height of the hook-shaped convex part of a 1st light direction control means and a 2nd light direction control means, 1 micrometer-500 micrometers are desirable. When the thickness is larger than 500 μm, when the exit surface is observed, the ridge-shaped convex portion is easily confirmed, resulting in deterioration of the quality. On the other hand, when the thickness is smaller than 1 μm, coloring occurs due to the diffraction phenomenon of light, and the quality deteriorates.

さらに、透過型液晶パネルを透過型表示素子として設けた本発明の画像表示装置においては、第二光線方向制御手段における高さ方向の畝状凸部の幅が、液晶の高さ方向画素ピッチの1/100〜1/1.5であることが好ましい。これより大きくなると第二光線方向制御部材と液晶パネルとの関係によりモアレが発生し、画質を大きく低下させる。   Furthermore, in the image display device of the present invention in which the transmissive liquid crystal panel is provided as the transmissive display element, the width of the ridge-shaped convex portion in the height direction in the second light direction control means is the pixel pitch of the liquid crystal in the height direction. It is preferable that it is 1/100-1 / 1.5. If it is larger than this, moire occurs due to the relationship between the second light beam direction control member and the liquid crystal panel, and the image quality is greatly reduced.

線状光源と第一光線方向制御手段との間に拡散手段を設けることで、更に輝度の均一性を高めることができる。
光拡散手段としては、板状部材の主面にシボやエンボスなどのランダムな凹凸を設ける方法、光拡散剤を構造物の内部に分散させる方法、拡散シートを光制御部材の入射側および/または出射側に設ける方法、あるいはこれらを組み合わせた方法が挙げられる。ランダムな凹凸の形成は、微粒子を分散させた溶液を主面に塗布することや、凹凸の形成された金型から転写することにより実現できる。これらは、光制御部材の光源側および/または出射面側に設けることができる。凹凸の程度は算術平均荒さRaが3μm以下であることが好ましい。これより大きくなると、拡散効果が大きくなりすぎるために、正面輝度が低下する。入射面が平坦である場合、様々な方向から入射した光が、光制御部材内に入射したとき入射面での屈折により、ある程度正面付近に集光されるため、結果として正面方向への出光割合が増える。例えば、光制御部材の屈折率が1.55である場合には、入射面の法線方向と40度以内の角度範囲に集光される。入射面に凹凸を付与した場合、光制御部材に入射した光は、広い角度に屈折され進むので、正面方向への出光割合を増やす効果が低下する場合がある。また出射面に微細な凹凸を設ける場合、凹凸面で屈折されることで、同様に凹凸によって正面方向への出光割合を増やす効果が低下する場合がある。得られる拡散性や輝度ムラ解消効果と正面輝度とのバランスから用いる用途に好ましい範囲に調整することができる。
By providing the diffusing unit between the linear light source and the first light direction control unit, it is possible to further improve the uniformity of luminance.
As the light diffusing means, a method of providing random unevenness such as embossing or embossing on the main surface of the plate member, a method of dispersing a light diffusing agent inside the structure, a diffusion sheet on the incident side of the light control member and / or A method of providing on the emission side, or a method of combining them is mentioned. Random irregularities can be formed by applying a solution in which fine particles are dispersed to the main surface or by transferring from a mold having irregularities. These can be provided on the light source side and / or the emission surface side of the light control member. As for the degree of unevenness, the arithmetic average roughness Ra is preferably 3 μm or less. If it becomes larger than this, the diffusion effect becomes too large, and the front luminance is lowered. When the incident surface is flat, light incident from various directions is condensed near the front to some extent due to refraction at the incident surface when entering the light control member. Will increase. For example, when the refractive index of the light control member is 1.55, the light is condensed in an angle range within 40 degrees with respect to the normal direction of the incident surface. When unevenness is given to the incident surface, the light incident on the light control member is refracted at a wide angle and proceeds, so that the effect of increasing the light emission ratio in the front direction may be reduced. Moreover, when providing a fine unevenness | corrugation in an output surface, the effect which increases the light emission ratio to a front direction similarly by an unevenness | corrugation may be reduced by being refracted by an uneven surface. It can adjust to the range preferable for the use used from the balance of the diffusibility obtained, the brightness nonuniformity elimination effect, and front brightness.

前記拡散手段は、通常光学部材の基材として用いられる材料を好ましく用いることができ、通常、透光性の熱可塑性樹脂が用いられる。例えばメタ)アクリル系樹脂、(メタ)アクリルスチレン系共重合樹脂、スチレン系樹脂、芳香族ビニル系樹脂、オレフィン系樹脂、エチレン酢酸ビニル系共重合樹脂、塩化ビニル系樹脂、ビニルエステル系樹脂、ポリカーボネート、フッ素樹脂、ウレタン樹脂、シリコーン樹脂、アミド系樹脂、イミド系樹脂、ポリエステル系樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等が挙げられる。   For the diffusing means, a material usually used as a base material of an optical member can be preferably used, and usually a light-transmitting thermoplastic resin is used. For example, meth) acrylic resin, (meth) acryl styrene copolymer resin, styrene resin, aromatic vinyl resin, olefin resin, ethylene vinyl acetate copolymer resin, vinyl chloride resin, vinyl ester resin, polycarbonate , Fluorine resin, urethane resin, silicone resin, amide resin, imide resin, polyester resin, epoxy resin, phenol resin, urea resin, melamine resin, and the like.

前記拡散手段として光拡散剤を構造物の内部に分散させる方法をとった場合は、特に制限はないが、透明性樹脂100質量部に対し、好ましくは光拡散剤を0.01〜20質量部、さらに好ましくは0.1〜15質量部、より好ましくは0.3〜10質量部含有することができ、その含有量が、透明性樹脂100質量部に対して0.01質量部未満であると、光拡散性が十分でなく、また、20質量部を超えると、十分な全光線透過率が得ることができなくなり、また、強度も十分でない場合がある。   When the light diffusing agent is dispersed in the structure as the diffusing means, there is no particular limitation, but the light diffusing agent is preferably 0.01 to 20 parts by weight with respect to 100 parts by weight of the transparent resin. More preferably, it can be contained in an amount of 0.1 to 15 parts by mass, more preferably 0.3 to 10 parts by mass, and the content is less than 0.01 parts by mass with respect to 100 parts by mass of the transparent resin. In addition, the light diffusibility is not sufficient, and if it exceeds 20 parts by mass, a sufficient total light transmittance cannot be obtained, and the strength may not be sufficient.

また、前記光拡散剤の粒子径は、その平均粒子径が1〜30μmの範囲であることが好ましく、2〜20μmの範囲であることがより好ましい。光拡散剤の平均粒子径が1μmより小さい場合には、これを透明性樹脂中に分散させて得られる光拡散性樹脂組成物は、短波長の光を選択的に散乱するため、透過光が黄色を帯びやすく好ましくない。一方、光拡散剤の平均粒子径が30μmを超えると、透明性樹脂中に分散させて得られる光拡散性樹脂組成物は、光拡散性が低下したり、光が樹脂を透過したときに光拡散剤が異物として目視されやすくなったりする場合があり好ましくない。光拡散剤の形状としては、楕円球状ないし球状にわたる形態であることが好ましく、球状であることがより好ましい。   The average particle size of the light diffusing agent is preferably in the range of 1 to 30 μm, and more preferably in the range of 2 to 20 μm. When the average particle diameter of the light diffusing agent is smaller than 1 μm, the light diffusing resin composition obtained by dispersing the light diffusing agent in the transparent resin selectively scatters light having a short wavelength, so that transmitted light does not transmit. It is yellowish and is not preferred. On the other hand, when the average particle diameter of the light diffusing agent exceeds 30 μm, the light diffusing resin composition obtained by dispersing in the transparent resin has a reduced light diffusibility or light when the light is transmitted through the resin. The diffusing agent may be easily seen as a foreign substance, which is not preferable. The shape of the light diffusing agent is preferably an oval or spherical shape, more preferably a spherical shape.

前記光拡散剤としては、通常、基材の透明性樹脂と屈折率の異なる無機系および/または有機系の透明微粒子が用いられる。光拡散剤の屈折率と基材の屈折率との差については、その絶対値が、0.02以上であるのが光拡散性の観点から好ましく、また、0.15以下であるのが光透過性の観点から好ましい。なお、本発明においては、上記のように光拡散剤と基材との屈折率差を設けることにより、いわゆる内部拡散性を付与することができるが、光拡散剤を基材表面に浮き出させて表面凹凸を形成させることにより、いわゆる外部拡散性を付与することもできる。   As the light diffusing agent, usually, inorganic and / or organic transparent fine particles having a refractive index different from that of the transparent resin of the base material are used. Regarding the difference between the refractive index of the light diffusing agent and the refractive index of the substrate, the absolute value is preferably 0.02 or more from the viewpoint of light diffusibility, and light is preferably 0.15 or less. It is preferable from the viewpoint of permeability. In the present invention, by providing the difference in refractive index between the light diffusing agent and the base material as described above, so-called internal diffusibility can be imparted, but the light diffusing agent is raised on the surface of the base material. By forming surface irregularities, so-called external diffusibility can be imparted.

無機系の光拡散剤としては、例えば、炭酸カルシウム、硫酸バリウム、酸化チタン、水酸化アルミニウム、シリカ、ガラス、タルク、マイカ、ホワイトカーボン、酸化マグネシウム、酸化亜鉛等が挙げられ、これらは脂肪酸等で表面処理が施されたものであっても良い。また、有機系光拡散剤としては、例えば、スチレン系重合体粒子、アクリル系重合体粒子、シロキサン系重合体粒子、フッ素系重合体粒子等が挙げられ、空気中での3質量%減少温度が250℃以上である高耐熱光拡散剤や、アセトンに溶解させたときのゲル分率が10%以上の架橋重合体粒子が好適に用いられる。これらの光拡散剤の内、シリカ、ガラス、アクリル系重合体粒子、シロキサン系重合体粒子を用いることが好ましく、アクリル系重合体粒子、シロキサン系重合体粒子を用いることがより好ましい。また、これらの光拡散剤は、必要に応じてその2種類以上を用いることができる。   Examples of the inorganic light diffusing agent include calcium carbonate, barium sulfate, titanium oxide, aluminum hydroxide, silica, glass, talc, mica, white carbon, magnesium oxide, and zinc oxide. The surface treatment may be performed. Examples of the organic light diffusing agent include styrene polymer particles, acrylic polymer particles, siloxane polymer particles, fluorine polymer particles, and the like. A high heat-resistant light diffusing agent having a temperature of 250 ° C. or higher or a crosslinked polymer particle having a gel fraction of 10% or higher when dissolved in acetone is suitably used. Of these light diffusing agents, silica, glass, acrylic polymer particles, and siloxane polymer particles are preferably used, and acrylic polymer particles and siloxane polymer particles are more preferably used. Further, these light diffusing agents can be used in two or more kinds as required.

第一光線方向制御手段もしくは第二光線方向制御手段もしくは拡散手段の何れかは板状部材であることが好ましく、さらに線状光源側に配置されている部材が板状部材であることがより好ましい。線状光源側の部材が板状部材であることで、機械的強度が増し、反り等による光学特性の低下を防ぐことができる。   Either the first light direction control means, the second light direction control means or the diffusion means is preferably a plate-like member, and the member disposed on the linear light source side is more preferably a plate-like member. . Since the member on the side of the linear light source is a plate-like member, the mechanical strength is increased, and deterioration of optical characteristics due to warpage or the like can be prevented.

本発明の線状光源と第一光線方向制御手段との間に設ける拡散手段が、板状部材に設けられる場合には、該板状部材の厚みは、好ましくは0.8〜10mm、より好ましくは1〜5mmである。シート厚みは薄い方が明るくでき、軽量化でき、かつ経済的であるが、0.8mm未満では光拡散板の機械的強度が不足となり、たわみなどの問題が生じ、一方、10mmを超えると製造が困難となる場合がある。   When the diffusing means provided between the linear light source of the present invention and the first light direction control means is provided on a plate member, the thickness of the plate member is preferably 0.8 to 10 mm, more preferably Is 1-5 mm. Thinner sheets can be brighter, lighter, and more economical, but if the thickness is less than 0.8 mm, the mechanical strength of the light diffusing plate becomes insufficient, causing problems such as deflection. May be difficult.

反射板6を線状光源の出射側とは反対側(背面)に配置することで、線状光源1から背面に向かう光や、第一光線方向制御手段や第二光線方向制御手段で反射して背面に向かう光がさらに出射側に反射されるので、光を有効利用できるため光利用効率が高くなる。   By disposing the reflecting plate 6 on the side opposite to the emission side (back side) of the linear light source, light reflected from the linear light source 1 toward the back side or reflected by the first light direction control means or the second light direction control means. Then, since the light traveling toward the back surface is further reflected to the exit side, the light utilization efficiency is increased because the light can be used effectively.

背面に幅方向および高さ方向に平行に配置した反射板6の反射率は95%以上であることが望ましい。線状光源1から背面に向かう光や、拡散手段2あるいは第一光線方向制御手段3で反射して背面に向かう光を更に出射側に反射することで、光を有効に利用できるため光利用効率が高くなる。反射板の材質としては、アルミニウム、銀、ステンレスなどの金属箔、白色塗装、発泡PET樹脂などが挙げられる。反射板は反射率が高いものが光利用効率を高める上で好ましい。この観点から、銀、発泡PET樹脂などが好ましい。また、光を拡散反射するものが、出射光の均一性を高める上で好ましい。この観点から発泡PET樹脂などが好ましい。   It is desirable that the reflectance of the reflecting plate 6 disposed on the back surface in parallel with the width direction and the height direction is 95% or more. Light utilization efficiency because light traveling from the linear light source 1 to the back surface, or light reflected by the diffusing unit 2 or the first light beam direction control unit 3 and reflected toward the back surface is further reflected to the emission side. Becomes higher. Examples of the material of the reflector include metal foils such as aluminum, silver, and stainless steel, white coating, and foamed PET resin. A reflector having a high reflectivity is preferable for improving the light utilization efficiency. From this viewpoint, silver, foamed PET resin and the like are preferable. Further, a material that diffuses and reflects light is preferable in terms of improving the uniformity of the emitted light. From this viewpoint, foamed PET resin and the like are preferable.

第一光線方向制御手段の入射面側および/または出射面側、第二光線手段の入射面側および/または出射面側に光拡散機能を有する光拡散シートを設けても良い。光拡散シートによる拡散により、より均一な正面輝度分布を得ることができる。   You may provide the light-diffusion sheet which has a light-diffusion function in the incident surface side and / or output surface side of a 1st light beam direction control means, and the incident surface side and / or output surface side of a 2nd light beam means. A more uniform front luminance distribution can be obtained by diffusion using the light diffusion sheet.

なお、本発明の画像表示装置としては、照明装置上に透過型の液晶表示素子を用いる等の方法により実現され、特に制限はないが、透過型表示装置としては透過型液晶パネルが挙げられ、表示面の輝度均一性に優れる画像表示装置を得ることができる。   The image display device of the present invention is realized by a method such as using a transmissive liquid crystal display element on a lighting device, and is not particularly limited, but the transmissive display device includes a transmissive liquid crystal panel, An image display device having excellent display surface luminance uniformity can be obtained.

以下、本発明の実施例について説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

本発明に用いる各種板状部材の作製に使用した押出装置の構成は、以下の通りである。
押出機:スクリュー径65mm(L/D=28)、単軸、ベント付き(SE65CVA;東芝機械株式会社)。
ダイ:Tダイ、リップ幅1000mm、リップ間隔5mm。
ロール:ポリシングロール3本、縦型。
The structure of the extrusion apparatus used for production of various plate-like members used in the present invention is as follows.
Extruder: Screw diameter 65 mm (L / D = 28), single screw, with vent (SE65CVA; Toshiba Machine Co., Ltd.).
Die: T die, lip width 1000 mm, lip interval 5 mm.
Roll: 3 polishing rolls, vertical type.

(拡散手段:光拡散板の作製)
線状光源と前記第一光線方向制御手段との間の拡散手段として使用した光拡散板は、以下のようにして作製した。
(1)メタクリルスチレン系共重合樹脂ペレット(TX−800S:電気化学工業株式会社製、屈折率1.549))と、シロキサン系重合体粒子(トスパール120:GE東芝シリコーン株式会社社製、屈折率:1.420)1.0質量%と紫外線吸収剤である2−(5−メチルー2ヒドロキシフェニル)ベンゾトリアゾール0.1質量%とをヘンシェルミキサーで混合後、押出機を用いて溶融混練し、押出樹脂温度235℃にて、幅1000mm、厚み2mmの光拡散板(P−1)を得た。
(Diffusion means: preparation of light diffusion plate)
The light diffusing plate used as the diffusing means between the linear light source and the first light beam direction control means was produced as follows.
(1) Methacrylstyrene-based copolymer resin pellets (TX-800S: manufactured by Denki Kagaku Kogyo Co., Ltd., refractive index 1.549)) and siloxane polymer particles (Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., refractive index) : 1.420) 1.0 mass% and 2- (5-methyl-2-hydroxyphenyl) benzotriazole 0.1 mass% which is an ultraviolet absorber are mixed with a Henschel mixer, and then melt-kneaded using an extruder. A light diffusion plate (P-1) having a width of 1000 mm and a thickness of 2 mm was obtained at an extrusion resin temperature of 235 ° C.

(2)メタクリルスチレン系共重合樹脂ペレット(TX−800S:電気化学工業株式会社製、屈折率1.549))と、シロキサン系重合体粒子(トスパール120:GE東芝シリコーン株式会社製、屈折率:1.420)0.4質量%と紫外線吸収剤である2−(5−メチルー2ヒドロキシフェニル)ベンゾトリアゾール0.1質量%とをヘンシェルミキサーで混合後、押出機を用いて溶融混練し、押出樹脂温度235℃にて、幅1000mm、厚み2mmの光拡散板(P−2)を得た。 (2) Methacryl styrene copolymer resin pellets (TX-800S: manufactured by Denki Kagaku Kogyo Co., Ltd., refractive index 1.549)) and siloxane polymer particles (Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., refractive index: 1.420) 0.4% by mass and UV absorber 2- (5-methyl-2-hydroxyphenyl) benzotriazole 0.1% by mass are mixed with a Henschel mixer, melt-kneaded using an extruder, and extruded. A light diffusion plate (P-2) having a width of 1000 mm and a thickness of 2 mm was obtained at a resin temperature of 235 ° C.

(3)メタクリルスチレン系共重合樹脂ペレット(TX−800S:電気化学工業株式会社製、屈折率1.549))と、シロキサン系重合体粒子(トスパール120:GE東芝シリコーン株式会社製、屈折率:1.420)3.0質量%と紫外線吸収剤である2−(5−メチルー2ヒドロキシフェニル)ベンゾトリアゾール0.1質量%とをヘンシェルミキサーで混合後、押出機を用いて溶融混練し、押出樹脂温度235℃にて、幅1000mm、厚み2mmの光拡散板(P−3)を得た。 (3) Methacryl styrene copolymer resin pellets (TX-800S: manufactured by Denki Kagaku Kogyo Co., Ltd., refractive index 1.549)) and siloxane polymer particles (Tospearl 120: manufactured by GE Toshiba Silicone Co., Ltd., refractive index: 1.420) 3.0% by mass and ultraviolet absorber 2- (5-methyl-2-hydroxyphenyl) benzotriazole 0.1% by mass are mixed with a Henschel mixer, melt-kneaded using an extruder, and extruded. A light diffusion plate (P-3) having a width of 1000 mm and a thickness of 2 mm was obtained at a resin temperature of 235 ° C.

(光線方向制御手段の作製)
光入射面に平坦である面が形成され、出光面に楕円形状が形成されることを特徴とする光線方向制御手段を有する部材は、以下のようにして作製した。
先ず、単位凸部幅P1=80μmの楕円弧状断面の溝を有する雌金型を切削加工により作製した。
(Production of light direction control means)
A member having a light beam direction control means characterized in that a flat surface is formed on the light incident surface and an elliptical shape is formed on the light output surface was manufactured as follows.
First, the female metal mold | die which has a groove | channel of the elliptical arc-shaped cross section of unit convex part width P1 = 80micrometer was produced by cutting.

先ず、単位凸部の断面形状が
y=0.139−8.33x2/(1+(1−38.9x21/2)(−0.4≦x≦0.4(mm))
で表されるシリンドリカル状の溝を有する雌金型を切削加工により作製した。ここでxは線状光源と直交する座標であり、yは凸部底部からの高さである。レンズ形状は金型表面に対し対称形状とし、深さも面内で一定とした。次に金型から、紫外線硬化樹脂で厚さ0.4mmのポリカーボネートフィルム表面上にレンズ形状をそれぞれ成形し、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を得た。
First, the cross-sectional shape of the unit convex portion is y = 0.139-8.33x 2 /(1+(1-38.9x 2) 1/2 ) (- 0.4 ≦ x ≦ 0.4 (mm))
A female die having a cylindrical groove represented by the following formula was produced by cutting. Here, x is a coordinate orthogonal to the linear light source, and y is a height from the bottom of the convex portion. The lens shape was symmetrical with respect to the mold surface, and the depth was constant in the plane. Next, from the mold, a lens shape is formed on the surface of a polycarbonate film having a thickness of 0.4 mm with an ultraviolet curable resin to obtain a member (B-1) having a light beam direction control means on which a convex lens is formed. It was.

(2)上述の作製法によって得られた凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)のレンズを形成していない面を上述の押出成形によって得られた光拡散板(P−2)の片面に貼り合わせて、凸形状のレンズが形成された光線方向制御手段を有する部材(B−2)を得た。 (2) Light diffusion obtained by the above-described extrusion molding on the surface of the member (B-1) having the light beam direction control means on which the convex lens obtained by the above-described production method is formed. The member (B-2) which has the light beam direction control means in which the convex-shaped lens was formed was bonded together on the single side | surface of a board (P-2).

(1)輝度および半値角の測定
成形試験片の輝度および視野角は、次のような照明装置を用いて下記配置・方法で測定した。
照明装置:市販の液晶テレビセット(Polyvision社製 27“WLCD−TV N3272)のバックライト装置を用いた。測定配置:照明装置に後述する実施例、比較例記載のそれぞれの部材を配置し、回転ステージ上に固定設置し、更に前記照明装置に配置した部材の最表面(出射光側)から500mm離れた位置に輝度計(BM−5A;株式会社トプコン製)を固定した。
測定方法:照明装置の中心点と輝度計を結んだ線を中心線とし、該中心線に対して垂直方向に該照明装置の出射面を固定し、該角度を0度とした。この状態の輝度を測定し、中心輝度とした。次に回転ステージを前記照明装置の幅方向に回転走査させながら、照明装置の輝度値を1度間隔で測定した。そして、半値角(幅方向)を前記幅方向に回転走査した時の各々の測定角で求めた輝度値を角度0度で求めた輝度値で除した時、1/2となる時の測定角として求めた。
また、上述と同様に回転ステージを前記照明装置の高さ方向に回転走査させながら、照明装置の輝度値を1度間隔で測定した。そして、半値角(高さ方向)は、前記幅方向に回転走査した時の各々の測定角で求めた輝度値を角度0度で求めた輝度値で除した時、1/2となる時の測定角として求めた。
(1) Measurement of luminance and half-value angle The luminance and viewing angle of the molded specimen were measured by the following arrangement and method using the following illumination device.
Illumination device: A backlight device of a commercially available liquid crystal television set (27 “WLCD-TV N3272 manufactured by Polyvision) was used. Measurement arrangement: Each member described in Examples and Comparative Examples described later is arranged in the illumination device and rotated. A luminance meter (BM-5A; manufactured by Topcon Co., Ltd.) was fixed at a position 500 mm away from the outermost surface (outgoing light side) of the member placed on the stage and further disposed on the stage.
Measurement method: A line connecting the center point of the illuminating device and the luminance meter was used as a center line, the exit surface of the illuminating device was fixed in a direction perpendicular to the center line, and the angle was set to 0 degree. The brightness in this state was measured and used as the center brightness. Next, the luminance value of the illuminating device was measured at intervals of 1 degree while rotating the rotary stage in the width direction of the illuminating device. Then, when the luminance value obtained at each measurement angle when the half-value angle (width direction) is rotationally scanned in the width direction is divided by the luminance value obtained at an angle of 0 degrees, the measurement angle when 1/2 is obtained. As sought.
Moreover, the luminance value of the illuminating device was measured at intervals of 1 degree while rotating the rotary stage in the height direction of the illuminating device in the same manner as described above. The half-value angle (height direction) is 1/2 when the luminance value obtained at each measurement angle when rotated and scanned in the width direction is divided by the luminance value obtained at an angle of 0 degrees. Obtained as a measurement angle.

(2)明るさの評価
上記輝度を測定時、前記照明装置に配置した部材の最表面(出射光側)の角度0度における輝度値を用いて、下記のように記号○、△、×で評価した。
〇:10500cd/m以上であるもの
△:10000cd/m以上10500cd/m未満であるもの
×:10000cd/m未満であるもの
(2) Evaluation of brightness At the time of measuring the brightness, the brightness value at an angle of 0 degree on the outermost surface (outgoing light side) of the member arranged in the illumination device is used, and the symbols ○, Δ, and X are as follows: evaluated.
A: 10500 cd / m 2 or more
△: 10000 cd / m 2 or more 10500Cd / what m is less than 2 ×: 10000cd / m 2 less than a is one

(3)視野角の評価
前記照明装置に配置した部材の最表面(出射光側)の半値角を用いて、下記のように記号○、×で評価した。
〇:半値角(幅方向)≧40°、かつ、半値角(高さ方向)≧35°
:実使用上問題のない広い視野角。
×:半値角(幅方向)<40°、および/または、半値角(高さ方向)≧35°
:視野角は狭く、不良。
(3) Evaluation of viewing angle Using the half-value angle of the outermost surface (outgoing light side) of the member arranged in the illuminating device, evaluation was performed with symbols ◯ and X as follows.
○: Half-value angle (width direction) ≧ 40 ° and half-value angle (height direction) ≧ 35 °
: Wide viewing angle with no problems in actual use.
×: Half-value angle (width direction) <40 ° and / or Half-value angle (height direction) ≧ 35 °
: The viewing angle is narrow and poor.

(4)光源イメージの消失状況
上記輝度を測定時、前記照明装置に配置した部材の最表面(出射光側)を目視にて光源イメージの消失状況を観察し、下記のように記号○、△、×で評価した。
〇:光源イメージが消失したもの
△:光源イメージがぼやけたもの
×:光源形状が、はっきり認識できるもの
(4) Disappearance condition of light source image When measuring the above brightness, visually observe the disappearance condition of the light source image by visually observing the outermost surface (outgoing light side) of the member arranged in the illuminating device. , X.
○: Light source image disappeared △: Light source image was blurred ×: Light source shape was clearly recognizable

(使用したバックライト装置の構成)
本実施例、比較例の照明装置として、市販の液晶テレビセット(Polyvision社製 27インチワイドLCD−TV N3272)のバックライト装置を用いた。つまり、光源Cならびに反射板Dは、前記バックライト装置に具備されていたものをそのまま用いた。
前記照明装置の構成は、図2の略図で示される。図示していない前記照明装置の詳細を以下に記載する。幅方向の長さ:620mm、高さ方向の長さ:355mm、幅方向と高さ方向に垂直な厚さ方向の長さ:18mmであった。前記バックライト装置の出射側の開口部に対向する位置にある底部を覆うように、白色の反射板6が具備されていた。
前記、反射板6の出射側に2.5mmの間隔をおいて、該反射板と平行に線状光源1を配置してあった。線状光源1としては、直径3mm、長さ625mmの16本の冷陰極管を、長手方向は高さ方向に平行に幅方向に沿って24mmずつの間隔をおいて配置してあった。
(Configuration of the backlight device used)
As a lighting device of this example and a comparative example, a backlight device of a commercially available liquid crystal television set (27 inch wide LCD-TV N3272 manufactured by Polyvision) was used. That is, as the light source C and the reflection plate D, those provided in the backlight device were used as they were.
The configuration of the lighting device is shown in the schematic diagram of FIG. Details of the lighting device not shown are described below. The length in the width direction was 620 mm, the length in the height direction was 355 mm, and the length in the thickness direction perpendicular to the width direction and the height direction was 18 mm. A white reflecting plate 6 was provided so as to cover the bottom portion at a position facing the opening on the emission side of the backlight device.
The linear light source 1 is arranged in parallel with the reflecting plate with an interval of 2.5 mm on the emission side of the reflecting plate 6. As the linear light source 1, sixteen cold cathode tubes having a diameter of 3 mm and a length of 625 mm were arranged with the longitudinal direction parallel to the height direction and spaced by 24 mm along the width direction.

(実施例1)
まず、上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図3に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図3に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記拡散手段5(光拡散シート)の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図3に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第一光線方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御部材とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、測定輝度は高い値であり、半値角は広く、かつ、光源イメージは消失した。
Example 1
First, the diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by Wa Corporation was superposed.
Next, as shown in FIG. 3, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the diffusing means 5 (light diffusing sheet) in a direction substantially orthogonal to each other.
Further, as shown in FIG. 3, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube which is the linear light source 1 and the convex lens ridge line are installed on the first light beam direction control means 3 in a direction substantially parallel to each other.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with a direction control member and combined with a light diffusing plate (P-1) having a diffusing means between the linear light source and the first light direction control means, the measured luminance is a high value and half value The corners were wide and the light source image disappeared.

(実施例2)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置した。
次に、図2に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記拡散手段2(光拡散板)(P−1)の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図2に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第一光線方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御部材とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、測定輝度は高い値であり、半値角は広く、かつ、光源イメージは消失した。
(Example 2)
The diffusing means 2 (light diffusing plate) (P-1) obtained above was disposed on the light exit surface side of the backlight.
Next, as shown in FIG. 2, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the diffusing means 2 (light diffusing plate) (P-1) in a direction substantially orthogonal to the convex shape.
Further, as shown in FIG. 2, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the first light beam direction control means 3 in a direction substantially parallel to each other.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with a direction control member and combined with a light diffusing plate (P-1) having a diffusing means between the linear light source and the first light beam direction controlling means, the measured luminance is a high value and half value. The corners were wide and the light source image disappeared.

(実施例3)
まず、上記で得られた拡散手段2(光拡散板)(P−2)を前記バックライトの出射面側へ配置し、図3に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図3に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図3に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第一光線方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御部材とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−2)と組み合わせた時、測定輝度は高い値であり、半値角は広く、かつ、光源イメージは消失した。
(Example 3)
First, the diffusing means 2 (light diffusing plate) (P-2) obtained above is arranged on the light emission surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by Wa Corporation was superposed.
Next, as shown in FIG. 3, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction substantially orthogonal to each other.
Further, as shown in FIG. 3, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube which is the linear light source 1 and the convex lens ridge line are installed on the first light beam direction control means 3 in a direction substantially parallel to each other.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with a direction control member, and combined with a light diffusing plate (P-2) having a diffusing means between the linear light source and the first light direction control means, the measured luminance is a high value and half value. The corners were wide and the light source image disappeared.

(実施例4)
上記で得られた拡散手段2(光拡散板)(P−3)を前記バックライトの出射面側へ配置した。
次に、図2に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散板2(P−3)の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図2に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第一光線方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御部材とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−3)と組み合わせた時、測定輝度は高い値であり、半値角は広く、かつ、光源イメージは消失した。
Example 4
The diffusing means 2 (light diffusing plate) (P-3) obtained above was arranged on the light exit surface side of the backlight.
Next, as shown in FIG. 2, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line were installed on the light diffusing plate 2 (P-3) in a direction substantially perpendicular to each other.
Further, as shown in FIG. 2, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube which is the linear light source 1 and the convex lens ridge line are installed on the first light beam direction control means 3 in a direction substantially parallel to each other.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with a direction control member and combined with a light diffusing plate (P-3) having a diffusing means between the linear light source and the first light beam direction controlling means, the measured luminance is a high value and half value. The corners were wide and the light source image disappeared.

(実施例5)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置した。
次に、図4に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散板2(P−1)の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図4に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
さらに、図4に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(P−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御手段とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−3)と組み合わせた時、測定輝度は照明装置として十分な値を有しており、半値角は広く、かつ、光源イメージは消失した。
(Example 5)
The diffusing means 2 (light diffusing plate) (P-1) obtained above was arranged on the light exit surface side of the backlight.
Next, as shown in FIG. 4, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line are installed on the light diffusion plate 2 (P-1) in a direction substantially orthogonal to each other.
Furthermore, as shown in FIG. 4, the diffusion means 5 (light diffusion sheet; trade name “Opulse” BS-042 manufactured by Keiwa Co., Ltd.) was superimposed thereon.
Furthermore, as shown in FIG. 4, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (P-1) having a light direction control means on which a convex lens is formed is oriented so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction that is substantially parallel.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with a direction control means, and combined with a light diffusing plate (P-3) having a diffusing means between the linear light source and the first light direction control means, the measured luminance is a value sufficient for an illuminating device. The half-value angle was wide and the light source image disappeared.

(実施例6)
上記で得られた第一光線方向制御手段3を有する部材(B−2)を前記バックライトの出射面側へ配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−2)を凸形状のレンズが形成された面を線状光源1側と反対に向け、線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
次に、図5に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
さらに、図5に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第二光線方向制御部材とを組み合わせた時、測定輝度は照明装置として十分な値を有しており、半値角は広く、かつ、光源イメージは消失した。
(Example 6)
The member (B-2) having the first light direction control means 3 obtained as described above was arranged on the emission surface side of the backlight. As the first light direction control means 3, a member (B-2) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line were installed in a direction substantially orthogonal to each other.
Next, as shown in FIG. 5, the diffusion means 5 (light diffusion sheet; trade name “Opulse” BS-042 manufactured by Keiwa Co., Ltd.) was superimposed thereon.
Furthermore, as shown in FIG. 5, the second light direction control means 4 is disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction that is substantially parallel.
The evaluation results are shown in Table 1. A first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a second light beam arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other. When combined with the direction control member, the measured luminance had a sufficient value as a lighting device, the half-value angle was wide, and the light source image disappeared.

(比較例1)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図6に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図6に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせでは、半値角は狭く、かつ、光源イメージははっきり見え、照明装置として好ましくなかった。
(Comparative Example 1)
The diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and as shown in FIG. 6, the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by the company was overlaid.
Next, as shown in FIG. 6, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction substantially orthogonal to each other.
The evaluation results are shown in Table 1. A light diffusing plate having first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and a diffusion means between the linear light source and the first light beam direction control means ( In combination with P-1), the half-value angle was narrow and the light source image was clearly visible, which was not preferable as a lighting device.

(比較例2)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図7に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図7に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略平行なとる方向に配置した第二光線方向制御手段と線状光源と前記第二光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせでは、測定輝度が低下しており、照明装置として好ましくなかった。
(Comparative Example 2)
The diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and as shown in FIG. 7, the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by the company was overlaid.
Next, as shown in FIG. 7, the second light direction control means 4 was disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction that is substantially parallel.
The evaluation results are shown in Table 1. A light diffusing plate having a second light beam direction control means disposed in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially parallel, and a diffusing means between the linear light source and the second light beam direction control means In combination with (P-1), the measured luminance was lowered, which was not preferable as a lighting device.

(比較例3)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図8に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図8に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
さらに、図8に示すようにその上に2枚目の第一光線方向制御手段3を有する部材を配置した。前記第一光線方向制御手段3として凸形状のレンズが形成された、光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第一光線方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段を2枚組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、測定輝度は低下しており、半値角は狭く、かつ、光源イメージははっきり見え、照明装置として好ましくなかった。また、2枚の第一光線方向制御手段の凸部の配列周期との干渉により生じるモアレが発生した。
(Comparative Example 3)
The diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by the company was overlaid.
Next, as shown in FIG. 8, the first light direction control means 3 was disposed thereon. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction substantially orthogonal to each other.
Furthermore, as shown in FIG. 8, the member which has the 1st light beam direction control means 3 of the 2nd sheet | seat was arrange | positioned on it. A convex lens is formed as the first light direction control means 3, and the member (B-1) having the light direction control means is oriented with the surface on which the convex lens is formed opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line are installed on the first light beam direction control means 3 in a direction substantially orthogonal to each other.
The evaluation results are shown in Table 1. Two first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and the diffusion means between the linear light source and the first light beam direction control means When combined with a light diffusing plate (P-1) having, the measured luminance was lowered, the half-value angle was narrow, and the light source image was clearly visible, which was not preferable as a lighting device. Further, moire generated due to interference with the arrangement period of the convex portions of the two first light beam direction control means occurred.

(比較例4)
まず、上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図9に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図9に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
さらに、図9に示すようにその上に2枚目の第二光線方向制御手段4を有する部材を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第二光線方向制御手段4の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略平行なとる方向に配置した第二光線方向制御手段を2枚組み合わせ、かつ、線状光源と前記第二光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせでは、測定輝度は低下しており、照明装置として好ましくなかった。また、2枚の第二光線方向制御手段の凸部の配列周期との干渉により生じるモアレが発生した。
(Comparative Example 4)
First, the diffusing means 2 (light diffusing plate) (P-1) obtained above is disposed on the light exit surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by Wa Corporation was superposed.
Next, as shown in FIG. 9, the second light direction control means 4 was disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction that is substantially parallel.
Furthermore, as shown in FIG. 9, the member which has the 2nd light ray direction control means 4 of the 2nd sheet | seat was arrange | positioned on it. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the second light beam direction control means 4 in a direction substantially parallel to each other.
The evaluation results are shown in Table 1. Two second light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially parallel are combined, and diffused between the linear light source and the second light beam direction control means. In combination with the light diffusing plate (P-1) having the means, the measured luminance is lowered, which is not preferable as a lighting device. Further, moire was generated due to interference with the arrangement period of the convex portions of the two second light beam direction control means.

(比較例5)
まず、上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図10に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図10に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散シート5の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
さらに、図10に示すようにその上に第一光線方向制御手段3を有する部材を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第二光線方向制御手段4の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略平行となる方向に配置した第二光線方向制御部材とを実施例と逆に重ねるように組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、半値角は狭く、照明装置として好ましくなかった。
(Comparative Example 5)
First, the diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by Wa Corporation was superposed.
Next, as shown in FIG. 10, the second light direction control means 4 was disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion sheet 5 in a direction that is substantially parallel.
Furthermore, as shown in FIG. 10, the member which has the 1st light direction control means 3 was arrange | positioned on it. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line are installed on the second light beam direction control means 4 in a direction substantially orthogonal to each other.
The evaluation results are shown in Table 1. The first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and the second arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially parallel. When combined with a light diffusing plate (P-1) having a light diffusing means between the linear light source and the first light directional control means, the light direction controlling member is combined so as to be opposite to the embodiment, The half-value angle was narrow, which was not preferable as a lighting device.

(比較例6)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置した。
次に、図11に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記光拡散板2(P−1)の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
さらに、図11に示すようにその上に第一光線方向制御手段3を有する部材を配置した。前記第一光線方向制御手段3として、凸形状のレンズが形成された光線方向制御手段を有する部材(B−1)を凸形状のレンズが形成された面を線状光源1側と反対に向け、前記第二光線方向制御手段4の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。
評価結果を表1に示す。線状光源の長手方向と凸形状のレンズ稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向と凸形状のレンズ稜線が略平行となる方向に配置した第二光線方向制御部材とを実施例と逆に重ねるように組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、半値角は狭く、照明装置として好ましくなかった。
(Comparative Example 6)
The diffusing means 2 (light diffusing plate) (P-1) obtained above was arranged on the light exit surface side of the backlight.
Next, as shown in FIG. 11, the second light direction control means 4 was disposed thereon. As the second light direction control means 4, a member (B-1) having a light direction control means on which a convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube, which is the linear light source 1, and the convex lens ridge line are installed on the light diffusion plate 2 (P-1) in a direction substantially parallel to each other.
Furthermore, as shown in FIG. 11, the member which has the 1st light direction control means 3 was arrange | positioned on it. As the first light direction control means 3, the member (B-1) having the light direction control means on which the convex lens is formed is directed so that the surface on which the convex lens is formed is opposite to the linear light source 1 side. The longitudinal direction of the cold-cathode tube as the linear light source 1 and the convex lens ridge line are installed on the second light beam direction control means 4 in a direction substantially orthogonal to each other.
The evaluation results are shown in Table 1. The first light beam direction control means arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially orthogonal to each other, and the second arranged in a direction in which the longitudinal direction of the linear light source and the convex lens ridge line are substantially parallel. When combined with a light diffusing plate (P-1) having a light diffusing means between the linear light source and the first light directional control means, the light direction controlling member is combined so as to be opposite to the embodiment, The half-value angle was narrow, which was not preferable as a lighting device.

(比較例7)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図12に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を重ね合わせた。
次に、図12に示すようにその上に第一光線方向制御手段3を配置した。前記第一光線方向制御手段3として、プリズムシート(3M株式会社製 商品名“BEFIII−10T”)をプリズムが形成された面を線状光源1側と反対に向け、前記プリズムシートの上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略直交する方向に設置した。さらに、図12に示すようにその上に第二光線方向制御手段4を配置した。前記第二光線方向制御手段4として、プリズムシート(3M株式会社製 商品名“BEFIII−10T”)をプリズムが形成された面を線状光源1側と反対に向け、前記第一方向制御手段3の上に線状光源1である冷陰極管の長手方向と凸形状のレンズ稜線が略平行となる方向に設置した。
評価結果を表1に示す。線状光源の長手方向とプリズム稜線が略直交する方向に配置した第一光線方向制御手段と線状光源の長手方向とプリズム稜線が略平行となる方向に配置した第二光線方向制御部材とを組み合わせ、かつ、線状光源と前記第一光線方向制御手段との間に拡散手段を有する光拡散板(P−1)と組み合わせた時、測定輝度は非常に高い値であったが、半値角は非常に狭く、照明装置として好ましくなかった。
(Comparative Example 7)
The diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and the diffusing means 5 (light diffusing sheet; The product name “Opulse” BS-042) manufactured by the company was overlaid.
Next, as shown in FIG. 12, the first light beam direction control means 3 was disposed thereon. As the first light direction control means 3, a prism sheet (trade name “BEFIII-10T” manufactured by 3M Corporation) is placed on the prism sheet so that the surface on which the prism is formed is opposite to the linear light source 1 side. The light source 1 was installed in a direction in which the longitudinal direction of the cold cathode tube and the convex lens ridge line are substantially orthogonal. Furthermore, as shown in FIG. 12, the second light direction control means 4 is arranged thereon. As the second light direction control means 4, a prism sheet (trade name “BEFIII-10T” manufactured by 3M Co., Ltd.) is faced opposite to the linear light source 1 side, and the first direction control means 3. The longitudinal direction of the cold-cathode tube which is the linear light source 1 and the convex lens ridge line are installed in a direction substantially parallel to the top.
The evaluation results are shown in Table 1. First light direction control means disposed in a direction in which the longitudinal direction of the linear light source and the prism ridge line are substantially orthogonal to each other, and a second light direction control member disposed in a direction in which the longitudinal direction of the linear light source and the prism ridge line are substantially parallel to each other. When combined with a light diffusing plate (P-1) having a diffusing means between the linear light source and the first light direction control means, the measured luminance was a very high value, but the half-value angle Was very narrow and was not preferable as a lighting device.

(比較例8)
上記で得られた拡散手段2(光拡散板)(P−1)を前記バックライトの出射面側へ配置し、図13に示すようにその上に拡散手段5(光拡散シート;恵和株式会社製 商品名“オパルス”BS−042)を3枚重ね合わせた。
評価結果を表1に示す。第一光線方向制御手段および第二光線方向制御部材を用いない時、測定輝度は非常に低く、照明装置として好ましくなかった。
(Comparative Example 8)
The diffusing means 2 (light diffusing plate) (P-1) obtained above is arranged on the light exit surface side of the backlight, and as shown in FIG. 13, the diffusing means 5 (light diffusing sheet; Three sheets of product name “Opulse” BS-042) manufactured by the company were superposed.
The evaluation results are shown in Table 1. When the first light direction control means and the second light direction control member were not used, the measured luminance was very low, which was not preferable as a lighting device.

Figure 2008047794
Figure 2008047794

Claims (9)

互いに垂直に交わる幅、高さ、厚さを持つ略直方体状の照明装置であって、
前記幅、高さ、厚さの値はこの順に大きく、
厚さ方向出射側に向けて、線状光源、第一光線方向制御手段、第二光線方向制御手段を、
この順に備えており、
前記線状光源は、全領域に渡り複数平行に配列しており、
前記第一光線方向制御手段と第二光線方向制御手段とがそれぞれ複数の畝状の凸部よりなっており、
前記第一光線方向制御手段は前記線状光源からの光を幅方向に沿って光線方向を制御して
前記第二光線方向制御手段に向け、
前記第二光線方向制御手段は、前記第一光線方向制御手段からの光を高さ方向に沿って光線方向を制御し、かつ一部の光を前記第一光線方向制御手段に向けて戻す
ことを特徴とする照明装置。
A substantially rectangular parallelepiped lighting device having a width, a height, and a thickness perpendicular to each other,
The width, height and thickness values are larger in this order,
A linear light source, a first light direction control means, a second light direction control means, toward the thickness direction emission side,
In this order,
A plurality of the linear light sources are arranged in parallel over the entire area,
Each of the first light direction control means and the second light direction control means comprises a plurality of bowl-shaped convex portions,
The first light direction control means controls the light direction along the width direction of the light from the linear light source and directs it to the second light direction control means.
The second light direction control means controls the light direction from the first light direction control means along the height direction, and returns a part of the light toward the first light direction control means. A lighting device characterized by the above.
前記線状光源と前記第一光線方向制御手段との間に拡散手段を有することを特徴とする請求項1記載の照明装置。   2. The illumination device according to claim 1, further comprising a diffusing unit between the linear light source and the first light direction control unit. 該第一光線方向制御手段および第二光線方向制御手段の畝状凸部の長手方向に垂直な断面形状が互いに略同一であることを特徴とする請求項1または2に記載の照明装置。   3. The lighting device according to claim 1, wherein the first light beam direction control unit and the second light beam direction control unit have substantially the same cross-sectional shapes perpendicular to the longitudinal direction of the ridge-shaped projections. 前記拡散手段が前記第一光線方向制御手段と一体であるシート状部材に設けられていることを特徴とする請求項2記載の照明装置。   The lighting device according to claim 2, wherein the diffusing unit is provided on a sheet-like member that is integral with the first light beam direction control unit. 前記拡散手段が前記第一光線方向制御手段とが異なるシート状部材に設けられていることを特徴とする請求項2記載の照明装置。 The lighting device according to claim 2, wherein the diffusing unit is provided on a sheet-like member different from the first light direction control unit. 前記拡散手段がシート状部材の内部及び/または表面に分散した微粒子であることを特徴とする請求項2に記載の照明装置。   The lighting device according to claim 2, wherein the diffusing means is fine particles dispersed in and / or on the surface of the sheet-like member. 前記拡散手段がシート状部材の表面に設けられた微細凹凸形状であることを特徴とする請求項2に記載の照明装置。   The lighting device according to claim 2, wherein the diffusing unit has a fine uneven shape provided on a surface of the sheet-like member. 前記複数の線状光源が、前記照明装置の幅方向に平行かつ幅方向の略全域に渡るように配置され、高さ方向に沿って配列されていることを特徴とする請求項1記載の照明装置。   2. The illumination according to claim 1, wherein the plurality of linear light sources are arranged so as to be parallel to the width direction of the lighting device and to extend over substantially the entire width direction, and are arranged along the height direction. apparatus. 請求項1または請求項8に記載の照明装置に対し、前記第2光線方向制御手段が設けられた側の面に該面を覆うように透過型表示素子を備えることを特徴とする画像表示装置。   9. The image display device according to claim 1, further comprising: a transmissive display element that covers the surface on the side where the second light direction control means is provided. .
JP2008539824A 2006-10-17 2007-10-16 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME Pending JPWO2008047794A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006282160 2006-10-17
JP2006282160 2006-10-17
PCT/JP2007/070175 WO2008047794A1 (en) 2006-10-17 2007-10-16 Lighting device and image display device using same

Publications (1)

Publication Number Publication Date
JPWO2008047794A1 true JPWO2008047794A1 (en) 2010-02-25

Family

ID=39314021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008539824A Pending JPWO2008047794A1 (en) 2006-10-17 2007-10-16 LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME

Country Status (3)

Country Link
JP (1) JPWO2008047794A1 (en)
TW (1) TW200831820A (en)
WO (1) WO2008047794A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140889A (en) * 2008-08-12 2010-06-24 Sumitomo Chemical Co Ltd Lighting device
JP5295825B2 (en) * 2009-03-09 2013-09-18 旭化成株式会社 Light source unit and liquid crystal display device
EP2293140A1 (en) 2009-08-01 2011-03-09 Bayer MaterialScience AG Multi-layer lighting device with improved characteristics and application thereof
CN103838034A (en) * 2014-02-07 2014-06-04 京东方科技集团股份有限公司 Backlight module and dual-view display device
WO2018193691A1 (en) * 2017-04-21 2018-10-25 シャープ株式会社 Illumination device, display device, and television receiver device
JP6907071B2 (en) * 2017-08-30 2021-07-21 シャープ株式会社 Lighting equipment, display equipment and TV receivers
JP6850765B2 (en) * 2018-05-17 2021-03-31 ミネベアミツミ株式会社 Prism plate and light irradiation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151909A (en) * 1993-11-29 1995-06-16 Dainippon Printing Co Ltd Film lens and surface light source using the same
JPH11133214A (en) * 1997-08-26 1999-05-21 Dainippon Printing Co Ltd Optical sheet, optical sheet laminate, surface light source device and transmission type display device
JP2005148095A (en) * 2003-11-11 2005-06-09 Toppan Printing Co Ltd Optical sheet, and backlight unit and display using optical sheet using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308485A (en) * 1993-04-21 1994-11-04 Hitachi Ltd Display device
CN101268303A (en) * 2005-10-28 2008-09-17 日立麦克赛尔株式会社 Backlight device, display device and optical member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151909A (en) * 1993-11-29 1995-06-16 Dainippon Printing Co Ltd Film lens and surface light source using the same
JPH11133214A (en) * 1997-08-26 1999-05-21 Dainippon Printing Co Ltd Optical sheet, optical sheet laminate, surface light source device and transmission type display device
JP2005148095A (en) * 2003-11-11 2005-06-09 Toppan Printing Co Ltd Optical sheet, and backlight unit and display using optical sheet using the same

Also Published As

Publication number Publication date
WO2008047794A1 (en) 2008-04-24
TW200831820A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
JP4584133B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4114708B1 (en) Backlight unit
WO2007000962A1 (en) Lighting device and light control member used for this and image display unit using these
JPWO2008047794A1 (en) LIGHTING DEVICE AND IMAGE DISPLAY DEVICE USING THE SAME
JP5736957B2 (en) Light guide plate, surface light source device and display device
JP4515374B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4522938B2 (en) Light control member provided in illumination device and image display device using the same
JPWO2008029911A1 (en) Surface light source element, light control member used therefor, and image display device using the same
JP2009053623A (en) Lens sheet, optical sheet for display, backlight unit and display apparatus using them
JP2007335182A (en) Surface light source element, light control member used therefor, and image display device using surface light source
JP2009123397A (en) Illumination device, and image display device using it
JP2010192246A (en) Light diffusion plate, optical sheet, backlight unit, and display device
JP4684838B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEASUREMENT STRUCTURE AND IMAGE DISPLAY DEVICE USING THEM
JP2009053622A (en) Light diffusing plate, back light unit for display and display apparatus
JP5019746B2 (en) Direct light type backlight unit
JP4522937B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP2010044921A (en) Plane light source element and light control member used for this as well as image display using this
JP4600425B2 (en) Backlight unit
JP4563294B2 (en) Light control member provided in illumination device and image display device using the same
JP4689543B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER INCLUDING THE SAME, AND IMAGE DISPLAY DEVICE USING THE SAME
JP2014086245A (en) Light guide plate, backlight unit and display device
JP4400867B2 (en) Light deflection element and light source device
JP4684791B2 (en) LIGHTING DEVICE, LIGHT CONTROL MEMBER USED FOR THE SAME, AND IMAGE DISPLAY DEVICE USING THEM
JP2007109434A (en) Lighting system, light control member used for it, and image display device using them
JP2007080707A (en) Lighting system and image display device using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113