JP2007076183A - Boring method - Google Patents

Boring method Download PDF

Info

Publication number
JP2007076183A
JP2007076183A JP2005267337A JP2005267337A JP2007076183A JP 2007076183 A JP2007076183 A JP 2007076183A JP 2005267337 A JP2005267337 A JP 2005267337A JP 2005267337 A JP2005267337 A JP 2005267337A JP 2007076183 A JP2007076183 A JP 2007076183A
Authority
JP
Japan
Prior art keywords
drill
machine
hole
processing
boring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005267337A
Other languages
Japanese (ja)
Inventor
Hideo Outsuka
日出夫 鶯塚
Arata Doi
新 土井
Hiroaki Iida
浩章 飯田
Atsuya Takahashi
敦哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005267337A priority Critical patent/JP2007076183A/en
Publication of JP2007076183A publication Critical patent/JP2007076183A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a machining method for efficiently boring a hole by using a machine in a hard and brittle material such as quartz, glass and a ceramic material with favorable accuracy. <P>SOLUTION: The boring method for boring a hole comprises steps of bonding a piezoelectric plate to a buffer material, then mounting them on the work table of a boring machine and oscillating a drill of the boring machine while oscillating the work table. As the boring machine, a so-called NC machine equipped with a numerical control mechanism is used, and in order to ensure the accuracy of the hole shape to be processed, the machine has a mechanism which recognizes the oscillation range of the drill or the table by image recognition and controls it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水晶材料、ガラス、セラミックなどと言った硬くて脆弱な被加工物(特に脆性材)に精度良く孔加工を施すために、加工機械を使用し効率の良い加工作業を行うための加工方法に関するものである。   The present invention is for performing an efficient machining operation using a processing machine in order to precisely drill a hard and fragile workpiece (particularly brittle material) such as quartz material, glass, ceramic and the like. It relates to a processing method.

水晶振動子の殆どは人工的に作られた水晶材料を原料にして加工されている。人工水晶の育成にはオートクレーブ内に種水晶と屑水晶(ラスカ)と育成液を充填し、温度と圧力により種水晶に人工的に水晶結晶を成長させるいわゆる人工水晶の育成技術が取り込まれている。ここで育成された人工水晶の端面加工を施したランバードを基にして、各種形状や寸法の水晶デバイスを加工していく。   Most quartz crystal units are processed using artificially produced quartz materials as raw materials. The growth of artificial quartz incorporates so-called artificial quartz crystal growth technology, in which seed crystal, scrap quartz (Raska) and growth liquid are filled in the autoclave, and the crystal is artificially grown on the seed crystal by temperature and pressure. . Crystal devices of various shapes and dimensions will be processed based on the lumbard that has been end-machined with artificial quartz grown here.

その加工方法には、水晶振動子としての周波数特性や温度特性を決定づけるカットアングルを決めた所定の切出し角度に基づいた切断行程があり、水晶外形を決める工程があり、所望の周波数を得るための水晶板の厚み研磨工程などを行ったものが、一般的な水晶振動子の加工工程として挙げることができる。   In the processing method, there is a cutting process based on a predetermined cutting angle that determines a cut angle that determines frequency characteristics and temperature characteristics as a crystal resonator, and there is a step of determining a crystal external shape, in order to obtain a desired frequency. What performed the thickness grinding | polishing process of the quartz plate etc. can be mentioned as a processing process of a general crystal oscillator.

切断行程、研磨工程にはそれぞれで特殊な加工機を用い、水晶業界が各社凝らした加工技術を用いることで所望の周波数を得る水晶振動子の加工を行っている。加工工程は全般的に機械加工が主流ではあるが、水晶振動子に至るまでの工程で、水晶材料の表面を精度良く仕上げるために必要に応じて化学処理(エッチング)工程を行うことで、水晶振動子の加工を実現しているのが現状である。   In the cutting process and the polishing process, a special processing machine is used for each, and the quartz crystal industry uses a processing technique elaborated by each company to process a crystal resonator to obtain a desired frequency. Machining is the main process in general, but in the process up to the crystal unit, crystal processing is performed by performing chemical treatment (etching) process as necessary to finish the surface of the crystal material with high accuracy. At present, the processing of the vibrator is realized.

前述のように、従来の水晶振動子では最終外形寸法、厚みまでの工程により所望の特性、周波数を得た工程が組まれている。その結果、例えば丸板形状であったり、短冊形状であったりと製品型式や用途に応じて加工形状や供給形状が決まったものに、励振電極やパッケージングを行うことにより水晶振動子を得ることとなる。   As described above, the conventional crystal resonator has a process of obtaining desired characteristics and frequency by the process up to the final outer dimensions and thickness. As a result, crystal oscillators can be obtained by carrying out excitation electrodes and packaging, for example, in the shape of round plates or strips, whose processing shape and supply shape are determined according to the product type and application. It becomes.

上述する水晶振動子は主には電子部品として通信機器や制御機器のクロック信号源としての利用目的が多く、産業通信機器から個人所有の携帯電話機やゲーム機器と幅広い利用分野で使われている。   The above-described crystal resonator is mainly used as a clock signal source for communication equipment and control equipment as an electronic component, and is used in a wide range of applications from industrial communication equipment to personally owned mobile phones and game machines.

ところで、昨今では利用分野も前述する通信機器を中心とした電子機器から、変位、質量、圧力といった物理的な計測用に用いたり、GPS(グローバル・ポジショニング・システム)との組合せによりカーナビケーションシステムに搭載する自動車の姿態認識など、ジャイロ(ヨーレイト)センサと言った自動車に搭載する分野などにも広く展開される現状にある。   By the way, in recent years, the field of application is also used for physical measurement such as displacement, mass, pressure, etc. from electronic equipment centering on the communication equipment mentioned above, or in combination with GPS (global positioning system) Currently, it is widely deployed in fields such as gyro (yaw rate) sensors that are mounted on automobiles, such as recognition of the state of mounted automobiles.

また、自動車の分野では安全性と走行性を重視した各種センシングにも水晶振動子の利用が進められており、従来の水晶振動子の形態とは異なった形状や仕様を満たす要求も高まる現状にある。また、以上の仕様を満足する上では、従来の水晶振動子の加工方法に変えて、一般機械加工も取り入れながらの製品作りを展開しつつある現状にもある
特開2001−054802号公報
In the field of automobiles, the use of crystal units is also being promoted for various types of sensing with an emphasis on safety and driving performance, and there is an increasing demand for satisfying shapes and specifications different from those of conventional crystal units. is there. In addition, in order to satisfy the above specifications, we are currently developing products that incorporate general machining instead of the conventional quartz crystal processing method.
JP 2001-054802 A

上述するように現状の水晶加工は金属材料を加工するような機械加工を、水晶振動子の一部の加工に用いることが増えつつある。そのひとつの例として、自動車用に組み込まれるセンシング部品として、リング状に水晶板を加工する作業が見受けられている。この機械加工とは、いわゆる立てフライスのような工作機械を用いて、水晶板に所定の孔形状を加工するというものである。   As described above, in the current crystal processing, machining that processes a metal material is increasingly used for processing a part of a crystal resonator. As one example, an operation of processing a crystal plate in a ring shape is seen as a sensing component incorporated in an automobile. This machining is to process a predetermined hole shape in a quartz plate using a machine tool such as a so-called vertical milling machine.

立てフライス式の加工機械ではエンドミルドリルと、上下、東西南北に可動する作業テーブルとがあり、作業テーブルに取り付けられた被加工物を切断、削り加工を行うものであるが、この機械加工を応用して水晶板という硬く脆弱な材料(脆性材)を加工することが試みられている。そのため、水晶板の切削加工にはダイヤモンド材料を付着させたドリルを使用し加工するが、水晶材料が非常に硬いために、所望とする孔加工精度を確保することが非常に難しいのが現状にある。   The vertical milling machine has an end mill drill and a work table that can be moved up and down, east, west, south, and north, and cuts and cuts the workpiece attached to the work table. Attempts have been made to process a hard and brittle material (brittle material) called a quartz plate. For this reason, the quartz plate is processed using a drill with a diamond material attached. However, because the quartz material is very hard, it is very difficult to ensure the desired drilling accuracy. is there.

また、水晶材料は背景技術にも記述するように、外形寸法、厚み寸法により所特性が大きく変化することから、前述する孔加工においてもドリルの消耗などにより精度よく安定して孔加工を継続することが難しく、また硬く、脆弱な水晶材料であることから、ドリル自体も頻繁にドレッシングが必要となることから、加工精度上の問題と加工時の工数の問題と言った課題が挙げられる。   In addition, as described in the background art, the characteristics of quartz materials change greatly depending on the external dimensions and thickness dimensions. Therefore, in the above-described drilling, the drilling is continued with high accuracy and stability due to the wear of the drill. Because it is difficult, hard and brittle quartz material, the drill itself needs frequent dressing, so there are problems of processing accuracy and man-hours during processing.

上述する課題を解決するために本発明は、孔加工を施すための孔加工方法であって、圧電板を緩衝材に貼り合わせた後に孔加工機の作業テーブルに装着し、作業テーブルを揺動しながら孔加工機のドリル部を揺動させる孔加工方法である。また、この加工機械はNumerical Control、いわゆる数値演算制御機構を備えたNC機械を用い、加工すべき孔形状の精度を確保するためにドリル部あるいは作業テーブル部の揺動範囲は画像認識により認識し制御する機構を有したことを特徴とする孔加工方法である。   In order to solve the above-described problems, the present invention is a hole drilling method for drilling, and after attaching a piezoelectric plate to a cushioning material, it is mounted on a work table of a hole drilling machine, and the work table is swung. This is a drilling method in which the drill portion of the drilling machine is swung. Also, this processing machine uses NC, which is equipped with Numerical Control, a so-called numerical calculation control mechanism, and the rocking range of the drill part or work table part is recognized by image recognition in order to ensure the accuracy of the hole shape to be processed. It is a hole drilling method characterized by having a control mechanism.

要するに、本願発明は圧電材料、ガラス材料、セラミック材料といった硬くて脆弱な材料を効率良く、精度の良い孔加工を実現するために、従来では管理していなかった孔加工時の寸法をフィードバックすることにより、孔加工に用いるドリルの消耗具合を考慮し、継続的に安定した精度の高い孔加工を得ることができる。   In short, the present invention feeds back the dimensions at the time of drilling, which has not been managed in the past, in order to efficiently and precisely drill hard and brittle materials such as piezoelectric materials, glass materials and ceramic materials. Therefore, it is possible to obtain a stable and highly accurate hole drilling in consideration of the wear condition of the drill used for the hole drilling.

また、ドリルに対する一定期間のメンテナンス(ドレッシング)処理後のドリル加工量の変化に対しても、ドリルの切削能力に起因することなく加工仕上がりで管理することから、孔加工全体で加工精度が安定した状態を維持することで作業効率の改善も実現するなど課題を解決するものである。   In addition, changes in the drilling amount after a certain period of maintenance (dressing) processing for the drill are also managed by the finished work without causing the cutting ability of the drill. The problem is solved by improving the work efficiency by maintaining the state.

本発明の孔加工方法を用いることにより、加工に用いるドリル自体の消耗や切削効率に関係無く、所望とする孔形状を基準に加工を実現することにより、加工精度の均一性、安定性を得ることができる。このことによって、加工効率の向上と品質の改善、歩留まりの向上など、加工工数の削減も行えることから、加工コストの低減も実現することができる。   By using the hole drilling method of the present invention, the machining accuracy is uniform and stable by realizing the drilling based on the desired hole shape regardless of the wear of the drill itself used for machining and the cutting efficiency. be able to. As a result, it is possible to reduce the processing man-hours such as improvement in processing efficiency, quality, and yield, so that the processing cost can be reduced.

以下、添付図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。図1に示すのは本願発明の孔加工を行うときのドリル部3の動きを示すものである。ここで図示するドリル形状は孔加工を行うために使用する一例として示すもので、逆凹状形状で示しているが、ドリル部3の形状に拘るものではない。また特に図示はしないが、ドリル部3の外周あるいはドリル部3を構成する金属成分中にダイヤモンドあるいはダイヤモンドに準じる硬度を持った成分により、水晶材料、ガラス材料、セラミック材料の研削を実現するものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In each figure, the same numerals indicate the same objects. FIG. 1 shows the movement of the drill portion 3 when drilling according to the present invention. The drill shape shown here is shown as an example used for drilling, and is shown as a reverse concave shape, but is not limited to the shape of the drill portion 3. Further, although not specifically shown, the quartz material, the glass material, and the ceramic material can be ground by diamond or a component having hardness similar to diamond in the outer periphery of the drill portion 3 or the metal component constituting the drill portion 3. is there.

図1に示すのは加工時の概念図を示すもので、図1(a)では加工時のドリル部3の動きを側面から見たときの図で、図1(b)はドリル方向則ち、図1(a)紙面の上部から見た平面図である。ここで図3の従来の加工時のドリルの動きと見比べれば一目瞭然ではあるが、ドリル部3が回転すると同時に、孔加工をするべき被加工物に対しても回転運動をしているところに特徴がある。   FIG. 1 shows a conceptual diagram at the time of machining. FIG. 1 (a) shows the movement of the drill portion 3 at the time of machining as viewed from the side, and FIG. 1 (b) shows the drill direction rule. FIG. 1A is a plan view as viewed from the top of the page. Compared with the movement of the drill at the time of conventional machining in FIG. 3, it is obvious that the drill portion 3 is rotating at the same time as the workpiece to be drilled is rotating. There are features.

要するに、被加工物に対して孔加工を行う際に、加工に用いるドリル自体の消耗や切削効率に関係無く、所望とする孔形状を基準した加工を実現することにより、加工精度の均一性、安定性を得ることを狙うものである。図1(b)に示すドリル部3の動きを行うことによって、ドリル径(斜線部)よりも広い範囲にまで加工を行うことができ、同時に加工寸法を正確に維持することにより、加工効率を上げることができ、ひいては品質の改善、歩留まりの向上を行うことができる。更には、加工工数の削減も行えることから、加工コストの低減も実現することができる。   In short, when drilling a workpiece, the machining accuracy is uniform by realizing the machining based on the desired hole shape, regardless of the wear and cutting efficiency of the drill itself used for machining. The aim is to obtain stability. By performing the movement of the drill portion 3 shown in FIG. 1 (b), it is possible to perform processing to a wider range than the drill diameter (shaded portion), and at the same time, maintaining the processing dimensions accurately, thereby improving processing efficiency. As a result, quality can be improved and yield can be improved. Furthermore, since the number of processing steps can be reduced, the processing cost can also be reduced.

また、図1に示すドリル動作により所望とする孔加工寸法を維持するために、当然ながら孔加工状況をドリル部3の揺動範囲に反映させる必要があるが、この制御についての一例としては、Numerical Control則ちNC方式で加工位置精度を演算方式で制御するのに加えて、現在の加工状況とドリル部3あるいは作業テーブル部4の揺動範囲をリアルタイムで画像認識により認識し制御することによっても、所望とする孔加工寸法を精度良く仕上げることを実現するものである。   Further, in order to maintain a desired drilling dimension by the drill operation shown in FIG. 1, naturally, it is necessary to reflect the drilling status in the swing range of the drill portion 3. As an example of this control, In addition to controlling the machining position accuracy by numerical control, that is, NC method, by recognizing and controlling the current machining status and the rocking range of the drill part 3 or work table part 4 by image recognition in real time. In addition, it is possible to accurately finish the desired hole processing size.

図1ではドリルを動かすことで本発明の目的を達成するよう図示するものであるが、孔加工機のドリル部3を揺動させるか、あるいは作業テーブル4を揺動するかは任意に選択しても構わない。また両者であるドリルと作業テーブルとを揺動させることもより作業効率を速めることができる。なお、図1には作業テーブル部4を揺動させた状態を図示していない。   FIG. 1 illustrates that the object of the present invention is achieved by moving the drill, but it is arbitrarily selected whether to swing the drill part 3 of the hole drilling machine or the work table 4. It doesn't matter. Further, the working efficiency can be further increased by swinging the drill and the work table. Note that FIG. 1 does not show a state where the work table unit 4 is swung.

図2は本発明の段取りを示したフロー図である。本発明孔の加工を施すための孔加工方法は、圧電板1を例えばガラス板などの緩衝材2に貼り合わせた後に、孔加工機の作業テーブル部4に装着し、作業テーブル部4を揺動しながら孔加工機のドリル部3を揺動させることにより孔加工を行う。ここで重複するが孔加工精度を確保するために加工状況はリアルタイムで画像認識により制御されている。   FIG. 2 is a flowchart showing the setup of the present invention. In the hole machining method for machining holes according to the present invention, the piezoelectric plate 1 is bonded to a buffer material 2 such as a glass plate, and then mounted on the work table 4 of the hole drilling machine, and the work table 4 is shaken. Drilling is performed by swinging the drill part 3 of the drilling machine while moving. Although it overlaps here, in order to ensure the hole processing accuracy, the processing status is controlled by image recognition in real time.

以上のように、本願発明は圧電材料、ガラス材料、セラミック材料といった硬くて脆弱な材料を効率良く、精度の良い孔加工を実現するために、従来では管理していなかった孔加工時の寸法をフィードバックすることにより、孔加工に用いるドリルの消耗具合を考慮し、ドリル部3を揺動するかあるいは、テーブル部4を揺動するかまたはその両方を揺動するかにより、ドリルの消耗具合に関係無く継続的に安定した精度の高い孔加工を得ることができる。   As described above, in the present invention, in order to achieve efficient and accurate drilling of hard and fragile materials such as piezoelectric materials, glass materials, and ceramic materials, the dimensions at the time of drilling that have not been controlled in the past have been set. By providing feedback, the wear condition of the drill used for drilling is considered, and the drill wear condition depends on whether the drill part 3 is swung, the table part 4 is swung, or both are swung. Irrespective of this, it is possible to obtain a stable and highly accurate hole drilling continuously.

なお、本実施例では丸孔形状で説明するが、孔形状を限定するもので無く、四角形、三角形、楕円形でも同様の加工方法を応用できることは言うまでも無い。また、説明では画像認識装置を2台設置しているが、画像認識の数の制限は無く最低1台でも事が足りる。そして画像認識装置の設置場所についても制限は無いが、緩衝材2に透明材質を用いることを考えると、加工部下方からの方が加工時に発生する汚れや加工屑の影響を受けにくいと考えられる。   In this embodiment, the description will be made with a round hole shape. However, the hole shape is not limited, and it goes without saying that the same processing method can be applied to a quadrangle, a triangle, and an ellipse. In the description, two image recognition apparatuses are installed. However, the number of image recognitions is not limited, and at least one is sufficient. Although there is no restriction on the installation location of the image recognition device, considering that a transparent material is used for the cushioning material 2, it is considered that the direction from the lower part of the processing part is less affected by dirt and processing dust generated during processing. .

本発明の孔加工の概念を示す概念図である。It is a conceptual diagram which shows the concept of the hole processing of this invention. 本発明の加工の流れを示すフロー図である。It is a flowchart which shows the flow of a process of this invention. 従来の孔加工の概念を示す概念図である。It is a conceptual diagram which shows the concept of the conventional hole processing.

符号の説明Explanation of symbols

1 圧電板
2 緩衝材
3 ドリル部
4 作業テーブル部
DESCRIPTION OF SYMBOLS 1 Piezoelectric plate 2 Buffer material 3 Drill part 4 Work table part

Claims (3)

孔加工を施すための孔加工方法であって、被加工物を緩衝材に貼り合わせた後に孔加工機の作業テーブルに装着し、作業テーブルを揺動しながら孔加工機のドリル部を揺動させることを特徴とする孔加工方法。   A hole processing method for performing hole processing, wherein a work piece is bonded to a cushioning material and then mounted on a work table of a hole processing machine, and a drill portion of the hole processing machine is swung while the work table is swung. A hole drilling method characterized by being made to do. 請求項1に記載する孔加工機はNumerical Controlされた機械を用い、ドリル部あるいは作業テーブル部の揺動範囲は画像認識により制御する機構を有したことを特徴とする孔加工方法。   A hole drilling method according to claim 1, wherein a numerically controlled machine is used, and a rocking range of the drill part or the work table part is controlled by image recognition. 請求項1記載の孔加工の被加工物は、圧電材料、ガラス材料、セラミック材料であることを特徴とする孔加工方法。
2. A hole drilling method according to claim 1, wherein the workpiece to be drilled is a piezoelectric material, a glass material, or a ceramic material.
JP2005267337A 2005-09-14 2005-09-14 Boring method Pending JP2007076183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005267337A JP2007076183A (en) 2005-09-14 2005-09-14 Boring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005267337A JP2007076183A (en) 2005-09-14 2005-09-14 Boring method

Publications (1)

Publication Number Publication Date
JP2007076183A true JP2007076183A (en) 2007-03-29

Family

ID=37936937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005267337A Pending JP2007076183A (en) 2005-09-14 2005-09-14 Boring method

Country Status (1)

Country Link
JP (1) JP2007076183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439366A (en) * 2014-11-18 2015-03-25 哈尔滨汽轮机厂有限责任公司 Boring mill machining method for inclined flange holes in back of high-pressure outer cylinder of steam turbine
CN110116459A (en) * 2019-05-22 2019-08-13 永康雪纺自动化设备有限公司 A kind of large size ceramic honeycomb inlaying device
CN113103440A (en) * 2020-01-10 2021-07-13 通用电气公司 Method and apparatus for forming apertures in composite members

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179605A (en) * 1984-09-28 1986-04-23 ホ−ヤ株式会社 Method of processing inorganic material board
JPH03251352A (en) * 1990-02-28 1991-11-08 Olympus Optical Co Ltd Drilling work and device and grinding wheel used for the device
JPH07108523A (en) * 1991-09-06 1995-04-25 Kiyokuei Kenma Kako Kk Drilling of hard and fragile material and machining device thereof
JPH0811325B2 (en) * 1991-10-03 1996-02-07 株式会社精工舎 Printed circuit board processing method
JPH10277877A (en) * 1997-03-31 1998-10-20 Toa Medical Electronics Co Ltd Automatic working machine
JPH11216720A (en) * 1998-02-05 1999-08-10 Ngk Insulators Ltd Boring method of ceramic
JP2005074602A (en) * 2003-09-02 2005-03-24 Hitachi Via Mechanics Ltd Printed circuit board working machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179605A (en) * 1984-09-28 1986-04-23 ホ−ヤ株式会社 Method of processing inorganic material board
JPH03251352A (en) * 1990-02-28 1991-11-08 Olympus Optical Co Ltd Drilling work and device and grinding wheel used for the device
JPH07108523A (en) * 1991-09-06 1995-04-25 Kiyokuei Kenma Kako Kk Drilling of hard and fragile material and machining device thereof
JPH0811325B2 (en) * 1991-10-03 1996-02-07 株式会社精工舎 Printed circuit board processing method
JPH10277877A (en) * 1997-03-31 1998-10-20 Toa Medical Electronics Co Ltd Automatic working machine
JPH11216720A (en) * 1998-02-05 1999-08-10 Ngk Insulators Ltd Boring method of ceramic
JP2005074602A (en) * 2003-09-02 2005-03-24 Hitachi Via Mechanics Ltd Printed circuit board working machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104439366A (en) * 2014-11-18 2015-03-25 哈尔滨汽轮机厂有限责任公司 Boring mill machining method for inclined flange holes in back of high-pressure outer cylinder of steam turbine
CN110116459A (en) * 2019-05-22 2019-08-13 永康雪纺自动化设备有限公司 A kind of large size ceramic honeycomb inlaying device
CN113103440A (en) * 2020-01-10 2021-07-13 通用电气公司 Method and apparatus for forming apertures in composite members
US11529689B2 (en) 2020-01-10 2022-12-20 General Electric Company Methods and apparatus for forming an aperture in a composite component

Similar Documents

Publication Publication Date Title
CN103934732B (en) The rotary ultrasonic grinding processing method of alumina ceramic material tape spool thin-walled convex spherical structure
CN104603074A (en) Tempered glass processing tool, tempered glass processing device and method for using tempered glass processing tool
CN105171926B (en) A kind of vibration servicing unit of single point diamond cutting cutter
CN104309003A (en) Composite vibration ultrasonic milling spindle
JP4512737B2 (en) Ultrasonic vibration processing equipment
JP2008229752A (en) Cutting method with wire saw
JP2007076183A (en) Boring method
JP2008510631A (en) Ultrasonic vibration assist type processing equipment
CN204309128U (en) The ultrasonic milling spindle of complex vibration
JP4576255B2 (en) Tool whetstone shape creation method
CN103372654A (en) Flycutting groove machining method and flycutting mirror finishing method on film-like workpiece
JP2007307680A (en) Cutting method, optical element and die
CN102070295A (en) Method and device for perforation processing of hard brittle plate
CN105364640A (en) Chemical-mechanical grading compound manufacturing method for micro-semi-ring concave die array
JP2007216372A (en) Ultrasonic excitation unit/ultrasonic excitation table unit/ultrasonic excitation basin unit/ultrasonic excitation horn unit
Li et al. A high-speed batch-mode ultrasonic machining technology for multi-level quartz crystal microstructures
KR20110015155A (en) Elliptical vibrating cutting tool
US9138814B2 (en) Method for machining and related machining tool, machining apparatus, and computer code
CN201625865U (en) Ultrasonic punching machine
CN1637666A (en) Method for producing timepieces mechanism parts produces with sapphire or other crystal materials
KR20150098692A (en) drill bit grinder using ultrasonic vibration
KR102486869B1 (en) Dressing method, dressing device, grindstone and grinding machine
CN101745658A (en) Ultrasonic punching machine
CN1883890A (en) Multiwire cutting loading control method
Mulenga et al. Optimization of machining parameters for ultrasonic assisted vibration-grinding (UAVG) of ultra-low expansion (ULE) optical glass using taguchi method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621