JP3657165B2 - Drilling machine tip structure - Google Patents

Drilling machine tip structure Download PDF

Info

Publication number
JP3657165B2
JP3657165B2 JP2000046417A JP2000046417A JP3657165B2 JP 3657165 B2 JP3657165 B2 JP 3657165B2 JP 2000046417 A JP2000046417 A JP 2000046417A JP 2000046417 A JP2000046417 A JP 2000046417A JP 3657165 B2 JP3657165 B2 JP 3657165B2
Authority
JP
Japan
Prior art keywords
tip
drilling machine
drill
ejection hole
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000046417A
Other languages
Japanese (ja)
Other versions
JP2001232628A (en
Inventor
進 小柳
誠也 緒方
正範 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Super Abrasive Co Ltd filed Critical Noritake Co Ltd
Priority to JP2000046417A priority Critical patent/JP3657165B2/en
Publication of JP2001232628A publication Critical patent/JP2001232628A/en
Application granted granted Critical
Publication of JP3657165B2 publication Critical patent/JP3657165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート、石材、建材、ガラスなどに穿孔を行う穿孔機、とくに小径の穿孔を行う穿孔機の先端部構造に関する。
【0002】
【従来の技術】
たとえば建造物のコンクリート壁に化粧板を取り付ける場合、コンクリート壁にアンカーボルト用の小径の孔を多数穿孔する必要がある。このような小径の穿孔機として、回転軸の先端に切削部を有するドリルを取り付けた穿孔機が用いられている。
【0003】
この種の穿孔機の基本的な構成は、中空の回転軸の先端にドリルを取り付け、回転軸内部の流路を通じて供給される空気や水などの流体を回転軸の先端から噴出させながらドリルを回転させ、切削屑を流体とともに吸引しながら穿孔するものであり、いわゆるノンコアドリルと称されるものである。流体として圧搾空気を用いる乾式穿孔機として、特公平3−4365号公報および実公平6−25307号公報に記載の穿孔機がある。
【0004】
特公平3−4365号公報に記載の穿孔機における先端部構造は、図5(a)の底面図および同図(b)の縦断面図に示すように、回転軸51の先端の切削部53に窪状先端面54と側面とにわたって開口するスリット55を形成するとともに、スリット55と先端面54との交差部分に切刃56を形成したものである。穿孔時には、回転軸51の流路52内を通った圧搾空気がスリット55から噴出し、切刃56を冷却する。この穿孔機によれば、高速回転下において空気を容易かつ円滑に供給することができて、ドリルの熱劣化を抑制できるとともに、切削能率の向上を図ることができ、また、ドリルの冷却と切削屑の排出、回収のための空気循環が穿孔中維持されるので、全体を通じて良好な穿孔作業を行うことができるとされている。
【0005】
実公平6−25307号公報に記載の穿孔機における先端部構造は、図6(a)の底面図および同図(b)の縦断面図に示すように、冷却剤の流路62を有する回転軸61の先端の切削部63にコ字型に開口する開放空間65を形成するとともに、開放空間65と先端面64との交差部分に切刃66を形成し、さらに、開放空間65を形成する内壁面に切削部63の基部中心に向かって傾斜したテーパ面67を設けたものである。このテーパ面67を設けたことにより、切削部内部の被切削材がテーパ面67によって小さく破砕されやすくなる。
【0006】
また、流体としてエアゾール式冷却剤を用いる湿式穿孔機として特開平11−10425号公報に記載の穿孔機がある。この穿孔機におけるドリル構造は、図7(a)の底面図および同図(b)の縦断面図に示すように、中空の回転軸71の先端を、冷却剤の噴出孔77を残し閉塞して平坦面78とし、この平坦面78にスリット75を形成した切削部73を設けたドリル構造である。このドリル構造は、噴出孔77を回転軸中心からずらすことにより、噴出孔77の詰まりを防止するようにしたものである。
【0007】
また、実開平5−39913号公報には、研削部材中央に貫通孔を備えるとともに、この貫通孔から研削部材の外周部に連結する研削液供給孔を形成した研削穿孔工具が記載されている。この研削穿孔工具では、研削部材の先端面外周部分に研削液が多く供給され、能率よく研削できるとされている。
【0008】
【発明が解決しようとする課題】
実際の穿孔作業において、乾式穿孔機の場合は、回転軸中空部の先端が閉塞されていないので、圧搾空気の噴出口が目詰まりすることはないが、湿式穿孔機の場合は、回転軸中空部の先端が冷却剤噴出孔以外は閉塞されているので、冷却剤噴出孔が目詰まりしやすい。上記の特開平11−10425号公報に記載の穿孔機は、冷却剤噴出孔を回転軸中心からずらすことにより、噴出孔の詰まりを防止したものであるが、この穿孔機では、噴出孔が回転軸中心からずれているといってもその偏心量は僅かで、冷却剤は切り屑の密度の高い中心付近に噴出されるので切り屑が被加工材に直接当たり、冷却効果が弱くなる。また、ドリル回転時における周速が高く、研削抵抗が最も高い部分であるドリル外周部分に冷却剤が効率的に供給されず、十分な研削能率を得ることができない。また、実開平5−39913号公報に記載の研削穿孔工具は、研削部材に開放空間が形成されていないので、研削部材と被研削材が密着した状態にあり、貫通孔の開口部付近の冷却には効果があるが、その他の部分の冷却効果が著しく悪くなり、また、切り屑が詰まりやすいという問題がある。
【0009】
本発明が解決すべき課題は、小径の穿孔に用いられる穿孔機において、穿孔機の先端部の構造をさらに改良し、冷却剤の供給を効率化して研削能率をさらに高めることにある。
【0010】
【課題を解決するための手段】
本発明は、中空の回転軸の先端にドリルを取り付け、回転軸内部の流路を通じて供給される冷却剤をドリルの先端に向けて噴出させながら穿孔する穿孔機において、前記回転軸の先端を冷却剤噴出孔以外は閉塞し、水平断面において円周方向の一部が開放された内部空間を有する超砥粒セグメントを前記閉塞部の外面に取り付けてドリルを構成するとともに、前記回転軸の中空部先端の中心より偏心した位置から前記閉塞部の外面の周縁位置に向けて斜め方向に冷却剤を噴出する冷却剤噴出孔を前記閉塞部に形成したことを特徴とする。
【0011】
本発明の穿孔機においては、回転軸の中空部先端の中心より偏心した位置から閉塞部の外面の周縁位置に向けて斜め方向に冷却剤を噴出する噴出孔を閉塞部に形成したことにより、噴出孔から噴出される冷却剤はドリル外周部に向かって噴出されることになり、研削抵抗が最も高い外周部分に冷却剤が効率的に供給され、十分な研削能率を得ることができる。
【0012】
噴出孔の回転軸中心からの偏心量および傾斜角は、ドリルの外径やセグメントの高さに応じて、冷却剤がドリル外周部分に供給されるように設定する。本発明の対象とする小径の穿孔機の場合は、噴出孔の軸線と回転軸の軸線とのなす角度は、5〜45度とするのが望ましい。この傾斜角が5度未満では、従来の穿孔機の場合と同様に冷却剤がドリル外周部に効率よく供給されない。一方、傾斜角が45度を超えて大きくなると、ドリル外周部に向けて噴出させた冷却剤が外周部に滞留しにくくなる。また、回転軸は小径で閉塞部の肉厚も薄いので、この閉塞部に偏心させた状態で45度を超える大きい傾斜角の孔を設けることは設計上困難を伴う。
【0013】
冷却剤の噴出孔を傾斜させると噴出孔の長さが長くなるので、その分、冷却剤が噴出孔を通過するときの抵抗が大きくなり、冷却剤の円滑な供給が阻害されることになる。そこで、中空部の先端を円錐状に形成し、その頂角を90〜170度とするのが望ましい。前記したように、噴出孔の傾斜角を5〜45度とすると、噴出孔の軸線と円錐状の頂面とが直角になるための頂角は90〜170度となる。
【0014】
また、噴出孔を傾斜させると、回転軸の閉塞部先端面と噴出孔の軸線とが直角にならないので、噴出孔の断面積より開口面積が広くなり、噴出された冷却剤が開口部周囲に広がってドリル外周部に効率的に供給されなくなる。そこで、閉塞部の先端を円錐状に形成し、その頂角を90〜170度とするのが望ましい。前記したように、噴出孔の傾斜角を5〜45度とすると、噴出孔の軸線と円錐状の頂面とが直角になるための頂角は90〜170度となる。
【0015】
前記セグメントの内部空間を形成する内壁面には、セグメント先端側の面積が減少する方向の傾斜面を形成するのが望ましい。この内壁面に傾斜面を形成することにより、切削屑の破砕に寄与する面積が大きくなって破砕が促進され、切削屑の排出性が高まる。
【0016】
セグメントに用いる超砥粒は、従来の超砥粒ドリルに用いられているダイヤモンド砥粒やCBN砥粒を用いることができる。これらの砥粒をメタルボンドで結合、保持して所定形状のセグメントとし、このセグメントを回転軸の閉塞部先端に接合してドリルとする。冷却剤の噴出口はセグメント取り付け面以外の部分に開口するように形成する。
【0017】
【発明の実施の形態】
図1は本発明の第1の実施形態における穿孔機の先端部構造を示す図で、(a)は底面図、(b)は(a)のA−A線断面図である。
【0018】
本実施形態の先端部10の構造は、回転軸1先端の閉塞部2の先端に、円周方向の一部が開放された内部空間を有するセグメント4をろう付けにより接合してドリルを構成したものである。セグメント4は、ダイヤモンド砥粒をメタルボンドで結合、保持したものである。
【0019】
この先端部構造においては、回転軸1先端の閉塞部2に、中空部6の先端の中心より偏心した位置から閉塞部2の外面の周縁位置に向けて斜め方向に冷却剤を噴出する噴出孔3を閉塞部2に形成している。噴出孔3の軸線と回転軸1の軸線とのなす角度θ1は15度である。噴出孔3を傾斜させて設けたことにより、噴出孔3から噴出される冷却剤がドリルを構成するセグメント4の先端の外周部に向かって噴出されることになり、研削抵抗が最も高いセグメント4の外周部分に冷却剤が効率的に供給され、十分な研削能率を得ることができる。
【0020】
図2は本発明の第2の実施形態における穿孔機の先端部構造を示す図で、(a)は底面図、(b)は(a)のB−B線断面図である。
【0021】
本実施形態の先端部20の構造は、第1の実施形態の先端部構造におけるセグメント4に代えて、セグメント5を取り付けたものである。セグメント5は、内部空間を形成する内壁面に、セグメント先端側の面積が減少する方向の傾斜面5aを形成したものである。この傾斜面5aを形成したことにより、切削屑の破砕に寄与する面積が大きくなって破砕が促進され、破砕屑の排出性もよくなる。
【0022】
図3は本発明の第3の実施形態における穿孔機の先端部構造を示す図で、(a)は底面図、(b)は(a)のC−C線断面図である。
【0023】
本実施形態の先端部30の構造は、第2の実施形態の先端部構造における中空部6先端の形状を変更したものである。冷却剤の噴出孔3を傾斜させた状態で、中空部6先端面と噴出孔3の軸線とが直角になるように、中空部6の先端を円錐状に形成し、その頂面6aのなす頂角θ2を150度としている。このように中空部6の先端を円錐状にすることにより、噴出孔3の長さが第1、第2実施形態の場合よりも短くなり、冷却剤が噴出孔3を通過するときの抵抗が少なくなる。
【0024】
図4は本発明の第4の実施形態における穿孔機の先端部構造を示す図で、(a)は底面図、(b)は(a)のD−D線断面図である。
【0025】
本実施形態の先端部40の構造は、第3の実施形態の先端部構造における閉塞部2の先端の形状を変更したものである。冷却剤の噴出孔3を傾斜させた状態で、閉塞部7の先端面と噴出孔3の軸線とが直角になるように、閉塞部7の先端を円錐状に形成し、その頂面7aのなす頂角θ3を150度としている。このように閉塞部7の先端を円錐状にして閉塞部7先端面と噴出孔3の軸線とを直角にすることによって、噴出孔3の開口部で冷却剤が広がることがなく、冷却剤はセグメント8の先端の外周部に向かって噴出され、効率的な冷却ができる。また、本実施形態においては、閉塞部7の先端が円錐状をなしているので、セグメント8の底面は閉塞部7の先端の形状に対応した形状になっている。
【0026】
【発明の効果】
本発明によって以下の効果を奏することができる。
【0027】
(1)回転軸の中空部先端の中心より偏心した位置から閉塞部の外面の周縁位置に向けて斜め方向に冷却剤を噴出する噴出孔を閉塞部に形成することにより、噴出孔から噴出される冷却剤はドリル外周部に向かって噴出されることになり、研削抵抗が最も高い外周部分に冷却剤が効率的に供給され、十分な研削能率を得ることができる。
【0028】
(2)冷却剤の噴出孔を傾斜させた状態で中空部先端面と噴出孔の軸線とが直角になるように中空部の先端を円錐状に形成することにより、中空部から噴出孔への冷却剤の円滑な流入が保たれる。
【0029】
(3)冷却剤の噴出孔を傾斜させた状態で閉塞部先端面と噴出孔の軸線とが直角になるように閉塞部の先端を円錐状に形成することにより、噴出孔の開口部で冷却剤が広がることがなく、冷却剤はドリル先端の外周部に向かって噴出され、効率的な冷却ができる。
【0030】
(4)ドリルを構成する超砥粒セグメントの内部空間を形成する内壁面に、セグメント先端側の面積が減少する方向の傾斜面を形成することにより、切削屑の破砕に寄与する面積が大きくなって破砕が促進され、切削屑の排出性が高まる。
【図面の簡単な説明】
【図1】 第1実施形態における穿孔機の先端部構造を示す図である。
【図2】 第2実施形態における穿孔機の先端部構造を示す図である。
【図3】 第3実施形態における穿孔機の先端部構造を示す図である。
【図4】 第4実施形態における穿孔機の先端部構造を示す図である。
【図5】 従来の穿孔機のドリル構造の例を示す図である。
【図6】 従来の穿孔機のドリル構造の例を示す図である。
【図7】 従来の穿孔機のドリル構造の例を示す図である。
【符号の説明】
1 回転軸
2,7 閉塞部
3 冷却剤噴出孔
4,5,8 セグメント
5a,8a 傾斜面
6 中空部
6a,7a 頂面
10,20,30,40 穿孔機の先端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drilling machine that drills concrete, stone, building material, glass, and the like, and more particularly to a tip structure of a drilling machine that drills a small diameter.
[0002]
[Prior art]
For example, when a decorative plate is attached to a concrete wall of a building, it is necessary to drill many small-diameter holes for anchor bolts in the concrete wall. As such a small diameter drilling machine, a drilling machine in which a drill having a cutting part is attached to the tip of a rotating shaft is used.
[0003]
The basic configuration of this type of drilling machine is that a drill is attached to the tip of a hollow rotating shaft, and a drill such as air or water supplied through a flow path inside the rotating shaft is ejected from the tip of the rotating shaft. It is rotated and drilled while sucking cutting waste together with fluid, and is called a so-called non-core drill. As a dry drilling machine using compressed air as a fluid, there are drilling machines described in Japanese Patent Publication No. 3-4365 and No. 6-25307.
[0004]
As shown in the bottom view of FIG. 5 (a) and the longitudinal sectional view of FIG. 5 (b), the tip structure of the drilling machine described in Japanese Patent Publication No. 3-4365 is the cutting part 53 at the tip of the rotating shaft 51. In addition, a slit 55 is formed that opens across the concave tip surface 54 and the side surface, and a cutting edge 56 is formed at the intersection of the slit 55 and the tip surface 54. At the time of drilling, the compressed air that has passed through the flow path 52 of the rotating shaft 51 is ejected from the slit 55 to cool the cutting blade 56. According to this drilling machine, air can be supplied easily and smoothly under high-speed rotation, thermal degradation of the drill can be suppressed, cutting efficiency can be improved, and cooling and cutting of the drill can be achieved. Since the air circulation for discharging and collecting waste is maintained during drilling, it is said that good drilling can be performed throughout.
[0005]
As shown in the bottom view of FIG. 6 (a) and the longitudinal sectional view of FIG. 6 (b), the tip portion structure in the drilling machine described in Japanese Utility Model Publication No. 6-25307 is a rotation having a coolant flow path 62. An open space 65 that opens in a U-shape is formed in the cutting part 63 at the tip of the shaft 61, a cutting edge 66 is formed at the intersection of the open space 65 and the tip surface 64, and an open space 65 is further formed. A tapered surface 67 inclined toward the center of the base of the cutting part 63 is provided on the inner wall surface. By providing the tapered surface 67, the workpiece inside the cutting part is easily crushed by the tapered surface 67.
[0006]
Further, as a wet drilling machine using an aerosol coolant as a fluid, there is a drilling machine described in JP-A-11-10425. As shown in the bottom view of FIG. 7 (a) and the longitudinal sectional view of FIG. 7 (b), the drill structure in this drilling machine closes the tip of the hollow rotating shaft 71, leaving the coolant injection holes 77. In this drill structure, a flat surface 78 is provided, and a cutting portion 73 having a slit 75 formed in the flat surface 78 is provided. In this drill structure, the ejection hole 77 is prevented from being clogged by shifting the ejection hole 77 from the center of the rotation axis.
[0007]
Japanese Utility Model Laid-Open No. 5-39913 discloses a grinding drilling tool having a through hole at the center of a grinding member and a grinding fluid supply hole connected from the through hole to the outer peripheral portion of the grinding member. In this grinding and punching tool, it is said that a large amount of grinding fluid is supplied to the outer peripheral portion of the front end surface of the grinding member and can be efficiently ground.
[0008]
[Problems to be solved by the invention]
In the actual drilling operation, in the case of a dry drilling machine, the tip of the hollow part of the rotating shaft is not blocked, so the outlet of the compressed air will not be clogged. Since the tip of the part is blocked except for the coolant ejection hole, the coolant ejection hole is easily clogged. The perforating machine described in the above Japanese Patent Application Laid-Open No. 11-10425 prevents the clogging of the ejection holes by shifting the coolant ejection holes from the center of the rotation axis. In this perforation machine, the ejection holes are rotated. Even if it is deviated from the center of the shaft, the amount of eccentricity is small, and since the coolant is jetted near the center where the density of the chips is high, the chips hit the workpiece directly and the cooling effect is weakened. In addition, the coolant is not efficiently supplied to the outer peripheral portion of the drill, which is the portion with the highest peripheral speed during drill rotation and the highest grinding resistance, and sufficient grinding efficiency cannot be obtained. Moreover, since the open space is not formed in the grinding member, the grinding drilling tool described in Japanese Utility Model Laid-Open No. 5-39913 is in a state where the grinding member and the material to be ground are in close contact with each other, and cooling in the vicinity of the opening of the through hole is performed. Is effective, but the cooling effect of other parts is remarkably deteriorated, and chips are easily clogged.
[0009]
The problem to be solved by the present invention is to further improve the structure of the tip of the drilling machine used for drilling with a small diameter, to improve the efficiency of the supply of coolant, and to further improve the grinding efficiency.
[0010]
[Means for Solving the Problems]
The present invention relates to a drilling machine in which a drill is attached to a tip of a hollow rotating shaft, and a coolant supplied through a flow path inside the rotating shaft is ejected toward the tip of the drill, and the tip of the rotating shaft is cooled. A superabrasive grain segment having an internal space which is closed except for the agent ejection hole and has a part in the circumferential direction opened in a horizontal cross section is attached to the outer surface of the closed part to constitute a drill, and the hollow part of the rotating shaft A coolant ejection hole for ejecting coolant in an oblique direction from the position eccentric from the center of the tip toward the peripheral position of the outer surface of the closure portion is formed in the closure portion.
[0011]
In the drilling machine of the present invention, by forming an ejection hole in the obstruction portion for ejecting the coolant in an oblique direction from the position eccentric from the center of the distal end of the hollow portion of the rotating shaft toward the peripheral position of the outer surface of the obstruction portion, The coolant ejected from the ejection hole is ejected toward the outer peripheral portion of the drill, and the coolant is efficiently supplied to the outer peripheral portion having the highest grinding resistance, so that sufficient grinding efficiency can be obtained.
[0012]
The amount of eccentricity and the inclination angle from the rotation shaft center of the ejection hole is set so that the coolant is supplied to the outer peripheral portion of the drill according to the outer diameter of the drill and the height of the segment. In the case of a small-diameter drilling machine that is a subject of the present invention, it is desirable that the angle formed by the axis of the ejection hole and the axis of the rotating shaft be 5 to 45 degrees. When the inclination angle is less than 5 degrees, the coolant is not efficiently supplied to the outer periphery of the drill as in the case of the conventional drilling machine. On the other hand, when the inclination angle exceeds 45 degrees, the coolant sprayed toward the outer periphery of the drill is less likely to stay on the outer periphery. Further, since the rotating shaft has a small diameter and the thickness of the closed portion is thin, it is difficult to design a hole having a large inclination angle exceeding 45 degrees in an eccentric state in the closed portion.
[0013]
If the coolant ejection hole is inclined, the length of the ejection hole becomes longer, so that the resistance when the coolant passes through the ejection hole is increased, and the smooth supply of the coolant is hindered. . Therefore, it is desirable that the tip of the hollow portion is formed in a conical shape and the apex angle is 90 to 170 degrees. As described above, when the inclination angle of the ejection hole is 5 to 45 degrees, the vertex angle for making the axis of the ejection hole and the conical top surface become a right angle is 90 to 170 degrees.
[0014]
In addition, when the ejection hole is inclined, the front end surface of the closed portion of the rotating shaft and the axis of the ejection hole are not perpendicular to each other. It spreads and cannot be efficiently supplied to the outer periphery of the drill. Therefore, it is desirable to form the tip of the blocking portion in a conical shape and set the apex angle to 90 to 170 degrees. As described above, when the inclination angle of the ejection hole is 5 to 45 degrees, the vertex angle for making the axis of the ejection hole and the conical top surface become a right angle is 90 to 170 degrees.
[0015]
It is desirable to form an inclined surface in the direction in which the area on the tip side of the segment decreases on the inner wall surface forming the internal space of the segment. By forming the inclined surface on the inner wall surface, the area contributing to crushing of the cutting waste is increased, the crushing is promoted, and the dischargeability of the cutting waste is increased.
[0016]
As the superabrasive grains used for the segments, diamond abrasive grains and CBN abrasive grains used in conventional superabrasive drills can be used. These abrasive grains are bonded and held with a metal bond to form a segment having a predetermined shape, and this segment is joined to the end of the closed portion of the rotating shaft to form a drill. The coolant outlet is formed so as to open to a portion other than the segment attachment surface.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A and 1B are views showing a tip portion structure of a drilling machine according to a first embodiment of the present invention, in which FIG. 1A is a bottom view and FIG. 1B is a sectional view taken along line AA in FIG.
[0018]
The structure of the tip portion 10 of the present embodiment is configured by joining a segment 4 having an inner space, which is partially open in the circumferential direction, to the tip of the closing portion 2 at the tip of the rotary shaft 1 by brazing. Is. The segment 4 is obtained by bonding and holding diamond abrasive grains with a metal bond.
[0019]
In this tip portion structure, a jet hole for jetting coolant in the oblique direction from the position eccentric from the center of the tip of the hollow portion 6 toward the peripheral position of the outer surface of the block portion 2 in the closed portion 2 at the tip of the rotating shaft 1. 3 is formed in the closed portion 2. An angle θ1 formed by the axis of the ejection hole 3 and the axis of the rotary shaft 1 is 15 degrees. By providing the ejection holes 3 at an inclination, the coolant ejected from the ejection holes 3 is ejected toward the outer periphery of the tip of the segment 4 constituting the drill, and the segment 4 having the highest grinding resistance. The coolant is efficiently supplied to the outer peripheral portion of the steel, and sufficient grinding efficiency can be obtained.
[0020]
FIGS. 2A and 2B are views showing the tip structure of the drilling machine according to the second embodiment of the present invention, in which FIG. 2A is a bottom view and FIG. 2B is a sectional view taken along line BB in FIG.
[0021]
The structure of the tip portion 20 of this embodiment is such that a segment 5 is attached instead of the segment 4 in the tip portion structure of the first embodiment. The segment 5 is formed by forming an inclined surface 5a on the inner wall surface forming the internal space in a direction in which the area on the segment tip side decreases. By forming this inclined surface 5a, the area which contributes to crushing of cutting waste becomes large, crushing is accelerated | stimulated, and the discharge property of crushing waste also improves.
[0022]
FIGS. 3A and 3B are diagrams showing a tip portion structure of a drilling machine according to a third embodiment of the present invention, in which FIG. 3A is a bottom view and FIG. 3B is a sectional view taken along the line CC of FIG.
[0023]
The structure of the distal end portion 30 of the present embodiment is obtained by changing the shape of the distal end of the hollow portion 6 in the distal end portion structure of the second embodiment. The tip of the hollow portion 6 is formed in a conical shape so that the tip end surface of the hollow portion 6 and the axis of the jet hole 3 are at right angles with the coolant injection hole 3 inclined, and the top surface 6a forms the tip. The apex angle θ2 is 150 degrees. Thus, by making the tip of the hollow portion 6 conical, the length of the ejection hole 3 becomes shorter than in the first and second embodiments, and the resistance when the coolant passes through the ejection hole 3 is reduced. Less.
[0024]
FIGS. 4A and 4B are views showing a tip portion structure of a drilling machine according to a fourth embodiment of the present invention. FIG. 4A is a bottom view, and FIG. 4B is a sectional view taken along line DD of FIG.
[0025]
The structure of the distal end portion 40 of the present embodiment is obtained by changing the shape of the distal end of the closing portion 2 in the distal end portion structure of the third embodiment. In a state where the coolant injection hole 3 is inclined, the tip of the blocking part 7 is formed in a conical shape so that the tip surface of the blocking part 7 and the axis of the injection hole 3 are perpendicular to each other. The formed apex angle θ3 is 150 degrees. Thus, by making the tip of the blocking part 7 conical and making the tip of the blocking part 7 and the axis of the ejection hole 3 perpendicular, the coolant does not spread at the opening of the ejection hole 3. Ejected toward the outer peripheral portion of the tip of the segment 8, efficient cooling can be performed. In the present embodiment, since the tip of the closing part 7 has a conical shape, the bottom surface of the segment 8 has a shape corresponding to the shape of the tip of the closing part 7.
[0026]
【The invention's effect】
The following effects can be achieved by the present invention.
[0027]
(1) By forming a blowout hole in the closed portion for injecting the coolant in an oblique direction from a position eccentric from the center of the tip of the hollow portion of the rotating shaft toward the peripheral position of the outer surface of the closed portion, the blowout is made from the blowout hole. Thus, the coolant is ejected toward the outer peripheral portion of the drill, and the coolant is efficiently supplied to the outer peripheral portion having the highest grinding resistance, so that a sufficient grinding efficiency can be obtained.
[0028]
(2) By forming the tip of the hollow part in a conical shape so that the tip of the hollow part and the axis of the jet hole are perpendicular to each other with the coolant injection hole inclined, Smooth inflow of coolant is maintained.
[0029]
(3) The tip of the closing part is formed in a conical shape so that the tip of the closing part and the axis of the injection hole are at right angles with the coolant injection hole inclined, and cooling is performed at the opening of the injection hole. The agent does not spread, and the coolant is ejected toward the outer peripheral portion of the drill tip, so that efficient cooling can be performed.
[0030]
(4) By forming an inclined surface in a direction in which the area on the tip side of the segment decreases on the inner wall surface forming the internal space of the superabrasive grain segment constituting the drill, the area contributing to crushing of the cutting waste increases. Crushing is promoted and cutting waste is improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a tip structure of a drilling machine according to a first embodiment.
FIG. 2 is a diagram showing a tip structure of a drilling machine in a second embodiment.
FIG. 3 is a diagram showing a tip structure of a drilling machine in a third embodiment.
FIG. 4 is a view showing a tip structure of a drilling machine in a fourth embodiment.
FIG. 5 is a diagram showing an example of a drill structure of a conventional drilling machine.
FIG. 6 is a view showing an example of a drill structure of a conventional drilling machine.
FIG. 7 is a view showing an example of a drill structure of a conventional drilling machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2, 7 Closure part 3 Coolant injection hole 4, 5, 8 Segment 5a, 8a Inclined surface 6 Hollow part 6a, 7a Top surface 10, 20, 30, 40 Tip part of punch

Claims (3)

中空の回転軸の先端にドリルを取り付け、回転軸内部の流路を通じて供給される流体をドリルの先端に向けて噴出させながら穿孔する穿孔機において、前記回転軸の先端を流体噴出孔以外は閉塞し、水平断面において円周方向の一部が開放された内部空間を有する超砥粒セグメントを前記閉塞部の外面に取り付けてドリルを構成するとともに、前記回転軸の中空部先端の中心より偏心した位置から前記閉塞部の外面の周縁位置に向けて斜め方向に流体を噴出する流体噴出孔を前記閉塞部に形成し、前記中空部の先端面と前記流体噴出孔の軸線とが直角となるように、前記中空部の先端を円錐状に形成し、前記閉塞部の先端面と前記流体噴出孔の軸線とが直角になるように、前記閉塞部の先端を円錐状に形成し、その頂角が90〜170度であることを特徴とする穿孔機の先端部構造。In a drilling machine that drills while attaching a drill to the tip of a hollow rotating shaft and ejecting the fluid supplied through the flow path inside the rotating shaft toward the tip of the drill, the tip of the rotating shaft is blocked except for the fluid ejection hole And a superabrasive grain segment having an internal space that is partially open in the circumferential direction in a horizontal cross section is attached to the outer surface of the closed portion to constitute a drill, and is eccentric from the center of the tip of the hollow portion of the rotating shaft A fluid ejection hole for ejecting fluid in an oblique direction from the position toward the peripheral edge of the outer surface of the closed portion is formed in the closed portion, so that the distal end surface of the hollow portion and the axis of the fluid ejection hole are perpendicular to each other. The tip of the hollow portion is formed in a conical shape, and the tip of the closed portion is formed in a conical shape so that the tip surface of the closed portion and the axis of the fluid ejection hole are perpendicular to each other. Is 90-170 degrees Tip structure of the drilling machine, characterized in that. 前記流体噴出孔の軸線と前記回転軸の軸線とのなす角度が5〜45度である請求項1記載の穿孔機の先端部構造。  The tip portion structure of a drilling machine according to claim 1, wherein an angle formed by the axis of the fluid ejection hole and the axis of the rotary shaft is 5 to 45 degrees. 前記セグメントの内部空間を形成する内壁面にセグメント先端側の面積が減少する方向の傾斜面を形成した請求項1または2記載の穿孔機の先端部構造。  The tip part structure of the drilling machine of Claim 1 or 2 which formed the inclined surface of the direction in which the area of the segment tip side reduces on the inner wall surface which forms the internal space of the said segment.
JP2000046417A 2000-02-23 2000-02-23 Drilling machine tip structure Expired - Lifetime JP3657165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046417A JP3657165B2 (en) 2000-02-23 2000-02-23 Drilling machine tip structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046417A JP3657165B2 (en) 2000-02-23 2000-02-23 Drilling machine tip structure

Publications (2)

Publication Number Publication Date
JP2001232628A JP2001232628A (en) 2001-08-28
JP3657165B2 true JP3657165B2 (en) 2005-06-08

Family

ID=18568827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046417A Expired - Lifetime JP3657165B2 (en) 2000-02-23 2000-02-23 Drilling machine tip structure

Country Status (1)

Country Link
JP (1) JP3657165B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693592B2 (en) * 2005-10-28 2011-06-01 日本碍子株式会社 Drilling tool
JP5318338B2 (en) * 2006-08-10 2013-10-16 マックス株式会社 Non-core drill bit
KR100827710B1 (en) 2007-06-26 2008-05-07 이민철 A grinding apparatus with grinding wheel having home
JP5623716B2 (en) * 2009-07-31 2014-11-12 株式会社芝技研 Drill for processing, processing apparatus, and method for manufacturing processed body

Also Published As

Publication number Publication date
JP2001232628A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP3698141B2 (en) Core drill
JP4421691B2 (en) Drill tool
JPS62208810A (en) Drill bit
EP1559492B1 (en) Drill bit
JPH07329049A (en) Rock drill
JP3657165B2 (en) Drilling machine tip structure
PL199976B1 (en) Drill bit
JP4117493B2 (en) Core drill
JP3304941B2 (en) Non-core drill
JP3659854B2 (en) Drilling machine drill structure
JPS6338518B2 (en)
JPH0634082Y2 (en) Drill bit for drilling tool
JP2004268434A (en) Concrete core drill
JP3382748B2 (en) Diamond drill bit for dry drilling
US8047193B2 (en) Non-core drill bit
JP3854587B2 (en) Drilling tool for grinding
JPH081767Y2 (en) Drill for drilling glass plates
JP7368030B1 (en) diamond bit
WO2017081884A1 (en) Milling tool, cutting method, and milling tool manufacturing method
JP4327303B2 (en) Drill for concrete
JPH0625307Y2 (en) Diamond drill
JP2967031B2 (en) Diamond core bits for dry drilling
JPH077093Y2 (en) Concrete cutter
JP2504802Y2 (en) Diamond core drill
JP3180346U (en) Drill bit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3657165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term