JP2007060205A - データ圧縮装置およびデータ圧縮プログラム - Google Patents

データ圧縮装置およびデータ圧縮プログラム Download PDF

Info

Publication number
JP2007060205A
JP2007060205A JP2005242175A JP2005242175A JP2007060205A JP 2007060205 A JP2007060205 A JP 2007060205A JP 2005242175 A JP2005242175 A JP 2005242175A JP 2005242175 A JP2005242175 A JP 2005242175A JP 2007060205 A JP2007060205 A JP 2007060205A
Authority
JP
Japan
Prior art keywords
data
compression
unit
numerical value
numerical values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005242175A
Other languages
English (en)
Other versions
JP4633577B2 (ja
Inventor
Yukio Sugita
由紀夫 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005242175A priority Critical patent/JP4633577B2/ja
Publication of JP2007060205A publication Critical patent/JP2007060205A/ja
Application granted granted Critical
Publication of JP4633577B2 publication Critical patent/JP4633577B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

【課題】CTデータの圧縮に適用可能な新たな好ましい圧縮処理を行うことができるデータ圧縮装置およびデータ圧縮プログラムを提供する。
【解決手段】被圧縮データを構成する数値の連続から、上記画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値を間引くことにより、その間引きで該被圧縮データから取り出された数値の連続からなる第1の被圧縮データと、残りの数値の連続からなる第2の被圧縮データとを作成する間引き処理部と、上記間引き処理部で作成された第1の被圧縮データに可逆圧縮処理を施す可逆圧縮部と、上記間引き処理部で作成された第2の被圧縮データに非可逆圧縮処理を施す非可逆圧縮部とを備えた。
【選択図】 図7

Description

本発明は、画像データ等のデータを圧縮するデータ圧縮装置、およびコンピュータ等の情報処理装置をデータ圧縮装置として動作させるデータ圧縮プログラムに関する。
従来より、記憶容量の低減化や通信量の低減化等のために、画像データ等のデータを圧縮する技術が広く採用されている。
例えば、特許文献1には、原画像から代表色を選定しCLUT(カラールックアップテーブル)を構成する際に、連続する色番号が近い値の色データを持つように色番号を割り当て、次にCLUTに対応したビットマップを作成して隣接画素間の色番号の差分を求め、差分が大きな値を取る場合、画質劣化を起こさない範囲でビットマップの色番号を変更し、差分を小さな値に偏らせ、差分データに対してランレングス符号化を施すという技術が開示されている。
また、特許文献2には、各色に対応してそれぞれ割り当てられたデータが複数集まって構成される画像用データを非可逆圧縮して符号化し、そして、データの1つを透明色に割り当てると共に、その透明色を可逆とし、画像用データを即値(差分符号化の際の最初の値)とその即値に続く複数の差分値(差分符号化の際の前の値)とで構成し、それらの値を非可逆圧縮して符号化等する際、透明色を表す即値と差分値とを可逆とし、さらに、透明色を表す即値を、各一色のデータ値の中間の値としたり、透明色を表す差分値を「0」としたりするという技術が提案されている。
また、特許文献3には、数を予測された数(s’(j))と実際の数(s(j))との差分によって符号化することが提案されている。
さらに、特許文献4には、n列目の画素データ列に対して、副走査方向の同一画素データの分布状況を認識するとともに、主走査方向の同ー画素データの分布状況を認識し、これらの認識結果を基に、副走査方向に連続する同ー画素データを圧縮処理するか、あるいは主走査方向に連続する同一画素データを圧縮処理するかを決定する画像圧縮装置が提案されている。
ここで、データ圧縮技術を適用した1つのシステムを紹介する。
図1は、データ圧縮技術が適用されたプリントシステムの一例を示す図、図2は、プリントシステムにおけるデータ処理の流れを示す図である。
このプリントシステムは、図1に示すように、ホストコントローラ100と、インターフェース機器200と、プリンタ300とで構成されており、ホストコントローラ100とインターフェース機器200との間はSCSI等の汎用インターフェースケーブル150で接続され、さらにインターフェース機器200とプリンタ300との間は専用インターフェースケーブル250で接続されている。
ホストコントローラ100の内部では、図2に示すように、PDF,PS,TIFF等、様々な言語やフォーマットで記述された文字や画像のデータ11が、画像(CT;Continuous Tone)データと文字やライン等(LW;Line Work)のデータとに分けられて、それぞれについてRIP(Raster Image Processing)を行なうことによりビットマップデータ12A,13Aが生成され、さらにそれぞれについてデータ圧縮処理が行なわれて、CTについては非可逆の圧縮データ14、LWについては可逆の圧縮データ15が生成される。これらの圧縮データ14,15は、図1に示す汎用インターフェースケーブル150を経由して、ホストコントローラ100からインターフェース機器200に転送される。インターフェース機器200では、転送されてきた圧縮データ14,15にデータ伸長処理を施して、ホストコントローラ100でデータ圧縮処理を行なう前の状態のビットマップデータ12A,13Aに対応するビットマップデータ12B,13Bを生成する。ここで、CTデータについてはホストコントローラ100でのデータ圧縮の際非可逆圧縮処理が行なわれているため、データ伸長後のCTデータ(ビットマップデータ12B)は完全にはデータ圧縮前のCTデータ(ビットマップデータ12A)には戻らないが、ほぼ同一のビットマップデータが復元される。LWデータについては、ホストコントローラ100でのデータ圧縮の際可逆圧縮処理が行なわれているため、データ伸長後のLWデータ(ビットマップデータ13B)は、データ圧縮前のLWデータ(ビットマップデータ13A)と同一のデータに復元される。
インターフェース機器200では、データ伸長後のCTデータ(ビットマップデータ12B)とLWデータ(ビットマップデータ13B)とが合成され、さらに網点情報等がタグとして付加されてプリンタ300に送られる。プリンタ300では、インターフェース機器200から受け取ったビットマップデータとそれに付加されたタグ情報とに従って画像がプリント出力される。
ホストコントローラ100とインターフェース機器200とが例えば相互に離れている場合、あるいは、インターフェース機器200が複数台のホストコントローラから画像データを受信するシステムの場合など、ホストコントローラ100とインターフェース機器200を別々の装置として構成する必要がある場合には、図2に示すような、ホストコントローラ100でデータ圧縮を行なってインターフェース機器200にデータ転送しインターフェース機器でデータ伸長するように構成することにより、ホストコントローラ100からインターフェース機器200へのデータ転送時間を短縮することができ、プリントの生産性が向上する。
ここで、一般的には、CTデータについては、非可逆ではあるが圧縮率の高いJPEG等の圧縮方式が採用され、LWデータについてはPackBits等の可逆圧縮方式が採用される。
特開平5−328142号公報 特開平10−164620号公報 特表2001−5−20822号公報 特開平9−200540号公報
しかし、JPEG等の圧縮方式では、ソフトウェアでの圧縮処理に時間を要し、圧縮処理のシステム全体としての処理能力を劣化させる要因となっていた。
本発明は上記事情に鑑み、CTデータの圧縮に適用可能な新たな好ましい圧縮処理を行うことができるデータ圧縮装置およびデータ圧縮プログラムを提供することを目的とする。
上記目的を達成する本発明のデータ圧縮装置は、
所定の単位ビット数で表わされる数値の連続で2次元的な画像を表した被圧縮データにデータ圧縮処理を施すデータ圧縮装置において、
被圧縮データを構成する数値の連続から、上記画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値を間引くことにより、その間引きで該被圧縮データから取り出された数値の連続からなる第1の被圧縮データと、残りの数値の連続からなる第2の被圧縮データとを作成する間引き処理部と、
上記間引き処理部で作成された第1の被圧縮データに可逆圧縮処理を施す可逆圧縮部と、
上記間引き処理部で作成された第2の被圧縮データに非可逆圧縮処理を施す非可逆圧縮部とを備えたことを特徴とする。
本発明のデータ圧縮装置は、
上記可逆圧縮部が、
上記間引き処理部で作成された第1の被圧縮データを構成する数値の連続について隣接する数値どうしの差分を求めることにより該差分を表わす数値の連続からなる新たな被圧縮データを生成する差分生成部と、
上記差分生成部によって生成された新たな被圧縮データを構成する各数値を所定値だけオフセットさせるオフセット部と、
上記オフセット部によって数値がオフセットされた被圧縮データの各数値を、上記単位ビット数よりも小さい所定の分割ビット数のところで上位ビット部分と下位ビット部分とに分けることによって、該被圧縮データを、各数値における上位ビット部分の連続からなる上位データと各数値の下位ビット部分の連続からなる下位データとに分割する分割部と、
上記分割部によって分割された上位データに対して可逆圧縮処理を施す上位データ圧縮部と、
上記分割部によって分割された下位データに対して可逆圧縮処理を施す下位データ圧縮部とを備えたものであることが好適である。
ここで、上記の『被圧縮データを構成する数値の連続について隣接する数値どうしの差分を求めることにより』における『隣接する』とは、データストリーム上で隣接してもよいが、必ずしもそれに限定されるものではない。例えば、2次元画像データが1次元ストリーム状のデータとして扱われている場合であれば、2次元的な画像上で見て隣接してもよい。また、『隣接する数値どうしの差分』とは、1次元的な差分のみならず2次元以上の多次元的な差分も含む意である。以下においても同様である。
このような差分生成部を備えたデータ圧縮装置において、
上記上位データ圧縮部が、上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、その圧縮対象数値と、圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部を備えたものであることが好ましい。
また、差分生成部を備えた本発明のデータ圧縮装置は、
上記上位データ圧縮部が、
上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、その圧縮対象数値と、圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
符号と数値を対応づけるテーブルを用いて、第1の符号化部で符号化された後のデータにエントロピー符号化を施す第2の符号化部を備えたものであることが、より好ましい。
ここで、差分生成部を備えた本発明のデータ圧縮装置において、上記の上位データ圧縮部は、
上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、その圧縮対象数値と、圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
ハフマンテーブルを用いて、第1の符号化部で符号化された後のデータにハフマン符号化を施す第2の符号化部を備えたものであってもよい。
さらに、差分生成部を備えた本発明のデータ圧縮装置は、
上記上位データ圧縮部が、
上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、その圧縮対象数値と、圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
第1の符号化部で符号化された後のデータ中に出現する数値のヒストグラムを求めるヒストグラム算出部と、
ヒストグラム算出部で求められたヒストグラムに基づき、符号と数値を対応づけるテーブルに、出現頻度の高い数値ほど符号長の短かい符号を割り当てる符号割当部と、
符号割当部で符号が割り当てられたテーブルを用いて、第1の符号化部で符号化された後のデータにエントロピー符号化を施す第2の符号化部を備えたものであることが、より好ましい。
また、差分生成部を備えた本発明のデータ圧縮装置は、
上記下位データ圧縮部が、符号と数値を対応づけるテーブルを用いて下位データにエントロピー符号化を施すものであることが好ましい。
ここで、差分生成部を備えた本発明のデータ圧縮装置において、上記の下位データ圧縮部は、ハフマンテーブルを用いて下位データにハフマン符号化を施すものであってもよい。
また、差分生成部を備えた本発明のデータ圧縮装置は、
上記下位データ圧縮部が、圧縮省略の指示を受けて下位データを無圧縮で出力するものであることも好適である。
上記目的を達成する本発明のデータ圧縮プログラムは、
プログラムを実行する情報処理装置内に組み込まれて該情報処理装置に、所定の単位ビット数で表わされる数値の連続で2次元的な画像を表した被圧縮データにデータ圧縮処理を実行させるデータ圧縮プログラムにおいて、
上記情報処理装置上に、
被圧縮データを構成する数値の連続から、上記画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値を間引くことにより、その間引きで該被圧縮データから取り出された数値の連続からなる第1の被圧縮データと、残りの数値の連続からなる第2の被圧縮データとを作成する間引き処理部と、
上記間引き処理部で作成された第1の被圧縮データに可逆圧縮処理を施す可逆圧縮部と、
上記間引き処理部で作成された第2の被圧縮データに非可逆圧縮処理を施す非可逆圧縮部とを構築することを特徴とする。
なお、本発明にいうデータ圧縮プログラムについては、ここではその基本形態のみを示すのにとどめるが、これは単に重複を避けるためであり、本発明にいうデータ圧縮プログラムには、上記の基本形態のみではなく、前述したデータ圧縮装置の各形態に対応する各種の形態が含まれる。
また、本発明のデータ圧縮プログラムがコンピュータ上に構成する間引き処理部などといった要素は、1つの要素が1つのプログラム部品によって構築されるものであってもよく、1つの要素が複数のプログラム部品によって構築されるものであってもよく、複数の要素が1つのプログラム部品によって構築されるものであってもよい。また、これらの要素は、そのような作用を自分自身で実行するものとして構築されてもよく、あるいは、コンピュータに組み込まれている他のプログラムやプログラム部品に指示を与えて実行するものとして構築されても良い。
上記本発明のデータ圧縮装置ないしデータ圧縮プログラムによれば、被圧縮データが、画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値が間引き出されて構成された第1の被圧縮データと、残りの第2の被圧縮データとに分けられ、第1の被圧縮データには可逆圧縮処理が施されて第2の被圧縮データには非可逆圧縮処理が施される。このように可逆圧縮処理の対象となるデータを、画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値から構成することで、画像の縦および横方向にみて直線状の周期的な位置に相当する数値の連続からなる、同じ間引き率のデータよりも、画像の縦または横方向の解像度を疑似的に向上させることができる。また、第2の被圧縮データについては非可逆圧縮によって元の情報は一部失われるが、CT画像は隣接画素間の相関が強いので、その相関を前提とすることで、第2の被圧縮データを大幅に圧縮しても元の画像の画質を高く維持することができる。
また、上記可逆圧縮部が、差分生成部などを備えると、この可逆圧縮部では、元の被圧縮データから差分生成部によって生成されてオフセット部によって数値がオフセットされた新たな被圧縮データが上位データと下位データとに分割され、それぞれ上位データ圧縮部と下位データ圧縮部とで可逆圧縮処理が施される。一般に、CTデータから得られる新たな被圧縮データの場合には、後で詳述するように、上位データと下位データとではデータ中の数値の分布傾向が顕著に異なっているので、各データに適した可逆圧縮処理が存在し、本発明による圧縮処理によって全体として大きな圧縮率が達成される。また、各データに施される可逆圧縮処理としては、アルゴリズムが単純な処理が適用可能であるため、圧本発明による圧縮処理は処理時間が短い。このように、差分生成部などを備えた可逆圧縮部によれば、CTデータの圧縮に適用すると特に好ましい可逆圧縮処理が実現される。
また、上記の上位データ圧縮部が第1の符号化部を備えると、圧縮対象数値のみが、その圧縮対象数値と連続数とを表わす数値とに符号化されるため、原データよりも冗長度が増すという事態が回避され、圧縮率が向上する。
また、上記の上位データ圧縮部が第2の符号化部を備えると、エントロピー符号化(典型的にはハフマン符号化)による、圧縮率の更なる向上が見込まれる。
さらに、上記の上位データ圧縮部が、ヒストグラム算出部と符号割当部とを備え、第2の符号化部が、符号割当部で符号が割り当てられたテーブルを用いてエントロピー符号化(例えばハフマン符号化)を施すものであると、符号の割り当てが固定されたテーブルを用いたエントロピー符号化と比べ、圧縮率をさらに大きく向上させることができる。
また、上記の下位データ圧縮部が、エントロピー符号化を施すものであると、エントロピー符号化(典型的にはハフマン符号化)による、圧縮率の更なる向上が見込まれる。
さらに、上記の下位データ圧縮部が、圧縮省略の指示を受けて下位データを無圧縮で出力するものであると、そのような指示によってより高速な圧縮処理を選択することができる。
以下において説明する実施形態は、図1に示す全体システムの中のホストコントローラに組み込まれる画像圧縮装置であり、さらに具体的には、図2に示すホストコントローラ内のCTのビットマップデータ12Aについてデータ圧縮を行なう処理に関するものである。したがって、ここでは、図1,図2を参照して説明したCTデータについてのデータ圧縮処理が以下に説明する本発明の実施形態としてのデータ圧縮処理に置き換わり、インターフェース機器内でのデータ伸長(解凍)処理もその本発明の実施形態としてのデータ圧縮処理に対応したデータ伸長(解凍)処理に置き換わるものと理解し、図1に示す全体システムおよび図2に示す処理の流れについて重複した図示および重複説明は省略する。
図3は、本発明のデータ圧縮装置の一実施形態に相当する画像圧縮装置を示すブロック構成図である。
この図3に示す画像圧縮装置500は、間引き処理部505、差分符号化部510、オフセット部520、プレーン分割部530、Lプレーン圧縮部540、Hプレーン圧縮部550、およびFAKE画素圧縮部560を備えている。各部505〜560の詳細は後述するが、この画像圧縮装置500内での画像データの流れは以下のとおりである。
入力画像ファイルD0(本実施形態では、図2に示すように、ビットマップに展開されたCTデータ12Aが格納されたファイル)は、図4に示すデータ圧縮装置500の間引き処理部505に入力される。この間引き処理部505において、入力されたデータから
画像中の周期的な画素部分に相当するTRUE画素データが間引かれて、このTRUE画素データは可逆圧縮処理の対象となるデータが抽出される。一方、間引かれた残りは、非可逆圧縮処理の対象のデータであるFAKE画素データとなる。このとき、画像を表す、2次元的に配置された画素の配置から、どのようにTRUE画素を選択する(間引く)かは、画像デ−タを生成した光学デバイスの特性に基づいてユーザによって決定され、ユーザの指示を受けた間引き設定部507によって間引き処理部505に設定される。ここで、TRUE画素データおよびFAKE画素データが、それぞれ、本発明にいう第1の被圧縮データおよび第2の被圧縮データの各一例に相当する。
TRUE画素データは差分符号化部510に入力されて、2次元差分符号化処理、すなわち、入力されてきたデータを構成する数値の連続について、画像上で見てその数値に複数方向それぞれに隣接する複数の数値に基づいた2次元的な差分を求めることによりその差分を表わす8ビットの数値の連続からなる画像データを生成する処理が行なわれる。この差分符号化部510は、本発明にいう差分生成部の一例に相当する。
差分符号化部510で生成された、差分を表わす数値の連続からなる画像データは、オフセット部520に入力されて所定値だけオフセットされる。その後、エッジ検出部525とプレーン分割部530に入力され、エッジ検出部525では、オフセットされた差分値に基づいて画像のエッジ部分が検出され、プレーン分割部530では、画像データ中の8ビットの各数値が下位4ビットと上位4ビットとに分けられることにより、画像データは、下位4ビットの数値の連続からなる下位サブプレーンD1Lと上位4ビットの数値の連続からなる上位サブプレーンD1Hに分割される。このオフセット部520は、本発明にいうオフセット部の一例に相当し、プレーン分割部530は、本発明にいう分割部の一例に相当する。また、下位サブプレーンD1Lおよび上位サブプレーンD1Hは、それぞれ、本発明にいう下位データおよび上位データの各一例に相当する。
プレーン分割部530で分割された下位サブプレーンD1Lおよび上位サブプレーンD1Hは、それぞれ、Lプレーン圧縮部540およびHプレーン圧縮部550に入力されて可逆圧縮が施される。これらLプレーン圧縮部540およびHプレーン圧縮部550は、それぞれ、本発明にいう下位データ圧縮部および上位データ圧縮部の各一例に相当する。
Lプレーン圧縮部540のハフマン符号化部541では、数値と符号とを対応づける固定的なハフマンテーブルに従って、そのハフマン符号化部541に入力されてきた下位サブプレーンD1Lを構成する数値をそのハフマンテーブルに従う符号に置き換える符号化処理が行なわれる。このハフマン符号化は、エントロピー符号化の一種である。なお、Lプレーン圧縮部540にはモード切換部542が組み込まれており、このモード切換部542は、ユーザから、高速モードと通常モードとの切り換えを指示されて、上記のハフマン符号化部541によるハフマン符号化を経る通常モードと、ハフマン符号化を省略して下位サブプレーンD1Lをそのまま出力する高速モードとを切り換える。このようなLプレーン圧縮部540からは、下位サブプレーンD1Lが圧縮された下位圧縮データD2Lが出力されるが、高速モードの場合には下位圧縮データD2Lは下位サブプレーンD1Lそのものである。
一方、Hプレーン圧縮部550には、ランレングス符号化部551と、データスキャニング部552と、ハフマン符号化部553が備えられており、上位サブプレーンD1Hはランレングス符号化部551に入力される。
ランレングス符号化部551では、先ず、入力されてきた上位サブプレーンD1Hのデータの中から1つもしくは複数の圧縮対象数値の存在及び同一の圧縮対象数値の連続数が検出される。次いで、ランレングス符号化部551では、その検出結果を受けて、上位サブプレーンD1Hのデータ中、圧縮対象数値を除く数値についてはそのまま出力すると共に、圧縮対象数値については、その圧縮対象数値と、その圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力するという符号化処理が行なわれる。このランレングス符号化部551では、その符号化処理にあたっては、同一の圧縮対象数値の連続数に応じ、その連続数を異なるビット数で表現する符号化が行なわれる。ここでは、具体的には、同一の圧縮対象数値の連続数が所定数以下のときはその連続数を1単位ビット数で表現し、その連続数が所定数を越えるときは2単位ビット数で表現する符号化が行なわれる。本実施形態では、このランレングス符号化部551が、本発明にいう第1の符号化部の一例に相当する。
また、ランレングス符号化部551での符号化後のデータは、次に、データスキャニング部552とハフマン符号化部553との双方に入力される。データスキャニング部552では、ランレングス符号化部551で符号化された後のデータの全てをスキャニングして、そのデータ中に出現する全ての数値の出現頻度(ヒストグラム)が求められる。ここで、この出現頻度を求める処理は、本実施形態では、図3に示す上位サブプレーンD1Hの1つずつを単位として実行され、各上位サブプレーンD1Hの、ランレングス符号化部551で符号化された後のデータ中の数値の出現頻度が求められる。さらに、データスキャニング部552では、求められたデータヒストグラム(数値の出現頻度)に基づき、ハフマンテーブルに、出現頻度の高い数値ほど符号長の短かい符号を割り当てる。このデータスキャニング部552は、本発明にいうヒストグラム算出部および符号割当部の各一例を兼ね備えたものに相当する。
データスキャニング部552で数値に符号が割り当てられてなるハフマンテーブルは、ハフマン符号化部553に渡され、ハフマン符号化部553では、その渡されたハフマンテーブルに従って、そのハフマン符号化部553に入力されてきたデータを構成する数値を、そのハフマンテーブルに従う符号、すなわち、出現頻度の高い数値ほど短かいビット長で表わされる符号に置き換える符号化処理が行なわれる。このハフマン符号化部553は、本発明にいう第2の符号化部の一例に相当する。
ハフマン符号化部553でハフマン符号化された後のデータは、データスキャニング部552で割り当てられた数値と符号との割当テーブルを含む圧縮情報が添付され、上位サブプレーンD1Hが圧縮された上位圧縮データD2HとしてHプレーン圧縮部550から出力される。
このようにLプレーン圧縮部540およびHプレーン圧縮部550のそれぞれから出力される下位圧縮データD2Lと上位圧縮データD2Hとの組は、TRUE画素データが可逆圧縮された可逆圧縮データを構成する。
一方、上記の間引き処理部505で得られたFAKE画素データは、FAKE画素圧縮部560に入力されて非可逆圧縮処理が施される。このFAKE画素圧縮部560には、ビット短縮部561と、ランレングス符号化部562と、ハフマン符号化部563とが備えられており、FAKE画素データを構成する数値はビット短縮部561で1ビットまたは4ビットの符号に置換される。そして、ランレングス符号化部562およびハフマン符号化部563によって、上記Hプレーン圧縮部550における処理と全く同様の処理が実行される。この結果、FAKE画素圧縮部560からは、FAKE画素データが非可逆圧縮された非可逆圧縮データD3が出力される。
TRUE画素データの可逆圧縮データとFAKE画素データの非可逆圧縮データとで、元の画像データに対する圧縮データが構成される。この圧縮データは、図1に示すSCSI等の汎用インターフェース150を経由してインターフェース機器200に転送される。インターフェース機器200では、その受け取った圧縮データにデータ伸長処理が施されるが、このデータ伸長処理にあたっては、図3で説明した各種の符号化処理に対応する復号化処理が施されて元の入力画像ファイル中の画像データとほぼ同一の画像データが復元される。
図4は、図1に示すホストコントローラのハードウェア構成図である。
図1に示すホストコントローラ100は、図4に示す構成のコンピュータシステムで構成されている。
この図4に示す、コンピュータシステムで構成されたホストコントローラ100には、CPU111、RAM112、通信インターフェース113、ハードディスクコントローラ114、FDドライブ115、CDROMドライブ116、マウスコントローラ117、キーボードコントローラ118、ディスプレイコントローラ119、および通信用ボード120が備えられており、これらはバス110で相互に接続されている。
ハードディスクコントローラ114は、このホストコントローラ100に内蔵されているハードディスク104のアクセスを制御するものであり、FDドライブ115、CDROMドライブ116は、このホストコントローラ100に取出し自在に装填されるフレキシブルディスク(FD)130、CDROM140のアクセスを制御するものである。また、マウスコントローラ117、キーボードコントローラ118は、このホストコントローラ100に備えられたマウス107、キーボード108の操作を検出してCPU111に伝達する役割を担っている。さらに、ディスプレイコントローラ119は、このCPU111の指示に基づいて、ホストコントローラ100に備えられた画像ディスプレイ109の表示画面上に画像を表示する役割を担っている。
通信用ボード120は、SCSI等の汎用インターフェースプロトコルに準拠した通信を担っており、圧縮後の画像データをインターフェースケーブル150を介してインターフェース機器200(図1参照)に転送する役割を担っている。
さらに、通信用インターフェース113は、インターネット等の汎用の通信を担っており、このホストコントローラ100は、この通信用インターフェース113を経由して画像データを取り込むこともできる。
RAM112には、ハードディスク104に格納されているプログラムが読み出されてCPU111での実行のために展開され、CPU111では、そのRAM112に展開されたプログラムが読み出されて実行される。
図5は、本発明のデータ圧縮プログラムの一実施形態に相当する画像圧縮処理プログラムの模式構成図である。
ここでは、この画像圧縮プログラム600は、CDROM140に記憶されている。
この画像圧縮プログラム600は、間引き処理部605、間引き設定部607、差分符号化部610、オフセット部620、エッジ検出部625、プレーン分割部630、Lプレーン圧縮部640、Hプレーン圧縮部650、およびFAKE画素圧縮部660から構成されている。このCDROM140には、ここに示す画像圧縮プログラム600のほか、図1に示すホストコントローラ100における一連の処理を実行するための各種プログラムが記憶されているが、それらについては従来と同様であるため図示および説明は省略する。
この図5に示すCDROM140が、図4に示すホストコントローラ100に装填されCDROMドライブ116でアクセスされてそのCDROM140に記憶されているプログラムがこのホストコントローラ100にアップロードされ、ハードディスク104に記憶される。このハードディスク104に記憶されたプログラムがそのハードディスク104から読み出されてRAM112に展開されCPU111で実行されると、このホストコントローラ100は、図3に示す画像圧縮装置500としての処理を含む、ホストコントローラとしての各種処理を実行する装置として動作する。
ここで、図5に示す画像圧縮プログラム600は、ホストコントローラ100にインストールされてCPU111で実行されることにより、そのホストコントローラ100内に図3に示す画像圧縮装置500を実現するものであり、間引き処理部605、間引き設定部607、差分符号化部610、オフセット部620、エッジ検出部625、プレーン分割部630、Lプレーン圧縮部640、Hプレーン圧縮部650、およびFAKE画素圧縮部660は、CPU111で実行されることにより、そのホストコントローラ100を、図3に示す画像圧縮装置500を構成する、それぞれ、間引き処理部505、間引き設定部507、差分符号化部510、オフセット部520、エッジ検出部525、プレーン分割部530、Lプレーン圧縮部540、Hプレーン圧縮部550、およびFAKE画素圧縮部560として動作させるプログラム部品である。つまり、これらのプログラム部品により、画像圧縮装置500の構成要素がホストコントローラ100上に実質的に構築されることとなる。
図5の画像圧縮プログラム600を構成する各部605〜660の、CPU111で実行されたときの作用は、それぞれ、図3の画像圧縮装置500を構成する各部505〜560の作用そのものである。したがって、図3の画像圧縮装置500の各部505〜560に関する、これまでの説明、および、以下に説明する詳細説明をもって、図5の画像圧縮プログラム600を構成する各部605〜660の説明を兼ねるものとする。
図6は、図3のデータ圧縮装置500に入力される入力画像ファイル中の画像データのデータ構造および間引き処理の概念を示す図である。
図6に示すように、図3に示すデータ圧縮装置500に入力される画像データは、所定の主走査方向(図の横方向)とその主走査方向とは直角な副走査方向(図の縦方向)とに画素が並んでおり、主走査方向に並ぶ画素の列はラインと称される。ここでは6ライン分の画素が示されており、画素と画素との間隔は600dpiの解像度に相当する。
各画素の位置は、画素値を表す符号T,Fに付された添え字で表現される。例えば3番目のラインについて、主走査方向に並ぶ各画素の画素値には、その並び順に、
3_1,3_2,3_3,3_4,…
という添え字が付されている。
図3に示すデータ圧縮装置500を構成する間引き処理部505には、このように並んだ画素値からなる画像データが入力され、各画素を、TRUE画素とFAKE画素とに分類する。この図6に示す各画素のうちTRUE画素は画素値が符号Tで表され、FAKE画素は画素値が符号Fで表されている。TRUE画素は、画素の並びの中から周期的に間引かれた画素であり、この図は、副走査方向に1ラインおきの各ライン(奇数番目のライン)について、主走査方向に1画素おきの各画素(奇数番目の画素)がTRUE画素として間引き出されていることを示している。この結果、TRUE画素は、元の600dpiの解像度から300dpiの解像度に低下した画像を構成する画素に相当しており、元の画像データの4分の1に相当する画素が間引き出されたこととなる。このように間引き出されたTRUE画素は、そのようなTRUE画素の連続からなるTRUE画素データを構成し、そのTRUE画素データの構造は、元の画像データと同様に、主走査方向と副走査方向に画素が並んだ構造となっている。TRUE画素の間引きによって残ったFAKE画素についても、そのFAKE画素の画素値の連続からなるFAKE画素データを構成する。TRUE画素データが可逆圧縮処理の対象となるのに対し、このFAKE画素データは非可逆圧縮処理の対象となる。
この圧縮処理装置では、TRUE画素の間引き出しとして、図6のようなTRUE画素とFAKE画素の配置とは異なる配置でTRUE画素の間引きを行うこともできる。
図7は、図6に示すTRUE画素とFAKE画素の配置において、主走査方向に並ぶ画素の列(ライン)のうち、副走査方向について4ラインに1ラインの割合で、TRUE画素の位置を主走査方向に1個ずらした配置を表す図である。
図7に示す画素の配置では、副走査方向3ライン目において、画素値が{T3_2,T3_4,T3_6,T3_8,T3_10,…}と表現されるTRUE画素が、FAKE画素1個おきに並んでいる。この配列は、図6に示す、副走査方向3ライン目の、画素値が{T3_1,T3_3,T3_5,T3_7,T3_9,…}と表現されるTRUE画素の配列と比べて、TRUE画素の位置が主走査方向に1個ずれた配列となっている。図7で示す画素の配置は、このようなTRUE画素の位置が主走査方向に1個ずれた列が、副走査方向に3ラインおきに現れ、TRUE画素が副走査方向に見てジグザグな配置となっている。このため、図6の配置では、副走査方向に見ると、画素値が{F1_2,F2_2,F3_2,…},{F1_4,F2_4,F3_4,…}と表現されるFAKE画素の列のように、TRUE画素が全く現れないFAKE画素のみからなる画素の列が、主走査方向について画素1個おきに出現するのに対し、図7の配置では、副走査方向に並ぶ画素の列には、同じ割合(3個のFAKE画素に1個のTRUE画素)で常にTRUE画素が現れる構成となっている。このため、この図7の配置は、図6の配置に比べ、主走査方向についての解像度が疑似的に高く、副走査方向に見た時の画質が高い配置となっている。
画像データを生成するCCDなどの光学デバイスの中には、その特性として、主走査方向の分解能と副走査方向の分解能とが異なるものがある。このような光学デバイスで生成された画像データを圧縮処理する場合には、その分解能が高い方向の解像度が高くなるような圧縮処理を施すことが望ましい。例えば、主走査方向の分解能の高い光学デバイスで生成された画像データの場合、図6の配置では、TRUE画素が全く現れない、副走査方向にFAKE画素だけが並んでいる列と、副走査方向にTRUE画素とFAKE画素が1個ずつ並んでいる列とが交互に現れることになるため、伸張処理後の画像において画質の良い列と画質の悪い列とが交互に現れることとなり、画質の低下が目立つことになる。このような場合、図7の配置に切り換えることで画質の低下を抑えることができる。
図8は、図6に示すTRUE画素とFAKE画素の配置において、副走査方向に並ぶ画素の列のうち、主走査方向について4列に1列の割合で、TRUE画素の位置を副走査方向に1個ずらした配置を表す図である。
図8では、副走査方向に並ぶTRUE画素の列が、主査方向について4列に1列の割合で、図6の配置と比べてTRUE画素の位置が副走査方向に1個ずれた列となっている。
例えば、図8で画素値が{T2_3,T4_3,…}と表現される左から3番目の列や、画素値が{T2_7,T4_7,…}と表現される左から7番目の列は、図6で画素値が{T1_3,T3_3,…}と表現される左から3番目の列や、画素値が{T1_7,T3_7,…}と表現される左から7番目の列と比べて、TRUE画素の位置が副走査方向に1個ずれた列となっている。このため、図8に示す画素の配置では、TRUE画素の画素値が、主走査方向に並んでいる画素のどのラインにも、FAKE画素の3個に対しTRUE画素1個の割合でTRUE画素が現れる構成となっており、図8の配置は、図6の配置に比べ、副走査方向についての解像度が疑似的に高く、主走査方向に見た時の画質が高い配置となっている。
従って、副走査方向の分解能の高い光学デバイスで生成された画像データに対して、図8の配置を選択することで画質の低下を抑えることができる。
このように、この画像圧縮装置500では、光学デバイスの特性に応じてユーザがTRUE画素とFAKE画素の配置を切り換えることにより、伸張処理後の画像において画質を向上させることができる。このような切換は、画像圧縮装置500のユーザが、図3では不図示の操作パネル上で上記の図6、図7および図8の配置のうち、いずれかの配置を指定することによって行われ、その指定を受けて間引き設定部507が、間引き処理部505にその指定された配置を設定する。
次に、以上説明した図6、図7および図8のいずれかの配置で得られたTRUE画素データおよびFAKE画素データの圧縮処理について説明する。
まず、TRUE画素データの処理について説明する。間引き出されたTRUE画素データは、図3のデータ圧縮装置500を構成する差分符号化部510に入力され、2次元差分符号化処理が施される。
この2次元差分符号化処理を具体的に説明する。
図9は、図3のデータ圧縮装置500を構成する差分符号化部510における2次元差分符号化処理を例示して示す図である。
この図の左側(パート(A))に示す各数値のうち、四角で囲われた数値「12 18 09 1A … 01 03 07 F0 …」が画像データを構成する画素値であり、丸で囲まれた数値「12 18 09 1A … 01 FC 15 D8 …」が2次元差分符号化処理で出力される出力値である。以下の説明では、主走査方向(図の横方向)に並ぶ画素を「ライン」と称する。
2次元差分符号化処理では、先ず、1ライン目の各画素値「12 18 09 1A …」については、そのまま出力する。また、主走査方向に隣接する画素値どうしの差分「18−12=06」「09−18=F1」…が算出される。ここで、例えば「09」から「18」を引き算した結果は負の数となり、9ビットで「1F1」と表されるが、MSBの1ビットである最上位の「1」は省略し、下位8ビットである「F1」のみを出力する。
次に、2ライン目については、先頭の画素値「01」のみがそのまま出力され、主走査方向に隣接する画素値どうしの差分「03−01=02」「07−03=04」…が算出される。そして、1ライン目の差分「06 EF 11 …」と2ライン目の差分「02 04 E9 …」との更なる差分「02−06=FC」「04−EF=13」…が求められて出力される。
次に、3ライン目についても2ライン目と同様に処理されて、3ライン目の先頭の画素値「73」のみがそのまま出力され、主走査方向に隣接する画素値どうしの差分「60−73=ED」「40−60=E0」…が算出される。そして、2ライン目の差分「02 04 E9 …」と3ライン目の差分「ED E0 F0 …」との更なる差分「ED−02=EB」「E0−04=DC」…が求められて出力される。
以下、これと同じ演算を繰り返すことにより、図9で丸が付いた数値「12 18 09 1A … 01 FC 15 D8 …73 EB DC 07 … FF 07 BB 13 …」が出力される。
図1に示すインターフェース機器200では、このように2次元差分符号化されたデータを復号化するにあたり、図9の右側(パート(B))に示す演算が行なわれる。
先ず1ライン目の各画素値は「12 18 09 1A …」のそのままである。
また、2ライン目以降の各ラインの先頭画素値も「01」「73」「FF」…のそのままである。
ここで、2ライン目の2番目以降の差分値「FC 15 D8 …」を例として、差分値から元の画素値が復号化される手順について説明する。
画素値の復号化に際しては、対象画素に対し、同ラインの前位置(図の左側)の画素と、前ライン(図の上側)の同位置の画素と、前ラインの前位置の画素との3つの画素それぞれにおける3つの画素値が用いられる。
2ライン目の2番目の画素の差分値「FC」については、1ライン目の先頭画素の画素値「12」と、1ライン目の2番目の画素の画素値「18」と、2ライン目の先頭画素の画素値「01」が用いられ、まず、1ライン目の2番目と先頭との差分「18−12=06」が求められる。そして、その差分「06」が対象の差分値「FC」に加算された結果のうちの下位8ビットで表わされる「02」が得られ、その値「02」に2ライン目の先頭画素の画素値「01」が加算された結果のうちの下位8ビットで表わされる「03」が2ライン目の2番目の画素値として復号化される。
2ライン目の3番目の画素値は、差分値「13」に、1ライン目の3番目と2番目との差分「09−18=F1」が加算された結果のうちの下位8ビットで表わされる「04」に、更に2ライン目の2番目の画素値「03」が加算された結果のうちの下位8ビットで表わされる「07」である。
2ライン目の4番目の画素値は、差分値「D8」に、1ライン目の4番目3番目との差分「1A−09=11」が加算された結果のうちの下位8ビットで表わされる「E9」に、更に2ライン目の3番目の画素値「07」が加算された結果のうちの下位8ビットで表わされる「F0」である。
以下これと同様の演算を繰り返すことにより、各差分値が、2次元差分符号化を行なう前の画素値と同一の画素値に復号化される。
図3の差分符号化部510では、以上説明したような2次元差分符号化が画像データに施される。この2次元差分符号化によって得られるデータは、図3のオフセット部520に入力され、そのデータの各数値について所定のオフセット値が加算される。
ここで、このような2次元差分符号化およびオフセットの効果について、具体的なCTの画像データを例に用いて説明する。
図10は、CTの画像データの例を示す図である。
この図10のパート(A)には、CTの画像データが表しているCT画像の一例としてモノクロの風景画像が示されており、本実施形態では、このようなCT画像の各画素における色の濃度が8ビットの数値で表現された画像データが用いられる。図10のパート(B)には、パート(A)に示す風景画像を表す画像データにおけるデータ値のヒストグラムが示されており、このヒストグラムの横軸はデータ値、縦軸はデータ数(画素数)を表している。CT画像では一般に、ヒストグラムの幅が広く、ヒストグラム中でデータ数の山谷は生じてもヒストグラムの途中にデータ数が「0」の領域が生じることは極めてまれである。
図11は、CTの画像データに対する差分符号化およびオフセットの効果を示す図である。
この図11のパート(A)には、図10に示したCTの画像データに対して差分符号化が施されて得られるデータのヒストグラムが示されており、このヒストグラムの横軸はデータ値、縦軸は出現頻度を表している。CTの画像データに対して、図9および図9で説明した差分符号化が施されると、データのヒストグラムは、一般に、この図11のパート(A)に示すような、最小データ値と最大データ値の双方に鋭いピークを有するヒストグラムとなる。そして、このようなデータに対してオフセットが施されると、データのヒストグラムは、図11のパート(B)に示すような、オフセット値のところに鋭いピークを持つヒストグラムとなる。本実施形態ではオフセット値として「8」が用いられており、オフセットの結果、値が「16」以上となるデータの頻度はほとんど「0」となっている。
このように差分符号化およびオフセットによってヒストグラムが変形されたデータは、図3のプレーン分割部530によって下位サブプレーンと上位サブプレーンとに分割される。
図12は、プレーン分割部530によるデータ分割の効果を説明する図である。
この図12には、図11のパート(B)に示すヒストグラムがデータ値「15」とデータ値「16」との間で切り離されたヒストグラムが示されており、図3のプレーン分割部530によるデータ分割は、まさにこのようなヒストグラムの分割に相当する効果を生じる。すなわち、本実施形態では、データを構成している8ビットの各数値が上位4ビットと下位4ビットとに分割されることで、下位4ビットが表す数値の連続からなる下位サブプレーンと上位4ビットが表す数値の連続からなる上位サブプレーンとが得られる。そして、下位サブプレーンを構成する4ビットの数値が値「0」から値「15」までの各数値をそのまま表現していて、上位サブプレーンを構成する4ビットの数値の場合は、値「16」から値「256」までの、16間隔16種類の数値を表現していると解釈すると、下位サブプレーンのヒストグラムは、この図12の左側に示されたヒストグラムとほぼ同じものとなり、上位サブプレーンのヒストグラムは、図12の右側に示されたヒストグラムとほぼ同じものとなる。ただし、上位サブプレーンのヒストグラムについては、図12の右側に示されたヒストグラムのデータ値「16」のところに、図12の左側に示されたヒストグラムの面積に等しい高さのピークが付加されたものとなる。
このような上位サブプレーンは、図3に示すHプレーン圧縮部550を構成するランレングス符号化部551に入力される。
本実施形態では、処理の都合上、ランレングス符号化部551で、上位サブプレーンを構成する連続した4ビットの数値が2つで1つの8ビットの数値として取り扱われ、16進数表示で値「00」から値「FF」までの数値の連続に対して以下の符号化処理が適用される。
この符号化処理では、複数の8ビットの数値のうちの特定の数値についてのみ符号化処理が行なわれる。このため、このランレングス符号化部551では、受け取ったデータの中から、符号化処理を行なう数値(ここでは、この数値を「圧縮対象数値」と称する)と、その圧縮対象数値の連続数が検出される。
本実施形態では、一例として、「01」、「FF」および「00」の3つの数値を圧縮対象数値としている。
図13は、図3に示すランレングス符号化部551での符号化の説明図である。
図13の上のラインは、上位サブプレーンを構成するデータ、下のラインは、ランレングス符号化部551での符号化処理を行なった後のデータである。
ここでは、図13の上のラインに示すように、量子化処理部551からは、
「06 02 02 02 01 01 01 01 04 05 00 … 」
なるデータが入力されたものとする。このとき、図3のランレングス符号化部551では、先頭の「06」は圧縮対象数値ではなく、次に続く「02 02 02」も圧縮対象数値ではなく、次に、圧縮対象数値である「01」が4つ連続していること、次に、圧縮対象数値ではない「04」、「05」を間に置いて、圧縮対象数値である「00」が32767個連続していることが検出される。
図14は、ランレングス符号化部における、圧縮対象数値を対象にした符号化のアルゴリズムを示す図である。
この図14中、Zは同一の圧縮対象数値の連続数、例えば図13の上のラインの「01」についてはZ=4、「00」についてはZ=32767である。
また、図14中、「YY」は、16進2桁で表わされた圧縮対象数値自体を表わしている。その「YY」に続く、「0」又は「1」は1ビットで表現された「0」又は「1」であり、さらにそれに続く「XXX XXXX…」は、1つの「X」が1ビットを表わしており、この「XXX XXXX…」でZの値を表現している。
すなわち、図14は、圧縮対象数値「YY」がZ<128連続するときは、1バイト目で圧縮対象数値「YY」を表現し、それに続く1バイトで、先頭ビットが「0」、それに続く7ビットでZの値を表現すること、また、圧縮対象数値「YY」がZ≧128連続するときは、1バイト目で圧縮対象数値「YY」を表現し、それに続く2バイト(16ビット)のうちの先頭の1ビットを「1」とすることで2バイトに跨って表現されていることを表現し、それに続く15ビットで、Zの値を表現することを意味している。
この図14に示す規則に従って図13に示す符号化の例について説明する。
図3のプレーン分割部530から入力されてきた上位サブプレーンのデータ(上のライン)を構成する先頭の数値「06」は圧縮対象数値ではないため、その「06」のまま出力される。また、それに続く「02 02 02」も、「02」は圧縮対象数値ではなく、これら3つの「02」もそのまま出力される。次に、圧縮対象数値である「01」が4個連続するため、「01 04」に符号化される。次の「04」及び「05」は圧縮対象数値ではないため、そのまま「04 05」が出力される。
次に「00」が32767個連続しているため、「00」を置き、次の1バイトのうちの先頭の1ビットを「1」とし、次いで15ビットで32767−128を表現することにより、「00 FF 7F」の3バイトで「00」が32767個連続していることを表現する。すなわち、連続数128は、最初のビット「1」を除き、「00 00」と表現される。
図15は、図3のランレングス符号化部551における、連続数に応じた符号化処理の例を示す図である。
・「00」が127個連続するときは、2バイトを用いて「00 7F」に符号化され、
・「00」が32767個連続するときは、3バイトを用いて「00 FF 7E」に符号化され、
・「00」が32895個連続するときは、3バイトを用いて「00 FF FF」に符号化され、
・「00」が128個連続するときは、3バイトを用いて「00 80 00」に符号化 され、
・「01」が129個連続するときは、3バイトを用いて「01 81 00」に符号化 され、
・「FF」が4096個連続するときは、3バイトを用いて「FF 8F 80」に符号化される。
図3に示すランレングス符号化部551では、上記のような符号化処理が行なわれる。
本実施形態によるランレングス符号化部551によれば、最大圧縮率は、3/32895=1/10,965にまで向上する。また、このランレングス符号化部551が符号化処理の対象としている上位サブプレーンのデータは、図12のヒストグラムで説明したように、4ビットの数値のほとんどが、データ値「16」を表現した数値「0」であり、その4ビットの数値から作られる8ビットの数値も、多くが、16進数表示で数値「00」となる。このためランレングス符号化部551における符号化処理によって大幅なデータ圧縮が期待される。
図3のランレングス符号化部551で上記の符号化処理の行なわれた後のデータは、次に図3のHプレーン圧縮部550を構成するデータスキャニング部552とハフマン符号化部553に入力される。
このデータスキャニング部552では、先ず、ランレングス符号化部551から出力されたデータの全体がスキャニングされてデータ値の出現頻度が求められる。
図16は、データスキャニング部552によるスキャニング結果の例を示す図である。
ここでは、「A1」の出現頻度が最も強く、以下順に、「A2」、「A3」、「A4」、…の順であるとする。尚、これら「A1」、「A2」等は数値を直接表わしている訳ではなく、数値を表わす符号である。すなわち、「A1」は例えば数値「00」、「A2」は数値「FF」等である。また、ここでは、簡単のため、図3のランレングス符号化部551から送られてくるデータは全てのデータ値が「A1」〜「A16」の16個の数値のうちのいずれかの数値であるものとする。そして、このような16個の数値それぞれに対して、データスキャニング部552では、出現頻度に応じた符号が割り当てられてハフマンテーブルが作成される。即ち、出現頻度の最も高い「A1」には、2ビットで表わされた符号「00」が割り当てられ、次の「A2」には、やはり2ビットで表わされた符号「01」が割り当てられ、次の「A3」、さらに次の「A4」には、3ビットで表わされる、それぞれ、符号「100」、符号「101」が割り当てられ、次の「A5」〜「A8」には、5ビットで表わされる各符号が割り当てられ、以下同様に、出現頻度が低い数値ほど多くのビット数で表わされた符号が割り当てられる。
図17は、ハフマンテーブルの一例を示す図である。
このハフマンテーブルは、図16と一致させてあり、出現頻度が高い数値ほど短かいビット数で表わされた符号に置き換えられるように並べられた、符号化前(置き換え前)の数値と符号化後(置き換え後)の数値との対応テーブルである。
図3のHプレーン圧縮部550を構成するハフマン符号化部553では、このようなハフマンテーブルに従ってデータの数値が符号化され、その結果、多くの数値が短かいビット数の符号に置き換えられることとなってデータ圧縮が実現される。
このように、図3のHプレーン圧縮部550に入力される上位サブプレーンD1Hについては、ランレングス符号化部551による符号化とハフマン符号化部553による符号化が施されることにより高い圧縮率で圧縮されて上位圧縮データD2Hとなる。
図3のLプレーン圧縮部540のハフマン符号化部541では、Hプレーン圧縮部550のランレングス符号化部551と同様に、4ビットの数値の2つ分が1つの8ビットの数値とみなされて処理される。また、このハフマン符号化部541による符号化処理では、固定的なハフマンテーブルが用いられる点を除いて、Hプレーン圧縮部550のハフマン符号化部553による符号化処理と同様な処理が実行される。この結果、下位サブプレーンD1Lは下位圧縮データD2Lとなる。
以上説明したような各種の処理が図3に示す差分符号化部510、オフセット部520、プレーン分割部530、Lプレーン圧縮部540、およびHプレーン圧縮部550で実行されることにより、TRUE画素データは可逆圧縮によって圧縮され、特にCT画像のデータについては大幅な圧縮が実現される。
一方、上述した間引き処理部505で得られたFAKE画素データについては、図6,図7および図8に示す3種類の配置のいずれも、図3に示すFAKE画素圧縮部560に入力されて非可逆圧縮が施される。このFAKE画素圧縮部560に入力されたFAKE画素データは、ビット短縮部561に渡され、ビット短縮部561は、そのFAKE画素データがエッジ部分の画素データであるか否かに応じて、このFAKE画素データを、4ビットあるいは1ビットに符号化する。エッジ部分であるか否かは、図3のエッジ検出部525によって、オフセット後の差分データに基づいて判定される。
まず、図6に示す配置において、FAKE画素データが符号化される様子について説明する。
図6に示すTRUE画素の画素値をTn_kと表現した場合に、そのTRUE画素に隣接するFAKE画素の画素値はFn_k+1,Fn+1_k,Fn+1_k+1というように表現され、そのTRUE画素に対してそれらのFAKE画素を挟んだ位置のTRUE画素の画素値は、Tn_k+2,Tn+2_k,Tn+2_k+2と表現される。ビット短縮部561では、このような4つのTRUE画素の画素値Tn_k,Tn_k+2,Tn+2_k,Tn+2_k+2から2次元差分符号化処理で得られる差分値(ここでは、前述のように16進数表示で値「00」から値「FF」までの数値で表した差分値ではなく、画素値をそのまま差分をとって得られる10進数表示での差分値)が、(−8)未満か、あるいは(+8)以上であれば、上述した3つのFAKE画素の画素値Fn_k+1,Fn+1_k,Fn+1_k+1はエッジ部分であると判定され、「1」から始まる4ビットの符号に符号化される。
図18は、4ビット符号への符号化方式を表す図である。
この符号化方式では、FAKE画素の画素値は、その画素値を表した8ビットのビット値の下位5桁が切り捨てられ、残った上位3桁の先頭に「1」が付加されることで「1000」〜「1111」の符号に符号化される。従って、この図の表に示すように、符号化前の「0」〜「255」の数値のうち「0」〜「31」の数値は「1000」に符号化され、「22」〜「63」の数値は「1001」に符号化される。以下同様に、「64」〜「95」、「96」〜「127」、「128」〜「159」、「160」〜「191」、「192」〜「223」、「224」〜「255」の数値は、それぞれ、「1010」、「1011」、「1100」、「1101」、「1110」、「1111」に符号化される。このような符号化方式は、ビット値の桁の切り捨てというごく単純な処理で実現される。このような4ビット符号への符号化によって元の画像の情報がある程度維持されて画質低下が回避される。
ビット短縮部561では、上述した4つのTRUE画素の画素値Tn_k,Tn_k+2,Tn+2_k,Tn+2_k+2から2次元差分符号化処理で得られる差分値が、(−8)以上かつ、(+7)以下であれば、上述した3つのFAKE画素の画素値Fn_k+1,Fn+1_k,Fn+1_k+1はエッジ部分ではないと判定され、1ビットの符号「0」に符号化される。CT画像の場合には、隣接画素間の相関が高いので、図10および図11で説明したように、大きな差分値が生じることは少なく、多くのFAKE画素が1ビット符号に符号化されて、大幅な圧縮が可能であると考えられる。
このようにして圧縮されたFAKE画素データは、復号時において、4ビットに符号化されたFAKE画素データについては8段階の画素データに量子化され、1ビットに符号化されたFAKE画素データについては周りのTRUE画素の画素データから補間計算を行うことにより、伸張処理が施される。
本実施形態は、このようにFAKE画素データを符号化する際に、エッジ部分でない場合には1ビットに符号化するものであるが、本発明は、エッジ部分でない場合には、0ビット符号化(すなわち、実質的なデータ除去)を行うものであってもよい。このような0ビット符号化された画素値の情報は、圧縮段階ではこのように無視されるが、圧縮データを伸張する段階において、まわりのTRUE画素の画素値に基づき再び前述のエッジ判定が行われて、エッジでないと判定された場合は、まわりのTRUE画素の画素値に基づき補間処理が行われることで、圧縮段階で失われたFAKE画素の画素値の補填が行われる。
以上が、図6に示す配置において、FAKE画素データが符号化される様子についての説明である。
図7に示す配置では、2次元差分符号化処理の際には、図6に示す配置と比べて主走査方向にTRUE画素の位置がずれていたライン(例えば、図7で上から3つめのライン)を、各画素の位置を画素1個分ずつずらすことで一旦図6の配置に戻し、上述の手続きに従って、4つのTRUE画素の画素値から得られる差分値に応じて、FAKE画素を、4ビット符号化の対象となるFAKE画素と、1ビット符号化の対象となるFAKE画素とに分類する。このようにして、図7の配置のFAKE画素の画素データも4ビットあるいは1ビットに符号化されて圧縮処理が行われる。このようにして圧縮された画素データは、復号時に上述の図6の場合と同様に補間処理等が行われ、その後に再度図7の配置に戻される。
また、図8に示す配置では、2次元差分符号化処理の際には、図6に示す配置と比べて副走査方向にTRUE画素の位置がずれていた列(例えば、図8で左から3つめの列)を、各画素の位置を1個分ずらすことで一旦図6の配置に戻し、上述の手続きに従って、4つのTRUE画素の画素値から得られる差分値に応じて、FAKE画素を、4ビット符号化の対象となるFAKE画素と、1ビット符号化の対象となるFAKE画素とに分類する。このようにして、図8の配置のFAKE画素の画素データも4ビットあるいは1ビットに符号化されて圧縮処理が行われ、復号時に上述の図6の場合と同様に補間処理等が行われた後、再度図8の配置に戻される。
図3のビット短縮部561におけるこのような符号化によって、図6,図7および図8のいずれの配置でも、FAKE画素の8ビットの画素値は1ビットまたは4ビットに短縮化され、符号化後のデータは1ビットの符号と4ビットの符号が混在したものとなるが、その後の処理のために8ビット単位に区切られ(バイトパッキング)、図3のランレングス符号化部562およびハフマン符号化部563によって、上記Hプレーン圧縮部550における処理と全く同様の処理が実行される。ここで、ハフマン符号化部563は、上述したデータスキャニング部552とハフマン符号化部553との双方の役割を兼ねている。CT画像の場合は、ビット短縮部561の符号化によって多くの画素値が「0」に符号化されているので、その後、ランレングス符号化部562で更に大幅に圧縮されると期待される。
以上が本実施形態についての説明である。
本実施形態では、本発明の実施形態としてのデータ圧縮がカラーのCT画像のデータのみに施される例が示されているが、本発明のデータ圧縮装置は、カラーのCT画像とカラーのLW画像との双方のデータに対してデータ圧縮を施すものであってもよく、さらには、画像以外のカラーを有する情報を表したデータに対してデータ圧縮を施すものであってもよい。
また、本実施形態では、光学デバイスの特性に応じて、TRUE画素とFAKE画素の配置として図6〜図8のいずれかの配置を選択するものであるが、本発明は、1ページの画像に対して所定の規則で図6〜図8の配置を混在させるものでもよく、また、主走査方向および副走査方向についての差分値を計算し、その差分値が大きい方向の疑似的な解像度が向上するように、図7と図8の配置を切り換えるものでもよい。
また、本実施形態では、非可逆圧縮処理において、4つのTRUE画素の画素データの2次元差分値に応じてエッジ判定を行い、その判定結果に応じてFAKE画素の画素データの符号化処理を変えたが、本発明は、FAKE画素の画素データが、周りに位置する2つのTRUE画素の画素データの値の中間に続するか否かで符号化処理を変えるものでもよい。例えば、図6の配置では、FAKE画素が、縦方向、あるいは、横方向、あるいは斜め方向について隣接する2つのTRUE画素の画素データの値の中間に続するか否かでFAKE画素の画素データの符号化処理を変えるという方式を採用してもよい。図7や図8の配置では、本実施形態と同様に一旦図6の配置に戻し、この図6での符号化処理の決定方式を用いることで、図7や図8の配置でのFAKE画素の画素データの符号化処理の方法を決定することができる。
データ圧縮技術が適用されたプリントシステムの一例を示す図である。 プリントシステムにおけるデータ処理の流れを示す図である。 本発明のデータ圧縮装置の一実施形態に相当する画像圧縮装置を示すブロック構成図である。 図1に示すホストコントローラのハードウェア構成図である。 本発明のデータ圧縮プログラムの一実施形態に相当する画像圧縮処理プログラムの模式構成図である。 図3のデータ圧縮装置に入力される入力画像ファイル中の画像データのデータ構造および間引き処理の概念を示す図である。 図6に示すTRUE画素とFAKE画素の配置において、主走査方向に並ぶ画素の列(ライン)のうち、副走査方向について4ラインに1ラインの割合で、TRUE画素の位置を主走査方向に1個ずらした配置を表す図である。 図6に示すTRUE画素とFAKE画素の配置において、副走査方向に並ぶ画素の列のうち、主走査方向について4列に1列の割合で、TRUE画素の位置を副走査方向に1個ずらした配置を表す図である。 図3のデータ圧縮装置を構成する差分符号化部における2次元差分符号化処理を例示して示す図である。 CTの画像データの例を示す図である。 CTの画像データに対する差分符号化およびオフセットの効果を示す図である。 プレーン分割部によるデータ分割の効果を説明する図である。 図3に示すランレングス符号化部での符号化の説明図である。 ランレングス符号化部における、圧縮対象数値を対象にした符号化のアルゴリズムを示す図である。 図3のランレングス符号化部における、連続数に応じた符号化処理の例を示す図である。 データスキャニング部によるスキャニング結果の例を示す図である。 ハフマンテーブルの一例を示す図である。 4ビットの符号への符号化方式を表す図である。
符号の説明
11 画像のデータ
12A,12B,13A,13B ビットマップデータ
14 非可逆の圧縮データ
15 可逆の圧縮データ
100 ホストコントローラ
140 CDROM
150 汎用インターフェースケーブル
200 インターフェース機器
250 専用インターフェースケーブル
300 プリンタ
500 画像圧縮装置
505 間引き処理部
507 間引き設定部
510 差分符号化部
520 オフセット部
525 エッジ検出部
530 プレーン分割部
540 Lプレーン圧縮部
541 ハフマン符号化部
542 モード切換部
550 Hプレーン圧縮部
551 ランレングス符号化部
552 データスキャニング部
553 ハフマン符号化部
560 FAKE画素圧縮部
561 ビット短縮部
562 ランレングス符号化部
563 ハフマン符号化部
600 画像圧縮プログラム
605 間引き処理部
607 間引き設定部
610 差分符号化部
620 オフセット部
625 エッジ検出部
630 プレーン分割部
640 Lプレーン圧縮部
650 Hプレーン圧縮部
660 FAKE画素圧縮部

Claims (10)

  1. 所定の単位ビット数で表わされる数値の連続で2次元的な画像を表した被圧縮データにデータ圧縮処理を施すデータ圧縮装置において、
    被圧縮データを構成する数値の連続から、前記画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値を間引くことにより、その間引きで該被圧縮データから取り出された数値の連続からなる第1の被圧縮データと、残りの数値の連続からなる第2の被圧縮データとを作成する間引き処理部と、
    前記間引き処理部で作成された第1の被圧縮データに可逆圧縮処理を施す可逆圧縮部と、
    前記間引き処理部で作成された第2の被圧縮データに非可逆圧縮処理を施す非可逆圧縮部とを備えたことを特徴とするデータ圧縮装置。
  2. 前記可逆圧縮部が、
    前記間引き処理部で作成された第1の被圧縮データを構成する数値の連続について隣接する数値どうしの差分を求めることにより該差分を表わす数値の連続からなる新たな被圧縮データを生成する差分生成部と、
    前記差分生成部によって生成された新たな被圧縮データを構成する各数値を所定値だけオフセットさせるオフセット部と、
    前記オフセット部によって数値がオフセットされた被圧縮データの各数値を、前記単位ビット数よりも小さい所定の分割ビット数のところで上位ビット部分と下位ビット部分とに分けることによって、該被圧縮データを、各数値における上位ビット部分の連続からなる上位データと各数値の下位ビット部分の連続からなる下位データとに分割する分割部と、
    前記分割部によって分割された上位データに対して可逆圧縮処理を施す上位データ圧縮部と、
    前記分割部によって分割された下位データに対して可逆圧縮処理を施す下位データ圧縮部とを備えたものであることを特徴とする請求項1記載のデータ圧縮装置。
  3. 前記上位データ圧縮部が、上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、該圧縮対象数値と、該圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部を備えたものであることを特徴とする請求項2記載のデータ圧縮装置。
  4. 前記上位データ圧縮部が、
    上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、該圧縮対象数値と、該圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
    符号と数値を対応づけるテーブルを用いて、前記第1の符号化部で符号化された後のデータにエントロピー符号化を施す第2の符号化部を備えたものであることを特徴とする請求項2記載のデータ圧縮装置。
  5. 前記上位データ圧縮部が、
    上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、該圧縮対象数値と、該圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
    ハフマンテーブルを用いて、前記第1の符号化部で符号化された後のデータにハフマン符号化を施す第2の符号化部を備えたものであることを特徴とする請求項2記載のデータ圧縮装置。
  6. 前記上位データ圧縮部が、
    上位データ中、1つもしくは複数の所定の圧縮対象数値を除く数値についてはそのまま出力するとともに、圧縮対象数値については、該圧縮対象数値と、該圧縮対象数値と同一の圧縮対象数値の連続数を表わす数値とに符号化して出力する第1の符号化部と、
    前記第1の符号化部で符号化された後のデータ中に出現する数値のヒストグラムを求めるヒストグラム算出部と、
    前記ヒストグラム算出部で求められたヒストグラムに基づき、符号と数値を対応づけるテーブルに、出現頻度の高い数値ほど符号長の短かい符号を割り当てる符号割当部と、
    前記符号割当部で符号が割り当てられたテーブルを用いて、前記第1の符号化部で符号化された後のデータにエントロピー符号化を施す第2の符号化部を備えたものであることを特徴とする請求項2記載のデータ圧縮装置。
  7. 前記下位データ圧縮部が、符号と数値を対応づけるテーブルを用いて下位データにエントロピー符号化を施すものであることを特徴とする請求項2記載のデータ圧縮装置。
  8. 前記下位データ圧縮部が、ハフマンテーブルを用いて下位データにハフマン符号化を施すものであることを特徴とする請求項2記載のデータ圧縮装置。
  9. 前記下位データ圧縮部が、圧縮省略の指示を受けて下位データを無圧縮で出力するものであることを特徴とする請求項2記載のデータ圧縮装置。
  10. プログラムを実行する情報処理装置内に組み込まれて該情報処理装置に、所定の単位ビット数で表わされる数値の連続で2次元的な画像を表した被圧縮データにデータ圧縮処理を実行させるデータ圧縮プログラムにおいて、
    前記情報処理装置上に、
    被圧縮データを構成する数値の連続から、前記画像の縦または横方向にみてジグザグ状の周期的な位置に相当する数値を間引くことにより、その間引きで該被圧縮データから取り出された数値の連続からなる第1の被圧縮データと、残りの数値の連続からなる第2の被圧縮データとを作成する間引き処理部と、
    前記間引き処理部で作成された第1の被圧縮データに可逆圧縮処理を施す可逆圧縮部と、
    前記間引き処理部で作成された第2の被圧縮データに非可逆圧縮処理を施す非可逆圧縮部とを構築することを特徴とするデータ圧縮プログラム。
JP2005242175A 2005-08-24 2005-08-24 データ圧縮装置およびデータ圧縮プログラム Active JP4633577B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242175A JP4633577B2 (ja) 2005-08-24 2005-08-24 データ圧縮装置およびデータ圧縮プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242175A JP4633577B2 (ja) 2005-08-24 2005-08-24 データ圧縮装置およびデータ圧縮プログラム

Publications (2)

Publication Number Publication Date
JP2007060205A true JP2007060205A (ja) 2007-03-08
JP4633577B2 JP4633577B2 (ja) 2011-02-16

Family

ID=37923301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242175A Active JP4633577B2 (ja) 2005-08-24 2005-08-24 データ圧縮装置およびデータ圧縮プログラム

Country Status (1)

Country Link
JP (1) JP4633577B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183443A (ja) * 1991-12-27 1993-07-23 Pfu Ltd 符号変換方法
JPH0888849A (ja) * 1994-09-14 1996-04-02 Sony Corp 画像信号処理方法及び画像信号伝送装置
JPH08265752A (ja) * 1995-03-24 1996-10-11 Nec Corp 画像データ転送方式
JPH1198512A (ja) * 1997-09-18 1999-04-09 Sanyo Electric Co Ltd 画像符号化装置及び画像符号化方法
JPH11243343A (ja) * 1998-02-25 1999-09-07 Victor Co Of Japan Ltd 可変長符号化方法、可変長復号化方法、及び可変長符号記録媒体
JP2000004436A (ja) * 1998-06-16 2000-01-07 Sony Corp 画像処理装置および画像処理方法、並びに伝送媒体および伝送方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183443A (ja) * 1991-12-27 1993-07-23 Pfu Ltd 符号変換方法
JPH0888849A (ja) * 1994-09-14 1996-04-02 Sony Corp 画像信号処理方法及び画像信号伝送装置
JPH08265752A (ja) * 1995-03-24 1996-10-11 Nec Corp 画像データ転送方式
JPH1198512A (ja) * 1997-09-18 1999-04-09 Sanyo Electric Co Ltd 画像符号化装置及び画像符号化方法
JPH11243343A (ja) * 1998-02-25 1999-09-07 Victor Co Of Japan Ltd 可変長符号化方法、可変長復号化方法、及び可変長符号記録媒体
JP2000004436A (ja) * 1998-06-16 2000-01-07 Sony Corp 画像処理装置および画像処理方法、並びに伝送媒体および伝送方法

Also Published As

Publication number Publication date
JP4633577B2 (ja) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4689545B2 (ja) データ圧縮装置およびデータ圧縮プログラム
US7826670B2 (en) Data compression apparatus and data compression program storage medium
US7183950B2 (en) Data compression apparatus, and data compression program storage medium
JP2006121645A (ja) 画像圧縮装置および画像圧縮プログラム
GB2345603A (en) Apparatus and method for compressing huffman encoded data
JP4633576B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP2008311792A (ja) 画像符号化装置及びその制御方法
JP4173498B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4173505B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4377351B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4741317B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP2008035230A (ja) データ圧縮装置およびデータ圧縮プログラム
JP4181147B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4633577B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4629512B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4131970B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4131969B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4699307B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4377352B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP2005277932A (ja) データ圧縮装置およびデータ圧縮プログラム
JP4435586B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP4579793B2 (ja) データ圧縮装置およびデータ圧縮プログラム
JP2010028649A (ja) データ圧縮装置およびデータ圧縮プログラム
JP4008428B2 (ja) 画像圧縮方法
JP2005252531A (ja) データ圧縮装置およびデータ圧縮プログラム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250