JP2007063591A - ジルコニウム廃棄物処理方法及び溶融塩精製装置 - Google Patents

ジルコニウム廃棄物処理方法及び溶融塩精製装置 Download PDF

Info

Publication number
JP2007063591A
JP2007063591A JP2005249209A JP2005249209A JP2007063591A JP 2007063591 A JP2007063591 A JP 2007063591A JP 2005249209 A JP2005249209 A JP 2005249209A JP 2005249209 A JP2005249209 A JP 2005249209A JP 2007063591 A JP2007063591 A JP 2007063591A
Authority
JP
Japan
Prior art keywords
molten salt
zirconium
radioactive substance
container
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005249209A
Other languages
English (en)
Inventor
Hitoshi Nakamura
等 中村
Reiko Fujita
玲子 藤田
Kokichi Sato
光吉 佐藤
Kazuhiro Utsunomiya
一博 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005249209A priority Critical patent/JP2007063591A/ja
Publication of JP2007063591A publication Critical patent/JP2007063591A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】ジルコニウム廃棄物から、より精製された汚染率の低いジルコニウムを回収することができる溶融塩電解を用いたジルコニウム廃棄物の処理方法を提供する。
【解決手段】溶融塩電解法を用いて放射性物質とジルコニウムとを分離するジルコニウム廃棄物処理方法において、使用済み燃料のチャンネルボックス及び/又は被覆管を陽極溶解し、ジルコニウムを陰極で析出させる第1の溶融塩電解工程と、第1の溶融塩電解工程で析出したジルコニウムを陽極に装架して陽極溶解し、再度ジルコニウムを陰極で析出させる第2の溶融塩電解工程と、を有することを特徴とするジルコニウム廃棄物処理方法。
【選択図】なし

Description

本発明はジルコニウム廃棄物の処理に関し、特に燃料集合体の構成要素である燃料被覆管、チャンネルボックスといったジルコニウム金属を用いた構造物に含まれる放射性物質を分離、除染してジルコニウム金属を再利用可能とするジルコニウム廃棄物の処理方法及びそれに用いる溶融塩精製装置に関する。
従来、使用済み燃料から発生するジルコニウム金属は、燃料集合体を解体し、燃料棒は内部の燃料要素を分離し、その後せん断、圧縮等の行程を経て減容処理され、セメント等で固化処理して全量が放射性廃棄物として処分されていた。
ところが、このような放射性廃棄物は、発生量が多大であるため、貯蔵処分容積の減少要求が高くなっており、これを解決するために、溶融塩電解法を用いてジルコニウム廃棄物からジルコニウムを回収し、再利用するジルコニウム廃棄物のリサイクルシステムが知られていた(例えば、特許文献1参照。)。
特開2003−344578号公報
このようなジルコニウム廃棄物のリサイクルシステムにおいて、回収したジルコニウムに残留する放射性物質は、十分に低減されていなければならず、その残留する量は少なければ少ないほどよい。特許文献1のジルコニウム廃棄物の溶融塩電解処理では、電解処理によりジルコニウム廃棄物から分離される放射性物質が溶融塩中に拡散又は溶解するため、陰極に析出、回収されるジルコニウム生成物が溶融塩中の放射性物質により再汚染され除染効率が一定以上向上しなくなることがあった。
また、同様の理由から、一度溶融塩電解により電解精製に使用した溶融塩は、放射性物質の除染性能を維持するためには再利用が困難であり、廃棄物発生量が増加する問題があった。
そこで、本発明は、ジルコニウム廃棄物からジルコニウムを取り出して再利用するために、より精製された汚染率の低いジルコニウムを回収することができる溶融塩電解を用いたジルコニウム廃棄物の処理方法を提供することを目的とする。
そこで、本発明者は鋭意検討した結果、さらに放射性物質を低減したジルコニウムを得ることを可能とする方法を見出し、本発明を完成させたものである。
すなわち、本発明のジルコニウム廃棄物処理方法は、溶融塩電解法を用いて放射性物質とジルコニウムとを分離するジルコニウム廃棄物処理方法において、使用済み燃料のチャンネルボックス及び/又は被覆管を陽極溶解し、ジルコニウムを陰極で析出させる第1の溶融塩電解工程と、第1の溶融塩電解工程で析出したジルコニウムを陽極に装架して陽極溶解し、再度ジルコニウムを陰極で析出させる第2の溶融塩電解工程と、を有することを特徴とするものである。
また、本発明の溶融塩精製装置は、底面に溶融塩をろ過するためのフィルターを有するろ過容器と、該ろ過容器と嵌合し、ろ過された溶融塩を収容することができる収容容器と、ろ過容器及び収容容器の内部を加熱することができる電気炉と、からなることを特徴とするものである。
また、本発明の別の溶融塩精製装置は、底面に溶融塩をろ過するためのフィルターを有するろ過容器と、該ろ過容器を内部に収容し、ろ過容器を引き上げることによりろ過された溶融塩を収容することができる収容容器と、ろ過容器を収容した収容容器内部で、溶融塩を電解精製して溶融塩中の放射性物質のイオンを陰極に析出させ、回収することができる電極と、ろ過容器及び収容容器の内部を加熱することができる電気炉と、からなることを特徴とするものである。
本発明のジルコニウム廃棄物処理方法によれば、ジルコニウムに残留する放射性物質の除染を効率よく行うことができ、ジルコニウム金属の再利用を安全かつ容易にすることができる。
また、本発明の溶融塩精製装置によれば、溶融塩電解を用いたジルコニウム廃棄物処理において、使用済みの溶融塩から放射性物質を除去して精製し、溶融塩を再利用することができる。
以下、本発明について図面を参照しながら詳細に説明する。
(第1の実施の形態)
第1の実施の形態について図1を参照しながら説明する。図1a〜dは、本発明のジルコニウム廃棄物を溶融塩電解により処理する際の基本的な操作を示した図である。これらの図において、溶融塩中に溶解又は分散している放射性物質及び溶解しているイオンについても模式的に示した。
この操作に用いるジルコニウム廃棄物処理装置1は、溶融塩2を収容する電解槽3と、その電解槽3の周囲に電解槽を加熱して溶融塩2を溶融状態に保持する電気炉4と、電源5に接続された陽極6及び陰極7と、から構成されたものである。なお、ここで陽極6は、ジルコニウム廃棄物を収容することができる廃棄物収容容器で構成されている(図1a)。
このように構成されたジルコニウム廃棄物処理装置1において、溶融塩に装架する前に陽極6の廃棄物収容容器内にジルコニウム廃棄物8を収容し、陰極と共に溶融塩中に浸漬する(図1a)。電源5により陽極及び陰極に電流を流すことで第1の溶融塩電解工程を行うが、この第1の溶融塩電解工程により、ジルコニウム廃棄物8に含まれるジルコニウムは、陽極溶解によりジルコニウムイオン9となって溶融塩中に溶解する。一方、陰極7では、溶融塩中に溶解したジルコニウムイオン9が金属ジルコニウム10として析出する。
このときに陽極6でジルコニウム廃棄物8が溶解すると、ジルコニウムイオン9の他に、放射性物質固形物11や放射性物質イオン12が溶融塩中に拡散又は溶解する。この放射性物質固形物11のうち、粒子の大きいものは重力によって陽極の下部に沈降して堆積する(図1b)。
また、溶融塩中に溶解又は拡散した放射性物質は、陰極7で析出する金属ジルコニウムに付着、析出してしまうことがあるため、ここで得られた金属ジルコニウム10は、放射性物質の除染効果が十分に得られていないことが多い。
そこで、本発明では、金属ジルコニウム10が析出した陰極7を陽極とし、新たな陰極13と共に溶融塩に浸漬し(図1c)、第2の溶融塩電解を行うことで陰極13に、精製された金属ジルコニウム14が析出する(図1d)。ここで得られた金属ジルコニウム14は、第1の溶融塩電解工程で得られた金属ジルコニウム10よりも、さらに放射性物質固形物11及び放射性物質イオン12が除去され、放射性物質の含有割合の低減した除染効果の高いものである。
ここで、陽極としては、ステンレス鋼、炭素鋼、白金、タンタル、タングステン、白金等の酸化還元電位の貴な金属又は黒鉛等からなる材料で構成することができ、このような材料で廃棄物収容容器を形成すればよい。この廃棄物収容容器は、溶融塩を内部に導入することができるように通液性の流通路を有しているものであり、具体的には、ジルコニウム廃棄物を保持することができるメッシュ(金網)状のもの等が挙げられる。
陰極としては、ステンレス鋼、炭素鋼、鉄、モリブデン、ジルコニウム、タンタル、タングステン等の耐食性であって導電性を有する金属、黒鉛等が挙げられる。
溶融塩としては、塩化リチウム、塩化カリウム、塩化セシウム、塩化ナトリウム等の塩化物かこれらの塩化物を2種またはそれ以上の種類を混合塩としたものから選択されるものである。
ここで、溶融塩を溶融状態とするために電気炉によって加熱するが、その温度は使用する溶融塩によって適宜決定すればよく、400〜800℃程度の加熱温度で使用することが、不必要に高温とならず装置材料の問題を引き起こすことが少なく好ましいものである。
ここで、ジルコニウム廃棄物に含まれている放射性物質は、コバルト(Co)、モリブデン(Mo)、アンチモン(Sb)、ニオブ(Nb)であり、いずれもジルコニウムと比べて酸化還元電位が貴であり、ジルコニウムの溶解が優先して起こるため、これらの元素は、その多くが固形状のまま溶融塩中に拡散する。
また、溶融塩電解をさらに繰り返すことで、より除染効果の高い金属ジルコニウムを得ることができ、好ましいものである。この溶融塩電解の回数と比放射能量(Bq/g)の関係について図2に示した(このときの比放射能量はGe検出器により測定した。)。これによれば、ジルコニウムの再利用を容易に行うためには、比放射能量が少ないほどよく2回以上の溶融塩電解処理を行う必要がある。
(第2の実施の形態)
第2の実施の形態について図3を参照しながら説明する。図3a〜cは、本発明の廃棄物処理方法に用いる収容容器を示した図である。
ここで、ジルコニウム廃棄物処理装置21としては、陽極となる廃棄物収容容器の具体的態様を示した点が異なるのみで、その他の構成は第1の実施の形態と同一である。
本実施の形態における陽極となる廃棄物収容容器22は、容器の底部22aが皿上又はメッシュ状に形成されており、側部はメッシュ状に形成されたものである(図3a)。このとき、廃棄物収容容器22は、粒状(固形状)の放射性物質として沈降するものを容器内に留まらせて回収することができるものであればよく、そのメッシュは数10μm以下の放射性物質固形物23を捕捉できる粗さであることが好ましい。なお、図3a〜cにおいては廃棄物収容容器22のメッシュ状の側面を切り欠いた図として表した。
この廃棄物収容容器22を用いたジルコニウム廃棄物処理方法の基本的な操作は第1の実施の形態と同一であり、この実施の形態においては、さらに、第1の溶融塩電解工程が終了した後(図3b)、廃棄物収容容器を引き上げて(図3c)、この廃棄物収容容器の内部に保持された放射性物質を回収する回収工程を行うことを特徴とする。
この操作を行うことにより、第1の溶融塩電解工程で使用した溶融塩から固形の放射性物質を簡便な操作により、効率的に取り除くことができ、溶融塩を廃棄するときの汚染レベルを下げることができる。
(第3の実施の形態)
第3の実施の形態は、第1の実施の形態における第2の溶融塩電解工程で使用する溶融塩として、新たな溶融塩又は第1の溶融塩電解工程で使用済みの溶融塩から放射性物質を分離処理した溶融塩を用いるものである。
このような態様とすることで、第2の溶融塩電解工程において用いる溶融塩は、放射性物質を含有しないか、又は含有量が低減されたものであるため、陰極に析出する金属ジルコニウムに付着する放射性物質の量を最小限に抑制することが可能となり、より精製されたジルコニウムが得られる。したがって、ジルコニウムの除染効果を効果的に上げることができ、ジルコニウムの再利用を促進することができる。
また、溶融塩電解を3回以上繰り返す場合においても、電解精製を行う毎に新たな溶融塩又は放射性物質を分離処理した溶融塩を用いるようにすれば、目標とする放射性物質除去率を得るためにより少ない繰り返し回数の電解精製により達成することができる。
この分離処理としては、例えば、溶融塩中にイオンとして溶解している放射性物質を分離したり、溶融塩中に固体として分散、沈降している放射性物質を分離したりする処理が挙げられる。
この溶融塩中にイオンとして溶解している放射性物質を分離する方法としては、例えば、使用済みの溶融塩中にイオン化して存在しているCo,Mo,Sb,Nb等の放射性物質よりも酸化還元電位が貴な炭素(C),白金(Pt)等の導電性物質を陽極とし、鉄(Fe),ステンレス(SUS)等の金属を陰極として電解を行うことが挙げられ、これらの陽極及び陰極を使用済みの溶融塩中に挿入し、電流を流すことで、溶融塩中の放射性物質が陰極で還元され、放射性物質を金属として陰極表面に析出させて、回収することができる(放射性物質析出工程)。
この放射性物質析出工程は、図4a〜bに示したように、使用済みの溶融塩に、電源に接続された陽極31及び陰極32からなる電極を挿入して電流を流し(図4a)、溶融塩中に溶解していた放射性物質のイオン33を陰極32に金属として析出させ(図4b)、十分に析出したところで電極を溶融塩から引き上げて放射性物質固形物34を回収することにより行うことができる。
また、溶融塩中に固体として分散、沈降している放射性物質を分離する方法としては、例えば、使用済みの溶融塩中に粒子状の固形物として存在しているCo,Mo,Sb,Nb等の放射性物質をフィルターによりろ過して行うことができる(放射性物質ろ過工程)。
この放射性物質ろ過工程は、使用済みの溶融塩を一旦融点以下の温度まで冷却、固化させて固体状とし、これを図5aに示したように溶融塩精製装置41に設置して、放射性物質を分離、除去するものである。ここで使用する溶融塩精製装置41は、底面が放射性物質固形物をろ過することができるフィルター42aを有するろ過容器42と、このろ過容器42の下部に嵌合し、ろ過後の溶融塩を収容する収容容器43と、このろ過容器42及び収容容器43の周囲にこれらの内部を加熱することができる電気炉44と、から構成されている。
そして、この放射性物質ろ過工程は、まず、使用済みの溶融塩を融点以下に冷却し、固化させた溶融塩固化物45を、ろ過容器42の内部に収容し(図5a)、これを電気炉44で加熱し、ろ過容器42内部の溶融塩固化物を再び溶融状態に戻すと、液状となった溶融塩は、ろ過容器42の底面のフィルター42aを通過して収容容器43へ移動して、フィルターを通過できない放射性物質の固形物46のみがろ過容器42中に残る(図5b)。収容容器43中に移動して精製された溶融塩47は、放射性物質固形物が効率よく除去されたものであって、再利用を促進させることができる。
また、このときろ過容器42と収容容器43とで形成される内部空間を密閉状態とし、ろ過容器42の上部に、その内部空間を加圧する圧縮器と接続するようにして、加圧しながら操作できるようにすれば、ろ過を促進できるようになるため好ましい。なお、ここでは溶融塩を冷却して一旦固化しているが、この操作を行うことなく、使用済みの溶融塩を溶融状態のままフィルターに通してろ過しても何ら問題はない。
ここで使用するフィルターとしては、ステンレス等からなる焼結金属や多孔質セラミックス等で形成された本実施形態の使用に耐えうる耐熱性を有するものを用いることができる。また、このフィルターは、固形状の放射性物質を十分にろ過することができる程度に目が細かいものである必要があり、例えば、第2の実施の形態における廃棄物収容容器21のメッシュよりも細かい、例えば、数μm以下の放射性物質固形物を捕捉することができるものであることが好ましい。
このように溶融塩中の放射性物質を除去する方法としては、イオンを除去するものと粒子を除去するものとがあり、これらは適宜選択して効率のよい放射性物質の除去方法をとればよいが、使用済みの溶融塩中にはイオンと固体状の両者が混在する場合がほとんどであるから、片方の方法のみでは、十分に放射性物質を低減することができない場合が多い。そこで、上記した放射性物質の除去方法を組み合わせて連続的に行うことが好ましい。
(第4の実施の形態)
第4の実施の形態は、第3の実施の形態において、使用済みの溶融塩から放射性物質を除去するのに、放射性物質析出工程と放射性物質ろ過工程とを組み合わせて行う場合の、より具体的な態様を示したもので、図6を参照しながら以下説明する。
ここで使用する溶融塩精製装置51は、底面に放射性物質固形物を除去することができるフィルターを有するろ過容器52と、ルツボ容器53と、ろ過容器52を収容したルツボ容器53の内部で、溶融塩を電解精製して溶融塩中の放射性物質イオンを陰極に析出させ、回収することができる電極54と、ろ過容器52及びルツボ容器53の内部を加熱することができる電気炉55と、からなるものである。ここで、ろ過容器52の底面はルツボ容器53の底面に密着するように収容され、ろ過容器52の内部に溶融塩を収容したときでもルツボ容器53に溶融塩が流出しないようになっている(図6a)。
まず、第1の溶融塩電解工程を行って得られた使用済みの溶融塩を、この溶融塩精製装置51のろ過容器52内に収容し、放射性物質の除去に用いる精製用電極54を挿入する(図6a)。この溶融塩には、放射性物質固形物56と放射性物質イオン57が含有されている。
この状態で、陽極及び陰極間に電流を流して電解精製を行うと、溶融塩中に溶解していた放射性物質のイオンが陰極で還元されて放射性金属の析出物58として得られる(図6b)。次に、電極と共にろ過容器52を引き上げると、溶融塩中の放射性物質固形物はろ過容器の底面でフィルターに捕捉されて溶融塩はろ過され、放射性物質の含有量を効果的に低減した精製溶融塩59を容易に得ることができる(図6c)。
このように、溶融塩から分離される放射性物質をフィルタ及び陰極ごと回収するか又はフィルタ及び陰極から剥離回収することで、ジルコニウム廃棄物に含有していた高い放射能レベルを有する放射性物質を、効率的に回収することが可能となる。この溶融塩精製方法によれば、従来ジルコニウム廃棄物として処理される放射性廃棄物から放射性物質を回収することができ、さらに溶融塩からの回収も行うことができるため、放射性廃棄物を大幅に減容でき、廃棄物の処理コストや環境負荷を低減することが可能となる。
なお、ここでは第1の溶融塩電解工程で得られた溶融塩を溶融塩精製装置51に移して精製を行ったが、溶融塩精製装置51を電解槽として第1の溶融塩電解工程を行うこともできる。このとき、溶融塩を移す手間が省くことができ、さらに電解槽と溶融塩精製装置を別に設ける必要がなく好ましいものである。
(第5の実施の形態)
第5の実施の形態は、特に、使用済み燃料から発生する被覆管からジルコニウム成分を回収再利用するためのものであって、被覆管は他のジルコニウム廃棄物と異なり内面に燃料成分であるウラン(U)、超ウラン元素(TRU)と直接接しているため、これらの燃料成分が付着している。このU、TRUはジルコニウムと比較して酸化還元電位が卑であり、通常の電解精製ではU、TRUの溶解が先行するため、電解精製を継続しジルコニウムの陰極への回収を行うと陰極回収物にU、TRUが混入してしまう。
そこで本実施の形態では、溶融塩電解であらかじめU、TRUを陽極溶解し溶融塩中に溶解させ、この状態で電極を溶融塩から引き上げてU、TRUを分離し、次いで、その電極を用いて第1〜4の実施の形態と同様の操作を行うことでジルコニウム廃棄物の処理を行うことができ、ジルコニウムの電解精製の操作のみで、ジルコニウムより酸化還元電位が卑なU及びTRUと、ジルコニウムより酸化還元電位が貴な放射性物質と、をジルコニウムから分離することができ、放射性物質を効率よく除去したジルコニウムの回収、再利用を簡便な操作により達成することができるものである。
第1の実施の形態にかかるジルコニウム廃棄物処理装置の概略構成図 第1の実施の形態における第1の溶融塩電解工程終了後の模式図 第1の実施の形態における第2の溶融塩電解工程開始前の模式図 第1の実施の形態における第2の溶融塩電解工程終了後の模式図 溶融塩電解の回数と比放射能量の関係を示した図 第2の実施の形態にかかるジルコニウム廃棄物処理装置の概略構成図 第2の実施の形態における第1の溶融塩電解工程終了後の模式図 第2の実施の形態における電極を引き上げた状態の模式図 第3の実施の形態における放射性物質析出工程前の模式図 第3の実施の形態における放射性物質析出工程後の模式図 第3の実施の形態における放射性物質ろ過工程前の模式図 第3の実施の形態における放射性物質ろ過工程後の模式図 第4の実施の形態における溶融塩精製装置に使用済み溶融塩を収容した模式図 第4の実施の形態における放射性物質析出工程後の模式図 第4の実施の形態における放射性物質ろ過工程後の模式図
符号の説明
1…ジルコニウム廃棄物処理装置、2…溶融塩、3…電解槽、4…電気炉、5…電源、6…陽極、7…陰極、8…ジルコニウム廃棄物、9…ジルコニウムイオン、10…金属ジルコニウム、11…放射性物質固形物、12…放射性物質イオン、13…陰極、14…金属ジルコニウム、21…ジルコニウム廃棄物処理装置、22…廃棄物収容容器、23…放射性物質固形物、31…陽極、32…陰極、33…放射性物質イオン、34…放射性物質固形物、41…溶融塩精製装置、42…ろ過容器、43…収容容器、44…電気炉、45…溶融塩固化物、46…放射性物質固形物、47…精製溶融塩、51…溶融塩精製装置、52…ろ過容器、53…ルツボ容器、54…精製用電極、55…電気炉、56…放射性物質固形物、57…放射性物質イオン、58…放射性金属析出物、59…精製溶融塩

Claims (9)

  1. 溶融塩電解法を用いて放射性物質とジルコニウムとを分離するジルコニウム廃棄物処理方法において、
    使用済み燃料のチャンネルボックス及び/又は燃料被覆管を陽極溶解し、ジルコニウムを陰極で析出させる第1の溶融塩電解工程と、
    前記第1の溶融塩電解工程で析出したジルコニウムを陽極に装架して陽極溶解し、再度ジルコニウムを陰極で析出させる第2の溶融塩電解工程と、
    を有することを特徴とするジルコニウム廃棄物処理方法。
  2. 前記第1の溶融塩電解工程において、陽極として陽極溶解でジルコニウム廃棄物から脱落、沈降する固形状の放射性物質を内部に保持することができる廃棄物収容容器を用い、第1の溶融塩電解が終了した後、前記廃棄物収容容器を引き上げて、前記廃棄物収容容器の内部に保持された放射性物質を回収する回収工程を有することを特徴とする請求項1記載のジルコニウム廃棄物処理方法。
  3. 前記第2の溶融塩電解工程に用いる溶融塩が、新たな溶融塩又は第1の溶融塩電解工程で使用した溶融塩中の放射性物質を分離処理した溶融塩であることを特徴とする請求項1又は2記載のジルコニウム廃棄物処理方法。
  4. 前記放射性物質の分離処理が、前記第1の溶融塩電解工程で使用した溶融塩中に含まれる放射性物質よりも貴な酸化還元電位をもつ導電性物質を陽極として電解を行い、溶融塩中に含まれる放射性物質イオンを還元して陰極に析出させる放射性物質析出工程により行われることを特徴とする請求項3記載のジルコニウム廃棄物処理方法。
  5. 前記放射性物質の分離処理が、前記第1の溶融塩電解工程で使用した溶融塩を、フィルターによりろ過して放射性物質の固形物を除去する放射性物質ろ過工程により行われることを特徴とする請求項3記載のジルコニウム廃棄物処理方法。
  6. 前記放射性物質の分離処理が、
    前記第1の溶融塩電解工程で使用した溶融塩中に含まれる放射性物質よりも貴な酸化還元電位をもつ導電性物質を陽極として電解を行い、溶融塩中に含まれる放射性物質イオンを還元して陰極に析出させる放射性物質析出工程と、
    該放射性物質析出工程で得られた溶融塩を、フィルターによりろ過して放射性物質の固形物を除去する放射性物質ろ過工程と、
    を連続して行うことを特徴とする請求項3記載のジルコニウム廃棄物処理方法。
  7. ジルコニウム廃棄物として燃料被覆管を処理する際、前記第1の溶融塩電解工程を行う前に、前記燃料被覆管内部に付着したウラン及び超ウラン元素を電解精製により分離することを特徴とする請求項1乃至6のいずれか1項記載のジルコニウム廃棄物処理方法。
  8. 底面に溶融塩をろ過して固形状の放射性物質を除去するためのフィルターを有するろ過容器と、
    該ろ過容器と嵌合し、ろ過された溶融塩を収容することができる収容容器と、
    前記ろ過容器及び前記収容容器の内部を加熱することができる電気炉と、
    からなることを特徴とする溶融塩精製装置。
  9. 底面に溶融塩をろ過して固形状の放射性物質を除去するためのフィルターを有するろ過容器と、
    該ろ過容器を内部に収容し、前記ろ過容器を引き上げることによりろ過された溶融塩を収容することができる収容容器と、
    前記ろ過容器を収容した収容容器内部で、溶融塩を電解精製して溶融塩中の放射性物質のイオンを陰極に析出させ、回収することができる精製用電極と、
    前記ろ過容器及び前記収容容器の内部を加熱することができる電気炉と、
    からなることを特徴とする溶融塩精製装置。
JP2005249209A 2005-08-30 2005-08-30 ジルコニウム廃棄物処理方法及び溶融塩精製装置 Withdrawn JP2007063591A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005249209A JP2007063591A (ja) 2005-08-30 2005-08-30 ジルコニウム廃棄物処理方法及び溶融塩精製装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005249209A JP2007063591A (ja) 2005-08-30 2005-08-30 ジルコニウム廃棄物処理方法及び溶融塩精製装置

Publications (1)

Publication Number Publication Date
JP2007063591A true JP2007063591A (ja) 2007-03-15

Family

ID=37926123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005249209A Withdrawn JP2007063591A (ja) 2005-08-30 2005-08-30 ジルコニウム廃棄物処理方法及び溶融塩精製装置

Country Status (1)

Country Link
JP (1) JP2007063591A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242169A (ja) * 2009-04-06 2010-10-28 Toshiba Corp 金属の電解製造装置及び製造方法
JP2011032578A (ja) * 2009-07-07 2011-02-17 National Institute Of Advanced Industrial Science & Technology 第5族元素及び/又は第6族元素の溶解方法
KR101298056B1 (ko) * 2013-03-12 2013-08-20 충남대학교산학협력단 용융염 전해정련법을 이용하여 오프 그레이드 스크랩으로부터 순수한 Zr을 회수하는 방법
CN104109884A (zh) * 2014-07-18 2014-10-22 中信锦州金属股份有限公司 一种熔盐电解法制备金属锆粉的方法
KR101757626B1 (ko) 2016-09-13 2017-07-14 충남대학교산학협력단 지르코늄계 금속의 제조 시스템
JP2018525624A (ja) * 2015-07-24 2018-09-06 中国原子能科学研究院China Institute Of Atomic Energy ジルコニウム合金燃料を直接得るための使用済み核燃料の乾式再処理方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242169A (ja) * 2009-04-06 2010-10-28 Toshiba Corp 金属の電解製造装置及び製造方法
JP2011032578A (ja) * 2009-07-07 2011-02-17 National Institute Of Advanced Industrial Science & Technology 第5族元素及び/又は第6族元素の溶解方法
KR101298056B1 (ko) * 2013-03-12 2013-08-20 충남대학교산학협력단 용융염 전해정련법을 이용하여 오프 그레이드 스크랩으로부터 순수한 Zr을 회수하는 방법
CN104109884A (zh) * 2014-07-18 2014-10-22 中信锦州金属股份有限公司 一种熔盐电解法制备金属锆粉的方法
JP2018525624A (ja) * 2015-07-24 2018-09-06 中国原子能科学研究院China Institute Of Atomic Energy ジルコニウム合金燃料を直接得るための使用済み核燃料の乾式再処理方法
KR101757626B1 (ko) 2016-09-13 2017-07-14 충남대학교산학협력단 지르코늄계 금속의 제조 시스템
WO2018052232A1 (ko) * 2016-09-13 2018-03-22 충남대학교 산학협력단 지르코늄계 금속의 제조 시스템

Similar Documents

Publication Publication Date Title
US6299748B1 (en) Method and apparatus of treating waste from nuclear fuel handling facility
JP2007286037A (ja) 金属ウラニウム生産方法及び同方法に使用される装置
JP2007063591A (ja) ジルコニウム廃棄物処理方法及び溶融塩精製装置
US6319391B1 (en) Removal of metal from graphite
JP5016964B2 (ja) 溶融塩電解精製装置及び溶融塩電解精製方法
JPH05209998A (ja) 放射能汚染金属からのテクネチウムの抽出方法
US7097747B1 (en) Continuous process electrorefiner
JP3940632B2 (ja) ジルコニウム廃棄物のリサイクルシステム
JP2002357696A (ja) 固体廃棄物の除染方法及びその装置
JP5293007B2 (ja) タリウム及び硝酸カリウムの回収方法及び回収装置
KR20140074632A (ko) 우라늄 회수용 전기화학적 장치
JP3342968B2 (ja) 使用済燃料の再処理方法
JP2006520470A (ja) 金属を分離するためのプロセス
KR101513652B1 (ko) 복합폐기물 처리 방법
JP2000056075A (ja) 使用済み酸化物燃料のリサイクル方法
JP4053179B2 (ja) 放射化汚染材料の除染方法とその装置
KR101553895B1 (ko) 복합폐기물 처리 방법
JPH09257985A (ja) 使用済み燃料の再処理方法
JPH11223698A (ja) 汚染金属の再生方法とその装置
JP2014105356A (ja) 混合酸化物の処理システム及び方法
JPH10232298A (ja) 放射化汚染材料の除染方法
JP3910605B2 (ja) 使用済み燃料の溶融塩電解再処理方法
WO2003063178A1 (fr) Procede de reduction electrolytique
JP5238546B2 (ja) 使用済み酸化物燃料の処理方法、金属酸化物の処理方法及び処理装置
JP3994203B2 (ja) 選択硫化と磁気分離による再処理方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104