JPH11216720A - Boring method of ceramic - Google Patents

Boring method of ceramic

Info

Publication number
JPH11216720A
JPH11216720A JP2371598A JP2371598A JPH11216720A JP H11216720 A JPH11216720 A JP H11216720A JP 2371598 A JP2371598 A JP 2371598A JP 2371598 A JP2371598 A JP 2371598A JP H11216720 A JPH11216720 A JP H11216720A
Authority
JP
Japan
Prior art keywords
grindstone
hole
ceramic
diameter
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2371598A
Other languages
Japanese (ja)
Inventor
Yasuhiko Watanabe
泰彦 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2371598A priority Critical patent/JPH11216720A/en
Publication of JPH11216720A publication Critical patent/JPH11216720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily bore in a short period of time and improve the life of a grindstone by a method wherein a hole having a predetermined diameter is bored by means of a helical working, which is performed by helically pressing the rotating grindstone in after the grindstone is put into rotation. SOLUTION: On the hole 2 to be worked of a ceramic 1, a grindstone 3 is so constituted as to rotate the grindstone about a rotating shaft 4. The rotating grindstone 3 is pushed down with a driving device so as to bring the grindstone 3 into contact with the portion, in which the hole 2 to be worked is present, of the ceramic 1. Next, with the driving device, the grindstone 3 is pushed in and, at the same time, a helical working, which is carried out by helically moving same part of the outer peripheral part of the grindstone 3 into contact with the some part of the outer peripheral part of the hole to be worked at all times, is executed. Through the helical working, the predetermined hole 2 can be bored in the ceramic 1. Thus, since a hole is made in the ceramic through the helical working, the boring in the ceramic can be carried out easily in a short period of time and under the state that the life of the grindstone is kept longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックスに砥
石を用いて穴加工を行うセラミックスの穴加工方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a hole in a ceramic by using a grindstone on the ceramic.

【0002】[0002]

【従来の技術】従来、セラミックスの砥石を用いて穴加
工を行う場合、まず、図6(a)に示すように、図示し
ない超音波加工機にセットした工具51を上下に超音波
により振動させ遊離砥粒52により超音波加工を行い下
穴54を形成する。次に、図6(b)に示すように、自
転可能な砥石55を下穴54内にセットし、セットした
砥石55の全体を少しずつ回転させて、所定の直径の穴
56とすることで一段の穴加工を行い、この穴加工を下
穴54の底まで連続して行うマシニングセンタによる研
削加工を行うことで、所定の穴加工を実施していた。ま
た、その他の従来の穴加工の例として、図7に示すよう
に、砥石61を回転させながらセラミックス62に対し
て上下させることで加工するドリルサイクル加工を行
い、所定の穴加工を実施する場合もあった。
2. Description of the Related Art Conventionally, when a hole is formed using a ceramic grindstone, first, as shown in FIG. 6A, a tool 51 set in an ultrasonic machine (not shown) is vertically vibrated by ultrasonic waves. Ultrasonic processing is performed by the loose abrasive grains 52 to form a pilot hole 54. Next, as shown in FIG. 6B, the grindstone 55 which can rotate is set in the prepared hole 54, and the whole set grindstone 55 is rotated little by little to form a hole 56 having a predetermined diameter. A predetermined hole is formed by performing a single-stage hole forming and performing a grinding process by a machining center that continuously performs the hole forming up to the bottom of the prepared hole 54. In addition, as another example of conventional hole drilling, as shown in FIG. 7, when a drill cycle process is performed by rotating a grindstone 61 and vertically moving a ceramic 62 to perform predetermined hole drilling. There was also.

【0003】[0003]

【発明が解決しようとする課題】このように、下穴を超
音波加工で形成した後さらにマシニングセンタによる研
削加工を行ったり、回転する砥石を上下させるドリルサ
イクル加工を行うのは、セラミックスが高硬度脆性材料
であるためである。しかしながら、上述した従来の穴加
工方法では、超音波下穴加工後のマシニングセンタによ
る研削加工の場合は穴加工の工程が煩雑になり時間がか
かる問題が、またドリルサイクル加工では砥石径の穴し
か加工できずさらに砥石寿命が短い問題が、それぞれあ
った。
As described above, after a pilot hole is formed by ultrasonic processing, grinding by a machining center or drill cycle processing for raising and lowering a rotating grindstone is performed by a ceramic having a high hardness. This is because it is a brittle material. However, the conventional hole drilling method described above has a problem that the hole drilling process is complicated and takes time in the case of grinding with a machining center after ultrasonic drilling. There was a problem that the life of the grinding wheel could not be further shortened.

【0004】本発明の目的は上述した課題を解消して、
簡単かつ短時間で加工することができ、さらに砥石の長
寿命化を達成できるセラミックスの穴加工方法を提供し
ようとするものである。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a method for boring a ceramic, which can be processed easily and in a short time and which can achieve a longer life of a grindstone.

【0005】[0005]

【課題を解決するための手段】本発明のセラミックスの
穴加工方法は、セラミックスに砥石を用いて穴加工を行
うセラミックスの穴加工方法において、砥石を回転させ
るとともに回転した砥石を螺旋状に押し込むヘリカル加
工により、所定の直径を有する穴加工を行うことを特徴
とするものである。
According to the present invention, there is provided a method of forming a hole in a ceramic, wherein a hole is formed by using a grindstone in the ceramic. It is characterized in that a hole having a predetermined diameter is formed by processing.

【0006】本発明は、セラミックスに対しヘリカル加
工で穴を形成することで、簡単かつ短時間でしかも砥石
の寿命を長く保った状態でセラミックスに穴加工できる
ことを見い出したことによる。すなわち、従来、金属加
工では部分的に利用されているがセラミックスの加工に
は全く利用されていなかった、砥石を回転させるととも
に回転した砥石を螺旋状に押し込むヘリカル加工を行う
ことで、セラミックスに直接穴を加工形成することがで
きる。
The present invention is based on the finding that a hole can be formed in a ceramic in a simple and short time and with a long life of the grindstone by forming a hole in the ceramic by helical processing. In other words, helical processing, in which a grindstone is rotated and the rotated grindstone is pushed in a helical manner, which has been partially used in metal processing but not used in ceramic processing at all, has been directly applied to ceramics. Holes can be machined.

【0007】なお、本発明において、穴加工を最適の状
態で行うためには、加工すべき穴の直径をD、砥石の直
径をdとした場合に、加工すべき穴の直径と砥石の直径
との比D/dを1.3以上とすることが、砥石の寿命等
の観点から好ましい。また、ヘリカル加工の際砥石を従
来の2倍以上の10,000〜20,000rpmとい
う高周速で回転させると、加工効率が高まるため好まし
い。その場合は、例えばダイヤモンドからなる砥粒が高
温となり寿命が短くなるため、ヘリカル加工中に砥石と
セラミックスとの間に高圧クーラントを供給して冷却す
るよう構成することが好ましい。
In the present invention, in order to perform the drilling in an optimum state, when the diameter of the hole to be drilled is D and the diameter of the grindstone is d, the diameter of the hole to be drilled is equal to the diameter of the grindstone. The ratio D / d is preferably 1.3 or more from the viewpoint of the life of the grindstone and the like. In addition, it is preferable to rotate the grindstone at a high peripheral speed of 10,000 to 20,000 rpm, which is twice or more that in the conventional case, in helical processing because the processing efficiency increases. In that case, for example, since the abrasive grains made of diamond become high in temperature and the life is shortened, it is preferable to supply a high-pressure coolant between the grindstone and the ceramics during helical processing and cool it.

【0008】[0008]

【発明の実施の形態】図1は本発明のセラミックスの穴
加工方法の一例を説明するための図である。図1に従っ
て本発明のセラミックスの穴加工方法を説明すると、ま
ず、図1(a)に示すように、加工すべきセラミックス
1の穴2上に、砥石3をセットする。砥石3は、図示し
ない駆動装置により砥石3そのものが回転軸4を中心に
回転するよう構成されている。次に、図1(b)に示す
ように、回転する砥石3を図示しない駆動装置で押し下
げることで、砥石3を加工すべき穴2が存在するセラミ
ックス1の部分に接触させる。ここで、砥石3の位置
は、加工すべき穴2の中心ではなく、その外周部の一部
が加工すべき穴2の外周部の一部と接触する位置とす
る。次に、図示しない駆動装置により、砥石3を押し込
むと同時に、砥石3の外周部の一部が常に加工すべき穴
2の外周部の一部と接するような螺旋状に移動させるヘ
リカル加工を行なう。このヘリカル加工により、図1
(c)に示すように、セラミックス1に所定の穴2を加
工することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a view for explaining an example of a method for boring a ceramic according to the present invention. Referring to FIG. 1, the method for boring a ceramic according to the present invention will be described. First, as shown in FIG. 1A, a grindstone 3 is set on a hole 2 of a ceramic 1 to be processed. The grindstone 3 is configured such that the grindstone 3 itself is rotated about a rotation shaft 4 by a driving device (not shown). Next, as shown in FIG. 1B, the rotating grindstone 3 is pressed down by a driving device (not shown) so that the grindstone 3 is brought into contact with the portion of the ceramics 1 where the hole 2 to be machined exists. Here, the position of the grindstone 3 is not the center of the hole 2 to be machined, but a position where a part of the outer periphery contacts a part of the outer periphery of the hole 2 to be machined. Next, a helical process is performed by a driving device (not shown) in which the grindstone 3 is pushed in and, at the same time, the outer periphery of the grindstone 3 is spirally moved so that a part of the outer periphery always contacts a part of the outer periphery of the hole 2 to be machined. . By this helical processing,
As shown in (c), a predetermined hole 2 can be formed in the ceramics 1.

【0009】上述した本発明のヘリカル加工による穴加
工が、従来の超音波下穴加工後のマシニングセンタ加工
やドリルサイクル加工と比較して、簡単かつ短時間で加
工することができ、さらに砥石の長寿命化を達成できる
のは、以下の理由による。まず、ヘリカル加工は一工程
の加工のみで穴加工を行えるため、従来の穴加工に比べ
て工程を少なくでき、穴加工を簡単かつ短時間で実施す
ることができる。また、回転する砥石を螺旋状に押し込
むヘリカル加工では、従来の穴加工に比べて穴加工中に
砥石に加わる負荷が少なくなり、砥石の長寿命化を達成
できる。
[0009] The above-described hole machining by helical machining of the present invention can be carried out easily and in a short time as compared with conventional machining center machining and drill cycle machining after ultrasonic drilling. The service life can be extended for the following reasons. First, since the helical machining can perform the hole machining only in one process, the number of processes can be reduced as compared with the conventional hole machining, and the hole machining can be performed easily and in a short time. Further, in helical processing in which a rotating grindstone is helically pushed, a load applied to the grindstone during drilling is reduced as compared with conventional drilling, and a longer life of the grindstone can be achieved.

【0010】以下、本発明のセラミックスの穴加工方法
を実施するに当たって、加工条件の好ましい態様につい
て説明する。まず、加工すべき穴径と砥石径との関係に
ついて研削抵抗の観点から調査した。図2に示すよう
に、直径d=3.5mmのダイヤモンド砥石11を準備
し、加工すべき穴12の直径DをD=4.1mm、4.
62mm、4.95mm、5.16mmと変化させ、ダ
イヤモンド砥石11の周速および回転押し込み量を一定
とした同一の条件のヘリカル加工で、実際にアルミナ板
13に対し穴加工を行った。そして、各穴加工における
研削量と研削抵抗との関係を求めた。結果を図3に示
す。ここで、研削量は実際に研削したアルミナ板13の
体積を、研削抵抗はダイヤモンド砥石11の先端11a
が穴12の底部12aから受ける抵抗を、それぞれ示
す。
Hereinafter, preferred embodiments of the processing conditions for carrying out the method for boring a ceramic of the present invention will be described. First, the relationship between the hole diameter to be machined and the grindstone diameter was investigated from the viewpoint of grinding resistance. As shown in FIG. 2, a diamond grindstone 11 having a diameter d = 3.5 mm is prepared, and the diameter D of the hole 12 to be machined is set to D = 4.1 mm.
Holes were actually formed in the alumina plate 13 by helical processing under the same conditions with the peripheral speed of the diamond grinding stone 11 and the rotation pushing amount being constant while changing to 62 mm, 4.95 mm, and 5.16 mm. Then, the relationship between the grinding amount and the grinding resistance in each hole processing was obtained. The results are shown in FIG. Here, the grinding amount is the volume of the alumina plate 13 actually ground, and the grinding resistance is the tip 11a of the diamond grinding stone 11.
Indicate the resistance received from the bottom 12a of the hole 12 respectively.

【0011】図3の結果から、加工すべき穴12の直径
DがD=5.16mm、4.95mm、4.62mmの
場合は研削量が増加してもそれほど研削抵抗が増加しな
いが、加工すべき穴12の直径DがD=4.1mmの場
合は研削量の増加に伴って研削抵抗が急激に増大するこ
とがわかった。以上の結果から、加工すべき穴の直径D
と砥石の直径dとの比D/dを1.3以上にすると好ま
しいことがわかった。
From the results shown in FIG. 3, when the diameter D of the hole 12 to be machined is D = 5.16 mm, 4.95 mm, 4.62 mm, the grinding resistance does not increase so much even if the grinding amount increases. It was found that when the diameter D of the hole 12 to be formed was D = 4.1 mm, the grinding resistance sharply increased as the grinding amount increased. From the above results, the diameter D of the hole to be machined
It has been found that it is preferable to set the ratio D / d to the diameter d of the grinding stone to 1.3 or more.

【0012】次に、ダイヤモンド砥石11の高周速化の
影響について調査した。まず、ヘリカル加工におけるダ
イヤモンド砥石11の周面11bでの砥石切り込み深さ
gは、平面研削盤の場合と同じと考えた。すなわち、図
4に平面研削盤の場合の例を示すように、ダイヤモンド
砥石11の周速をV、砥粒15の間隔をa、砥石径を
D、アルミナ板13の送り速度をv、加工厚さをtとし
たとき、砥粒切り込み深さgは、g=2at1/2 (1/
D)1/2 (v/V)と表すことができる。以上の式にお
いて、a、t、D、vが一定の場合、高周速化してダイ
ヤモンド砥石11の周速Vを大きくすると、砥粒切り込
み深さgを小さくできることがわかる。
Next, the effect of increasing the peripheral speed of the diamond grinding wheel 11 was investigated. First, it was considered that the cutting depth g of the grindstone in the peripheral surface 11b of the diamond grindstone 11 in the helical machining was the same as in the case of the surface grinder. That is, as shown in the example of the surface grinding machine in FIG. 4, the peripheral speed of the diamond grindstone 11 is V, the interval between the abrasive grains 15 is a, the grindstone diameter is D, the feed speed of the alumina plate 13 is v, and the working thickness is V. Assuming that t is t, the abrasive grain cutting depth g is g = 2 at 1/2 (1 /
D) 1/2 (v / V). In the above formulas, it can be seen that when a, t, D, and v are constant, increasing the peripheral speed and increasing the peripheral speed V of the diamond grindstone 11 can reduce the abrasive grain cutting depth g.

【0013】このように砥石周速を高周速化し、砥粒切
り込み深さを減少させた場合は、砥粒に加わる負担を軽
減させることができる。砥粒に加わる負担を軽減できる
と、研削抵抗を減少でき、送り量の増加が可能となり、
研削能率を向上させることができる。また、砥粒に加わ
る負担を軽減できると、砥石摩耗が減少し、砥石の長寿
命化を達成することができる。以上の結果から、砥石の
高周速化が研削能率の向上および砥石寿命の延長の観点
で好ましく、具体的には従来の周速の2倍以上の10,
000〜20,000rpmの周速でヘリカル加工を行
うことが好ましいことがわかった。
In the case where the peripheral speed of the grindstone is increased and the cutting depth of the abrasive grains is reduced, the load applied to the abrasive grains can be reduced. If the load on the abrasive grains can be reduced, the grinding resistance can be reduced and the feed rate can be increased,
The grinding efficiency can be improved. In addition, when the load applied to the abrasive grains can be reduced, the wear of the grindstone decreases, and the life of the grindstone can be prolonged. From the above results, it is preferable to increase the peripheral speed of the grinding wheel from the viewpoint of improving the grinding efficiency and extending the life of the grinding wheel.
It has been found that it is preferable to perform helical machining at a peripheral speed of 000 to 20,000 rpm.

【0014】上述したようにダイヤモンド砥石を高周速
化すると、通常よりも大量の熱が発生する。ここで、ダ
イヤモンド砥粒は、熱に弱いことが知られている。その
ため、ダイヤモンド砥石を冷却するための高圧クーラン
トユニットを設けることが好ましい。図5はクーラント
ユニットを有するダイヤモンド砥石の一例の構成を示す
図である。
When the peripheral speed of the diamond grindstone is increased as described above, a larger amount of heat is generated than usual. Here, it is known that diamond abrasive grains are weak to heat. Therefore, it is preferable to provide a high-pressure coolant unit for cooling the diamond grindstone. FIG. 5 is a diagram showing a configuration of an example of a diamond grindstone having a coolant unit.

【0015】図5に示す例において、21は先端部21
aとこの先端部21aより太径の基部21bとからなる
砥石本体、22は先端部21aの周面21a−1および
先端21a−2全体にダイヤモンド砥粒を電着により設
けたダイヤモンド電着部、23は砥石本体21を貫通し
て設けたクーラント通過用の貫通孔、24は先端部21
aの先端21a−2の径方向全体に設けた貫通孔23と
連通するスリット、25は貫通孔23に研削液等のクー
ラントを管部26を介して供給するクーラント供給装置
である。
In the example shown in FIG.
a and a base 21b having a larger diameter than the tip 21a, a diamond electrodeposition part 22 in which diamond abrasive grains are provided by electrodeposition on the entire peripheral surface 21a-1 and the tip 21a-2 of the tip 21a, Reference numeral 23 denotes a through-hole for passing a coolant provided through the grindstone main body 21, and reference numeral 24 denotes a tip portion 21.
The slit 25 communicating with the through hole 23 provided in the entire radial direction of the tip 21 a-2 of a is a coolant supply device for supplying a coolant such as a grinding fluid to the through hole 23 through the pipe 26.

【0016】本例において、クーラントが先端部21a
の先端21a−2から噴出するよう構成できれば、上記
構成に限らずどのような構成をとることも可能である
が、ヘリカル加工時先端21a−2は加工すべき穴の底
部と常に接する状態にあるため、砥石本体21に貫通孔
23を設けただけでは、先端21a−2と加工すべき穴
の底部との間にクーラントを効果的に噴出できない。そ
のため、本例では、先端部21aの先端21a−2から
貫通孔23に連通するスリット24を設けることで、こ
のスリット24を介してクーラントが効果的に噴出でき
るよう構成している。
In this embodiment, the coolant is supplied to the tip 21a.
Any configuration is possible without being limited to the above configuration, as long as it can be ejected from the tip 21a-2 of the hole. However, the tip 21a-2 is always in contact with the bottom of the hole to be machined during helical machining. Therefore, merely providing the through-hole 23 in the grindstone main body 21 does not allow the coolant to be effectively ejected between the tip 21a-2 and the bottom of the hole to be machined. Therefore, in this example, by providing a slit 24 that communicates with the through hole 23 from the distal end 21a-2 of the distal end portion 21a, the coolant can be effectively ejected through the slit 24.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、セラミックスに対しヘリカル加工で穴を形成
しているため、簡単かつ短時間でしかも砥石の寿命を長
く保った状態でセラミックスに穴加工できる。すなわ
ち、従来、金属加工では部分的に利用されているがセラ
ミックスの加工には全く利用されていなかった、砥石を
回転させるとともに回転した砥石を螺旋状に押し込むヘ
リカル加工を行うことで、セラミックスに直接穴を加工
形成することができる。
As is apparent from the above description, according to the present invention, since the holes are formed by helical processing in the ceramics, the ceramics can be formed simply and in a short time while maintaining the life of the grinding wheel long. Holes can be machined. In other words, helical processing, in which a grindstone is rotated and the rotated grindstone is pushed in a helical manner, which has been partially used in metal processing but not used in ceramic processing at all, has been directly applied to ceramics. Holes can be machined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックスの穴加工方法の一例を説
明するための図である。
FIG. 1 is a diagram for explaining an example of a method for boring a ceramic according to the present invention.

【図2】本発明において加工すべき穴径と砥石径との関
係を求めた状態を示す図である。
FIG. 2 is a diagram showing a state in which a relationship between a hole diameter to be machined and a grindstone diameter is obtained in the present invention.

【図3】本発明における研削量と研削抵抗との関係を示
すグラフである。
FIG. 3 is a graph showing a relationship between a grinding amount and a grinding resistance in the present invention.

【図4】平面研削盤における砥粒切り込み深さを説明す
るための図である。
FIG. 4 is a diagram for explaining an abrasive grain cutting depth in a surface grinding machine.

【図5】本発明におけるクーラントユニットを有するダ
イヤモンド砥石の一例の構成を示す図である。
FIG. 5 is a diagram showing a configuration of an example of a diamond grindstone having a coolant unit according to the present invention.

【図6】従来のセラミックスの穴加工方法の一例を説明
するための図である。
FIG. 6 is a view for explaining an example of a conventional method for boring a ceramic.

【図7】従来のセラミックスの穴加工方法の他の例を説
明するための図である。
FIG. 7 is a view for explaining another example of a conventional method for boring a ceramic.

【符号の説明】[Explanation of symbols]

1 セラミックス、2、12 穴、3 砥石、4 回転
軸、11 ダイヤモンド砥石、11a 先端、11b
周面、12a 底部、13 アルミナ板、15砥粒、2
1 砥石本体、21a 先端部、21a−1 周面、2
1a−2 先端、21b 基部、22 ダイヤモンド電
着部、23 貫通孔、24 スリット、25 クーラン
ト供給装置
Reference Signs List 1 ceramics, 2, 12 holes, 3 grinding stones, 4 rotating shafts, 11 diamond grinding stones, 11a tip, 11b
Peripheral surface, 12a bottom, 13 alumina plate, 15 abrasive grains, 2
1 wheel body, 21a tip, 21a-1 peripheral surface, 2
1a-2 Tip, 21b base, 22 electrodeposited diamond part, 23 through hole, 24 slit, 25 coolant supply device

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】セラミックスに砥石を用いて穴加工を行う
セラミックスの穴加工方法において、砥石を回転させる
とともに回転した砥石を螺旋状に押し込むヘリカル加工
により、所定の直径を有する穴加工を行うことを特徴と
するセラミックスの穴加工方法。
1. A method for boring a ceramic in which a hole is formed by using a grindstone in a ceramic, wherein a hole having a predetermined diameter is formed by helical processing in which the grindstone is rotated and the rotated grindstone is spirally pushed. Characteristic hole drilling method for ceramics.
【請求項2】前記加工すべき穴の直径をD、前記砥石の
直径をdとした場合に、加工すべき穴の直径と砥石の直
径との比D/dを1.3以上とする請求項1記載のセラ
ミックスの穴加工方法。
2. The ratio D / d of the diameter of the hole to be machined to the diameter of the grindstone is 1.3 or more, where D is the diameter of the hole to be machined and d is the diameter of the grinding wheel. Item 6. The method for boring a ceramic according to Item 1.
【請求項3】前記砥石の回転を高周速で行う請求項1ま
たは2記載のセラミックスの穴加工方法。
3. The method according to claim 1, wherein the rotation of the grindstone is performed at a high peripheral speed.
【請求項4】前記砥石の高周速回転の速度が10,00
0〜20,000rpmである請求項3記載のセラミッ
クスの穴加工方法。
4. A high peripheral speed rotation of the grinding wheel is 10,000.
4. The method according to claim 3, wherein the rotation speed is from 0 to 20,000 rpm.
【請求項5】前記砥石が砥石を冷却するためのクーラン
トユニットを有し、加工の際に砥石と加工穴との間にク
ーラントを噴出させて砥石を冷却する請求項1〜4のい
ずれか1項に記載のセラミックスの穴加工方法。
5. The grindstone according to claim 1, wherein the grindstone has a coolant unit for cooling the grindstone, and a coolant is jetted between the grindstone and a processing hole to cool the grindstone during processing. Item 6. A method for drilling a hole in a ceramic according to the item.
JP2371598A 1998-02-05 1998-02-05 Boring method of ceramic Pending JPH11216720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2371598A JPH11216720A (en) 1998-02-05 1998-02-05 Boring method of ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2371598A JPH11216720A (en) 1998-02-05 1998-02-05 Boring method of ceramic

Publications (1)

Publication Number Publication Date
JPH11216720A true JPH11216720A (en) 1999-08-10

Family

ID=12118041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2371598A Pending JPH11216720A (en) 1998-02-05 1998-02-05 Boring method of ceramic

Country Status (1)

Country Link
JP (1) JPH11216720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076183A (en) * 2005-09-14 2007-03-29 Kyocera Kinseki Corp Boring method
JP2011051046A (en) * 2009-08-31 2011-03-17 Gifu Prefecture Machining method and machining device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007076183A (en) * 2005-09-14 2007-03-29 Kyocera Kinseki Corp Boring method
JP2011051046A (en) * 2009-08-31 2011-03-17 Gifu Prefecture Machining method and machining device

Similar Documents

Publication Publication Date Title
KR20080078797A (en) Gun drill
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
JP4304567B2 (en) Segment type grinding wheel
JPH11216720A (en) Boring method of ceramic
JP2008155287A (en) Workpiece grinding device and workpiece grinding method
JP3088537B2 (en) Finishing method and processing device for holes of high hardness material
JPH05200729A (en) Core drill and drilling method by the drill
JPH11123365A (en) Ultrasonic vibrating combined processing tool
JP2008229764A (en) Rotary tool and machining method
WO2008018559A1 (en) Noncoring drill bit
JPH08257923A (en) Shaft-equipped grinding wheel and tool holder
JP2021030349A (en) Grinding device and grinding method
JP2000084858A (en) Cup type rotating grinding wheel with through hole
JP5623716B2 (en) Drill for processing, processing apparatus, and method for manufacturing processed body
JP3606742B2 (en) Core bit with clearance in the base metal
JP3306443B2 (en) Diamond core drill
JP2002066927A (en) Diamond tool for processing hard and fragile material and processing method using this
JP2581987Y2 (en) Glass drill
JP3663279B2 (en) Small diameter superabrasive grinding wheel manufacturing method
JP3998648B2 (en) Cup type rotating grindstone
JPH0526219U (en) Grinding stone for processing
JPH09234615A (en) Boring device
JP2002079471A (en) Drilling tool for hard and brittle material
KR100252338B1 (en) A cutting tool and milling machine using this
JPH0626790B2 (en) Precision compound grinding method that superimposes ultrasonic vibration and low frequency vibration on grinding wheel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020702