JP2007078122A - 除振装置 - Google Patents

除振装置 Download PDF

Info

Publication number
JP2007078122A
JP2007078122A JP2005268875A JP2005268875A JP2007078122A JP 2007078122 A JP2007078122 A JP 2007078122A JP 2005268875 A JP2005268875 A JP 2005268875A JP 2005268875 A JP2005268875 A JP 2005268875A JP 2007078122 A JP2007078122 A JP 2007078122A
Authority
JP
Japan
Prior art keywords
vibration
spring
weight
surface plate
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268875A
Other languages
English (en)
Inventor
Yasuhiro Omura
泰弘 大村
Kiyobumi Watanabe
清文 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP2005268875A priority Critical patent/JP2007078122A/ja
Publication of JP2007078122A publication Critical patent/JP2007078122A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 機器1の載置される定盤5を基礎部材3に対しばね要素4により支持してなる除振装置Aにおいて、機器1の重量が変化しても、そのことに依らず高い振動低減効果を得られるようにする。
【解決手段】 機器1及び定盤5の振動状態を検出するセンサ9と、その信号をフィードバックしてリニアモータ6を制御するコントローラ10とを備える。ばね要素4として、機器1の重量が変化しても、これを含めたばね系の固有振動数が実質的に一定となるように、荷重の増大に略比例してばね定数が高くなるプログレッシブ特性のコイルばね4を用いる。コイルばね4は、線形領域4aと非線形領域4bとを有し、無負荷状態から定盤5の重量による荷重のみが負荷される状態までは線形性を示すものとしてもよい。
【選択図】 図2

Description

本発明は、例えば電子顕微鏡などの精密機器を床の微少な振動から絶縁するために、ばね要素によって支持してなる除振装置に関し、特に、使用者の都合に応じて機器が変更されるものに好適なばね要素の構成の技術分野に属する。
従来より、この種の除振装置としては、上面に機器の載置される定盤を空気ばねのように固有振動数の低い柔らかなばね要素によって支持してなる所謂パッシブタイプの除振台が周知である。このように固有振動数の低いばね要素で支持することによって、除振効果の得られる周波数域(即ち、振動伝達率の小さな周波数域)が広くなり、除振性能が高くなるからである。
また、例えば特許文献1、2等に示されるように、前記機器乃至定盤(即ち、それらの少なくとも一方)の振動状態を検出するセンサからの信号をコントローラに入力(フィードバック)して、その振動を打ち消すような駆動制御信号を生成し、これによりアクチュエータを駆動して、前記機器乃至定盤にその振動を低減するような制御力を付加するようにしたアクティブタイプのものも知られている。
そのようなフィードバックシステムにおいては一般的に制御ゲインを大きくするほど、応答性を高めることができるが、実際のシステムでは制御対象の無駄時間やセンサの遅れがあり、さらに制御回路中のフィルタの遅れやアクチュエータの遅れもあるから、制御ゲインを大きくし過ぎると、発振してしまう。
つまり、フィードバックシステムはコントローラの制御ゲインを大きくし過ぎると、不安定になる虞れがあり、前記従来例(特許文献1、2)のようなアクティブ制御による振動低減効果を高めようとすれば、あくまでもシステムが不安定にならない範囲においてフィードバック制御ゲインを大きくすることが望ましい。
特開平7−197990号公報 特開2002−195343号公報
ところで、主に試験や研究などに用いられる比較的小型の精密計測機器の場合は、複数の機器で1つの除振台を共有し、いずれかの機器を使用する際に、それを定盤上に載置することが考えられる。しかし、そうして定盤上に載置される機器の重量が変化すると、この機器を含めたばね系のマスが変化することになるので、以下のような不具合が生じる。
すなわち、まず、そのようにばね系のマスが変化することを考慮して、許容最大重量の機器に対し最適な固有振動数となるように、ばね定数を高めに設定すると、これよりも重量の小さな機器の使用時には相対的に固有振動数が高くなってしまい、その分、除振性能が低下することになる。このことは、特にパッシブタイプのものにおいて問題になる。
一方、想定される最小重量の機器に対して最適な固有振動数となるように、ばね定数を低めに設定すると、その分、ばね要素が柔らかくなるので、より大型の機器の使用時にはその作動に伴う荷重の変化によって定盤の変位量が過度に大きくなることがある。そして、その定盤の変位によるばね要素の撓み量がアクチュエータの制御範囲を越えると、振動制御を行うことができなくなる。
また、振動制御をする場合には、前記のようにばね系のマスの大きさが変わって固有振動数が変化すると、これに伴いゲイン余裕の大きさも変化するので、最適な制御を行うためには前記のように使用する機器が変わる都度、制御ゲインも設定し直す必要があり、現実的とは言い難い。
そのため、アクティブタイプの場合にはシステムの安定性を優先して、最小重量の機器に合わせて制御ゲインを設定せざるを得ないが、こうすると、より大型の機器を使用するときには制御ゲインの値が最適値よりもかなり小さくなってしまうから、十分な振動低減効果が得られなくなる。
さらに、一般に除振台では定盤を複数のばね要素によって支持しているが、その定盤の上に載置される機器の重心位置に対して各支持点が互いに非対称となる(各支持点と重心との距離が異なる)ことが多いので、それぞれの支持点において連成する揺れが多くなってしまい、このことも除振性能を悪化させる要因となる。
本発明は、斯かる諸点に鑑みてなされたものであり、その目的とするところは、除振装置の定盤を支持するばね要素の構成に工夫を凝らして、該定盤上に載置する機器の重量が変化しても、そのことに依らず高い振動低減効果を得られるようにすることにある。
前記の目的を達成するために、本発明では、機器の重量が変化しても、これを含めたばね系の固有振動数が実質的に一定となるように、荷重の増大に応じてばね定数が高くなるプログレッシブ特性のばね要素を用いることとした。
具体的に、請求項1の発明は、機器の載置される定盤を基礎に対してばね要素により支持してなる除振装置を対象として、そのばね要素は、前記機器を含めたばね系の固有振動数が当該機器の重量の変化に拘わらず実質的に一定となるように、その荷重の増大に応じてばね定数が高くなる非線形特性を有するものとする。
前記の構成により、定盤上に載置される機器が変更されて、ばね要素に加わる荷重が変化しても、その荷重が小さいほど、ばね定数が低くなる一方、荷重が大きいほど、ばね定数が高くなって、機器を含めたばね系の固有振動数は実質的に一定に保たれるようになる。このことで、使用する機器の重量に依らず、ばね系の固有振動数を最適値とすることが可能になり、パッシブタイプ、アクティブタイプを問わず、高い除振性能を得る上で有利になる。
また、前記定盤上の機器の重心位置に対して複数のばね要素による支持点が互いに非対称であり、それぞれの支持点に作用する分担荷重が異なっていても、この分担荷重の大きさに応じて、荷重が小さいほど、ばね定数が低くなる一方、荷重が大きいほど、ばね定数が高くなるから、荷重が変化したときに各支持点において生じるばね要素の撓み量の変化は大体、同じくらいになる。このため、該各支持点において連成する揺れを小さくすることができて、除振性能が向上する。
特にアクティブタイプの除振装置の場合は、即ち、前記機器、定盤及び基礎の少なくとも1つに、その振動状態を検出するセンサが設けられるとともに、該機器乃至定盤に制御力を付加するアクチュエータと、前記センサからの信号に基づいて前記機器乃至定盤の振動を低減するように前記アクチュエータを制御するコントローラと、を備えているものでは(請求項3)、前記のようにばね系の固有振動数が実質的に一定であれば、これに対応する最適な制御ゲインの値も実質的に一定になるので、前記のように機器が変更されても、常に最適な振動制御が行われて、高い振動低減効果が得られる。
しかも、アクティブタイプの場合には、比較的大型の機器を想定して、ばね定数を高めに設定することにより、その作動に伴い荷重が大きく変化しても、定盤の変位量がアクチュエータの制御範囲を越えることがなくなり、制御不能に陥ることはない。尚、ばね定数を高めに設定すると、その分、ばね系の固有振動数は高くなるが、振動制御によって共振の影響を打ち消すことができるので、除振性能が低下する心配はない。
以上のような作用をより確実に得るために、前記ばね系の固有振動数は、機器の重量の変化に拘わらず正確に一定値であることが最も望ましいが、現実には荷重の微小な変化に対し完全に追従してばね定数の変化するようなばね要素を得ることは極めて困難である。そこで、前記のような作用を得るという観点からは、実際の使用が想定される機器の重量の変化の範囲内で、ばね系の固有振動数の変化が非常に小さくなり、実質的に一定とみなせればよい。
すなわち、実際に使用される機器の重量(通常、概略20〜100kgで大半の機器をカバーできると考えられる)を考慮し、この重量を3〜5つのばね要素で支持するとすれば、その機器の重量により1つのばね要素に作用する荷重が少なくとも50〜300Nの範囲にあるときに、その荷重の変化に伴う固有振動数の変化が±2Hz以下(アクティブタイプにおける振動制御を考慮すれば、±1Hz以下がより好ましい)となるように、ばね定数が変化する非線形特性のばね要素を用いるのがよい(請求項2)。
尚、より好ましいのは、機器の重量が20kg未満の場合や100kgを越える場合も想定して、荷重が少なくとも20〜400Nの範囲にあるときの固有振動数の変化が前記のように小さくなるようにすることであり、0〜500N以下のときの固有振動数の変化が前記のように小さくなるようにすることができれば、さらに好ましい。
そのような非線形特性を有するばね要素としては例えばコイルばねを用いることができ、それ以外にゴム弾性体や気体ばねも使用可能であるが、その中でも金属製コイルばねを用いることが好ましい(請求項4)。これは、気体ばねのように圧力源が必要でなく、ゴム弾性体に比べて特性ばらつきが小さい上に、経年変化も少ないからである。
また、前記ばね要素は、無負荷状態から非線形特性を有するものとする必要はなく、無負荷状態から定盤の重量による荷重のみが負荷される状態までは線形性を示す2段特性のものとするのが好ましい(請求項5の発明)。こうすれば、定盤の重量による荷重のみの負荷状態においても非線形特性を有するものに比べて、ばね要素の総撓み量が少なくなるので、例えばストッパ機構を併設する場合などに、これをコンパクトに構成する上で有利になる。
以上、説明したように、本発明に係る除振装置によると、定盤を支持するばね要素を、荷重の増大に応じてばね定数が高くなる非線形特性のものとして、機器の重量が変化しても、これを含めたばね系の固有振動数が実質的に一定となるようにしたので、使用する機器が変更されても、そのことに依らず高い除振性能が得られる。
特にアクティブタイプの場合には、機器の重量が変化しても、そのことに依らず最適な振動制御が行われて、高い振動低減効果を容易に得ることができる。また、定盤の過大な変位によって制御不能に陥る虞れもないのである。
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
(除振台の全体構成)
図1は、本発明に係る除振装置の一実施形態である精密除振台Aの概略構成を示す。この除振台Aは、例えば電子顕微鏡や原子間力顕微鏡(AFM)、半導体関連の試験機器、検査機器等の精密計測機器のように、振動の影響を受けやすい機器1(仮想線で示す)を載置するためのもので、主に比較的小型の機器1が使用者の都合に応じて載置されることが想定される。
図示のように、除振台Aは、レベリング機構2,2,…を介して図示しない専用のテーブルや台等の上面に設置される概略矩形状の基礎部材3と、その基礎部材3の上面の4隅にそれぞれ配設されたコイルばね4,4,…と、これらのコイルばね4,4,…により4隅をそれぞれ支持されて、上面に前記機器1が載置される定盤5と、を備えている。図2にのみ示すが、前記4つのコイルばね4,4,…は、それぞれ、ボールねじからなる高さ調整機構41を介して基礎部材3上に配置され、これにより、機器1の重量が変化して、各コイルばね4に加わる分担荷重が変化しても、基礎部材3の上面と定盤5の下面との間隔を概略、一定に保つことができるようになっている。
また、前記4つのコイルばね4,4,…のそれぞれに隣接して、定盤5及び基礎部材3の間には、両者を鉛直及び水平方向にそれぞれ数ミリ程度、相対変位させるように鉛直用及び水平用リニアモータユニット6,7が配設されている。このリニアモータユニット6,7は鉛直用も水平用も同じ構造のものであり、それぞれ縦向き、横向きに、即ち、基礎部材3から定盤5に対して鉛直及び水平方向の力を付与するように、配置されている。
そうしてリニアモータにより定盤5及び基礎部材3を相対変位させるようにした場合、静荷重時のリニアモータのクリアランスを所定範囲に維持する必要があるが、この実施形態では、前記高さ調整機構41によって基礎部材3及び定盤5の間隔を調整できるから、機器1の重量が変化してコイルばね4の撓み量が変化しても、静荷重時のリニアモータのクリアランスは略一定に保つことができる。
前記鉛直用及び水平用リニアモータユニット6,7は、それぞれ加速度センサ(図1には示さず)を内蔵しており、これにより定盤5の基礎部材3に対する鉛直及び水平方向の相対加速度(定盤5の振動状態)をそれぞれ検出して、コントローラ10に出力するようになっている。尚、図示しないが、定盤5と基礎部材3との間には、両者の相対変位に対し減衰を付与するように減衰材が配設されている。
そして、図2に模式的に示すように、各コイルばね4毎に鉛直用リニアモータユニット6の加速度センサ9から出力された信号がコントローラ10に入力される一方、この信号に基づいて生成された駆動制御信号がコントローラ10からリニアモータユニット6に出力されて、定盤5及び機器1にその鉛直方向zの振動を低減するような制御力が付加される。つまり、この実施形態の除振台Aは、機器1の振動を低減するフィードバック振動制御が行われるアクティブタイプのものである。
尚、前記図2は、説明の便宜のために鉛直方向zの振動を低減するフィードバック制御についてのみ示したが、水平用リニアモータユニット7の加速度センサ(図示せず)からの信号に基づいて、水平方向についても鉛直方向と同様の振動制御が行われる。
図3は、前記コントローラ10による鉛直方向の制御のフィードバックループを示すブロック図であり、この実施形態では機器1及び定盤5(振動制御対象)の鉛直方向加速度z″の検出値に制御ゲインGmを乗算するとともに、加速度z″を1回積分した速度z′に対し制御ゲインGcを乗算し、また、加速度z″を2回積分した変位zに対し制御ゲインGkを乗算して、それぞれフィードバック補正値Gm・z″,Gc・z′,Gk・zを演算する。
そして、それらフィードバック補正値Gm・z″,Gc・z′,Gk・zを加算した上で反転することにより、リニアモータユニット6へのフィードバック制御量U(制御信号)を求める。この制御量Uに対応する制御信号を受けて駆動されるリニアモータ6が、振動制御対象である機器1及び定盤5に制御力Fを付加し、これにより振動が低減される。
前記のように加速度z″に制御ゲインGmを乗じてフィードバックすることはばね系のマスを増やすのと略同じ効果があり、これにより固有振動数が低下する。また、速度z′のフィードバックによっていわゆるスカイフックダンパの効果が得られ、高周波域での除振性能を損なうことなく共振倍率を低下させることができる。さらに、変位zのフィードバックによっていわゆるスカイフックスプリングの効果が得られ、固有振動数以下で振動伝達率を低下させることができる。
ところで、前記図2から明らかなように、この実施形態の除振台Aにおいては個々のコイルばね4毎に、これをばね要素とし、これに加わる機器1及び定盤5の重量(分担荷重)をマスとするばね系が構成されるとみなすことができるが、上述したように使用者の都合によって機器1が変更されると、この機器1を含めたばね系のマスの大きさが変化することになる。
そのため、仮にコイルばね4が一般的な線形特性を有するものであり、そのばね定数が略一定であるとすると、マスの大きさの変化によってばね系の固有振動数が変化することなどから、以下のような不具合を生じる。
すなわち、まず、前記した振動制御を行わない場合の除振台Aの振動伝達特性(以下、素の伝達特性ともいう)について考察すると、前記のように機器1及び定盤5からの分担荷重をマスとするコイルばね4は1次のばね系を構成するとみなせるから、基礎部材3から定盤5への振動の伝達特性は、例えば機器1の重量が24kgのときと100kgのときとで、それぞれ図4に示すようになる。
同図は、この実施形態のように4つのコイルばね4,4,…で定盤5を支持する構成とし、機器1及び定盤5の重量によって各コイルばね4に略均等に荷重が作用するものとして行った数値シミュレーションによるものである。この際、各コイルばね4は、それぞれ一般的な線形特性を有し、そのばね定数が約25N/mmで一定とし、これに付加される減衰材による減衰係数は、各コイルばね4毎に約75Ns/mで合計、約300Ns/mとした。
図に実線のグラフで示すように、機器1の重量が24kgのときは、ばね系の固有振動数が約10Hzであり、おおよそ15Hz以上の周波数域で振動伝達率が0dBよりも小さくなって、除振効果が得られるようになる。一方、破線のグラフ(100kgのとき)では、固有振動数が約5Hzまで低くなっており、おおよそ7Hz以上の周波数域で除振効果が得られるようになる。
つまり、機器1の重量が大きいときほど、ばね系の固有振動数が低くなって、除振効果の得られる周波数域が広くなるとともに、同じ周波数の振動について比較すれば振動伝達率が低くなっていて、除振台Aの素の振動伝達特性が改善されることが分かる。逆にいえば、仮に100kgの機器1に対して最適な固有振動数となるようにばね定数を設定すると、前記の24kgのもののように相対的に軽量な機器1を使用するときには、固有振動数が高くなってしまい、除振性能が低下することになる。
反対に、重量の小さな機器1に対応して最適な固有振動数となるようにばね定数を低めに設定すると、その分、コイルばね4は柔らかくなるので、より大型の機器1を使用する際には、その作動に伴い分担荷重の変化する各コイルばね4が大きく撓んで、定盤5が大きく揺れる虞れがある。このとき各コイルばね4の撓み量がリニアモータの制御可能な範囲(数ミリ程度)を越えると、一時的に振動制御を行えなくなってしまう。
また、上述の如くリニアモータによる振動制御を行うようにした場合の除振台Aの振動伝達特性は、図3のようなフィードバックループを一巡する伝達関数(開ループ伝達関数)のゲイン曲線及び位相曲線によって、図5のように表される。この図も前記図4と同様の条件で行った数値シミュレーションによるものであり、リニアモータの制御ゲインは、約50kgくらいの機器1を載置する場合の経験値とした。
同図(b)に示すように、機器1の重量が24kgのとき(実線で示す)も100kgのとき(破線)も、50Hz近辺に位相交点Cが現れている。このとき、同図(a)のゲイン曲線から、100kgのときには−16dBとゲイン余裕が大きく、やや感度が低いものの、システムは安定であることが分かる。一方、24kgのときは0dBとゲイン余裕がなく、システムが不安定になることが分かる。
つまり、前記のような振動制御を行う場合は、定盤1上に載置される機器1が変更されて、各コイルばね4毎の分担荷重が変化すると、固有振動数の変化に伴いゲイン余裕の大きさも変化することから、最適な振動制御を行うためには機器1の変更の都度、制御ゲインも設定し直す必要がある。
しかし、この実施形態のように使用者の都合で機器1が変更される場合に、その都度、制御ゲインを設定し直すというのは現実的ではないから、結局、システムの安定性を優先し、最小重量の機器1に合わせて制御ゲインを設定せざるを得ない。こうすると、例えば前記図5(a)においてゲイン曲線全体が下側にシフトすることになり、例えば100kgの機器1を使用する場合のゲイン余裕が大きくなり過ぎるから、適切な振動制御を行えるとは言い難い。
さらに、この実施形態のように複数のコイルばね4,4,…によって定盤5を支持する場合は、機器1の重心位置に対して各コイルばね4,4,…による支持点が互いに非対称になることが多いが、こうなると、それぞれの支持点において連成する揺れが多くなってしまう。すなわち、図6に模式的に示すように、被支持体である機器1及び定盤5の重心Gに対し2つのコイルばね4,4の支持点が非対称な場合、図示の平面において被支持体の6自由度の運動のうち、z軸方向の並進と、y軸周りの回転Φyと、x軸方向の並進とが連成することになる。
これは、2つのコイルばね4,4のばね定数がそれぞれ一定であると、図示の如く重心Gと2つのコイルばね4,4の支持点との間の距離d1,d2が異なる場合には、この距離d1,d2に反比例する分担荷重が各支持点にかかることから、例えば被支持体がz軸方向に並進する際に、該被支持体が図において左右に揺れることになるからである。
このような運動の連成は一般的に完全には回避し難いものであるが、連成項はできるだけ少ない方がよく、前記のように各コイルばね4の支持点において3つの揺動が連成するときには、素の除振性能が低下するとともに、振動制御にも悪い影響の及ぶ虞れがある。
(コイルばねの構成)
以上のような不具合を考慮して、この実施形態の除振台Aでは、定盤5を支持する4つのコイルばね4,4,…をそれぞれ荷重の増大に概略、比例してばね定数が高くなるプログレッシブ特性を有するものとすることで、機器1の重量が変化しても固有振動数が実質的に一定に維持されるようにしたものである。
具体的に、この実施形態では前記コイルばね4として図7に一例を示すように、線材を略等ピッチで円筒状に巻いた線形領域4aと、コイル径が長手方向に連続的に変化するように円錐台状に巻いた非線形領域4bとを有するものを用いる。そして、4つのコイルばね4,4,…により定盤5のみを支持する状態で線形領域4aの線材同士が接触し、それ以降に加わる機器1の荷重を非線形領域4bの撓みのみによって支持するようにする。
こうすると、前記非線形領域4bにおいてはばね定数が撓み量に応じて変化するのであるが、この際、機器1の重量による荷重の増大に略比例してばね定数が高くなるように、コイルの径及びピッチを連続的に変化させている。このようなコイルばね4の荷重−変位特性は一例を図8に示すようになり、無負荷から定盤5の重量による分担荷重(図の例では30〜40Nくらい)のみが負荷される状態までは線形性を示す一方、それ以上の荷重の増大に対しては、これに略比例してばね定数(グラフの傾き)が高くなるプログレッシブ特性を示している。
そして、一般にばね系の固有振動数fは、マスの大きさをmとし、ばね定数をkとして f=(2π)-1・(k/m)1/2 と表されるので、前記のようなプログレッシブ特性を有するコイルばね4,4,…によって定盤5を支持すれば、この各コイルばね4のばね定数kが機器1及び定盤5の分担荷重mの増大に比例して高くなることから、理論上は固有振動数fを一定値とすることができる。
但し、現実には荷重mの微小な変化に対し完全に追従して、ばね定数が変化するような非線形コイルばね4を製作するのは困難なので、この実施形態では、実際に使用されると想定される機器1の重量(例えば約10〜100kg)を考慮し、この重量を4つのコイルばね4,4,…で支持することから、機器1の重量による荷重mが概略25〜250Nの範囲にあるときに固有振動数の変化が±1Hz以下となる(つまり、機器1の重量に拘わらず固有振動数が実質的に一定となる)コイルばね4を用いている。
尚、そのような非線形コイルばね4を実際に製作するには、例えば、最小から最大まで想定される荷重の範囲を複数の領域に分割し、それぞれの領域における荷重の代表値から、固有振動数が略一定になるような領域毎のばね定数を求める。そうして求めたばね定数に基づいて各領域毎の荷重の増分に対応するコイルばね4の撓み量の増分を計算し、これによりコイルばね4に求められる荷重と撓み量との非線形な関係を特定する。
つまり、分割した各領域内における荷重と撓み量との関係は線形近似して、それらを繋ぎ合わせることにより、所定範囲において荷重の増大に略比例してばね定数が高くなるコイルばね4の荷重−変位(撓み)特性を決定し、この特性が得られるようにコイルばね4の非線形領域4bにおけるコイル径を段階的に変化させるのである。このようにして製作する場合、個々の領域ができるだけ狭くなるように荷重の変化する範囲を細かく分割するのが好ましい。
こうして実際に作成したコイルばね4を4つ用いて、前記図1のように定盤5を支持してなる除振台Aでは、その定盤5上に載置される機器1の重量が変化して、これにより4つのコイルばね4,4,…に加わる荷重が変化しても、図9に実線のグラフで示すように固有振動数は殆ど変化せず、実質的に一定に保たれている。尚、図に破線のグラフに示すのは、比較のために一般的な線形のコイルばねを用いた場合の固有振動数の変化である。
したがって、この実施形態の除振台Aによると、機器1の載置される定盤5を支持する複数のコイルばね4,4,…を、それぞれ、荷重の増大に略比例してばね定数が高くなるプログレッシブ特性を有するものとして、機器1の重量が変化しても、そのことに依らず固有振動数が実質的に一定になるようにしたから、その固有振動数の値を予め設定した最適値に維持して、除振台Aの素の振動伝達特性を常に良好なものとし、基本的に高い除振性能を得ることができる。
また、この実施形態のようなアクティブタイプの除振台Aの場合は、前記のように機器1の重量が変化しても、ばね系の固有振動数が実質的に一定になるのであれば、これに対応する最適な制御ゲインの値も実質的に変化しないことから、機器1が変更されても最適な振動制御が行われ、常に高い振動低減効果が得られる。
その際、比較的大型の機器1の仕様を考慮して、ばね定数をやや高めに設定すれば、その機器1の作動に伴いコイルばね4に作用する荷重が大きく変化しても、撓み量がリニアモータの制御範囲を越えるほど大きくはならないので、制御不能に陥ることがない。また、そうしてばね定数を高めに設定しても、振動制御によって共振の影響を打ち消すことができるので、除振性能が低下する心配はない。
さらに、図6を用いて上述したように、定盤5上の機器1の重心位置Gに対して複数のコイルばね4,4,…の支持点が非対称になっていて、それぞれに作用する分担荷重が異なっていても、前記のような非線形特性のコイルばね4を用いれば、各支持点において連成する揺れが少なくなる。
すなわち、前記の如くばね定数が荷重の増大に略比例して高くなるコイルばね4では、機器1の重量による分担荷重の大きさが異なっていても、その分、ばね定数が変化することから、荷重が変化したときに各支持点において生じるコイルばね4の撓み量の変化が略同じになり、図6に示す平面において被支持体1,5がz軸方向に並進しても、このことによってy軸周りの回転やx軸方向の並進が生じることはなくなるのである。
尚、図示の如く機器1の重心Gがコイルばね4,4の支持点を含む平面よりも高さz1だけ高いことから、y軸周りの回転Φyとx軸方向の並進との連成は残るが、前記のようにz軸方向の並進がy軸周りの回転Φyやx軸方向の並進と連成しなくなれば、除振台Aの素の除振性能を高くする上で有利であり、また、振動制御への悪影響も少なくなる。
加えて、この実施形態では、前記コイルばね4に線形領域4aを設けて、無負荷状態から定盤5の重量による荷重のみが負荷される状態までは線形性を示すものとしたので、全体を非線形領域とした場合に比べてコイルばね4の総撓み量を少なくすることができ、例えばコイルばね4の付近にストッパ機構を併設する場合などに、これをコンパクトに構成する上で有利になる。
(他の実施形態)
尚、本発明の除振装置の構成は、前記した実施形態の除振台Aに限定されず、それ以外の種々の構成をも包含するものである。すなわち、前記の実施形態においては、定盤5を支持するコイルばね4を4つ用いているが、これは3つ以上であればよい。
また、前記実施形態ではコイルばね4に線形領域4aと非線形領域4bとを設けているが、線形領域4aを設けず、非線形領域4bだけにしてもよい。そして、その非線形領域4bでは主にコイル径を変化させるようにしているが、これに代えて、或いはこれに加えてピッチを変化させるようにしてもよいし、それらに代えて、或いはそれらに加えて線材の直径(線径)を変化させるようにすることもできる。
さらに、前記コイルばね4に代えて、例えばゴム弾性体や気体ばねを用いることも可能である。但し、気体ばねの場合は圧力源が必要になるし、ゴム弾性体では比較的特性ばらつきが大きく、その経年変化も少なくないことを考慮すれば、前記実施形態のように金属製のコイルばね4を用いることが最も好ましい。
また、前記実施形態では、機器1乃至定盤5の加速度を検出してリニアモータ6,7をフィードバック制御する例を示したが、これに限らず、振動の制御としては、基礎部材3の振動状態に基づいて定盤5へ伝達する振動を推定し、この振動を打ち消すような制御力を発生するようにリニアモータ6,7を駆動する除振フィードフォワード制御や、機器1の作動に伴う振動を予告信号により推定し、この振動を打ち消すような制御力を発生するようにリニアモータ6,7を駆動する制振フィードフォワード制御も可能である。
さらにまた、本発明は所謂パッシブタイプの除振台に適用することもできる。この場合には、上述したように、固有振動数が実質的に一定になるばね要素(コイルばね4)を用いることによって、機器1の重量に依らずばね系の固有振動数が最適値に維持されることから、除振台Aの素の振動伝達特性が良好なものになるとともに、複数のばね要素による支持点のそれぞれで連成する揺れが少なくなるので、除振性能を高める上で有利になる。
本発明は、機器を床振動から絶縁するための除振装置であって、その機器の重量が変化しても、そのことに依らず高い振動低減効果が得られるものであるから、使用者の都合によって変更される比較的小型の機器を載置する除振台として特に好適なものである。
本発明の実施形態に係る除振台の概略構成を示す図である。 振動制御の概略構成を示す図である 鉛直方向加速度のフィードバックループを示すブロック図である。 コイルばねにおける基礎側からの振動伝達特性を示すボード線図である。 図3のフィードバックループを一巡する伝達関数のゲイン及び位相曲線を示すボード線図である。 重心位置に対し支持点が非対称なときの揺れの連成についての説明図である。 非線形コイルばねの構成を示す拡大図である。 同コイルばねの荷重−変位特性を示すグラフ図である。 同コイルばねを用いた場合に、荷重が変化しても固有振動数が実質的に一定になることを示すグラフ図である。
符号の説明
A 除振台(除振装置)
1 機器
3 基礎部材
4 コイルばね(ばね要素)
5 定盤
6,7 リニアモータユニット(アクチュエータ)
9 加速度センサ(センサ)
10 コントローラ

Claims (5)

  1. 機器の載置される定盤を基礎に対してばね要素により支持してなる除振装置であって、
    前記ばね要素は、前記機器を含めたばね系の固有振動数が当該機器の重量の変化に拘わらず実質的に一定となるように、その重量による荷重の増大に応じてばね定数が高くなる非線形特性を有することを特徴とする除振装置。
  2. 請求項1の除振装置において、
    ばね要素は、機器の重量による荷重が少なくとも50〜300Nの範囲にあるときに、その荷重の変化に伴う固有振動数の変化が±2Hz以下となるように、ばね定数が変化するものであることを特徴とする除振装置。
  3. 請求項1又は2のいずれかの除振装置において、
    機器、定盤及び基礎の少なくとも1つに設けられ、その振動状態を検出するセンサと、
    前記機器乃至定盤に制御力を付加するアクチュエータと、
    前記センサからの信号に基づいて前記機器乃至定盤の振動を低減するように、前記アクチュエータを制御するコントローラと、を備えていることを特徴とする除振装置。
  4. 請求項1〜3のいずれか1つの除振装置において、
    ばね要素がコイルばねからなることを特徴とする除振装置。
  5. 請求項1〜4のいずれか1つの除振装置において、
    ばね要素は、無負荷状態から定盤の重量による荷重のみが負荷される状態までは線形性を示す2段特性のものであることを特徴とする除振装置。
JP2005268875A 2005-09-15 2005-09-15 除振装置 Pending JP2007078122A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268875A JP2007078122A (ja) 2005-09-15 2005-09-15 除振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268875A JP2007078122A (ja) 2005-09-15 2005-09-15 除振装置

Publications (1)

Publication Number Publication Date
JP2007078122A true JP2007078122A (ja) 2007-03-29

Family

ID=37938657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268875A Pending JP2007078122A (ja) 2005-09-15 2005-09-15 除振装置

Country Status (1)

Country Link
JP (1) JP2007078122A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127391A (ja) * 2008-11-27 2010-06-10 Kurashiki Kako Co Ltd アクティブ防振装置及びこれに用いるアクチュエータ
JP2011099543A (ja) * 2009-11-09 2011-05-19 Kurashiki Kako Co Ltd 除振装置
JP2012036924A (ja) * 2010-08-04 2012-02-23 Kurashiki Kako Co Ltd 除振装置
JP2012082889A (ja) * 2010-10-08 2012-04-26 Kurashiki Kako Co Ltd 除振装置
US8727660B2 (en) 2010-04-16 2014-05-20 Ammann Schweiz Ag Arrangement for providing a pulsing compressive force
JP2015010705A (ja) * 2013-07-02 2015-01-19 キヤノン株式会社 除振装置、除振方法、リソグラフィ装置及びデバイスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165143A (ja) * 1990-10-30 1992-06-10 Tech Res & Dev Inst Of Japan Def Agency 防振ゴムの設計方法
JPH11107504A (ja) * 1997-09-30 1999-04-20 Osaka Gas Co Ltd 免振床装置
JP2005061588A (ja) * 2003-08-20 2005-03-10 Kurashiki Kako Co Ltd 除振台のアクティブ振動制御装置及びその制御ゲイン設定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165143A (ja) * 1990-10-30 1992-06-10 Tech Res & Dev Inst Of Japan Def Agency 防振ゴムの設計方法
JPH11107504A (ja) * 1997-09-30 1999-04-20 Osaka Gas Co Ltd 免振床装置
JP2005061588A (ja) * 2003-08-20 2005-03-10 Kurashiki Kako Co Ltd 除振台のアクティブ振動制御装置及びその制御ゲイン設定方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127391A (ja) * 2008-11-27 2010-06-10 Kurashiki Kako Co Ltd アクティブ防振装置及びこれに用いるアクチュエータ
JP2011099543A (ja) * 2009-11-09 2011-05-19 Kurashiki Kako Co Ltd 除振装置
US8727660B2 (en) 2010-04-16 2014-05-20 Ammann Schweiz Ag Arrangement for providing a pulsing compressive force
JP2012036924A (ja) * 2010-08-04 2012-02-23 Kurashiki Kako Co Ltd 除振装置
CN102374258A (zh) * 2010-08-04 2012-03-14 仓敷化工株式会社 隔振装置
JP2012082889A (ja) * 2010-10-08 2012-04-26 Kurashiki Kako Co Ltd 除振装置
JP2015010705A (ja) * 2013-07-02 2015-01-19 キヤノン株式会社 除振装置、除振方法、リソグラフィ装置及びデバイスの製造方法

Similar Documents

Publication Publication Date Title
JP3614755B2 (ja) 全方向振動絶縁システム
US5310157A (en) Vibration isolation system
Beard et al. Practical product implementation of an active/passive vibration isolation system
JP2007078122A (ja) 除振装置
TWI695128B (zh) 主動慣性阻尼器系統及方法
CN112984044B (zh) 精密设备搭载用除振装置
JP4936175B2 (ja) 振動低減機構およびその諸元設定方法
JP2002327791A (ja) 負荷の振動絶縁支持の装置および方法
JP2010031953A (ja) 圧縮コイルばねによる制振・防振装置
US11339850B2 (en) Orthogonally-optimized vibration isolation
JP2008303997A (ja) アクティブ除振装置及びそれに用いられる制振装置
JP5139960B2 (ja) アクティブ防振装置及びこれに用いるアクチュエータ
JP3799244B2 (ja) 気体ばね式除振装置
JP6401598B2 (ja) アクティブ除振装置
JP2011247314A (ja) アクティブ除振装置
JP5276548B2 (ja) アクティブ防振方法及びこれに用いる防振装置
JP2005069303A (ja) 空圧制御型除振装置
JPH10196716A (ja) アクティブ除振装置
WO2008115589A1 (en) Vibration isolation
JP4469327B2 (ja) 振動制御ユニット
JP2008281048A (ja) アクティブ除振装置
US20070137954A1 (en) Inertial actuator
JP3975283B2 (ja) 双方向制振ダンパと除振マウント
JP2004068914A (ja) 除振機構
JP2005315298A (ja) アクティブ除振装置およびアクティブ除振方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Effective date: 20100216

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111