JP2007056718A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP2007056718A
JP2007056718A JP2005240923A JP2005240923A JP2007056718A JP 2007056718 A JP2007056718 A JP 2007056718A JP 2005240923 A JP2005240923 A JP 2005240923A JP 2005240923 A JP2005240923 A JP 2005240923A JP 2007056718 A JP2007056718 A JP 2007056718A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
fuel
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005240923A
Other languages
Japanese (ja)
Inventor
Kunihiko Hikiri
邦彦 肥喜里
Shigemi Kobayashi
茂己 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2005240923A priority Critical patent/JP2007056718A/en
Publication of JP2007056718A publication Critical patent/JP2007056718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent false detection of an air-fuel ratio sensor during exhaust braking or fuel cut and to prevent element break and the like of the air-fuel sensor in normal operation. <P>SOLUTION: An air-fuel ratio control device comprises a means for determining if operation condition is in the normal operation, exhaust braking operation or fuel cut operation, a means for duty-controlling applied voltage to a heater element of the air-fuel ratio sensor to maintain element temperature of the air-fuel ratio sensor in an appropriate range based on engine rotation speed and engine load when the operation condition is in the normal operation, a means for duty-controlling the applied voltage to the heater element of the air-fuel ratio sensor to inhibit the element temperature of the air-fuel ratio sensor from lowering out of the appropriate range based on the engine rotation speed when the operation condition is in the exhaust braking operation, and a means for duty-controlling the applied voltage to the heater element of the air-fuel ratio sensor to inhibit the element temperature of the air-fuel ratio sensor from lowering out of the appropriate range based on the engine rotation speed when the operation condition is in the fuel cut operation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、エンジンの空燃比制御装置に関する。   The present invention relates to an engine air-fuel ratio control apparatus.

例えば、CNG(圧縮天然ガス)など気体燃料を使用するガスエンジンにおいては、エンジンの排気中の空気過剰率を検出する空燃比センサが設けられ、この検出信号に基づいて空燃比の検出値が目標値となるように燃料供給量を増減する制御(空燃比のフィードバック制御)手段が備えられる(特許文献1)。   For example, in a gas engine that uses gaseous fuel such as CNG (compressed natural gas), an air-fuel ratio sensor that detects an excess air ratio in the exhaust of the engine is provided, and the detected value of the air-fuel ratio is a target based on this detection signal. A control (air-fuel ratio feedback control) means for increasing / decreasing the fuel supply amount so as to become a value is provided (Patent Document 1).

空燃比センサは、排気中に臨むセンサ素子が不活性となり、所定の出力が得られないことがあるので、センサ素子を昇温させるヒータ素子が内蔵される。特許文献1の場合、ヒータ素子への印加電圧は、通常運転時に所定の基準電圧(例えば、10V)に維持され、エキゾーストブレーキの作動条件(燃料カットの作動条件を含む排気温度の下がる運転条件)が成立すると、センサ素子の温度低下を抑えるため、その間は通常運転時よりも高い電圧(例えば,12V)に切り替えるようになっている。
特開平09−329574号
The air-fuel ratio sensor has a built-in heater element that raises the temperature of the sensor element because the sensor element facing the exhaust gas becomes inactive and a predetermined output may not be obtained. In the case of Patent Document 1, the voltage applied to the heater element is maintained at a predetermined reference voltage (for example, 10 V) during normal operation, and the exhaust brake operating conditions (operating conditions that lower the exhaust temperature including the fuel cut operating conditions) When is established, in order to suppress the temperature drop of the sensor element, the voltage is switched to a higher voltage (for example, 12 V) than during normal operation.
JP 09-329574

空燃比センサのヒータ素子への印加電圧は、エキゾーストブレーキまたは燃料カットの作動中、通常運転時よりも高められるが、その電圧値は一定(例えば、12V)に制御されるに過ぎないため、排気流量の多寡によっては、センサ素子の温度低下を十分に抑えられない可能性が考えられる(図5、参照)。通常運転時においても、ヒータ素子への印加電圧は一定(例えば、10V)に制御されるに過ぎないため、空燃比の目標値によっては、空燃比センサの素子温度が上がり過ぎて素子割れ等を招きかねないのである(図4、参照)。   The voltage applied to the heater element of the air-fuel ratio sensor is higher than that during normal operation during the operation of the exhaust brake or fuel cut, but the voltage value is only controlled to be constant (for example, 12 V), so that the exhaust gas There is a possibility that the temperature drop of the sensor element cannot be sufficiently suppressed depending on the flow rate (see FIG. 5). Even during normal operation, the voltage applied to the heater element is only controlled to a constant value (for example, 10 V). Depending on the target value of the air-fuel ratio, the element temperature of the air-fuel ratio sensor may increase excessively, causing element cracking, etc. It can be invited (see FIG. 4).

この発明は、このような課題を解決するための有効な手段の提供を目的とする。   An object of this invention is to provide an effective means for solving such a problem.

第1の発明は、エンジンの排気中の空気過剰率を検出する空燃比センサ、この検出値を目標空燃比と一致させるべく燃料供給量を制御する手段、を備える空燃比制御装置において、運転条件が通常運転中かエキゾーストブレーキ作動中か燃料カット作動中かどうかを判定する手段、運転条件が通常運転中のときは、エンジン回転数の検出値およびエンジン負荷の検出値に基づいて、空燃比センサの素子温度を適正範囲に維持するべく空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、運転条件がエキゾーストブレーキ作動中のときは、エンジン回転数の検出値に基づいて、空燃比センサの素子温度が適正範囲から低下するのを抑えるべく空燃比センサのヒータ素子への印加電圧を通常運転時よりも高くデューティ制御する手段、運転条件が燃料カット作動中のときは、エンジン回転数の検出値に基づいて、空燃比センサの素子温度が適正範囲から低下するのを抑えるべく空燃比センサのヒータ素子への印加電圧を通常運転時よりも高くデューティ制御する手段、を備えることを特徴とする。   According to a first aspect of the present invention, there is provided an air-fuel ratio control apparatus comprising an air-fuel ratio sensor for detecting an excess air ratio in engine exhaust and means for controlling a fuel supply amount so that the detected value coincides with a target air-fuel ratio. Means for determining whether the engine is in normal operation, exhaust brake operation or fuel cut operation, and when the operation condition is normal operation, the air-fuel ratio sensor is based on the detected value of the engine speed and the detected value of the engine load. Means for duty-controlling the voltage applied to the heater element of the air-fuel ratio sensor to maintain the element temperature of the air-fuel ratio sensor, and when the operating condition is the exhaust brake operation, the air-fuel ratio sensor based on the detected value of the engine speed In order to prevent the temperature of the element from dropping from the appropriate range, the duty control is performed so that the voltage applied to the heater element of the air-fuel ratio sensor is higher than in normal operation. When the operating condition is the fuel cut operation, the applied voltage to the heater element of the air-fuel ratio sensor is normally set to suppress the element temperature of the air-fuel ratio sensor from falling from the appropriate range based on the detected value of the engine speed. Means for performing duty control higher than that during operation.

第2の発明は、エンジンの排気中の空気過剰率を検出する空燃比センサ、この検出値を目標空燃比と一致させるべく燃料供給量を制御する手段、を備える空燃比制御装置において、バッテリ電圧をパラメータに設定されるマップデータからバッテリ電圧の検出値に基づいて空燃比センサのヒータ素子への印加電圧を所定の基準レベルに維持するための基準ヒータ通電デューティを求める手段、運転条件が通常運転中かエキゾーストブレーキ作動中か燃料カット作動中かどうかを判定する手段、運転条件の判定が通常運転中のときは、通常運転中の空燃比センサの素子温度を適正範囲に維持するべくエンジン回転数およびエンジン負荷をパラメータに設定されるマップデータからエンジン回転数の検出値およびエンジン負荷の検出値に対応するヒータ通電デューティ補正係数を求める手段、運転条件の判定がエキゾーストブレーキ作動中のときは、エキゾーストブレーキ作動中の空燃比センサの素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに通常運転時よりも大きく設定されるマップデータからエンジン回転数の検出値に対応するヒータ通電デューティ補正係数を求める手段、運転条件の判定が燃料カット作動中のときは、燃料カット作動中の空燃比センサの素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに通常運転時よりも大きく設定されるマップデータからエンジン回転数の検出値に対応するヒータ通電デューティ補正係数を求める手段、「最終ヒータ通電デューティ=基準ヒータ通電デューティ×運転条件の対応するヒータ通電デューティ補正係数」を算出する手段、この算出値に基づいて空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、を備えることを特徴とする。   According to a second aspect of the present invention, there is provided an air-fuel ratio control apparatus comprising: an air-fuel ratio sensor for detecting an excess air ratio in engine exhaust; and means for controlling a fuel supply amount so that the detected value coincides with a target air-fuel ratio. Means for determining the reference heater energization duty for maintaining the applied voltage to the heater element of the air-fuel ratio sensor at a predetermined reference level based on the detected value of the battery voltage from the map data set as a parameter, and the operation condition is normal operation Means for determining whether the vehicle is in operation, exhaust brake operation, or fuel cut operation, and when the operating conditions are determined to be normal, the engine speed should be maintained to maintain the element temperature of the air-fuel ratio sensor during normal operation within the appropriate range. Corresponding to the detected value of engine speed and the detected value of engine load from the map data set in the engine load parameter When the exhaust brake is operating, the means for obtaining the motor energization duty correction coefficient, and when the operating condition is being determined, the engine speed is used as a parameter to prevent the element temperature of the air-fuel ratio sensor during exhaust brake operation from falling from the appropriate range. Means for obtaining the heater energization duty correction coefficient corresponding to the detected value of the engine speed from the map data set larger than that during normal operation, and when the operating condition is determined as the fuel cut operation, the air-fuel ratio during the fuel cut operation Means for obtaining a heater energization duty correction coefficient corresponding to a detected value of the engine speed from map data set to be larger than that during normal operation using the engine speed as a parameter in order to prevent the sensor element temperature from falling from an appropriate range; "Final heater energization duty = reference heater energization duty x operating condition And a means for duty-controlling the voltage applied to the heater element of the air-fuel ratio sensor based on the calculated value.

第1の発明または第2の発明においては、運転条件が通常運転中の場合、空燃比センサのヒータ素子への印加電圧は、エンジン回転数の検出値およびエンジン負荷の検出値に基づいてデューティ制御される。このため、全運転領域において、空燃比センサの素子温度を適正範囲に維持しえるのである。例えば、高負荷域において、ヒータ素子への印加電圧を低負荷域よりも低く制御することにより、空燃比センサの素子温度が過度に上昇するのを抑えることもできる。運転条件がエキゾーストブレーキ中または燃料カット中の場合、エンジンへの燃料供給量が皆無か極く微量となり、排気温度が低下するが、空燃比センサのヒータ素子への印加電圧は、通常運転時よりも高く制御されるため、空燃比センサの素子温度の低下が抑えられ、適正範囲に維持することができる。この場合においても、空燃比センサのヒータ素子への印加電圧は、一定に制御するのでなく、エンジン回転数の検出値に基づいてデューティ制御されるため、空燃比センサの素子温度の低下を過不足なく抑えられ、適正範囲に効率よく維持しえるのである。これらの結果、空燃比センサの誤検出および素子割れ等を防止することができる。   In the first invention or the second invention, when the operating condition is normal operation, the voltage applied to the heater element of the air-fuel ratio sensor is controlled based on the detected value of the engine speed and the detected value of the engine load. Is done. For this reason, the element temperature of the air-fuel ratio sensor can be maintained in an appropriate range in the entire operation region. For example, it is possible to suppress an excessive increase in the element temperature of the air-fuel ratio sensor by controlling the voltage applied to the heater element to be lower than in the low load area in the high load area. When the operating condition is exhaust brake or fuel cut, the amount of fuel supplied to the engine is very small or very small, and the exhaust temperature decreases, but the applied voltage to the heater element of the air-fuel ratio sensor is higher than that during normal operation. Therefore, the decrease in the element temperature of the air-fuel ratio sensor can be suppressed and maintained within an appropriate range. Even in this case, the voltage applied to the heater element of the air-fuel ratio sensor is not controlled to be constant, but is duty-controlled based on the detected value of the engine speed. It can be suppressed and can be efficiently maintained within the proper range. As a result, erroneous detection of the air-fuel ratio sensor, element cracking, and the like can be prevented.

図1において、10はCNG(圧縮天然ガス)を燃料に使用するエンジンであり、エンジン10の吸気通路16にスロットル弁11が介装され、その上流に燃料供給装置12のノズル13が配置される。スロットル弁11は、エンジン10への吸気量(混合気量または空気量)を調整するものであり、駆動手段11a(モータ)により開閉される。18はアイドル流量(エンジンへの混合気量)を制御するアイドルコントロール弁であり、スロットル弁11を迂回するバイパス通路17に介装される。スロットル弁11は、アクセル開度センサ(アクセル操作量を検出する)の検出値に対応する開度に制御される。アイドルコントロール弁18は、スロットル全閉状態において、アイドル回転を一定に保つように開度が制御される。   In FIG. 1, reference numeral 10 denotes an engine that uses CNG (compressed natural gas) as a fuel. A throttle valve 11 is interposed in an intake passage 16 of the engine 10, and a nozzle 13 of a fuel supply device 12 is disposed upstream thereof. . The throttle valve 11 adjusts the intake air amount (air mixture amount or air amount) to the engine 10, and is opened and closed by a driving means 11a (motor). Reference numeral 18 denotes an idle control valve that controls an idle flow rate (a mixture amount to the engine), and is interposed in a bypass passage 17 that bypasses the throttle valve 11. The throttle valve 11 is controlled to an opening corresponding to a detected value of an accelerator opening sensor (detecting an accelerator operation amount). The opening degree of the idle control valve 18 is controlled so as to keep the idle rotation constant when the throttle is fully closed.

エンジン10の排気通路20にエキゾーストブレーキシャッタ(図示せず)が介装される。エキゾーストブレーキシャッタは、エキゾーストブレーキの作動時に排気通路20を閉じる(絞る)ものであり、その駆動手段にエアシリンダ21が備えられる。エアシリンダ21は、エアタンクに接続され、電磁弁22(エキゾーストブレーキバルブ)が給気側に切り替わると、エアタンクからの圧縮空気により、エキゾーストブレーキシャッタを閉じる一方、電磁弁22が排気側に切り替わると、リターンスプリングにより、エキゾーストブレーキシャッタを開くように作動する。エキゾーストブレーキバルブ22は、エキゾーストブレーキの作動条件が成立すると、その間は給気側に制御される。   An exhaust brake shutter (not shown) is interposed in the exhaust passage 20 of the engine 10. The exhaust brake shutter closes (squeezes) the exhaust passage 20 when the exhaust brake is operated, and an air cylinder 21 is provided in its driving means. The air cylinder 21 is connected to an air tank, and when the solenoid valve 22 (exhaust brake valve) is switched to the supply side, the exhaust brake shutter is closed by the compressed air from the air tank, while the solenoid valve 22 is switched to the exhaust side. The return spring operates to open the exhaust brake shutter. The exhaust brake valve 22 is controlled to the air supply side during the period when the exhaust brake operating condition is satisfied.

19はエンジン10の点火プラグであり、運転条件が通常運転中の場合、エンジン回転数および吸気圧力に対応する最適な点火時期に制御される一方、運転条件がエキゾーストブレーキ中または燃料カット中の場合、所定の休止期間を設定するように制御される。   Reference numeral 19 denotes an ignition plug of the engine 10, which is controlled to an optimal ignition timing corresponding to the engine speed and the intake pressure when the operation condition is normal operation, while the operation condition is during exhaust braking or fuel cut. Control is performed to set a predetermined pause period.

燃料供給装置12は、ガスボンベ(図示せず)からノズルへの燃料(CNG)を供給する配管が備えられ、配管に低圧燃料遮断弁15およびガス制御弁14(噴射弁)のほか、ガスボンベ側から高圧燃料遮断弁(主止弁),レギュレータが順に介装される。高圧燃料遮断弁,低圧燃料遮断弁15は、イグニッションスイッチ(エンジンキースイッチ)のONにより開弁する一方、イグニッションスイッチのOFFにより閉弁するように制御される。レギュレータは、高圧燃料を所定の低圧燃料に調圧(減圧)するものであり、ガス制御弁14は、空燃比が略一定の混合気を生成するべく、ノズル13への供給量(噴射量)を運転状態に応じて制御する。ガス制御弁14の噴射量(噴射パルス幅)は、運転条件が通常運転中の場合、エンジン回転数および吸気圧力に対応する基本噴射量と、空燃比の検出値と目標値との偏差に基づくフィードバック補正量と、から決定される。運転条件がエキゾーストブレーキ中または燃料カット中の場合、低圧燃料遮断弁15が閉弁かつガス制御弁14が噴射量0(噴射パルス幅0%)に制御される。   The fuel supply device 12 is provided with a pipe for supplying fuel (CNG) from a gas cylinder (not shown) to the nozzle. The low-pressure fuel cutoff valve 15 and the gas control valve 14 (injection valve) are connected to the pipe from the gas cylinder side. A high-pressure fuel shut-off valve (main stop valve) and a regulator are installed in this order. The high-pressure fuel cutoff valve and the low-pressure fuel cutoff valve 15 are controlled so as to open when the ignition switch (engine key switch) is turned on and close when the ignition switch is turned off. The regulator regulates (depressurizes) the high-pressure fuel to a predetermined low-pressure fuel, and the gas control valve 14 supplies the nozzle 13 with a supply amount (injection amount) so as to generate an air-fuel mixture having a substantially constant air-fuel ratio. Is controlled according to the operating state. The injection amount (injection pulse width) of the gas control valve 14 is based on the deviation between the basic injection amount corresponding to the engine speed and the intake pressure, and the detected value of the air-fuel ratio and the target value when the operating condition is normal operation. And a feedback correction amount. When the operating condition is exhaust brake or fuel cut, the low-pressure fuel cutoff valve 15 is closed and the gas control valve 14 is controlled to an injection amount 0 (injection pulse width 0%).

28はコントロールユニットであり、アクセル開度センサ(図示せず)、クランク角センサ24(エンジン回転センサとして機能する)、吸気圧力センサ25(エンジン負荷センサとして機能する)、空燃比センサ23、等の検出信号に基づいて、スロットル弁11,アイドルコントロールバルブ18,点火プラグ19、低圧燃料遮断弁15,ガス制御弁14、エキゾーストブレーキバルブ22、を既述のように制御する。   A control unit 28 includes an accelerator opening sensor (not shown), a crank angle sensor 24 (functioning as an engine rotation sensor), an intake pressure sensor 25 (functioning as an engine load sensor), an air-fuel ratio sensor 23, and the like. Based on the detection signal, the throttle valve 11, the idle control valve 18, the spark plug 19, the low-pressure fuel cutoff valve 15, the gas control valve 14, and the exhaust brake valve 22 are controlled as described above.

コントロールユニット28のエキゾーストブレーキ制御については、エキゾーストブレーキの作動条件が成立すると、燃料カット(低圧燃料遮断弁15が閉弁かつガス制御弁14が噴射パルス幅0%に制御する)と共に点火信号をOFFする。所定時間が経過すると、エキゾーストブレーキシャッタを閉じると共に点火信号をONするのである。その後、空燃比センサ23により、空燃比を監視しつつ、異常燃焼(バックファイア等)が判定されると、エキゾーストブレーキシャッタを開くようになっている。   Regarding the exhaust brake control of the control unit 28, when the exhaust brake operating condition is satisfied, the ignition signal is turned off together with the fuel cut (the low pressure fuel cutoff valve 15 is closed and the gas control valve 14 is controlled to 0% of the injection pulse width). To do. When a predetermined time elapses, the exhaust brake shutter is closed and the ignition signal is turned on. Thereafter, the exhaust brake shutter is opened when abnormal combustion (backfire or the like) is determined while the air-fuel ratio sensor 23 monitors the air-fuel ratio.

空燃比センサ23は、排気中に臨むセンサ素子を昇温させるヒータ素子が内蔵され、ヒータ素子への印加電圧をデューティ制御する手段(空燃比ヒータ制御手段)がコントロールユニット28に設定される。図1において、バッテリ電圧の低下を補償するべくバッテリ電圧をパラメータに設定されるマップデータからバッテリ電圧センサ(図示せず)の検出値に基づいて空燃比センサ23のヒータ素子への印加電圧を所定の基準レベルに維持するための基準ヒータ通電デューティを求める手段30(基準ヒータ通電デューティ算出手段)、運転条件が通常運転中かエキゾーストブレーキ作動中か燃料カット作動中かどうかを判定する手段31(運転条件判定手段)、運転条件の判定が通常運転中のときは、通常運転中の空燃比センサ23の素子温度を適正範囲に維持するべくエンジン回転数およびエンジン負荷をパラメータに設定されるマップデータからクランク角センサ24の検出信号(エンジン回転数の検出値)および吸気圧力センサ25の検出信号(エンジン負荷の検出値)に対応するヒータ通電デューティ補正係数を求める手段32(通常運転時ヒータ通電デューティ補正手段)、運転条件の判定がエキゾーストブレーキ作動中のときは、エキゾーストブレーキ作動中の空燃比センサ23の素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに通常運転時よりも大きく設定されるマップデータからクランク角センサ24の検出信号(エンジン回転数の検出値)に対応するヒータ通電デューティ補正係数を求める手段33(エキゾーストブレーキ時ヒータ通電デューティ補正手段)、運転条件の判定が燃料カット作動中のときは、燃料カット作動中の空燃比センサ23の素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに通常運転時よりも大きく設定されるマップデータからクランク角センサ24の検出信号(エンジン回転数の検出値)に対応するヒータ通電デューティ補正係数を求める手段34(燃料カット時ヒータ通電デューティ補正手段)、が備えられる。   The air-fuel ratio sensor 23 has a built-in heater element that raises the temperature of the sensor element facing the exhaust gas, and means (air-fuel ratio heater control means) for duty-controlling the voltage applied to the heater element is set in the control unit 28. In FIG. 1, the voltage applied to the heater element of the air-fuel ratio sensor 23 is predetermined based on the detected value of the battery voltage sensor (not shown) from the map data set with the battery voltage as a parameter to compensate for the battery voltage drop. Means 30 (reference heater energization duty calculation means) for determining a reference heater energization duty for maintaining the reference level of the engine, and means 31 (operation for determining whether the operation condition is normal operation, exhaust brake operation or fuel cut operation) Condition determination means), when the determination of the operating condition is during normal operation, from the map data in which the engine speed and the engine load are set as parameters in order to maintain the element temperature of the air-fuel ratio sensor 23 during normal operation within an appropriate range Detection signal of crank angle sensor 24 (detection value of engine speed) and detection of intake pressure sensor 25 Means 32 (heater energization duty correction means during normal operation) for obtaining a heater energization duty correction coefficient corresponding to the signal (detected value of engine load), and when the operation condition is judged to be exhaust brake operation, In order to prevent the element temperature of the fuel ratio sensor 23 from falling from an appropriate range, the engine speed is used as a parameter to map signal that is set to be larger than that during normal operation, and the detection signal of the crank angle sensor 24 (detected value of engine speed) The means 33 for obtaining the corresponding heater energization duty correction coefficient (heater energization duty correction means at the time of exhaust brake). When the operation condition is determined to be during the fuel cut operation, the element temperature of the air-fuel ratio sensor 23 during the fuel cut operation is within an appropriate range. The engine speed is usually used as a parameter to prevent Means 34 (heater energization duty correction means at the time of fuel cut) for obtaining a heater energization duty correction coefficient corresponding to a detection signal (detection value of engine speed) of the crank angle sensor 24 from map data set larger than the time of rotation. Provided.

35は運転条件判定手段31の出力(判定信号)に対応するヒータ通電デューティ補正手段32〜34を選択する手段であり、36は「最終ヒータ通電デューティ=基準ヒータ通電デューティ×運転条件の対応するヒータ通電デューティ補正係数」を算出する手段であり、37はこの算出値に基づいて空燃比センサ23のヒータ素子への印加電圧をデューティ制御する手段(ヒータ通電デューティ制御手段)である。   35 is a means for selecting the heater energization duty correction means 32 to 34 corresponding to the output (determination signal) of the operation condition determination means 31, and 36 is "final heater energization duty = reference heater energization duty x heater corresponding to the operation condition" 37 is a means (heater energization duty control means) for duty-controlling the voltage applied to the heater element of the air-fuel ratio sensor 23 based on this calculated value.

図2は、空燃比ヒータ制御手段を説明するダイアグラムであり、ヒータ通電デューティの選択手段35は、運転条件の判定信号が「00」の場合、通常運転時ヒータ通電デューティ補正手段32に対応する接点「00」を、運転条件の判定信号が「01」の場合、エキゾーストブレーキ時ヒータ通電デューティ補正手段33に対応する接点「01」を、運転条件の判定信号が「02」の場合、燃料カット時ヒータ通電デューティ補正手段34に対応する接点「02」を、選択的に閉成する。   FIG. 2 is a diagram illustrating the air-fuel ratio heater control means. The heater energization duty selection means 35 is a contact corresponding to the heater energization duty correction means 32 during normal operation when the operation condition determination signal is “00”. When “00” is selected and the operation condition determination signal is “01”, the contact “01” corresponding to the heater energization duty correction means 33 at the time of exhaust braking is selected. When the operation condition determination signal is “02”, the fuel is cut. The contact “02” corresponding to the heater energization duty correction means 34 is selectively closed.

通常運転時ヒータ通電デューティ補正手段32においては、マップデータTBKAFHTからクランク角センサ24の検出信号および吸気圧力センサ25の検出信号に対応する検索値をヒータ通電デューティ補正係数vkafhtとして出力する。エキゾーストブレーキ時ヒータ通電デューティ補正手段33は、マップデータTBKAFHT-EXBからクランク角センサ24の検出信号に対応する検索値をヒータ通電デューティ補正係数vkafhtとして出力する。燃料カット時ヒータ通電デューティ補正手段34は、マップデータTBKAFHT-CFからクランク角センサ24の検出信号に対応する検索値をヒータ通電デューティ補正係数vkafhtとして出力する。基準ヒータ通電デューティ算出手段30は、マップデータTBAFHTからバッテリ電圧センサの検出信号に対応する検索値を基準ヒータ通電デューティvafhtとして出力する。 The heater energization duty correction means 32 during normal operation outputs a search value corresponding to the detection signal of the crank angle sensor 24 and the detection signal of the intake pressure sensor 25 from the map data TBKAFHT as the heater energization duty correction coefficient vkafht. The heater energization duty correction means 33 at the time of exhaust brake outputs a search value corresponding to the detection signal of the crank angle sensor 24 from the map data TBKAFHT - EXB as a heater energization duty correction coefficient vkafht. The heater energization duty correction means 34 at the time of fuel cut outputs a search value corresponding to the detection signal of the crank angle sensor 24 from the map data TBKAFHT - CF as a heater energization duty correction coefficient vkafht. The reference heater energization duty calculation means 30 outputs the search value corresponding to the detection signal of the battery voltage sensor from the map data TBAFHT as the reference heater energization duty vafht.

最終ヒータ通電デューティ算出手段36は、基準ヒータ通電デューティvafhtと選択手段35からのヒータ通電デューティ補正係数vkafhtとから、最終ヒータ通電デューティvafhtlod=vafht×vkafhtを算出する。そして、空燃比センサ23のヒータ素子への印加電圧は、算出値vafhtlodにデューティ制御されるのである。   The final heater energization duty calculation means 36 calculates the final heater energization duty vafhtlod = vafht × vkafht from the reference heater energization duty vafht and the heater energization duty correction coefficient vkafht from the selection means 35. The voltage applied to the heater element of the air-fuel ratio sensor 23 is duty-controlled to the calculated value vafhtlod.

これにより、運転条件が通常運転中の場合、空燃比センサ23のヒータ素子への印加電圧は、運転状態(エンジン回転数,エンジン負荷)に応じてデューティ制御される。このため、全運転領域において、空燃比センサ23の素子温度を適正範囲に維持しえるのである。例えば、高負荷域において、ヒータ素子への印加電圧を低負荷域よりも低く制御することにより、空燃比センサ23の素子温度が過度に上昇するのを抑えることもできる。空燃比センサ23のヒータ素子への印加電圧を一定に制御する場合、図4のように素子温度が低すぎる領域または素子温度が高すぎる領域が生じやすくなる。   Thus, when the operating condition is normal operation, the voltage applied to the heater element of the air-fuel ratio sensor 23 is duty-controlled according to the operating state (engine speed, engine load). For this reason, the element temperature of the air-fuel ratio sensor 23 can be maintained in an appropriate range in the entire operation region. For example, it is possible to suppress an excessive increase in the element temperature of the air-fuel ratio sensor 23 by controlling the voltage applied to the heater element to be lower than that in the low load area in the high load area. When the voltage applied to the heater element of the air-fuel ratio sensor 23 is controlled to be constant, a region where the element temperature is too low or a region where the element temperature is too high as shown in FIG. 4 tends to occur.

運転条件がエキゾーストブレーキ中または燃料カット中の場合、エンジンへの燃料供給量が皆無か極く微量となり、排気温度が低下するが、空燃比センサ23のヒータ素子への印加電圧は、通常運転時よりも高く制御されるため、空燃比センサ23の素子温度の低下が抑えられ、適正範囲に維持することができる。この場合においても、空燃比センサ23のヒータ素子への印加電圧は、一定に制御するのでなく、エンジン回転数の検出値に基づいてデューティ制御されるため、空燃比センサ23のヒータ素子への印加電圧をを過不足なく抑えられ、適正範囲に効率よく維持しえるのである。空燃比センサ23のヒータ素子への印加電圧を通常運転時と同一レベルに維持する場合、図5のように素子温度が適正範囲から低下してしまう。そのため、ヒータ素子への印加電圧は、通常運転時よりも高められるが、素子温度の低下は、エンジン回転率に応じて大きくなるため、通常運転時よりも高く一定にヒータ素子への印加電圧を制御する場合、ヒータ素子への印加電圧の低下を十分に抑えられない可能性が考えられるのである。   When the operating condition is exhaust brake or fuel cut, the amount of fuel supplied to the engine is very small or very small, and the exhaust temperature decreases. However, the voltage applied to the heater element of the air-fuel ratio sensor 23 is Therefore, a decrease in the element temperature of the air-fuel ratio sensor 23 can be suppressed and maintained within an appropriate range. Even in this case, the voltage applied to the heater element of the air-fuel ratio sensor 23 is not controlled constant, but is duty-controlled based on the detected value of the engine speed. The voltage can be suppressed without excess and deficiency, and can be efficiently maintained within an appropriate range. When the voltage applied to the heater element of the air-fuel ratio sensor 23 is maintained at the same level as during normal operation, the element temperature falls from the appropriate range as shown in FIG. Therefore, the voltage applied to the heater element is higher than that during normal operation, but the decrease in element temperature increases with the engine speed, so the voltage applied to the heater element must be kept higher than during normal operation. In the case of control, there is a possibility that a decrease in the voltage applied to the heater element cannot be sufficiently suppressed.

この実施形態においては、運転条件判定手段35、通常運転時ヒータ通電デューティ補正手段32、エキゾーストブレーキ時ヒータ通電デューティ補正手段33、燃料カット時ヒータ通電デューティ補正手段34、を備えるため、空燃比センサ23の誤検出および素子割れ等を防止することができる。エキゾーストブレーキ制御においては、点火信号のON後、空燃比センサ23により、空燃比を監視しつつ、異常燃焼(バックファイア等)が判定されると、エキゾーストブレーキシャッタを開くようになっているが、空燃比センサ23の誤検出の防止が得られるので、エキゾーストブレーキの正常かつ有効な機能を維持することが可能となる。   In this embodiment, the air-fuel ratio sensor 23 includes the operating condition determination means 35, the heater energization duty correction means 32 during normal operation, the heater energization duty correction means 33 during exhaust brake, and the heater energization duty correction means 34 during fuel cut. It is possible to prevent false detection and element cracking. In the exhaust brake control, the exhaust brake shutter is opened when abnormal combustion (backfire or the like) is determined while the air-fuel ratio sensor 23 monitors the air-fuel ratio after the ignition signal is turned ON. Since it is possible to prevent erroneous detection of the air-fuel ratio sensor 23, it is possible to maintain a normal and effective function of the exhaust brake.

図3は、空燃比ヒータ制御手段を説明するフローチャートであり、S1においては、バッテリ電圧センサの検出信号を読み込む。S2においは、マップデータTBAFHTからバッテリ電圧の検出値に対応する検索値を基準ヒータ通電デューティvafhtとして求める。S5〜S12は、S1およびS2と平行に処理される。S5においては、クランク角センサ24の検出信号を読み込む。S6においては、吸気圧力センサ25の検出信号を読み込む。S7においては、運転条件としてエキゾーストブレーキの作動条件が成立または燃料カットの作動条件が成立か、それ以外の通常運転中かどうかを判定する。   FIG. 3 is a flowchart for explaining the air-fuel ratio heater control means. In S1, the detection signal of the battery voltage sensor is read. In S2, a search value corresponding to the detected value of the battery voltage is obtained from the map data TBAFHT as the reference heater energization duty vafht. S5 to S12 are processed in parallel with S1 and S2. In S5, the detection signal of the crank angle sensor 24 is read. In S6, the detection signal of the intake pressure sensor 25 is read. In S7, it is determined whether the operating condition of the exhaust brake is satisfied or the operating condition of the fuel cut is satisfied as the operating condition, or other normal operation is being performed.

S8においては、運転条件の判定がエキゾーストブレーキの作動条件の成立中かどうかを判定する。S8の判定がyesのときは、S9において、マップデータTBKAFHT-EXBからエンジン回転数の検出値に対応する検索値をヒータ通電デューティ補正係数vkafhtとして求める。S8の判定がnoのときは、S10において、運転条件の判定が燃料カットの作動条件の成立中かどうかを判定する。S10の判定がyesのときは、S11において、マップデータTBKAFHT-FCからエンジン回転数の検出値に対応する検索値をヒータ通電デューティ補正係数vkafhtとして求める。S10の判定がnoのときは、運転条件の判定が通常運転中と判定され、S12において、マップデータTBKAFHTからエンジン回転数の検出値およびエンジン負荷の検出値に対応する検索値をヒータ通電デューティ補正係数vkafhtとして求める。 In S8, it is determined whether the operation condition of the exhaust brake is satisfied in S8. When the determination in S8 is yes, in S9, a search value corresponding to the detected value of the engine speed is obtained from the map data TBKAFHT - EXB as the heater energization duty correction coefficient vkafht. If the determination in S8 is no, in S10, it is determined whether or not the operation condition determination satisfies the fuel cut operation condition. When the determination in S10 is yes, in S11, a search value corresponding to the detected value of the engine speed is obtained as the heater energization duty correction coefficient vkafht from the map data TBKAFHT - FC. When the determination in S10 is no, it is determined that the operation condition is determined to be during normal operation. In S12, the search value corresponding to the detected value of the engine speed and the detected value of the engine load is corrected from the map data TBKAFHT in the heater energization duty correction. Obtained as coefficient vkafht.

S3においては、S2の基準ヒータ通電デューティと、S9またはS11またはS12のヒータ通電デューティ補正係数vkafhtと、からvafhtlod=vafht×vkafhtを算出する。S4においては、この算出値vafhtlodに基づいて空燃比センサ23のヒータ素子への印加電圧をデューティ制御するのである。   In S3, vafhtlod = vafht × vkafht is calculated from the reference heater energization duty in S2 and the heater energization duty correction coefficient vkafht in S9, S11, or S12. In S4, duty control is performed on the voltage applied to the heater element of the air-fuel ratio sensor 23 based on the calculated value vafhtlod.

この発明の実施形態を説明するシステム構成図である。1 is a system configuration diagram illustrating an embodiment of the present invention. 同じく空燃比ヒータ制御手段を説明するダイアグラムである。It is a diagram explaining an air fuel ratio heater control means similarly. 同じく空燃比ヒータ制御手段を説明するフローチャートである。It is a flowchart explaining an air fuel ratio heater control means similarly. 空燃比センサの通常運転時の素子温度を例示する特性図である。It is a characteristic view which illustrates element temperature at the time of normal operation of an air fuel ratio sensor. 空燃比センサのエキゾーストブレーキ時の素子温度を例示する特性図である。It is a characteristic view which illustrates the element temperature at the time of the exhaust brake of an air fuel ratio sensor.

符号の説明Explanation of symbols

11 スロットル弁
12 燃料供給装置
14 ガス制御弁
15 低圧燃料遮断弁
19 点火プラグ
22 エキゾーストブレーキバルブ
23 空燃比センサ
24 クランク角センサ
25 吸気圧力センサ
28 コントロールユニット
30 基準ヒータ通電デューティ算出手段
31 運転条件判定手段
32 通常運転時ヒータ通電デューティ補正手段
33 エキゾーストブレーキヒータ通電デューティ補正手段
34 燃料カット時ヒータ通電デューティ補正手段
35 選択手段
36 算出手段
37 最終ヒータ通電デューティ制御手段
DESCRIPTION OF SYMBOLS 11 Throttle valve 12 Fuel supply apparatus 14 Gas control valve 15 Low-pressure fuel cutoff valve 19 Spark plug 22 Exhaust brake valve 23 Air-fuel ratio sensor 24 Crank angle sensor 25 Intake pressure sensor 28 Control unit 30 Reference heater energization duty calculation means 31 Operating condition judgment means 32 Heater energization duty correction means during normal operation 33 Exhaust brake heater energization duty correction means 34 Heater energization duty correction means during fuel cut 35 Selection means 36 Calculation means 37 Final heater energization duty control means

Claims (2)

エンジンの排気中の空気過剰率を検出する空燃比センサ、この検出値を目標空燃比と一致させるべく燃料供給量を制御する手段、を備える空燃比制御装置において、運転条件が通常運転中かエキゾーストブレーキ作動中か燃料カット作動中かどうかを判定する手段、運転条件が通常運転中のときは、エンジン回転数およびエンジン負荷に基づいて、空燃比センサの素子温度を適正範囲に維持するべく空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、運転条件がエキゾーストブレーキ作動中のときは、エンジン回転数に基づいて、空燃比センサの素子温度が適正範囲から低下するのを抑えるべく空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、運転条件が燃料カット作動中のときは、エンジン回転数に基づいて、空燃比センサの素子温度が適正範囲から低下するのを抑えるべく空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、を備えることを特徴とする空燃比制御装置。   An air-fuel ratio control apparatus comprising an air-fuel ratio sensor for detecting an excess air ratio in exhaust of an engine and means for controlling a fuel supply amount so that the detected value coincides with a target air-fuel ratio. Means for determining whether the brake is operating or the fuel cut is operating. When the operating condition is normal operation, the air-fuel ratio is maintained to maintain the element temperature of the air-fuel ratio sensor within an appropriate range based on the engine speed and the engine load. Means for duty-controlling the voltage applied to the heater element of the sensor, and when the operating condition is exhaust brake operation, the air-fuel ratio is controlled to prevent the element temperature of the air-fuel ratio sensor from falling from the appropriate range based on the engine speed. Means for duty-controlling the voltage applied to the heater element of the sensor, and when the operating condition is fuel cut operation, it is based on the engine speed. There, the air-fuel ratio control apparatus characterized by comprising means for duty control of the voltage applied to the heater element of the air-fuel ratio sensor to suppress the element temperature of the air-fuel ratio sensor is lowered from a proper range. エンジンの排気中の空気過剰率を検出する空燃比センサ、この検出値を目標空燃比と一致させるべく燃料供給量を制御する手段、を備える空燃比制御装置において、電源電圧をパラメータに空燃比センサのヒータ素子への印加電圧を所定の基準レベルに制御するための基準ヒータ通電デューティを設定する手段、運転条件が通常運転中かエキゾーストブレーキ作動中か燃料カット作動中かどうかを判定する手段、運転条件の判定が通常運転中のときは、通常運転中の空燃比センサの素子温度を適正範囲に維持するべくエンジン回転数およびエンジン負荷をパラメータに設定されるマップからエンジン回転数の検出値およびエンジン負荷の検出値に対応するヒータ通電デューティ補正係数を求める手段、運転条件の判定がエキゾーストブレーキ作動中のときは、エキゾーストブレーキ作動中の空燃比センサの素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに設定されるマップからエンジン回転数の検出値に対応するヒータ通電デューティ補正係数を設定する手段、運転条件の判定が燃料カット作動中のときは、燃料カット作動中の空燃比センサの素子温度が適正範囲から低下するのを抑えるべくエンジン回転数をパラメータに設定されるマップからエンジン回転数の検出値に対応するヒータ通電デューティ補正係数を求める手段、最終ヒータ通電デューティ=基準ヒータ通電デューティ×運転条件の対応するヒータ通電デューティ補正係数を算出する手段、この算出値に基づいて空燃比センサのヒータ素子への印加電圧をデューティ制御する手段、を備えることを特徴とする空燃比制御装置。   An air-fuel ratio sensor comprising: an air-fuel ratio sensor for detecting an excess air ratio in engine exhaust; and means for controlling a fuel supply amount so that the detected value coincides with a target air-fuel ratio. Means for setting the reference heater energization duty to control the voltage applied to the heater element to a predetermined reference level, means for determining whether the operating conditions are normal operation, exhaust brake operation or fuel cut operation, operation When the determination of the condition is during normal operation, the detected value of the engine speed and the engine are determined from a map in which the engine speed and the engine load are set as parameters in order to maintain the element temperature of the air-fuel ratio sensor during normal operation within an appropriate range. Means for obtaining the heater energization duty correction coefficient corresponding to the detected load value, and judgment of the operating condition is the exhaust brake During operation, the heater energization duty corresponding to the detected value of the engine speed from a map in which the engine speed is set as a parameter to suppress the element temperature of the air-fuel ratio sensor during exhaust brake operation from falling from the appropriate range When the means for setting the correction coefficient and the determination of the operating condition is during the fuel cut operation, the engine speed is set as a parameter in order to prevent the element temperature of the air-fuel ratio sensor during the fuel cut operation from falling from an appropriate range. Means for obtaining a heater energization duty correction coefficient corresponding to the detected value of the engine speed from the map, means for calculating a heater energization duty correction coefficient corresponding to the final heater energization duty = reference heater energization duty × operating conditions, Means for duty-controlling the voltage applied to the heater element of the air-fuel ratio sensor. An air-fuel ratio control apparatus.
JP2005240923A 2005-08-23 2005-08-23 Air-fuel ratio control device Pending JP2007056718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240923A JP2007056718A (en) 2005-08-23 2005-08-23 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240923A JP2007056718A (en) 2005-08-23 2005-08-23 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JP2007056718A true JP2007056718A (en) 2007-03-08

Family

ID=37920419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240923A Pending JP2007056718A (en) 2005-08-23 2005-08-23 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP2007056718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026317A (en) * 2010-07-21 2012-02-09 Keihin Corp Engine control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235046A (en) * 1984-05-07 1985-11-21 Toyota Motor Corp Method for controlling temperature of oxygen sensor with heater for internal-combustion engine
JPH09329574A (en) * 1996-06-10 1997-12-22 Nissan Diesel Motor Co Ltd Control equipment for built-in heater for oxygen sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235046A (en) * 1984-05-07 1985-11-21 Toyota Motor Corp Method for controlling temperature of oxygen sensor with heater for internal-combustion engine
JPH09329574A (en) * 1996-06-10 1997-12-22 Nissan Diesel Motor Co Ltd Control equipment for built-in heater for oxygen sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026317A (en) * 2010-07-21 2012-02-09 Keihin Corp Engine control system

Similar Documents

Publication Publication Date Title
JP2006348901A (en) Evaporated fuel treatment device and evaporated fuel treatment device for engine with supercharger
JP5862552B2 (en) Fuel injection control device for internal combustion engine
WO2014136387A1 (en) Abnormality diagnosis device for internal combustion engine
JP2007008386A (en) Fuel remaining amount calculating device for vehicle
JP4567534B2 (en) Vehicle control device
JP2007056718A (en) Air-fuel ratio control device
JP4235492B2 (en) Exhaust brake device
JP2020084849A (en) Evaporation fuel treatment device
JP2007015420A (en) Control unit for vehicle
JP2007009849A (en) Oil supply detection device of vehicle
JP2013160138A (en) Fuel supply control device
WO2014091680A1 (en) Fuel injection control device for internal combustion engine, and vehicle fuel injection system
JP5181890B2 (en) Control device for internal combustion engine
JP4602169B2 (en) Vehicle control device
JP3545273B2 (en) Gas engine operation method
JP3952753B2 (en) Fuel supply device for lean burn gas engine and control method thereof
JP2015224583A (en) Internal combustion engine control unit
JP2007332806A (en) Fuel vapor treatment device for internal combustion engine
JP2007056679A (en) Liquified petroleum gas fuel feeder of engine
JP2016056699A (en) Fuel injection system for internal combustion engine
JP2008280931A (en) Evaporated fuel treatment device for internal combustion engine
JP2007056827A (en) Fuel supply device
JP2008038718A (en) Fuel supply device for engine
JP2009079476A (en) Fuel supply device for gas engine
JP3627568B2 (en) Fuel shut-off valve control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Effective date: 20091119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A02