JP5623716B2 - Drill for processing, processing apparatus, and method for manufacturing processed body - Google Patents

Drill for processing, processing apparatus, and method for manufacturing processed body Download PDF

Info

Publication number
JP5623716B2
JP5623716B2 JP2009179422A JP2009179422A JP5623716B2 JP 5623716 B2 JP5623716 B2 JP 5623716B2 JP 2009179422 A JP2009179422 A JP 2009179422A JP 2009179422 A JP2009179422 A JP 2009179422A JP 5623716 B2 JP5623716 B2 JP 5623716B2
Authority
JP
Japan
Prior art keywords
core drill
liquid
workpiece
drill
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179422A
Other languages
Japanese (ja)
Other versions
JP2011031467A (en
Inventor
宗 柳沢
宗 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBA R&D CO., LTD
Ohara Inc
Original Assignee
SHIBA R&D CO., LTD
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBA R&D CO., LTD, Ohara Inc filed Critical SHIBA R&D CO., LTD
Priority to JP2009179422A priority Critical patent/JP5623716B2/en
Publication of JP2011031467A publication Critical patent/JP2011031467A/en
Application granted granted Critical
Publication of JP5623716B2 publication Critical patent/JP5623716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Mining & Mineral Resources (AREA)

Description

本発明は、被加工体を研削によって加工する技術に関する。   The present invention relates to a technique for processing a workpiece by grinding.

ガラス等の被加工体の加工には、研削が汎用されている。図10に示されるように、研削は、加工用ドリル900を、その先端910を被加工体950に当接させた状態で回転させることにより行うのが一般的である。   Grinding is widely used for processing a workpiece such as glass. As shown in FIG. 10, the grinding is generally performed by rotating the machining drill 900 with the tip 910 in contact with the workpiece 950.

この研削の間、先端910と被加工体950との間には強い摩擦が生じ、先端910が高度に加熱されるため、急速に劣化する。この状態を放置すると、加工用ドリル900のツールライフが短くなり、加工コストが嵩むのみならず、劣化した先端910で研削されることによる加工体の品質低下が招来する。そこで、かかる事態を抑制するため、加工用ドリル900の内部に液体Lを供給する技術が開示されている(例えば特許文献1参照)。   During this grinding, strong friction is generated between the tip 910 and the workpiece 950, and the tip 910 is highly heated, so that it rapidly deteriorates. If this state is left as it is, the tool life of the machining drill 900 is shortened, the machining cost is increased, and the quality of the workpiece is reduced due to grinding with the deteriorated tip 910. Therefore, in order to suppress such a situation, a technique for supplying the liquid L into the machining drill 900 is disclosed (for example, see Patent Document 1).

特開平7−108523号公報JP-A-7-108523

しかし、従来の加工用ドリル900では、液体Lが先端910と被加工体950との隙間に入り込みにくいため、最も冷却すべき先端910の冷却が不充分である。また、液体Lの流通が遅延する結果、削粉の排出が阻害され、残留した削粉が被加工体950にクラックを生じさせやすい。このように、従来の加工用ドリル900は、ツールライフが短く、被加工体950の品質を充分に確保することが困難であった。   However, in the conventional machining drill 900, the liquid L is unlikely to enter the gap between the tip 910 and the workpiece 950, so that the tip 910 to be cooled most is insufficiently cooled. Further, as a result of the delay of the flow of the liquid L, the discharge of the cutting powder is hindered, and the remaining cutting powder tends to cause a crack in the workpiece 950. As described above, the conventional machining drill 900 has a short tool life, and it is difficult to sufficiently ensure the quality of the workpiece 950.

本発明は、以上の実情に鑑みてなされたものであり、ツールライフを長期化し且つ加工体の品質及び加工速度を向上することができる加工用ドリル、加工装置、及び加工体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a machining drill, a machining apparatus, and a machining body manufacturing method capable of prolonging the tool life and improving the quality and machining speed of the machined body. The purpose is to do.

本発明者らは、コアドリルの軸方向に対し所定角度をなして液体を噴出することで、コアドリル先端と被加工体との隙間への液体の入り込みが円滑化されることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The present inventors have found that the liquid can be smoothly introduced into the gap between the core drill tip and the workpiece by ejecting the liquid at a predetermined angle with respect to the axial direction of the core drill. It came to be completed. Specifically, the present invention provides the following.

(1) 筒状のコアドリルと、このコアドリルの内部空間から前記コアドリルの先端に向けて液体が噴出される噴出部と、を備える加工用ドリルであって、
前記液体は、前記噴出部から、前記コアドリルの軸方向に対し所定角度をなして噴出される加工用ドリル。
(1) A processing drill comprising: a cylindrical core drill; and an ejection portion from which liquid is ejected from an inner space of the core drill toward the tip of the core drill,
The processing drill in which the liquid is ejected from the ejection part at a predetermined angle with respect to the axial direction of the core drill.

(2) 筒状のコアドリルと、このコアドリルの内部空間から前記コアドリルの先端に向けて液体が噴出される噴出部と、を備える加工用ドリルであって、
前記噴出部は、前記液体が導入される導入路と、この導入路を前記コアドリルの内部空間に連通させ且つ前記コアドリルの軸方向に対し所定角度をなして延びる噴出路と、を有する加工用ドリル。
(2) A processing drill comprising a cylindrical core drill, and an ejection portion from which liquid is ejected from the internal space of the core drill toward the tip of the core drill,
The ejection part includes an introduction path through which the liquid is introduced, and an ejection path that communicates the introduction path with the internal space of the core drill and extends at a predetermined angle with respect to the axial direction of the core drill. .

(3) 前記所定角度は、10°以上である(1)又は(2)記載の加工用ドリル。   (3) The processing drill according to (1) or (2), wherein the predetermined angle is 10 ° or more.

(4) 前記コアドリルは、前記噴出部から噴出される液体に衝突される形状を有する(1)から(3)いずれか記載の加工用ドリル。   (4) The processing drill according to any one of (1) to (3), wherein the core drill has a shape that collides with a liquid ejected from the ejection portion.

(5) 前記噴出路の開口は、1つである(2)記載の加工用ドリル。   (5) The drill for processing according to (2), wherein the number of openings in the ejection path is one.

(6) 前記コアドリル及び前記噴出部は、前記軸方向に沿った相対回転を抑制する回転抑制機構を介して接続されている(1)から(5)いずれか記載の加工用ドリル。   (6) The processing drill according to any one of (1) to (5), wherein the core drill and the ejection portion are connected via a rotation suppression mechanism that suppresses relative rotation along the axial direction.

(7) (1)から(6)いずれか記載の加工用ドリルと、前記コアドリルを前記軸方向に沿って回転させる回転手段と、前記噴出部に前記液体を導入する液体導入手段と、を備える加工装置。   (7) The processing drill according to any one of (1) to (6), a rotation unit that rotates the core drill along the axial direction, and a liquid introduction unit that introduces the liquid into the ejection portion. Processing equipment.

(8) 前記液体導入手段は、前記液体の導入圧を調節する導入圧調節手段を有する(7)記載の加工装置。   (8) The processing apparatus according to (7), wherein the liquid introduction unit includes an introduction pressure adjusting unit that adjusts an introduction pressure of the liquid.

(9) (7)又は(8)記載の加工装置を用い、前記コアドリルの先端で被加工体を研削して加工体を製造する加工体の製造方法。   (9) A method for manufacturing a processed body, in which the processed body is manufactured by grinding the workpiece at the tip of the core drill using the processing apparatus according to (7) or (8).

(10) 前記液体の前記噴出部への導入を0.05MPa以上1MPa以下の圧力で行う(9)記載の製造方法。   (10) The manufacturing method according to (9), wherein the liquid is introduced into the ejection part at a pressure of 0.05 MPa to 1 MPa.

(11) 前記液体の噴出は、前記コアドリルを前記被加工体から離間したとき、前記液体が前記コアドリルの先端から、前記軸方向に直交する方向又はそれより基端側の方向へと散乱するように行う(9)又は(10)記載の製造方法。   (11) When the core drill is separated from the workpiece, the liquid is ejected from the tip of the core drill in a direction perpendicular to the axial direction or a direction closer to the base end. (9) or the production method according to (10).

(12) 前記被加工体は、非晶質ガラス及び/又は結晶質ガラスを含む(9)から(11)いずれか記載の製造方法。   (12) The manufacturing method according to any one of (9) to (11), wherein the workpiece includes amorphous glass and / or crystalline glass.

(13) 研削後の被加工体の表面を処理し除去する表面処理工程を更に有する(9)から(12)いずれか記載の製造方法。   (13) The manufacturing method according to any one of (9) to (12), further including a surface treatment step of treating and removing the surface of the workpiece after grinding.

本発明によれば、コアドリルの軸方向に対し所定角度をなして液体が噴出されるので、液体がコアドリル先端と被加工体との隙間へ入り込みやすい。これにより、ツールライフを長期化し、加工体の品質及び加工速度を向上することができる。   According to the present invention, since the liquid is ejected at a predetermined angle with respect to the axial direction of the core drill, the liquid can easily enter the gap between the core drill tip and the workpiece. Thereby, tool life can be lengthened and the quality and processing speed of a processed body can be improved.

本発明の一実施形態に係る加工用ドリルを備える加工装置の使用状態を示す図である。It is a figure which shows the use condition of a processing apparatus provided with the drill for a process which concerns on one Embodiment of this invention. 図1の加工用ドリルの拡大断面図である。It is an expanded sectional view of the drill for processing of FIG. 図1の加工装置の使用時における液体の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the liquid at the time of use of the processing apparatus of FIG. 図1の加工装置のコアドリルを被加工体から離間したときにおける液体の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the liquid when the core drill of the processing apparatus of FIG. 1 is separated from the workpiece. 図1の加工装置の別の使用状態を示す図である。It is a figure which shows another use condition of the processing apparatus of FIG. 図5の加工装置の使用時における液体の挙動を示す模式図である。It is a schematic diagram which shows the behavior of the liquid at the time of use of the processing apparatus of FIG. 本発明の別の実施形態に係る加工用ドリルを備える加工装置の使用状態を示す図である。It is a figure which shows the use condition of a processing apparatus provided with the drill for a process which concerns on another embodiment of this invention. 本発明の一実施例に係る加工用ドリルを備える加工装置の使用状態を示す写真である。It is a photograph which shows the use condition of the processing apparatus provided with the processing drill which concerns on one Example of this invention. 比較例に係る加工用ドリルを備える加工装置の使用状態を示す写真である。It is a photograph which shows the use condition of a processing apparatus provided with the processing drill which concerns on a comparative example. 従来例に係る加工用ドリルの使用状態を示す図である。It is a figure which shows the use condition of the processing drill which concerns on a prior art example.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、第1実施形態以外の各実施形態の説明において、第1実施形態と共通するものについては、同一符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in description of each embodiment other than 1st Embodiment, the same code | symbol is attached | subjected about what is common in 1st Embodiment, and the description is abbreviate | omitted.

図1は、本発明の一実施形態に係る加工用ドリル20を備える加工装置10の使用状態を示す図である。図1に示されるように、本発明に係る加工体の製造方法では、加工用ドリル20が備えるコアドリル21の先端211で、被加工体90を研削する。具体的には、先端211を被加工体90の当接面91に当接させた状態で、駆動装置30の回転部31が備える駆動源311を稼動させることで、駆動源311の駆動力が回転軸313を介してシャンク23に伝わり、このシャンク23に設けられたコアドリル21が回転する。これにより、先端211が当接面91を研削し、所望の形状の加工体が製造される。   FIG. 1 is a diagram illustrating a usage state of a processing apparatus 10 including a processing drill 20 according to an embodiment of the present invention. As shown in FIG. 1, in the method for manufacturing a processed body according to the present invention, a workpiece 90 is ground by a tip 211 of a core drill 21 provided in the processing drill 20. Specifically, the driving force of the driving source 311 is increased by operating the driving source 311 included in the rotating unit 31 of the driving device 30 in a state where the tip 211 is in contact with the abutting surface 91 of the workpiece 90. It is transmitted to the shank 23 via the rotating shaft 313, and the core drill 21 provided on the shank 23 rotates. As a result, the tip 211 grinds the contact surface 91, and a processed body having a desired shape is manufactured.

前述のように、先端211と当接面91との間には強い摩擦が生じ、先端211が高度に加熱されて消耗しやすい。また、当接面91が研削されて生じる削粉がたまると、この削粉が被加工体90にクラックを生じさせやすい。そこで、コアドリル21の先端に形成された噴出口27より、液体Lがコアドリル21の先端211に向けて噴出される。これにより、上記事態の抑制が期待される。   As described above, strong friction is generated between the tip 211 and the abutting surface 91, and the tip 211 is highly heated and easily consumed. Further, if the cutting powder generated by grinding the contact surface 91 is accumulated, the cutting powder easily causes a crack in the workpiece 90. Therefore, the liquid L is ejected from the ejection port 27 formed at the tip of the core drill 21 toward the tip 211 of the core drill 21. Thereby, suppression of the above situation is expected.

具体的には、液体導入部40の液体源41からの液体が供給管43を通じてシャンク23に導入される。シャンク23の内部には、供給管43を噴出口27に連通する噴出部25が設けられているため、この噴出部25を流通した液体Lが噴出口27から噴出されることになる。   Specifically, the liquid from the liquid source 41 of the liquid introduction unit 40 is introduced into the shank 23 through the supply pipe 43. Since the ejection part 25 which connects the supply pipe | tube 43 to the ejection port 27 is provided in the inside of the shank 23, the liquid L which distribute | circulated this ejection part 25 will be ejected from the ejection port 27. FIG.

図2は、図1の加工用ドリル20の拡大断面図である。図2に示されるように、本実施形態に係る噴出部25は、液体Lが導入される導入路251と、この導入路251をコアドリル21の内部空間ISに連通させ且つコアドリル21の軸方向AXに対し所定角度Θをなして延びる噴出路253と、を有する。これにより、液体Lは軸方向AXに対し所定角度Θをなして噴出される。   FIG. 2 is an enlarged cross-sectional view of the processing drill 20 of FIG. As shown in FIG. 2, the ejection portion 25 according to the present embodiment includes an introduction path 251 through which the liquid L is introduced, the introduction path 251 communicating with the internal space IS of the core drill 21, and the axial direction AX of the core drill 21. , And an ejection path 253 extending at a predetermined angle Θ. As a result, the liquid L is ejected at a predetermined angle Θ with respect to the axial direction AX.

これにより、図3に示すように本実施形態の加工装置10では、液体Lが端面213及び当接面91の間に入り込み、外面214側へと流れる。このように液体Lの外部への流通が円滑に行われるため、先端211を中心としてコアドリル21が充分に冷却され、また削粉の排出が促進される。これにより、コアドリル21のツールライフを長期化し且つ加工体の品質及び加工速度を向上することができる。   Thereby, as shown in FIG. 3, in the processing apparatus 10 of this embodiment, the liquid L enters between the end surface 213 and the contact surface 91 and flows to the outer surface 214 side. Since the liquid L is smoothly distributed to the outside as described above, the core drill 21 is sufficiently cooled around the tip 211 and the discharge of the cutting powder is promoted. Thereby, the tool life of the core drill 21 can be prolonged, and the quality and processing speed of the processed body can be improved.

なお、本実施形態では、液体Lを軸方向AXに角度をなして噴出させるため、噴出路253が軸方向AXに角度をなして延びる構成を採用したが、これに限られない。例えば、軸方向AX又は他の任意の方向に沿って延びる噴出路から液体を噴出するとともに、噴出した液体を軸方向に角度をなして延びる板状部材に当てることで、液体の移動方向を軸方向に角度をなす方向へと変えてもよい。   In the present embodiment, since the liquid L is ejected at an angle with respect to the axial direction AX, the ejection path 253 extends at an angle with respect to the axial direction AX. However, the present invention is not limited thereto. For example, the liquid is ejected from an ejection path extending along the axial direction AX or any other direction, and the ejected liquid is applied to a plate-like member extending at an angle in the axial direction so that the liquid moving direction is You may change into the direction which makes an angle with a direction.

所定角度Θは、過小であると、液体の端面213及び当接面91の隙間への入り込みが不充分になりやすい一方、過大であると、内面212への液体の衝突位置が先端211から離れる結果、同様に液体の端面213及び当接面91の隙間への入り込みが不充分になりやすい。そこで、所定角度Θの下限は10°であることが好ましく、より好ましくは20°、最も好ましくは30°である。また、所定角度Θの上限は80°であることが好ましく、より好ましくは60°、最も好ましくは45°である。   If the predetermined angle Θ is too small, the liquid easily enters the gap between the end surface 213 and the contact surface 91, while if too large, the collision position of the liquid on the inner surface 212 moves away from the tip 211. As a result, similarly, the entry of the liquid into the gap between the end surface 213 and the contact surface 91 tends to be insufficient. Therefore, the lower limit of the predetermined angle Θ is preferably 10 °, more preferably 20 °, and most preferably 30 °. The upper limit of the predetermined angle Θ is preferably 80 °, more preferably 60 °, and most preferably 45 °.

図4は、図1の加工装置10のコアドリル21を被加工体90から離間したときにおける液体の挙動を示す模式図である。図4に示されるように、軸方向AXに対し所定角度Θをなして噴出された液体Lは、内面212に衝突すると、コアドリル21を被加工体90から離間したときには、多方向へと散乱する。これにより、液体Lが端面213及び当接面91の隙間に更に入り込みやすくなり、コアドリル21のツールライフを更に長期化し且つ加工体の品質及び加工速度を向上することができる。従って、コアドリル21は、噴出部25から噴出される液体Lに衝突される形状を有することが好ましい。ただし、コアドリル21の形状あるいは先端211の消耗に伴って、液体Lが内面212に衝突しない場合も想定されるが、この場合でも、従来例に比較し端面213及び当接面91の隙間に入り込みやすいことには変わりがなく、本発明に包含される。   FIG. 4 is a schematic diagram showing the behavior of the liquid when the core drill 21 of the processing apparatus 10 of FIG. 1 is separated from the workpiece 90. As shown in FIG. 4, when the liquid L ejected at a predetermined angle Θ with respect to the axial direction AX collides with the inner surface 212, it is scattered in multiple directions when the core drill 21 is separated from the workpiece 90. . Thereby, it becomes easier for the liquid L to enter the gap between the end surface 213 and the contact surface 91, the tool life of the core drill 21 can be further prolonged, and the quality and processing speed of the processed body can be improved. Therefore, the core drill 21 preferably has a shape that collides with the liquid L ejected from the ejection portion 25. However, it is assumed that the liquid L does not collide with the inner surface 212 due to the shape of the core drill 21 or the consumption of the tip 211. It is easy to change and is included in the present invention.

「噴出部から噴出される液体に衝突される形状」は、所定角度Θに応じて、コアドリル21の内径R及び長さLGを適宜設定することで実現できる。上記した散乱現象は、液体Lが内面212のうち先端211の近傍に衝突した際に顕著に生じることが分かっている。このため、噴出路253の延長線上に先端211が位置するよう、コアドリル21を設計することが好ましい。   The “shape colliding with the liquid ejected from the ejection part” can be realized by appropriately setting the inner diameter R and the length LG of the core drill 21 according to the predetermined angle Θ. It has been found that the above-described scattering phenomenon occurs remarkably when the liquid L collides with the vicinity of the tip 211 in the inner surface 212. For this reason, it is preferable to design the core drill 21 so that the tip 211 is positioned on the extension line of the ejection path 253.

なお、長さLGは、研削に伴うコアドリル21の消耗を考慮し、適宜設定されることが好ましい。即ち、長さLGが過小であると、コアドリル21が消耗して間もなくコアドリル21を交換する必要がある一方、長さLGが過大であると、液体Lを先端211の近傍に衝突させるための角度Θが小さくなる結果、液体Lの流通を充分に促進するのが困難である。   The length LG is preferably set as appropriate in consideration of wear of the core drill 21 accompanying grinding. That is, if the length LG is too small, the core drill 21 is consumed and the core drill 21 needs to be replaced soon. On the other hand, if the length LG is too long, the angle for causing the liquid L to collide with the vicinity of the tip 211. As a result of the reduction in Θ, it is difficult to sufficiently promote the flow of the liquid L.

また、噴出口27の個数は、特に限定されないが、図1に示すように1つであることが好ましい。これにより、液体Lの流れが単純化するため、流通を促進するとともに、液体Lの使用量を削減することもできる。ただし、これに限られず、噴出口27の個数は2つ以上であってもよく、これにより液体Lの供給量の自由度を広げることができる。   Further, the number of the ejection ports 27 is not particularly limited, but is preferably one as shown in FIG. Thereby, since the flow of the liquid L is simplified, distribution can be promoted and the amount of the liquid L used can be reduced. However, the present invention is not limited to this, and the number of the ejection ports 27 may be two or more, and thereby the degree of freedom of the supply amount of the liquid L can be expanded.

ところで、所望の効果を得るためには、液体Lを当接面91の全周に亘って供給する必要があり、そのためには、噴出部25を軸方向AXを軸にして回転させる必要がある。ここで、軸方向AXを軸にして噴出部25を回転させるため、コアドリル21及び噴出部25が、軸方向AXに沿った相対回転を抑制する回転抑制機構を介して接続されていることが好ましい。回転抑制機構は、具体的には、コアドリル21及び噴出部25を互いに固着する機構等であってよい。これにより、噴出部25を回転させるための駆動源は駆動装置30で代用することができ、部品点数の増加を防止できる。ただし、これに限られず、噴出部25を回転させる機構を別途設置してもよく、これにより液体Lが先端211の全周に噴出されるため、先端211の冷却効率の向上が期待できる。   By the way, in order to obtain a desired effect, it is necessary to supply the liquid L over the entire circumference of the contact surface 91, and for this purpose, it is necessary to rotate the ejection portion 25 about the axial direction AX. . Here, in order to rotate the ejection part 25 about the axial direction AX, it is preferable that the core drill 21 and the ejection part 25 are connected via a rotation suppression mechanism that suppresses relative rotation along the axial direction AX. . Specifically, the rotation suppression mechanism may be a mechanism for fixing the core drill 21 and the ejection portion 25 to each other. Thereby, the drive source for rotating the ejection part 25 can be substituted with the drive apparatus 30, and the increase in a number of parts can be prevented. However, the present invention is not limited to this, and a mechanism for rotating the ejection portion 25 may be separately installed. As a result, the liquid L is ejected to the entire circumference of the tip 211, so that the cooling efficiency of the tip 211 can be expected to be improved.

液体Lの流通をより促進するためには、液体Lの噴出圧が充分に高いことが好ましい一方、噴出圧が過大であっても、液体Lの流通促進の向上は飽和する。そこで、図1に戻って、液体導入部40は、液体Lの導入圧を調節する導入圧調節手段としての導入ポンプ45を有することが好ましい。これにより、液体Lの導入圧を適切に調節できるので、液体Lの流通を必要最低限の導入圧により促進することができる。導入圧の下限は、0.05MPaであることが好ましく、より好ましくは0.1MPa、最も好ましくは0.2MPaである。また、導入圧の上限は、1MPaであることが好ましく、より好ましくは0.5MPa、最も好ましくは0.3MPaである。   In order to further promote the circulation of the liquid L, it is preferable that the ejection pressure of the liquid L is sufficiently high. However, even if the ejection pressure is excessive, the improvement in the promotion of the circulation of the liquid L is saturated. Therefore, returning to FIG. 1, the liquid introduction unit 40 preferably has an introduction pump 45 as an introduction pressure adjusting means for adjusting the introduction pressure of the liquid L. Thereby, since the introduction pressure of the liquid L can be adjusted appropriately, the circulation of the liquid L can be promoted with the minimum necessary introduction pressure. The lower limit of the introduction pressure is preferably 0.05 MPa, more preferably 0.1 MPa, and most preferably 0.2 MPa. Further, the upper limit of the introduction pressure is preferably 1 MPa, more preferably 0.5 MPa, and most preferably 0.3 MPa.

コアドリル21は、従来公知の構成、例えばメタルボンド、レジンボンド、又は電着を有してよいが、耐摩耗性に優れるメタルボンドを有することが好ましい。   The core drill 21 may have a conventionally known configuration, for example, a metal bond, a resin bond, or electrodeposition, but preferably has a metal bond excellent in wear resistance.

本実施形態に係る加工装置10は、図1に示すように穴を掘削する(つまり軸方向AXに沿って進行するのみ)ために用いられてもよいが、これに限られない。例えば、図5〜6に示されるように、加工用ドリル20を水平方向(図5の左右及び表裏方向)に移動させる(つまり、駆動装置30は水平方向への移動を行う駆動源も備えている)ことにより、所定面積に亘り被加工体90Aの厚みを軽減することもできる。特に、孔部95が設けられている被加工体90Aを加工する場合、従来の加工装置では液体が孔部95を通じて下方へと通過してしまい、端面213と当接面91Aとの隙間への入り込みが著しく阻害される。しかし、本実施形態の加工装置10によれば、図6に示されるように、孔部95の存否にかかわらず、液体Lが端面213と当接面91Aとの隙間に充分に入り込むため、ツールライフを長期化し且つ加工体の品質及び加工速度を向上することができる。   Although the processing apparatus 10 which concerns on this embodiment may be used in order to excavate a hole as shown in FIG. 1 (that is, only to advance along the axial direction AX), it is not restricted to this. For example, as shown in FIGS. 5 to 6, the machining drill 20 is moved in the horizontal direction (left and right and front and back in FIG. 5) (that is, the drive device 30 also includes a drive source that moves in the horizontal direction. The thickness of the workpiece 90A can be reduced over a predetermined area. In particular, when processing the workpiece 90A provided with the hole 95, in the conventional processing apparatus, the liquid passes downward through the hole 95, and the gap between the end surface 213 and the contact surface 91A is reduced. Intrusion is significantly inhibited. However, according to the processing apparatus 10 of this embodiment, as shown in FIG. 6, the liquid L sufficiently enters the gap between the end surface 213 and the contact surface 91 </ b> A regardless of the presence or absence of the hole 95. The life can be prolonged, and the quality and processing speed of the processed body can be improved.

なお、前記実施形態に係る加工装置10では、コアドリル21の径がシャンク23の径よりも小さかったが、これに限られない。例えば図7に示される加工装置10Bのように、コアドリル21Bの径がシャンク23Bの径よりも大きくてもよい。これにより、被加工体90Bが、コアドリル21Bの鍔部216の幅に対応(つまり、コアドリル21Bの径とシャンク23Bの径との差に依存)した幅の蓋部97を残して加工されるため、加工後に蓋部を別途設置する手間を省くことができる。このように、コアドリル21及びシャンク23の形状を適宜選択することで、種々の形状の加工体を製造することができる。   In the processing apparatus 10 according to the embodiment, the diameter of the core drill 21 is smaller than the diameter of the shank 23, but the present invention is not limited to this. For example, like the processing apparatus 10B shown in FIG. 7, the diameter of the core drill 21B may be larger than the diameter of the shank 23B. Thereby, the workpiece 90B is processed while leaving the lid portion 97 having a width corresponding to the width of the flange portion 216 of the core drill 21B (that is, depending on the difference between the diameter of the core drill 21B and the diameter of the shank 23B). Thus, it is possible to save the trouble of separately installing the lid after processing. As described above, by appropriately selecting the shapes of the core drill 21 and the shank 23, it is possible to manufacture workpieces having various shapes.

また、前記実施形態では、先端211への液体Lの導入をコアドリル21の内部空間ISから行ったが、更にコアドリル21の外側から行ってもよい。例えば図5〜7に示されるように、先端211の外周に液体導入器具を配置するのに充分な空間が確保できる場合には、コアドリル21の外側からの液体Lの導入を並行するのが特に好ましい。ただし、図3に示すように、外面214と側面93との隙間が狭く、液体導入器具を先端211の外周に配置するのが困難な場合であっても、充分にツールライフの長期化、並びに加工体の品質及び加工速度の向上をすることができる。   Moreover, in the said embodiment, although the introduction of the liquid L to the front-end | tip 211 was performed from the interior space IS of the core drill 21, you may perform from the outer side of the core drill 21 further. For example, as shown in FIGS. 5 to 7, when the space sufficient to arrange the liquid introduction device on the outer periphery of the tip 211 can be secured, it is particularly preferable to introduce the liquid L from the outside of the core drill 21 in parallel. preferable. However, as shown in FIG. 3, even when the gap between the outer surface 214 and the side surface 93 is narrow and it is difficult to arrange the liquid introduction device on the outer periphery of the tip 211, the tool life is sufficiently prolonged, The quality of the processed body and the processing speed can be improved.

また、前記実施形態では、1つの加工用ドリル20を使用したが、複数の加工用ドリル20を同時並行で使用(いわゆるマルチヘッド方式)してもよい。これにより、加工体の製造効率をより向上できる。   In the above embodiment, one machining drill 20 is used, but a plurality of machining drills 20 may be used simultaneously (so-called multi-head method). Thereby, the manufacturing efficiency of a processed body can be improved more.

被加工体は、特に限定されず任意の素材からなってよいが、本発明の加工用ドリルは硬脆性材料の加工に特に適している。硬脆性材料は、非晶質ガラス及び/又は結晶質ガラスを含むことが好ましい。結晶化ガラスとしては、例えばβ−石英及び/又はβ−石英固溶体が結晶相として析出している低膨張結晶化ガラスが挙げられる。これらのガラスは、一般に硬く脆いため、ドリルによる加工が困難であるが、本実施形態の加工装置10によれば、高い加工速度で高品質に加工することができる。   The workpiece is not particularly limited and may be made of any material, but the machining drill according to the present invention is particularly suitable for machining hard brittle materials. The hard and brittle material preferably includes amorphous glass and / or crystalline glass. Examples of the crystallized glass include low expansion crystallized glass in which β-quartz and / or β-quartz solid solution is precipitated as a crystal phase. Since these glasses are generally hard and brittle, it is difficult to process them with a drill. However, according to the processing apparatus 10 of this embodiment, it can be processed with high quality at a high processing speed.

また、このように研削した後、被加工体の表面を処理し除去する表面処理工程を更に有してもよい。これにより、被加工体の表面に残り得る微細なクラックが除去されるため、更に高品質の加工体を製造することができる。本発明では、従来の方法に比べ、残り得るクラックの深さが格段に小さい(特に限定されないが、5μm以下)ため、除去すべき表面の厚みも小さくて足りる点で有利である。なお、表面処理の手順は、従来周知の方法に従えばよい。   Moreover, after grinding in this way, you may further have the surface treatment process of processing and removing the surface of a to-be-processed body. Thereby, since the fine crack which may remain on the surface of a to-be-processed body is removed, a further high quality processed body can be manufactured. In the present invention, the depth of the crack that can remain is significantly smaller than that of the conventional method (though it is not particularly limited, but it is 5 μm or less), which is advantageous in that the thickness of the surface to be removed is sufficient. The surface treatment procedure may follow a conventionally known method.

図5に示される輪状の被加工体90A(多結晶シリコン製)の当接面91A(幅が約80mm)を加工装置10で研削した。この間、被加工体90Aの表面を観察し続け、表面に粗さが目視で観察されない最大速度で、コアドリル21を水平移動させた。   A contact surface 91A (width of about 80 mm) of a ring-shaped workpiece 90A (made of polycrystalline silicon) shown in FIG. During this time, the surface of the workpiece 90A was continuously observed, and the core drill 21 was moved horizontally at the maximum speed at which no roughness was visually observed on the surface.

<実施例1、2>
実施例1では加工装置10を用い、先端211がメタルレジンからなるコアドリル21の寸法は、外径18mm、長さ9mm、厚み1.5mmであり、噴出口27の径は2.5mmであった。また、液体の導入圧は0.3MPaとした。実施例2では、噴出路253が軸方向AXに直交するコアドリルを用い、比較例1では、噴出路253が軸方向AXに平行であるコアドリルを用いた点を除き、実施例1と同様の条件で研削を行った。
<Examples 1 and 2>
In Example 1, the processing apparatus 10 was used, the core drill 21 whose tip 211 was made of metal resin, the outer diameter was 18 mm, the length was 9 mm, the thickness was 1.5 mm, and the diameter of the ejection port 27 was 2.5 mm. . The liquid introduction pressure was 0.3 MPa. In Example 2, a core drill in which the ejection path 253 is orthogonal to the axial direction AX is used, and in Comparative Example 1, the same conditions as in Example 1 are used except that a core drill in which the ejection path 253 is parallel to the axial direction AX is used. We performed grinding with.

実施例1及び比較例1において、コアドリルを被加工体から離間したときの液体の挙動を図8、9に示す。図8に示されるように、実施例では、液体がコアドリルの先端から、軸方向に直交する方向より基端側の方向へと散乱していた。これに対し、比較例では、図9に示されるように液体がコアドリルの軸方向に沿って噴出されるのみで、ほぼ散乱していなかった。なお、図示はしないが、実施例2では、液体が散乱するものの、軸方向に直交する方向又はそれより基端側の方向への散乱はほぼなかった。   In Example 1 and Comparative Example 1, the behavior of the liquid when the core drill is separated from the workpiece is shown in FIGS. As shown in FIG. 8, in the example, the liquid was scattered from the distal end of the core drill toward the proximal end side from the direction orthogonal to the axial direction. On the other hand, in the comparative example, as shown in FIG. 9, the liquid was only ejected along the axial direction of the core drill, and was not substantially scattered. Although not shown, in Example 2, although the liquid was scattered, there was almost no scattering in the direction orthogonal to the axial direction or the direction closer to the base end.

<実施例3、4>
実施例3、4、比較例2では、被加工体として、多結晶シリコン製の代わりに単結晶シリコン製のものを用いた点を除き、実施例1、2、比較例1とそれぞれ同様の手順で、研削を行った。
<Examples 3 and 4>
In Examples 3 and 4 and Comparative Example 2, the same procedure as in Examples 1, 2 and Comparative Example 1 was used, except that the workpiece was made of single crystal silicon instead of polycrystalline silicon. Then, grinding was performed.

<実施例5、6>
実施例5、6、比較例3では、被加工体として、多結晶シリコン製の代わりに、β−石英及びβ−石英固溶体が結晶相として析出している低膨張結晶化ガラス製のものを用いた点を除き、実施例1、2、比較例1とそれぞれ同様の手順で、研削を行った。
<Examples 5 and 6>
In Examples 5 and 6 and Comparative Example 3, a workpiece made of low expansion crystallized glass in which β-quartz and β-quartz solid solution is precipitated as a crystal phase is used instead of polycrystalline silicon. Except for this point, grinding was performed in the same procedure as in Examples 1 and 2 and Comparative Example 1, respectively.

実施例及び比較例における研削の結果を表1に示す。加工速度は前述したコアドリルの加工体に対する水平移動の相対速度の相対値であり、ツールライフは研削の間に消耗した先端211の長さの相対値である。また、加工体の表面を、コロイダルシリカの遊離砥粒及びスウェードタイプの研磨パッドを用いて厚み5μmだけ除去した後、走査型白色干渉顕微鏡(ZYGO社製 NEWVIEW)にて観察し、表面に生じたクラックの頻度を、3段階(◎:優秀、○:良、×:不良)で評価した。この結果を表1に示す。   Table 1 shows the results of grinding in Examples and Comparative Examples. The machining speed is a relative value of the relative speed of the horizontal movement with respect to the above-described core drill workpiece, and the tool life is a relative value of the length of the tip 211 consumed during grinding. Further, after removing the surface of the processed body by a thickness of 5 μm by using a colloidal silica free abrasive grain and a suede type polishing pad, the surface was observed with a scanning white interference microscope (NEWVIEW manufactured by ZYGO) and generated on the surface. The frequency of cracks was evaluated in three stages (◎: excellent, ○: good, x: poor). The results are shown in Table 1.

表1に示されるように、実施例では、比較例に比べ、ツールライフを長期化しつつ、高い加工速度にてクラックの浅い高品質の加工体を製造できていた。これにより、液体をコアドリルの軸方向に対し角度をなして噴出することで、ツールライフを長期化し且つ高い加工速度にて加工体の品質を向上できることが分かった。   As shown in Table 1, in the example, it was possible to manufacture a high-quality processed body having a shallow crack at a high processing speed while prolonging the tool life as compared with the comparative example. As a result, it was found that by jetting the liquid at an angle with respect to the axial direction of the core drill, the tool life can be prolonged and the quality of the workpiece can be improved at a high machining speed.

また、特に実施例1、3、5において、加工速度、ツールライフ及びクラックのいずれも高評価であることから、所定角度Θを90°未満とし、液体がコアドリル先端の近傍に衝突するように噴出し、コアドリルを被加工体から離間したとき、液体がコアドリルの先端から、軸方向に直交する方向又はそれより基端側の方向へと散乱するように行うことで、ツールライフをより長期化し且つより高い加工速度にて加工体の品質をより向上できることが分かった。   In particular, in Examples 1, 3, and 5, all of the machining speed, tool life, and cracks are highly evaluated. Therefore, the predetermined angle Θ is set to less than 90 °, and the liquid is ejected so as to collide with the vicinity of the core drill tip. When the core drill is separated from the work piece, the liquid is scattered from the distal end of the core drill in a direction orthogonal to the axial direction or a direction closer to the proximal end, thereby prolonging the tool life and It was found that the quality of the workpiece can be improved at a higher processing speed.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

10 加工装置
20 加工用ドリル
21 コアドリル
211 先端
25 噴出部
251 導入路
253 噴出路
27 噴出口
31 回転部(回転手段)
40 液体導入部(液体導入手段)
45 導入ポンプ(導入圧調節手段)
90、90A 被加工体
AX 軸方向
L 液体
Θ 所定角度
DESCRIPTION OF SYMBOLS 10 Processing apparatus 20 Processing drill 21 Core drill 211 Tip 25 Ejection part 251 Introduction path 253 Ejection path 27 Ejection port 31 Rotating part (rotating means)
40 Liquid introduction part (liquid introduction means)
45 Introduction pump (Introduction pressure adjusting means)
90, 90A Workpiece AX Axial direction L Liquid Θ Predetermined angle

Claims (8)

筒状のコアドリルと、このコアドリルの内部空間から前記コアドリルの先端に向けて液体が噴出される噴出部と、を備える加工用ドリルと、
前記コアドリルを軸方向に沿って回転させる回転手段と、
前記噴出部に液体を導入する液体導入手段と、を備え
前記噴出部は、前記液体が導入される導入路と、この導入路を前記コアドリルの内部空間に連通させ且つ前記コアドリルの前記軸方向に対し10°以上80°以下の角度をなして延びる噴出路と、を有し、
前記噴出路の延長線上に前記コアドリルの先端が位置し、
前記コアドリルを被加工体から離間している間に前記噴出路から前記液体を噴出するとき、前記液体は、前記コアドリルの先端に衝突し、前記コアドリルの先端から前記軸方向に直交する方向又はそれより基端側の方向へと放射状に散乱する、加工装置。
A processing drill comprising: a cylindrical core drill; and an ejection portion from which liquid is ejected from the internal space of the core drill toward the tip of the core drill;
Rotating means for rotating the core drill along the axial direction;
And a liquid introduction means for introducing the liquids to the ejection part,
The ejection part includes an inlet passage which the liquid is introduced, ejection path extending at an more than 80 ° of the angle of 10 ° or more with respect to the axial direction of and the core drill communicates this introduction path in the internal space of the core drill and, the possess,
The tip of the core drill is located on the extension line of the ejection path,
When the liquid is ejected from the ejection path while the core drill is separated from the workpiece, the liquid collides with the tip of the core drill, and the direction perpendicular to the axial direction from the tip of the core drill or the same A processing device that scatters radially toward the proximal side .
前記噴出路の開口は、1つである請求項1に記載の加工装置The processing apparatus according to claim 1, wherein the number of openings in the ejection path is one. 前記コアドリル及び前記噴出部は、前記軸方向に沿った相対回転を抑制する回転抑制機構を介して接続されている請求項1又は2に記載の加工装置The processing apparatus according to claim 1, wherein the core drill and the ejection portion are connected via a rotation suppression mechanism that suppresses relative rotation along the axial direction. 前記液体導入手段は、前記液体の導入圧を調節する導入圧調節手段を有する請求項1から3のいずれかに記載の加工装置。 The processing apparatus according to claim 1, wherein the liquid introduction unit includes an introduction pressure adjusting unit that adjusts an introduction pressure of the liquid. 請求項1から4のいずれかに記載の加工装置を用い、前記コアドリルの先端で被加工体を研削して加工体を製造する加工体の製造方法であって、
前記液体の噴出は、前記コアドリルを前記被加工体から離間したとき、前記液体が前記コアドリルの先端に衝突し、前記コアドリルの先端から前記軸方向に直交する方向又はそれより基端側の方向へと放射状に散乱するように行う方法。
A method of manufacturing a workpiece using the processing device according to any one of claims 1 to 4 , wherein a workpiece is manufactured by grinding a workpiece at a tip of the core drill ,
When the core drill is separated from the workpiece, the liquid is ejected from the core drill in a direction perpendicular to the axial direction or a direction proximal to the axial direction from the tip of the core drill. line cormorant way method to scattered radially with.
前記液体の前記噴出部への導入を0.05MPa以上1MPa以下の圧力で行う請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the liquid is introduced into the ejection portion at a pressure of 0.05 MPa to 1 MPa. 前記被加工体は、非晶質ガラス及び/又は結晶質ガラスを含む請求項5又は6に記載の製造方法。 The manufacturing method according to claim 5 or 6, wherein the workpiece includes amorphous glass and / or crystalline glass. 研削後の被加工体の表面を処理し除去する表面処理工程を更に有する請求項5から7のいずれかに記載の製造方法。 The manufacturing method according to claim 5 , further comprising a surface treatment step of treating and removing the surface of the workpiece after grinding.
JP2009179422A 2009-07-31 2009-07-31 Drill for processing, processing apparatus, and method for manufacturing processed body Active JP5623716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179422A JP5623716B2 (en) 2009-07-31 2009-07-31 Drill for processing, processing apparatus, and method for manufacturing processed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179422A JP5623716B2 (en) 2009-07-31 2009-07-31 Drill for processing, processing apparatus, and method for manufacturing processed body

Publications (2)

Publication Number Publication Date
JP2011031467A JP2011031467A (en) 2011-02-17
JP5623716B2 true JP5623716B2 (en) 2014-11-12

Family

ID=43761033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179422A Active JP5623716B2 (en) 2009-07-31 2009-07-31 Drill for processing, processing apparatus, and method for manufacturing processed body

Country Status (1)

Country Link
JP (1) JP5623716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5964694B2 (en) * 2012-08-15 2016-08-03 東芝機械株式会社 Mist supply tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223614Y2 (en) * 1985-03-18 1990-06-27
JPS63156708U (en) * 1987-04-02 1988-10-14
JPS6456912U (en) * 1987-10-06 1989-04-10
JPH09109141A (en) * 1995-10-16 1997-04-28 Goei Seisakusho:Kk Drilling bit and mounting method therefor
JP4142791B2 (en) * 1999-02-23 2008-09-03 株式会社ディスコ Multi-core drill
JP4484981B2 (en) * 1999-05-25 2010-06-16 信越石英株式会社 Core drill and core drill device
JP3657165B2 (en) * 2000-02-23 2005-06-08 株式会社ノリタケスーパーアブレーシブ Drilling machine tip structure
JP4942428B2 (en) * 2006-09-01 2012-05-30 Hoya株式会社 Manufacturing method and processing apparatus of glass substrate for magnetic disk, and manufacturing method of magnetic disk

Also Published As

Publication number Publication date
JP2011031467A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP2008093805A (en) Drill
EP3134224B1 (en) Diamond plated grinding endmill for advanced hardened ceramics machining
US10265781B2 (en) Single-lip deep hole drill
JP2009056533A (en) Long neck radius endmill
JP2007090450A (en) Machining tool for crank hole
EP1293279A2 (en) Collet
JP2010162677A (en) Small-diameter cbn ball end mill
JP2010142889A (en) Tool holder, cutting fluid supply plate for holding tool and cutting method
JP5623716B2 (en) Drill for processing, processing apparatus, and method for manufacturing processed body
JP3166021U (en) Small diameter grinding wheel tool
JP2008062369A (en) Method of producing tip to be mounted on boring tool, method of producing boring tool, and boring tool
JP2016144865A (en) Processing method using drill and drill with coolant ejection hole
JP2011212836A (en) Ball end mill and manufacturing method of the same
JP2010076069A (en) Machining method and apparatus therefor
JP2014039963A (en) Drill with coolant jet hole
JP5906838B2 (en) Square end mill
JP2009050963A (en) Cutting tool
JP4258927B2 (en) Drilling method for ceramic plate
CN214392392U (en) Inner hole machine clamping cutter bar
JP5085189B2 (en) Drilling tool and drilling method
JP2002137108A (en) Drilling method for brittle material and drilling tool used therefor
JP2007118133A (en) Boring tool
JP2006123018A (en) Chamfering device
JP6363483B2 (en) Hobbing machine
JP2001328072A (en) Tool for working slot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5623716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250