WO2014091680A1 - Fuel injection control device for internal combustion engine, and vehicle fuel injection system - Google Patents

Fuel injection control device for internal combustion engine, and vehicle fuel injection system Download PDF

Info

Publication number
WO2014091680A1
WO2014091680A1 PCT/JP2013/006772 JP2013006772W WO2014091680A1 WO 2014091680 A1 WO2014091680 A1 WO 2014091680A1 JP 2013006772 W JP2013006772 W JP 2013006772W WO 2014091680 A1 WO2014091680 A1 WO 2014091680A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
valve
fuel injection
gas
Prior art date
Application number
PCT/JP2013/006772
Other languages
French (fr)
Japanese (ja)
Inventor
優一 竹村
溝渕 剛史
和田 実
和賢 野々山
福田 圭佑
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014091680A1 publication Critical patent/WO2014091680A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0678Pressure or flow regulators therefor; Fuel metering valves therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • F02M21/0239Pressure or flow regulators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • F02M21/0266Hollow stem valves; Piston valves; Stems having a spherical tip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/103Natural gas, e.g. methane or LNG used as a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to an internal combustion engine fuel injection control device and a vehicle fuel injection system.
  • a fuel supply system configured to supply gas fuel to the fuel injection valve is provided in the middle of a gas tank that stores the gas fuel in a high pressure state and a fuel pipe that connects the gas tank and the fuel injection valve.
  • a pressure adjustment valve that adjusts the pressure of the gas fuel supplied from the pressure regulator, and a shut-off valve that is provided upstream of the pressure adjustment valve (that is, on the gas tank side) and blocks the flow of the gas fuel to the pressure adjustment valve
  • the present disclosure suppresses the inconvenience that the injection pressure excessively increases due to fuel leakage at the pressure control valve while the gas fuel injection is stopped, and that the gas fuel injection is hindered after resumption of the gas fuel injection.
  • the main object of the present invention is to provide a fuel injection control device for an internal combustion engine and a fuel injection system for a vehicle.
  • the present disclosure includes a gas tank that stores gas fuel in a high-pressure state, a gas fuel injection valve that injects gas fuel supplied from the gas tank through a fuel passage, and the fuel passage that is provided to the gas fuel injection valve.
  • a pressure regulating valve that depressurizes and adjusts the pressure of the gas fuel, and a shut-off valve that is provided on the upstream side of the pressure regulating valve in the fuel passage and in the vicinity thereof, and has a shut-off function that shuts off the flow of the gas fuel;
  • the present invention is applied to a fuel injection system provided with a tank outlet valve provided in the vicinity of a fuel outlet of the gas tank and having a shut-off function for shutting off the flow of gas fuel.
  • the fuel pressure in the high-pressure passage between the gas tank and the pressure regulating valve is determined in advance, and the injection stop determining means for determining that the fuel injection by the gas fuel injection valve is before stopping
  • a pressure determination means for determining whether or not the fuel pressure is equal to or greater than a predetermined value; and the injection stop determination means determines that the time is before the injection stop, and the pressure determination means determines that the fuel pressure in the high-pressure passage is a predetermined value.
  • the shutoff valve is opened, the tank outlet valve is closed or the opening is restricted, and the fuel pressure in the high pressure passage is lowered.
  • the fuel pressure in the high-pressure passage is actively lowered before the gas fuel injection is stopped, so that the fuel leakage at the pressure regulating valve is less likely to occur, and even if the fuel leakage occurs, the injection pressure is reduced.
  • the rise level can be suppressed. As a result, it is possible to suppress the inconvenience that the injection pressure is excessively increased due to fuel leakage at the pressure control valve while the injection of the gas fuel is stopped, and that the injection of the gas fuel is hindered after the injection of the gas fuel is resumed.
  • FIG. 1 is a configuration diagram showing an outline of an engine fuel injection system.
  • FIG. 2 is a diagram showing a schematic configuration of the first injection valve.
  • FIG. 3 is a diagram illustrating a schematic configuration of a regulator.
  • FIG. 4 is a schematic diagram showing the arrangement of components of the fuel injection system in the vehicle.
  • FIG. 5 is a flowchart showing a first fuel injection control process.
  • FIG. 6 is a flowchart showing a second fuel injection control process.
  • FIG. 7 is a flowchart showing a third fuel injection control process.
  • FIG. 8 is a time chart for specifically explaining the fuel injection control.
  • FIG. 9 is a time chart for specifically explaining the fuel injection control.
  • FIG. 10 is a flowchart showing a regulator upstream pressure control process.
  • FIG. 11 is a time chart for specifically explaining regulator upstream pressure control processing.
  • FIG. 12 is a flowchart showing a first fuel injection control process in another embodiment.
  • FIG. 1 An overall schematic diagram of this system is shown in FIG. 1
  • the intake system 11 is an inline three-cylinder spark ignition engine, and an intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port, respectively.
  • the intake system 11 has an intake manifold 13 and an intake pipe 14.
  • the intake manifold 13 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 13a connected to the intake port of the engine 10, and a collective portion 13b connected to the intake pipe 14 on the upstream side. ing.
  • the intake pipe 14 is provided with a throttle valve 15 as air amount adjusting means.
  • the throttle valve 15 is configured as an electronically controlled throttle valve whose opening degree is adjusted by a throttle actuator 15a such as a DC motor.
  • the opening degree of the throttle valve 15 (throttle opening degree) is a throttle opening degree built in the throttle actuator 15a. It is detected by the degree sensor 15b.
  • the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17.
  • the exhaust manifold 16 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 16a connected to the exhaust port of the engine 10 and a collecting portion 16b connected to the exhaust pipe 17 on the downstream side. ing.
  • the exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust.
  • an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust is provided as the exhaust sensor 18.
  • a spark plug 20 is provided in each cylinder of the engine 10.
  • a high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition device 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel introduced into the cylinder (combustion chamber) is ignited and used for combustion.
  • the present system is a fuel injection means for injecting and supplying fuel to the engine 10, a first injection valve 21 for injecting gas fuel (CNG fuel), and a second injection valve 22 for injecting liquid fuel (gasoline). And have.
  • Each of these injection valves 21 and 22 injects fuel into the branch pipe portion 13a of the intake manifold 13 in the intake system 11, and gas fuel is supplied to the intake port of each cylinder by the injection of the first injection valve 21.
  • the liquid fuel is supplied to the intake port of each cylinder by the injection of the second injection valve 22.
  • Each of the injection valves 21 and 22 is an open / close type control valve in which the valve body is lifted from the closed position to the open position by electrically driving the electromagnetic drive unit. Each valve is driven to open by a valve opening drive signal. These injection valves 21 and 22 are opened by energization and closed by energization interruption. An amount of fuel (gas fuel, liquid fuel) corresponding to the energization time is injected from each of the injection valves 21 and 22.
  • the injection pipe 23 is connected to the tip of the first injection valve 21, and the gas fuel injected from the first injection valve 21 passes through the injection pipe 23 to the branch pipe portion 13 a of the intake manifold 13. It comes to be injected.
  • the first injection valve 21 has a self-sealing structure in which the closing sealing performance is enhanced by the pressure of the gas fuel supplied to itself.
  • a valve body 32 is slidably accommodated in the cylindrical body 31, and the valve body 32 is biased in the valve closing direction by a spring 33 in the body 31.
  • the nozzle hole 34 provided at the tip of the injection valve is closed by the tip of the valve body 32.
  • a first fuel chamber 35 is provided on the rear end side (upstream side) of the valve body 32
  • a second fuel chamber 36 is provided on the front end side (downstream side) of the valve body 32.
  • the valve body 32 is provided with a small-diameter portion 32a on the tip side of the sliding portion, and a second fuel chamber 36 is provided around the small-diameter portion 32a.
  • the first fuel chamber 35 and the second fuel chamber 36 are in communication with each other via a fuel passage 37 provided in the valve body 32.
  • the inlet side of the fuel passage 37 communicates with the first fuel chamber 35, and the outlet side thereof It leads to the second fuel chamber 36.
  • the valve body 32 is displaced to the valve opening position in response to energization to the electromagnetic drive unit 38 composed of a solenoid or the like.
  • gas fuel is supplied from a regulator 43 described later to the first fuel chamber 35, and the gas fuel is also introduced into the second fuel chamber 36 through the fuel passage 37.
  • the valve body 32 is displaced to the valve opening position against the biasing force of the spring 33 as the electromagnetic drive unit 38 is energized, the nozzle hole 34 is opened, and the gas is discharged. Fuel is injected.
  • the valve body 32 is provided with a small-diameter portion 32 a on the distal end side thereof, so that the pressure receiving area on the first fuel chamber 35 side and the pressure receiving side on the second fuel chamber 36 side in the valve-closed state.
  • the area is “pressure receiving area on the first fuel chamber 35 side> pressure receiving area on the second fuel chamber 36 side” (see FIG. 2A). Therefore, in the valve closing state shown in FIG. 2A, the pressure of the gas fuel supplied from the regulator 43 side (corresponding to the injection pressure) is in the direction in which the valve body 32 is closed (valve closing direction). It comes to act more greatly.
  • the injection pressure also acts on the end face (the lower end face in the figure) of the small-diameter portion 32a, so that the fuel pressure in the valve closing direction acting on the valve body 32 and the valve opening direction are also applied.
  • the fuel pressure is almost the same.
  • a gas tank 42 is connected to the first injection valve 21 via a gas pipe 41, and the pressure of the gas fuel supplied to the first injection valve 21 is in the middle of the gas pipe 41.
  • a regulator 43 having a pressure adjusting function for adjusting the pressure under pressure.
  • the regulator 43 (a pressure adjusting valve 60, which will be described in more detail later) is configured to use gas fuel in a high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 42 with a predetermined set pressure (for example, an injection pressure of the first injection valve 21)
  • the gas fuel after the pressure reduction adjustment is supplied to the first injection valve 21 through the gas pipe 41.
  • the upstream side of the regulator 43 is a high-pressure pipe portion 41a that forms a high-pressure side passage, and the downstream side is a low-pressure pipe portion 41b that forms a low-pressure side passage.
  • a gas fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 (tank outlet valve) disposed in the vicinity of the fuel outlet of the gas tank 42 and a downstream side of the tank main stop valve 44. And a shutoff valve 45 disposed in the vicinity of the fuel inlet of the regulator 43.
  • the valves 44, 45 allow and shut off the flow of gas fuel in the gas pipe 41. Yes.
  • Both the tank main stop valve 44 and the shut-off valve 45 are electromagnetic on-off valves, and are normally closed so that the flow of gas fuel is cut off when not energized and the flow of gas fuel is allowed when energized.
  • a pressure sensor 46 for detecting the fuel pressure and a temperature sensor 47 for detecting the fuel temperature are provided in the high pressure piping portion 41a, and a pressure sensor 48 for detecting the fuel pressure in the low pressure piping portion 41b.
  • a temperature sensor 49 for detecting the fuel temperature is provided.
  • the gas tank 42 is provided with a tank internal pressure sensor 50 that detects a tank internal pressure that is an internal pressure of the gas tank 42.
  • the shut-off valve 45 and the pressure sensor 46 can be provided integrally with the regulator 43.
  • a configuration in which the shut-off valve 45 and the pressure sensor 46 are provided integrally with the regulator 43 is adopted. .
  • the regulator 43 constitutes a mechanical pressure adjusting device that adjusts the fuel pressure in the low-pressure pipe portion 41b with respect to a mechanically determined set pressure.
  • the regulator 43 has a high-pressure passage 51 connected to the high-pressure piping portion 41a and a low-pressure passage 52 connected to the low-pressure piping portion 41b.
  • the high-pressure passage 51 includes a shut-off valve 45 and a pressure sensor. 46 is provided.
  • the pressure sensor 46 detects the pressure of the gas fuel upstream of the shutoff valve 45.
  • Reference numeral 53 is a filter for removing foreign matter.
  • the configuration of the shut-off valve 45 is substantially the same as the configuration of the first injection valve 21 and has a self-sealing structure. The configuration will be briefly described.
  • the shut-off valve 45 has a valve body 55 biased in the valve closing direction by a spring 54, and the valve body 55 is closed against the biasing force of the spring 54 by energizing the electromagnetic drive unit 56. The valve is displaced from the position to the valve opening position.
  • a first fuel chamber 57 is provided on the rear end side (upstream side) of the valve body 55, and a second fuel chamber 58 is provided on the distal end side (downstream side where the small diameter portion is provided) of the valve body 55. Yes.
  • Both the fuel chambers 57 and 58 are communicated with each other through a fuel passage 59 provided in the valve body 55.
  • high-pressure gas fuel is supplied to both the fuel chambers 57 and 58 from the gas tank 42, and in the closed state of the shutoff valve 45, a closing force is applied to the valve body 55 by the fuel pressure on the gas tank 42 side. .
  • the valve element 55 is displaced to the valve open position against the biasing force of the spring 54 with the energization of the electromagnetic drive unit 56 (as shown), high-pressure gas fuel flows downstream.
  • a pressure regulating valve 60 is provided on the downstream side of the shutoff valve 45.
  • a valve body chamber 61 is provided in the high pressure passage 51, and a valve body 62 is accommodated in the valve body chamber 61.
  • the valve body 62 is an opening / closing member that opens and closes the valve seat portion 63 that is an inlet portion of the low pressure passage 52. If the valve body 62 is in the open position, the valve seat portion 63 is opened and the high pressure passage 51, the low pressure passage 52, Is communicated. If the valve body 62 is in the closed position, the valve seat 63 is closed and the communication between the high pressure passage 51 and the low pressure passage 52 is blocked.
  • the valve body 62 is opened and closed according to the fuel pressure (corresponding to the injection pressure) in the low-pressure passage 52 and the force in the valve opening direction generated by the valve body operating portion 65.
  • the valve element actuating portion 65 is a space that is open to the atmosphere, and has an air opening portion 67 in which an adjustment spring 66 is provided, and a diaphragm as a partition member that partitions the air release portion 67 and the low-pressure passage 52. 68.
  • the diaphragm 68 is provided integrally with the valve body 62. Fuel pressure in the low pressure passage 52 acts on the diaphragm 68 as a force in the valve closing direction, and an urging force of the adjustment spring 66 and atmospheric pressure act as a force in the valve opening direction.
  • the valve body 62 is held in the valve closing position.
  • the valve element 62 opens with the displacement of the diaphragm 68.
  • the opening position (valve lift amount) of the valve body 62 is determined according to the difference between the force in the valve closing direction and the force in the valve opening direction, and the opening area of the valve seat 63 is changed according to the opening position. As a result, the amount of fuel flowing from the high pressure passage 51 into the low pressure passage 52 is adjusted.
  • a relief valve 69 that vents gas when the fuel pressure in the low pressure passage 52 becomes abnormally high is provided in the branch portion 52a branched from the low pressure passage 52.
  • the pressure adjusting means is constituted by the pressure adjusting valve 60 made up of components such as the valve body 62 and the valve body operating portion 65.
  • the shut-off valve 45, the pressure sensor 46, and the pressure adjustment valve 60 are integrally provided in the regulator 43.
  • the shut-off valve 45 and the pressure sensor 46 are separated from the regulator 43 in the high-pressure piping 41 a. It is also possible to provide it.
  • a fuel tank 72 is connected to the second injection valve 22 via a fuel pipe 71.
  • the fuel pipe 71 is provided with a fuel pump 73 that feeds the liquid fuel in the fuel tank 72 to the second injection valve 22.
  • the control unit 80 includes a CPU 81, a ROM 82, a RAM 83, a backup RAM 84, an interface 85, and a bidirectional bus 86.
  • the CPU 81, ROM 82, RAM 83, backup RAM 84, and interface 85 are connected to each other by a bidirectional bus 86.
  • the CPU 81 executes a routine (program) for controlling the operation of each unit in the system.
  • the ROM 82 stores in advance various data such as a routine executed by the CPU 81, maps (including tables, relational expressions, and the like), parameters, and the like referred to when the routine is executed.
  • the RAM 83 temporarily stores data as necessary when the CPU 81 executes a routine.
  • the backup RAM 84 appropriately stores data under the control of the CPU 81 in a state where the power is turned on, and retains the stored data even after the power is shut off.
  • the interface 85 includes sensors (crank angle sensor, air flow meter, air flow meter, etc.) provided in the present system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 46, 48, the temperature sensors 47, 49, and the tank internal pressure sensor 50 described above.
  • a cooling water temperature sensor, a vehicle speed sensor, etc.) are electrically connected, and outputs (detection signals) from these sensors are transmitted to the CPU 81.
  • the interface 85 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20a, the injection valves 21 and 22, the tank main stop valve 44, the shutoff valve 45, and the like, and drives these driving units. Therefore, the drive signal sent from the CPU 81 is output toward the drive unit. That is, the control unit 80 acquires an operation state based on the output signals of the above-described sensors, and performs the above-described drive unit control based on the operation state.
  • FIG. 4 is a schematic diagram showing the arrangement of components of the fuel injection system in the vehicle “C”.
  • the vehicle “C” has an engine 10 disposed in the front portion of the vehicle, and a regulator 43 and a shut-off valve 45 are provided in the vicinity of the engine.
  • the engine 10 is provided with a first injection valve 21.
  • a gas tank 42 is disposed at the rear of the vehicle, and a tank main stop valve 44 is provided at the outlet thereof.
  • the gas piping 41 is provided so that it may extend in the vehicle front-back direction.
  • the pressure regulating valve 60 is likely to leak high pressure fuel from the upstream side to the downstream side. Therefore, it is considered that the injection pressure is excessively increased.
  • the valve opening operation of the valve body 32 may be affected in the first injection valve 21, and as a result, the valve body 32 moves to the valve opening position due to the excessive increase in the injection pressure.
  • the gas fuel cannot be injected normally.
  • the first injection valve 21 has a self-sealing structure as described above, and the fuel pressure (injection pressure) on the downstream side of the regulator acts in the direction in which the valve body 32 is closed. Therefore, the higher the injection pressure, the harder it is to open the valve.
  • the control unit 80 determines that it is a time before the fuel injection by the first injection valve 21 is stopped, and determines whether the regulator upstream pressure is equal to or higher than a predetermined value.
  • the shutoff valve 45 is opened while the fuel injection by the first injection valve 21 is continued.
  • the main stop valve 44 is closed to reduce the regulator upstream pressure (injection stop determination means, pressure determination means, pressure control means).
  • the fuel injection is stopped before the fuel injection is stopped by the first injection valve 21 (in other words, the fuel injection is likely to be stopped).
  • the following (1) to (3) are assumed as means for performing this. (1) Based on the request for switching from gas fuel to liquid fuel, it is determined that the time is before the stop of injection of gas fuel. (2) Based on the determination that the vehicle is in a predetermined low load state, it is determined that the time is before the stop of the injection of gas fuel. (3) Based on the request for stopping the engine, it is determined that the time is before the stop of gas fuel injection. In addition, if the engine stop request
  • FIG. 5 is a flowchart showing the fuel injection control process in the case (1)
  • FIG. 6 is a flowchart showing the fuel injection control process in the case (2)
  • FIG. 7 is the above (3).
  • 6 is a flowchart showing a fuel injection control process in the case of FIG.
  • Each of these processes is repeatedly performed by the CPU 81 of the control unit 80 at a predetermined cycle.
  • the process of FIG. 5 is called a first fuel injection control process
  • the process of FIG. 6 is called a second fuel injection control process
  • the process of FIG. 7 is called a third fuel injection control process.
  • step S11 it is determined whether or not it is a time point before the stop of the injection of the gas fuel depending on whether or not a request for switching from the gas fuel to the liquid fuel is generated. .
  • the switching from the gas fuel to the liquid fuel may be performed based on, for example, the engine operating state or the remaining amount of fuel. If no switching request is generated, the process is terminated.
  • step S13 it is determined whether or not the regulator upstream pressure is equal to or higher than a predetermined determination value K1.
  • the regulator upstream pressure is calculated from the detection value of the pressure sensor 46.
  • the regulator upstream pressure may be calculated from the detection value of the tank internal pressure sensor 50. Since the determination in step S13 is made immediately after the main tank stop valve 44 is closed (or when the tank is closed) when step S11 becomes YES, the regulator upstream pressure is calculated from the detected value of the tank internal pressure sensor 50. Is possible.
  • the determination value K1 is a threshold value for determining whether the regulator upstream pressure is high enough to affect the valve opening operation of the shutoff valve 45, and is, for example, 10 MPa.
  • step S14 If the regulator upstream pressure is less than the determination value K1, the process proceeds to step S14, and a close command for closing the shutoff valve 45 is output. In the subsequent step S15, the injection of gas fuel by the first injection valve 21 is stopped. Thereafter, this process is terminated.
  • the shutoff valve 45 is not immediately closed and the switching to the liquid fuel is not performed, and the following steps S16 to S18 are performed.
  • step S16 the update of the air-fuel ratio learning value in the air-fuel ratio feedback control is prohibited.
  • Air-fuel ratio feedback control and air-fuel ratio learning will be briefly described.
  • the controller 80 calculates a deviation between the actual air-fuel ratio detected by the exhaust sensor 18 and a target air-fuel ratio (for example, the theoretical air-fuel ratio), and calculates an air-fuel ratio feedback correction value based on the deviation. Then, the injection amount of the gas fuel is corrected by the air-fuel ratio feedback correction value. Further, an air-fuel ratio learning value is calculated based on the air-fuel ratio feedback correction value, and the learned value is stored in the backup RAM 84 (or EEPROM). At this time, the previous value of the air-fuel ratio learning value is updated with the current value. In step S16, such update of the air-fuel ratio learning value is prohibited.
  • step S17 abnormality determination of the gas fuel supply system is prohibited.
  • the abnormality determination of the gas fuel supply system will be briefly described.
  • the control unit 80 determines abnormality of the gas piping 41 (high pressure piping portion 41a) according to the regulator upstream pressure during the injection of gas fuel.
  • the magnitude of the fuel pressure in the gas pipe 41 and the behavior of the change may vary. Is different. Therefore, if the tank main stop valve 44 is closed while the gas fuel is being injected, there is a risk of erroneous determination.
  • the magnitude of the injection pressure fluctuates according to the operating load of the engine 10, and the injection pressure becomes higher at low loads such as an idle with a relatively small fuel injection amount.
  • the injection pressure becomes lower at a high load with a relatively large amount.
  • a normal range of the injection pressure is determined for each load region, and abnormality determination of the pressure adjustment valve 60 is performed depending on whether or not the injection pressure is within the normal range.
  • the tank main stop valve 44 is closed while the gas fuel is being injected, there is a risk of erroneous determination.
  • the abnormality determination may be limited by changing the abnormality determination value used in the abnormality determination.
  • step S18 the estimation of the remaining amount of fuel in the gas tank 42 is prohibited.
  • the fuel remaining amount estimation process will be briefly described. There is a correlation between the remaining amount of fuel in the gas tank 42 and the tank internal pressure. Therefore, the relationship between the fuel remaining amount in the gas tank 42 and the tank internal pressure is obtained in advance, and the control unit 80 calculates the tank internal pressure from the detection value of the tank internal pressure sensor 50 and estimates the fuel remaining amount based on the tank internal pressure. To do. Alternatively, since the tank internal pressure and the regulator upstream pressure are substantially the same in a state where the tank main stop valve 44 is opened, the control unit 80 calculates the tank internal pressure from the detection value of the pressure sensor 46 and based on the tank internal pressure. To estimate the remaining fuel. In step S18, such estimation of the remaining amount of fuel is prohibited.
  • step S21 it is determined whether the regulator upstream pressure is equal to or higher than a predetermined determination value K1 (similar to step S13 in FIG. 5).
  • step S22 It is determined whether or not it is a time point before the stop of the injection of the gas fuel depending on whether or not the engine is idling. If the regulator upstream pressure is less than the determination value K1 or not during idling, the process proceeds to step S23, and an opening command for opening the tank main stop valve 44 is output. If the tank main stop valve 44 has already been opened, the opened state is maintained.
  • step S24 if the regulator upstream pressure is equal to or higher than the determination value K1 and the engine is idling, the process proceeds to step S24, and a close command for closing the tank main stop valve 44 is output. Thereafter, in steps S25 to S27, processing for prohibiting update of the air-fuel ratio learning value in air-fuel ratio feedback control, processing for prohibiting determination of abnormality in the gas fuel supply system, and processing for prohibiting estimation of the remaining amount of fuel in the gas tank 42 are performed. Each is carried out (similar to steps S16 to S18 in FIG. 5).
  • step S31 it is determined whether or not it is a time point before the stop of the injection of gas fuel, depending on whether or not a stop request for the engine 10 is generated. At this time, for example, when the ignition switch is turned off, it is determined that an engine stop request is generated. If no engine stop request is generated, the process proceeds to step S32, and an opening command for opening the tank main stop valve 44 is output. If the tank main stop valve 44 has already been opened, the opened state is maintained.
  • step S34 it is determined whether or not the regulator upstream pressure is equal to or higher than a predetermined determination value K1 (similar to step S13 in FIG. 5). If the regulator upstream pressure is less than the determination value K1, the process proceeds to step S35, and a close command for closing the shutoff valve 45 is output. In the subsequent step S36, the injection of gas fuel by the first injection valve 21 is stopped. Thereafter, this process is terminated.
  • step S37 to S39 processing for prohibiting update of the air-fuel ratio learning value in air-fuel ratio feedback control, processing for prohibiting abnormality determination of the gas fuel supply system, and gas tank 42 are performed.
  • the process for prohibiting the estimation of the remaining amount of fuel is performed (similar to steps S16 to S18 in FIG. 5).
  • step S40 the injection of gas fuel by the first injection valve 21 is continued. Thereafter, this process is terminated.
  • FIG. 8 is a time chart for explaining the operation when a request to switch from gas fuel to liquid fuel is generated, and this corresponds to the first fuel injection control process described in FIG.
  • the fuel before the timing t1, the fuel is injected with the gas fuel, and both the tank main stop valve 44 and the shutoff valve 45 are in the open state.
  • a request for switching from gas fuel to liquid fuel is generated.
  • the tank internal pressure and the regulator upstream pressure are the same pressure, and are both equal to or higher than the determination value K1.
  • the tank main stop valve 44 is closed while the shut-off valve 45 and the gas fuel injection by the first injection valve 21 are continued.
  • the regulator upstream pressure starts to decrease while the tank internal pressure is maintained at a high level.
  • the regulator upstream pressure decreases to the determination value K1, and the shutoff valve 45 is closed accordingly.
  • the injection of gas fuel by the first injection valve 21 is stopped and the injection of liquid fuel by the second injection valve 22 is started.
  • the regulator upstream pressure is held at a substantially constant value in the vicinity of the determination value K1. In this case, even if the pressure regulating valve 60 leaks to the low pressure side of the high pressure gas fuel via the valve body seat portion (valve seat portion 63), the injection pressure (supply gas pressure to the first injection valve 21). ) Can be prevented from occurring. Therefore, when restarting the subsequent injection of the gas fuel, it is possible to suppress the inconvenience that it becomes difficult to perform the fuel injection of the first injection valve 21 due to the injection pressure being too high.
  • FIG. 9 is a time chart for explaining the operation when the engine operating state becomes an idle state (low load state), and this corresponds to the second fuel injection control process described in FIG. .
  • the engine load factor is reduced as the accelerator depression amount is reduced.
  • the tank main stop valve 44 and the shutoff valve 45 are both opened.
  • an idle flag is set.
  • the tank internal pressure and the regulator upstream pressure are the same pressure, and are both equal to or higher than the determination value K1.
  • the tank main stop valve 44 is closed while the state in which the shutoff valve 45 is opened and the state in which the gas fuel is injected by the first injection valve 21 are continued.
  • the regulator upstream pressure starts to decrease while the tank internal pressure is maintained at a high level.
  • the regulator upstream pressure decreases to the determination value K1, and the tank main stop valve 44 is opened accordingly.
  • the regulator upstream pressure rises, and when the regulator upstream pressure reaches the determination value K2 set by “K1 + ⁇ ” at the timing t13, the tank main stop valve 44 is closed again.
  • the regulator upstream pressure decreases again.
  • the determination value K2 in the fuel injection control process of FIG. 6 described above means that hysteresis is provided in the determination process of step S21.
  • the shutoff valve 45 is closed and the gas fuel injection by the first injection valve 21 is stopped.
  • the regulator upstream pressure is maintained at a pressure between the determination values K1 and K2. In this case, even if the pressure regulating valve 60 leaks to the low pressure side of the high pressure gas fuel via the valve body seat portion (valve seat portion 63), the injection pressure (supply gas pressure to the first injection valve 21). ) Can be prevented from occurring. Therefore, when the engine is restarted thereafter, it is possible to suppress the inconvenience that the fuel injection of the first injection valve 21 is difficult to be performed due to the injection pressure being too high and the engine start is adversely affected.
  • the upstream pressure of the regulator is in a predetermined high pressure state before the fuel injection is stopped in the engine operating state by the gas fuel injection of the first injection valve 21, the fuel injection by the first injection valve 21 is continued.
  • the shut-off valve 45 is opened and the tank main stop valve 44 is closed to reduce the regulator upstream pressure.
  • fuel leakage at the pressure regulating valve 60 is less likely to occur, and even if fuel leakage occurs, the injection pressure rise level Can be suppressed.
  • the update of the air-fuel ratio learning value is prohibited when the shutoff valve 45 is opened and the tank main stop valve 44 is closed while the fuel injection by the first injection valve 21 is continued.
  • the upstream side of the regulator is higher than when the gas fuel is injected with the tank main stop valve 44 opened (normal time).
  • the mode of change in pressure and injection pressure is different. Therefore, there is a concern that the correction value of the gas fuel injection amount becomes a value different from the normal value.
  • since the update of the learning value is prohibited when the gas fuel is injected with the tank main stop valve 44 closed, erroneous learning can be prevented. Therefore, it is possible to suppress the inconvenience that the emission is deteriorated due to erroneous learning.
  • the abnormality determination in the fuel supply system of the gas fuel is stopped or limited.
  • the upstream side of the regulator is higher than when the gas fuel is injected with the tank main stop valve 44 opened (normal time).
  • the mode of change in pressure and injection pressure is different. Accordingly, there is a concern that the regulator upstream pressure and the injection pressure may be out of the normal range even though the configuration of the fuel supply system such as the shutoff valve 45 and the pressure regulating valve 60 is normal.
  • the abnormality determination is stopped or limited when gas fuel is injected with the tank main stop valve 44 closed, so that erroneous determination of abnormality can be prevented.
  • the estimation of the remaining amount of fuel in the gas tank 42 is prohibited when the shutoff valve 45 is opened and the tank main stop valve 44 is closed while the fuel injection by the first injection valve 21 is continued.
  • the regulator upstream pressure decreases regardless of the tank internal pressure. Therefore, when the remaining fuel amount in the gas tank 42 is estimated based on the upstream pressure of the regulator (the pressure detected by the pressure sensor 46), the remaining fuel amount may be erroneously estimated. Further, when the remaining amount of fuel in the gas tank 42 is estimated based on the detected value of the tank internal pressure (detected pressure of the tank internal pressure sensor 50), the amount of fuel actually consumed is not reflected, so that the remaining amount of fuel is also used. May be estimated incorrectly. In this embodiment, since estimation of the remaining amount of fuel is prohibited when gas fuel is injected with the tank main stop valve 44 closed, erroneous estimation of the remaining amount of fuel can be prevented.
  • the engine 10 As a vehicle fuel injection system, the engine 10, the first injection valve 21, the pressure regulating valve 60, and the shutoff valve 45 are mounted on the front portion of the vehicle, and the gas tank 42 and the tank main stop valve 44 are mounted on the rear portion of the vehicle. Adopted the configuration.
  • the gas pipe 41 between the gas tank 42 and the pressure regulating valve 60 becomes longer, and the passage volume increases accordingly. Therefore, even if the tank main stop valve 44 is closed before the fuel injection by the first injection valve 21 is stopped, the fuel injection for a while after that is performed in the gas pipe 41 between the gas tank 42 and the pressure regulating valve 60. Therefore, it is convenient to continue the injection of the gas fuel while lowering the regulator upstream pressure as described above.
  • the tank main stop valve 44 may have a function capable of variably adjusting the opening degree.
  • the control unit 80 controls the opening degree of the tank main stop valve 44, and thereby the regulator upstream pressure is controlled to be in a predetermined pressure range (for example, a pressure range equal to or lower than the determination value K2).
  • Control for adjusting the opening of the tank main stop valve 44 to the closed side with respect to the fully open state corresponds to “control for bringing the tank main stop valve 44 into the open restriction state”.
  • step S41 it is determined in step S41 whether or not the tank internal pressure is equal to or higher than a predetermined determination value K3. If NO, the process proceeds to step S42 and the tank main stop valve 44 is fully opened. .
  • step S41 If step S41 is YES, the process proceeds to step S43, and the dissociation amount between the current value of the regulator upstream pressure and the target value is calculated.
  • step S44 the opening degree of the tank main stop valve 44 is feedback-controlled so that the current value of the regulator upstream pressure matches the target value. The above control may be performed only when it is determined that the time is before the injection of gas fuel is stopped.
  • FIG. 11 is a time chart for explaining the regulator upstream pressure control process of FIG. 10 more specifically.
  • the control target value of the regulator upstream pressure is determined, and the opening degree of the tank main stop valve 44 is feedback-controlled so as to coincide with the target value.
  • an idle flag is set (similar to timing t11 in FIG. 9). In this case, the regulator upstream pressure is maintained near the target value before and after the timing t21.
  • both the tank main stop valve 44 and the shutoff valve 45 are closed, and injection of gas fuel by the first injection valve 21 is stopped. Is done.
  • the regulator upstream pressure is maintained near the target value.
  • the regulator upstream pressure can be maintained at a desired pressure before the engine 10 is stopped, and the pressure regulating valve 60 leaks to the low pressure side of the high pressure side gas fuel via the valve body seat portion (valve seat portion 63). Even so, it is possible to suppress an excessive increase in the injection pressure (the supply gas pressure to the first injection valve 21). Therefore, when the engine is restarted thereafter, it is possible to suppress the inconvenience that the fuel injection of the first injection valve 21 is difficult to be performed due to the injection pressure being too high and the engine start is adversely affected.
  • the regulator upstream pressure is stabilized as compared with the case where a configuration in which the valve is fully closed and fully opened is used.
  • the injection pressure which is the downstream pressure of the regulator, is stabilized, and air-fuel ratio fluctuations due to pressure fluctuations can be suppressed.
  • the contents of the processing will be described with reference to FIG.
  • the process in FIG. 12 is obtained by changing a part of the process in FIG. 5, but for the sake of convenience, the process of prohibiting the update of the air-fuel ratio learning value (steps S16 to S18) is omitted.
  • step S51 the tank internal pressure detected by the tank internal pressure sensor 50 is acquired.
  • step S52 it is determined whether or not the regulator upstream pressure is within a predetermined range lower than the tank internal pressure. At this time, if the regulator upstream pressure is within a pressure range (K1 or more, a pressure range less than the tank internal pressure ⁇ ) that is less than “tank internal pressure ⁇ ”, step S52 is affirmed.
  • the pressure range may be “K1 or more and less than tank internal pressure”.
  • step S52 is NO, the tank main stop valve 44 is closed to decrease the regulator upstream pressure, and if step S52 is YES, the tank main stop valve 44 is opened to increase the regulator upstream pressure.
  • the regulator upstream pressure is maintained at a pressure lower than the tank internal pressure. In this case, it is possible to prevent the regulator upstream pressure from dropping too much.
  • an opening adjustment type injection valve whose valve opening (opening area of the injection port) is adjusted continuously or in multiple stages by electrically driving an electromagnetic driving unit (not shown).
  • the valve opening degree is adjusted by a duty signal input from the control unit 80.
  • the fuel flow rate per unit time is adjusted according to the valve opening degree of each injection valve 21, 22, and the fuel (gas fuel, liquid fuel) whose flow rate is adjusted is supplied to the intake port of each cylinder.
  • the injection valves 21 and 22 are provided for each cylinder of the multi-cylinder engine.
  • the injection valves 21 and 22 may be provided in common for a plurality of cylinders.
  • gas fuel CNG
  • liquid fuel gasoline
  • the CNG fuel is used as the gas fuel, but other gas fuels that are gas in the standard state can also be used.
  • gas fuels that are gas in the standard state
  • the liquid fuel is not limited to gasoline fuel, and for example, light oil or the like may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A pressure-regulating valve (60), which reduces the pressure of a fuel gas supplied to first injection valves (21), and a main tank stop valve (44) and a cutoff valve (45) are disposed in a fuel passage comprising a gas line (41). A control unit (80) determines whether a time point precedes a stoppage in fuel injection by the first injection valves (21), and determines whether a regulator upstream pressure is greater than or equal to a prescribed value that has been determined in advance. Furthermore, if the control unit (80) determines that the time point precedes a stoppage in fuel injection, and determines that the regulator upstream pressure is greater than or equal to the prescribed value, the control unit (80) reduces the regulator upstream pressure by opening the cutoff valve (45) and closing the main tank stop valve (44), while fuel continues to be injected by the first injection valves (21).

Description

内燃機関の燃料噴射制御装置及び車両の燃料噴射システムFuel injection control device for internal combustion engine and fuel injection system for vehicle 関連出願の相互参照Cross-reference of related applications
 本開示は、2012年12月12日に出願された日本出願番号2012-271377に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2012-271377 filed on December 12, 2012, the contents of which are incorporated herein.
 本開示は、内燃機関の燃料噴射制御装置及び車両の燃料噴射システムに関するものである。 The present disclosure relates to an internal combustion engine fuel injection control device and a vehicle fuel injection system.
 圧縮天然ガス(CNG)等のガス燃料を燃焼させるようにした内燃機関が知られている。こうした内燃機関において、ガス燃料を燃料噴射弁に対して供給させる燃料供給系の構成として、ガス燃料を高圧状態で貯蔵するガスタンクと、ガスタンク及び燃料噴射弁を繋ぐ燃料配管の途中に設けられ、ガスタンクから供給されるガス燃料の圧力を減圧調整する圧力調整弁と、圧力調整弁よりも上流側(すなわちガスタンク側)に設けられ、圧力調整弁に対するガス燃料の流通を遮断する遮断弁とを備える構成が知られている(例えば特許文献1参照)。 There is known an internal combustion engine in which gas fuel such as compressed natural gas (CNG) is burned. In such an internal combustion engine, a fuel supply system configured to supply gas fuel to the fuel injection valve is provided in the middle of a gas tank that stores the gas fuel in a high pressure state and a fuel pipe that connects the gas tank and the fuel injection valve. A pressure adjustment valve that adjusts the pressure of the gas fuel supplied from the pressure regulator, and a shut-off valve that is provided upstream of the pressure adjustment valve (that is, on the gas tank side) and blocks the flow of the gas fuel to the pressure adjustment valve Is known (see, for example, Patent Document 1).
特開平11-294222号公報JP-A-11-294222
 圧力調整弁では、弁体シート部において燃料漏れが生じることが考えられ、特にガスタンクと圧力調整弁との間の高圧通路部の燃料圧力が高いほど、燃料漏れが生じやすくなる。そして、ガス燃料を消費しない燃料噴射の休止時には圧力調整弁での燃料漏れにより噴射圧(供給ガス圧)が過剰に高くなり、ガス燃料噴射弁において弁体の開弁作動に影響が及ぶことが懸念される。この場合、噴射圧の過上昇により弁体が開弁位置に移動できずガス燃料を正常に噴射できなくなるおそれが生じる。 In the pressure regulating valve, it is considered that fuel leakage occurs in the valve body seat portion. In particular, the higher the fuel pressure in the high pressure passage portion between the gas tank and the pressure regulating valve, the more likely the fuel leakage occurs. When fuel injection without consuming gas fuel is stopped, fuel injection at the pressure regulating valve causes an excessive increase in injection pressure (supply gas pressure), which may affect the valve opening operation of the valve body in the gas fuel injection valve. Concerned. In this case, there is a possibility that the valve body cannot move to the valve opening position due to excessive increase in the injection pressure, and the gas fuel cannot be normally injected.
 本開示は、ガス燃料の噴射停止中に圧力制御弁での燃料漏れにより噴射圧が過上昇し、ひいてはガス燃料の噴射再開後においてそのガス燃料の噴射に支障が生じるといった不都合を抑制することができる内燃機関の燃料噴射制御装置及び車両の燃料噴射システムを提供することを主たる目的とするものである。 The present disclosure suppresses the inconvenience that the injection pressure excessively increases due to fuel leakage at the pressure control valve while the gas fuel injection is stopped, and that the gas fuel injection is hindered after resumption of the gas fuel injection. The main object of the present invention is to provide a fuel injection control device for an internal combustion engine and a fuel injection system for a vehicle.
 本開示は、ガス燃料を高圧状態で貯蔵するガスタンクと、該ガスタンクから燃料通路を通じて供給されるガス燃料を噴射するガス燃料噴射弁と、前記燃料通路に設けられ、前記ガス燃料噴射弁に供給されるガス燃料の圧力を減圧調整する圧力調整弁と、前記燃料通路において前記圧力調整弁の上流側であってかつその近傍に設けられ、ガス燃料の流通を遮断する遮断機能を有する遮断弁と、前記ガスタンクの燃料出口近傍に設けられ、ガス燃料の流通を遮断する遮断機能を有するタンク出口弁と、を備える燃料噴射システムに適用される。そして、前記ガス燃料噴射弁による燃料噴射が停止される前の時点であることを判定する噴射停止判定手段と、前記ガスタンクと前記圧力調整弁との間の高圧通路部の燃料圧力があらかじめ定めた所定値以上であるか否かを判定する圧力判定手段と、前記噴射停止判定手段により噴射停止の前の時点であると判定され、かつ前記圧力判定手段により前記高圧通路部の燃料圧力が所定値以上であると判定された場合に、前記ガス燃料噴射弁による燃料噴射を継続したまま、前記遮断弁を開放状態、前記タンク出口弁を閉鎖状態又は開放制限状態にして前記高圧通路部の燃料圧力を低下させる圧力制御手段と、を備える。 The present disclosure includes a gas tank that stores gas fuel in a high-pressure state, a gas fuel injection valve that injects gas fuel supplied from the gas tank through a fuel passage, and the fuel passage that is provided to the gas fuel injection valve. A pressure regulating valve that depressurizes and adjusts the pressure of the gas fuel, and a shut-off valve that is provided on the upstream side of the pressure regulating valve in the fuel passage and in the vicinity thereof, and has a shut-off function that shuts off the flow of the gas fuel; The present invention is applied to a fuel injection system provided with a tank outlet valve provided in the vicinity of a fuel outlet of the gas tank and having a shut-off function for shutting off the flow of gas fuel. The fuel pressure in the high-pressure passage between the gas tank and the pressure regulating valve is determined in advance, and the injection stop determining means for determining that the fuel injection by the gas fuel injection valve is before stopping A pressure determination means for determining whether or not the fuel pressure is equal to or greater than a predetermined value; and the injection stop determination means determines that the time is before the injection stop, and the pressure determination means determines that the fuel pressure in the high-pressure passage is a predetermined value. When it is determined that the fuel pressure of the high-pressure passage portion is maintained, the shutoff valve is opened and the tank outlet valve is closed or open restricted while fuel injection by the gas fuel injection valve is continued. Pressure control means for reducing the pressure.
 ガス燃料の燃料供給系では、ガスタンクから流出した高圧のガス燃料が圧力調整弁で減圧調整された後、ガス燃料噴射弁に供給される。この場合、燃料通路において圧力調整弁の上流側が高圧になっている状況下では、圧力調整弁において上流側から下流側への高圧燃料の漏れが生じやすく、その燃料漏れに起因して噴射圧(ガス燃料噴射弁に供給されるガス燃料の圧力)の過上昇が生じることが考えられる。そして、こうした噴射圧の過上昇が生じると、ガス燃料噴射弁において弁体の開弁作動に影響が及ぶことが懸念され、ひいては噴射圧の過上昇により弁体が開弁位置に移動できずガス燃料を正常に噴射できなくなるかもしれない。 In the fuel supply system for gas fuel, high-pressure gas fuel that has flowed out of the gas tank is depressurized and adjusted by the pressure adjustment valve, and then supplied to the gas fuel injection valve. In this case, under the situation where the upstream side of the pressure regulating valve is at a high pressure in the fuel passage, the high pressure fuel is likely to leak from the upstream side to the downstream side in the pressure regulating valve, and the injection pressure ( It is conceivable that an excessive increase in the pressure of the gas fuel supplied to the gas fuel injection valve occurs. If such an excessive increase in the injection pressure occurs, there is a concern that the valve opening operation of the valve body will be affected in the gas fuel injection valve. As a result, the valve body cannot move to the valve opening position due to the excessive increase in the injection pressure, and the gas is not gas. It may not be possible to inject fuel normally.
 上記構成では、ガス燃料噴射弁による燃料噴射が停止される前の時点において、ガスタンクと圧力調整弁との間の高圧通路部の燃料圧力が高圧状態になっていれば、ガス燃料噴射弁による燃料噴射が継続されたまま、遮断弁を開放状態、タンク出口弁を閉鎖状態又は開放制限状態にして高圧通路部の燃料圧力が下げられる。この場合、ガス燃料の噴射停止前に高圧通路部の燃料圧力を積極的に下げておくことで、圧力調整弁での燃料漏れが生じにくくなり、また仮に燃料漏れが生じたとしても噴射圧の上昇レベルを抑えることができる。その結果、ガス燃料の噴射停止中に圧力制御弁での燃料漏れにより噴射圧が過上昇してしまい、ひいてはガス燃料の噴射再開後においてそのガス燃料の噴射に支障が生じるといった不都合を抑制できる。 In the above configuration, if the fuel pressure in the high pressure passage between the gas tank and the pressure regulating valve is in a high pressure state before the fuel injection by the gas fuel injection valve is stopped, the fuel by the gas fuel injection valve With the injection continued, the shutoff valve is opened, the tank outlet valve is closed or the opening is restricted, and the fuel pressure in the high pressure passage is lowered. In this case, the fuel pressure in the high-pressure passage is actively lowered before the gas fuel injection is stopped, so that the fuel leakage at the pressure regulating valve is less likely to occur, and even if the fuel leakage occurs, the injection pressure is reduced. The rise level can be suppressed. As a result, it is possible to suppress the inconvenience that the injection pressure is excessively increased due to fuel leakage at the pressure control valve while the injection of the gas fuel is stopped, and that the injection of the gas fuel is hindered after the injection of the gas fuel is resumed.
図1は、エンジンの燃料噴射システムの概略を示す構成図。FIG. 1 is a configuration diagram showing an outline of an engine fuel injection system. 図2は、第1噴射弁の概略構成を示す図。FIG. 2 is a diagram showing a schematic configuration of the first injection valve. 図3は、レギュレータの概略構成を示す図。FIG. 3 is a diagram illustrating a schematic configuration of a regulator. 図4は、車両において燃料噴射システムの構成要素の配置を示す概略図。FIG. 4 is a schematic diagram showing the arrangement of components of the fuel injection system in the vehicle. 図5は、第1燃料噴射制御処理を示すフローチャート。FIG. 5 is a flowchart showing a first fuel injection control process. 図6は、第2燃料噴射制御処理を示すフローチャート。FIG. 6 is a flowchart showing a second fuel injection control process. 図7は、第3燃料噴射制御処理を示すフローチャート。FIG. 7 is a flowchart showing a third fuel injection control process. 図8は、燃料噴射制御を具体的に説明するタイムチャート。FIG. 8 is a time chart for specifically explaining the fuel injection control. 図9は、燃料噴射制御を具体的に説明するタイムチャート。FIG. 9 is a time chart for specifically explaining the fuel injection control. 図10は、レギュレータ上流圧制御処理を示すフローチャート。FIG. 10 is a flowchart showing a regulator upstream pressure control process. 図11は、レギュレータ上流圧制御処理を具体的に説明するためのタイムチャート。FIG. 11 is a time chart for specifically explaining regulator upstream pressure control processing. 図12は、他の実施形態において第1燃料噴射制御処理を示すフローチャート。FIG. 12 is a flowchart showing a first fuel injection control process in another embodiment.
 以下、本開示の一実施形態を図面を参照しつつ説明する。本実施形態は、ガス燃料である圧縮天然ガス(CNG)と液体燃料であるガソリンとを燃焼用の燃料として使用する、いわゆるバイフューエルタイプの車載多気筒エンジン(多気筒内燃機関)に適用される燃料噴射システムとして具体化するものである。本システムの全体概略図を図1に示す。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. The present embodiment is applied to a so-called bi-fuel type on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) that uses compressed natural gas (CNG) as a gas fuel and gasoline as a liquid fuel as combustion fuel. It is embodied as a fuel injection system. An overall schematic diagram of this system is shown in FIG.
 図1に示すエンジン10は直列3気筒の火花点火式エンジンよりなり、その吸気ポート及び排気ポートには吸気系統11、排気系統12がそれぞれ接続されている。吸気系統11は、吸気マニホールド13と吸気管14とを有している。吸気マニホールド13は、エンジン10の吸気ポートに接続される複数(エンジン10の気筒数分)の分岐管部13aと、その上流側であって吸気管14に接続される集合部13bとを有している。吸気管14には空気量調整手段としてのスロットル弁15が設けられている。スロットル弁15は、DCモータ等のスロットルアクチュエータ15aにより開度調節される電子制御式のスロットル弁として構成され、スロットル弁15の開度(スロットル開度)は、スロットルアクチュエータ15aに内蔵されたスロットル開度センサ15bにより検出されるようになっている。 1 is an inline three-cylinder spark ignition engine, and an intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port, respectively. The intake system 11 has an intake manifold 13 and an intake pipe 14. The intake manifold 13 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 13a connected to the intake port of the engine 10, and a collective portion 13b connected to the intake pipe 14 on the upstream side. ing. The intake pipe 14 is provided with a throttle valve 15 as air amount adjusting means. The throttle valve 15 is configured as an electronically controlled throttle valve whose opening degree is adjusted by a throttle actuator 15a such as a DC motor. The opening degree of the throttle valve 15 (throttle opening degree) is a throttle opening degree built in the throttle actuator 15a. It is detected by the degree sensor 15b.
 また、排気系統12は、排気マニホールド16と排気管17とを有している。排気マニホールド16は、エンジン10の排気ポートに接続される複数(エンジン10の気筒数分)の分岐管部16aと、その下流側であって排気管17に接続される集合部16bとを有している。排気管17には、排気の成分を検出する排気センサ18と、排気を浄化する触媒19とが設けられている。排気センサ18として具体的には、排気中の酸素濃度から空燃比を検出する空燃比センサが設けられている。 Further, the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17. The exhaust manifold 16 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 16a connected to the exhaust port of the engine 10 and a collecting portion 16b connected to the exhaust pipe 17 on the downstream side. ing. The exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust. Specifically, an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust is provided as the exhaust sensor 18.
 エンジン10の各気筒には点火プラグ20が設けられている。点火プラグ20には、点火コイル等よりなる点火装置20aを通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ20の対向電極間に火花放電が発生し、気筒内(燃焼室内)に導入した燃料が着火され燃焼に供される。 A spark plug 20 is provided in each cylinder of the engine 10. A high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition device 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel introduced into the cylinder (combustion chamber) is ignited and used for combustion.
 また、本システムは、エンジン10に対して燃料を噴射供給する燃料噴射手段として、ガス燃料(CNG燃料)を噴射する第1噴射弁21と、液体燃料(ガソリン)を噴射する第2噴射弁22とを有している。これら各噴射弁21,22は、吸気系統11において吸気マニホールド13の分岐管部13aにそれぞれ燃料を噴射するものであり、第1噴射弁21の噴射によりガス燃料が各気筒の吸気ポートに供給され、第2噴射弁22の噴射により液体燃料が各気筒の吸気ポートに供給される。 Further, the present system is a fuel injection means for injecting and supplying fuel to the engine 10, a first injection valve 21 for injecting gas fuel (CNG fuel), and a second injection valve 22 for injecting liquid fuel (gasoline). And have. Each of these injection valves 21 and 22 injects fuel into the branch pipe portion 13a of the intake manifold 13 in the intake system 11, and gas fuel is supplied to the intake port of each cylinder by the injection of the first injection valve 21. The liquid fuel is supplied to the intake port of each cylinder by the injection of the second injection valve 22.
 各噴射弁21,22は、電磁駆動部が電気的に駆動されることで弁体が閉位置から開位置にリフトされる開閉タイプの制御弁であり、制御部80から入力されるオン/オフ式の開弁駆動信号によりそれぞれ開弁駆動される。これら各噴射弁21,22は、通電により開弁し、通電遮断により閉弁する。そして、通電時間に応じた量の燃料(ガス燃料、液体燃料)が各噴射弁21,22から噴射される。本実施形態では、第1噴射弁21の先端部に噴射管23が接続されており、第1噴射弁21から噴出されたガス燃料は噴射管23を介して吸気マニホールド13の分岐管部13aに噴射されるようになっている。 Each of the injection valves 21 and 22 is an open / close type control valve in which the valve body is lifted from the closed position to the open position by electrically driving the electromagnetic drive unit. Each valve is driven to open by a valve opening drive signal. These injection valves 21 and 22 are opened by energization and closed by energization interruption. An amount of fuel (gas fuel, liquid fuel) corresponding to the energization time is injected from each of the injection valves 21 and 22. In the present embodiment, the injection pipe 23 is connected to the tip of the first injection valve 21, and the gas fuel injected from the first injection valve 21 passes through the injection pipe 23 to the branch pipe portion 13 a of the intake manifold 13. It comes to be injected.
 ここで、ガス噴射用の第1噴射弁21の構成を図2を参照して説明する。図2において図2(a)は非噴射状態を示し、図2(b)は噴射状態を示している。第1噴射弁21は、自身に供給されるガス燃料の圧力により閉鎖シール性が高められるセルフシール構造を有している。 Here, the configuration of the first injection valve 21 for gas injection will be described with reference to FIG. 2A shows a non-injection state, and FIG. 2B shows an injection state. The first injection valve 21 has a self-sealing structure in which the closing sealing performance is enhanced by the pressure of the gas fuel supplied to itself.
 筒状のボディ31には弁体32が摺動可能に収容されており、そのボディ31内において弁体32がばね33により閉弁方向に付勢されている。図2(a)では、弁体32の先端部によって、噴射弁先端に設けられた噴孔部34が閉鎖されている。また、ボディ31内には、弁体32の後端側(上流側)に第1燃料室35が設けられるとともに、弁体32の先端側(下流側)に第2燃料室36が設けられている。弁体32には、摺動部分よりも先端側に小径部32aが設けられており、その小径部32aの周りに第2燃料室36が設けられている。第1燃料室35と第2燃料室36とは、弁体32に設けられた燃料通路37を介して連通されており、燃料通路37の入口側は第1燃料室35に通じ、出口側は第2燃料室36に通じている。弁体32は、ソレノイド等からなる電磁駆動部38への通電に応じて開弁位置に変位する。 A valve body 32 is slidably accommodated in the cylindrical body 31, and the valve body 32 is biased in the valve closing direction by a spring 33 in the body 31. In FIG. 2A, the nozzle hole 34 provided at the tip of the injection valve is closed by the tip of the valve body 32. In the body 31, a first fuel chamber 35 is provided on the rear end side (upstream side) of the valve body 32, and a second fuel chamber 36 is provided on the front end side (downstream side) of the valve body 32. Yes. The valve body 32 is provided with a small-diameter portion 32a on the tip side of the sliding portion, and a second fuel chamber 36 is provided around the small-diameter portion 32a. The first fuel chamber 35 and the second fuel chamber 36 are in communication with each other via a fuel passage 37 provided in the valve body 32. The inlet side of the fuel passage 37 communicates with the first fuel chamber 35, and the outlet side thereof It leads to the second fuel chamber 36. The valve body 32 is displaced to the valve opening position in response to energization to the electromagnetic drive unit 38 composed of a solenoid or the like.
 上記構成の第1噴射弁21では、第1燃料室35に対して後述のレギュレータ43からガス燃料が供給され、そのガス燃料が燃料通路37を介して第2燃料室36にも導入される。そして、図2(b)に示すように、電磁駆動部38への通電に伴いばね33の付勢力に抗して弁体32が開弁位置に変位すると、噴孔部34が開放され、ガス燃料が噴射される。 In the first injection valve 21 configured as described above, gas fuel is supplied from a regulator 43 described later to the first fuel chamber 35, and the gas fuel is also introduced into the second fuel chamber 36 through the fuel passage 37. As shown in FIG. 2B, when the valve body 32 is displaced to the valve opening position against the biasing force of the spring 33 as the electromagnetic drive unit 38 is energized, the nozzle hole 34 is opened, and the gas is discharged. Fuel is injected.
 第1噴射弁21において、弁体32にはその先端側に小径部32aが設けられていることから、閉弁状態での第1燃料室35側の受圧面積と第2燃料室36側の受圧面積とは、「第1燃料室35側の受圧面積>第2燃料室36側の受圧面積」となっている(図2(a)参照)。そのため、図2(a)に示す閉弁状態では、レギュレータ43側から供給されるガス燃料の圧力(噴射圧に相当)が、弁体32を閉弁する方向(閉弁方向)に対してはより大きく作用するようになっている。なお、図2(b)に示す開弁状態では、小径部32aの端面(図の下端面)にも噴射圧が作用するため、弁体32に作用する閉弁方向の燃料圧力と開弁方向の燃料圧力とは略同じになっている。 In the first injection valve 21, the valve body 32 is provided with a small-diameter portion 32 a on the distal end side thereof, so that the pressure receiving area on the first fuel chamber 35 side and the pressure receiving side on the second fuel chamber 36 side in the valve-closed state. The area is “pressure receiving area on the first fuel chamber 35 side> pressure receiving area on the second fuel chamber 36 side” (see FIG. 2A). Therefore, in the valve closing state shown in FIG. 2A, the pressure of the gas fuel supplied from the regulator 43 side (corresponding to the injection pressure) is in the direction in which the valve body 32 is closed (valve closing direction). It comes to act more greatly. 2B, the injection pressure also acts on the end face (the lower end face in the figure) of the small-diameter portion 32a, so that the fuel pressure in the valve closing direction acting on the valve body 32 and the valve opening direction are also applied. The fuel pressure is almost the same.
 次に、図1の説明に戻り、第1噴射弁21に対してガス燃料を供給するガス燃料供給部40の構成と、第2噴射弁22に対して液体燃料を供給する液体燃料供給部70の構成とを説明する。 Next, returning to the description of FIG. 1, the configuration of the gas fuel supply unit 40 that supplies the gas fuel to the first injection valve 21 and the liquid fuel supply unit 70 that supplies the liquid fuel to the second injection valve 22. Will be described.
 ガス燃料供給部40において、第1噴射弁21にはガス配管41を介してガスタンク42が接続されており、そのガス配管41の途中には、第1噴射弁21に供給されるガス燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ43が設けられている。レギュレータ43(より詳しくは後述する圧力調整弁60)は、ガスタンク42内に貯蔵された高圧状態(例えば最大20MPa)のガス燃料を、第1噴射弁21の噴射圧である所定の設定圧(例えば0.2~1.0MPa)に減圧調整するものであり、減圧調整後のガス燃料がガス配管41を通って第1噴射弁21に供給されるようになっている。なお、ガス配管41において、レギュレータ43よりも上流側が高圧側通路を形成する高圧配管部41a、下流側が低圧側通路を形成する低圧配管部41bとなっている。 In the gas fuel supply unit 40, a gas tank 42 is connected to the first injection valve 21 via a gas pipe 41, and the pressure of the gas fuel supplied to the first injection valve 21 is in the middle of the gas pipe 41. There is provided a regulator 43 having a pressure adjusting function for adjusting the pressure under pressure. The regulator 43 (a pressure adjusting valve 60, which will be described in more detail later) is configured to use gas fuel in a high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 42 with a predetermined set pressure (for example, an injection pressure of the first injection valve 21) The gas fuel after the pressure reduction adjustment is supplied to the first injection valve 21 through the gas pipe 41. In the gas pipe 41, the upstream side of the regulator 43 is a high-pressure pipe portion 41a that forms a high-pressure side passage, and the downstream side is a low-pressure pipe portion 41b that forms a low-pressure side passage.
 また、ガス配管41等により形成されるガス燃料通路には更に、ガスタンク42の燃料出口の付近に配置されたタンク主止弁44(タンク出口弁)と、そのタンク主止弁44よりも下流側であってレギュレータ43の燃料入口の付近に配置された遮断弁45とが設けられており、これら各弁44,45によって、ガス配管41におけるガス燃料の流通が許容及び遮断されるようになっている。タンク主止弁44及び遮断弁45はいずれも電磁式の開閉弁であり、非通電時においてガス燃料の流通が遮断され、通電時においてガス燃料の流通が許容される常閉式となっている。 Further, a gas fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 (tank outlet valve) disposed in the vicinity of the fuel outlet of the gas tank 42 and a downstream side of the tank main stop valve 44. And a shutoff valve 45 disposed in the vicinity of the fuel inlet of the regulator 43. The valves 44, 45 allow and shut off the flow of gas fuel in the gas pipe 41. Yes. Both the tank main stop valve 44 and the shut-off valve 45 are electromagnetic on-off valves, and are normally closed so that the flow of gas fuel is cut off when not energized and the flow of gas fuel is allowed when energized.
 ガス配管41において、高圧配管部41aには燃料圧力を検出する圧力センサ46と、燃料温度を検出する温度センサ47とが設けられ、低圧配管部41bには燃料圧力を検出する圧力センサ48と、燃料温度を検出する温度センサ49とが設けられている。ガスタンク42には、その内部の圧力であるタンク内圧を検出するタンク内圧センサ50が設けられている。 In the gas piping 41, a pressure sensor 46 for detecting the fuel pressure and a temperature sensor 47 for detecting the fuel temperature are provided in the high pressure piping portion 41a, and a pressure sensor 48 for detecting the fuel pressure in the low pressure piping portion 41b. A temperature sensor 49 for detecting the fuel temperature is provided. The gas tank 42 is provided with a tank internal pressure sensor 50 that detects a tank internal pressure that is an internal pressure of the gas tank 42.
 なお、遮断弁45と圧力センサ46とはレギュレータ43に一体に設けることが可能であり、本実施形態では、レギュレータ43に一体に遮断弁45と圧力センサ46とを設ける構成を採用することとしている。 The shut-off valve 45 and the pressure sensor 46 can be provided integrally with the regulator 43. In this embodiment, a configuration in which the shut-off valve 45 and the pressure sensor 46 are provided integrally with the regulator 43 is adopted. .
 レギュレータ43の具体的構成を図3を用いて説明する。レギュレータ43は、機械的に定められた設定圧に対して低圧配管部41b内の燃料圧力を調整する機械式の圧力調整装置を構成するものである。 A specific configuration of the regulator 43 will be described with reference to FIG. The regulator 43 constitutes a mechanical pressure adjusting device that adjusts the fuel pressure in the low-pressure pipe portion 41b with respect to a mechanically determined set pressure.
 図3において、レギュレータ43は、高圧配管部41aに接続される高圧通路51と、低圧配管部41bに接続される低圧通路52とを有しており、高圧通路51には遮断弁45と圧力センサ46とが設けられている。圧力センサ46は、遮断弁45よりも上流側でガス燃料の圧力を検出する。符号53は、異物除去用のフィルタである。 In FIG. 3, the regulator 43 has a high-pressure passage 51 connected to the high-pressure piping portion 41a and a low-pressure passage 52 connected to the low-pressure piping portion 41b. The high-pressure passage 51 includes a shut-off valve 45 and a pressure sensor. 46 is provided. The pressure sensor 46 detects the pressure of the gas fuel upstream of the shutoff valve 45. Reference numeral 53 is a filter for removing foreign matter.
 遮断弁45の構成は第1噴射弁21の構成と概ね同じであり、セルフシール構造を有している。その構成を簡単に説明する。遮断弁45は、ばね54により閉弁方向に付勢された弁体55を有しており、電磁駆動部56が通電されることによりばね54の付勢力に抗して弁体55が閉弁位置から開弁位置に変位するようになっている。弁体55の後端側(上流側)には第1燃料室57が設けられるとともに、弁体55の先端側(小径部が設けられた下流側)には第2燃料室58が設けられている。これら両燃料室57,58は、弁体55に設けられた燃料通路59を介して連通されている。この場合、両燃料室57,58にはガスタンク42から高圧のガス燃料が供給され、遮断弁45の閉鎖状態下ではガスタンク42側の燃料圧力により弁体55に閉鎖方向の力が付与されている。そして、電磁駆動部56への通電に伴いばね54の付勢力に抗して弁体55が開弁位置に変位すると(図示の状態)、高圧のガス燃料が下流側に流通する。 The configuration of the shut-off valve 45 is substantially the same as the configuration of the first injection valve 21 and has a self-sealing structure. The configuration will be briefly described. The shut-off valve 45 has a valve body 55 biased in the valve closing direction by a spring 54, and the valve body 55 is closed against the biasing force of the spring 54 by energizing the electromagnetic drive unit 56. The valve is displaced from the position to the valve opening position. A first fuel chamber 57 is provided on the rear end side (upstream side) of the valve body 55, and a second fuel chamber 58 is provided on the distal end side (downstream side where the small diameter portion is provided) of the valve body 55. Yes. Both the fuel chambers 57 and 58 are communicated with each other through a fuel passage 59 provided in the valve body 55. In this case, high-pressure gas fuel is supplied to both the fuel chambers 57 and 58 from the gas tank 42, and in the closed state of the shutoff valve 45, a closing force is applied to the valve body 55 by the fuel pressure on the gas tank 42 side. . When the valve element 55 is displaced to the valve open position against the biasing force of the spring 54 with the energization of the electromagnetic drive unit 56 (as shown), high-pressure gas fuel flows downstream.
 レギュレータ43において、遮断弁45の下流側には圧力調整弁60が設けられている。圧力調整弁60の構成として、高圧通路51には弁体室61が設けられており、その弁体室61には弁体62が収容されている。弁体62は低圧通路52の入口部分である弁座部63を開閉する開閉部材であり、弁体62が開位置にあれば、弁座部63が開かれて高圧通路51と低圧通路52とが連通される。また、弁体62が閉位置にあれば、弁座部63が閉じられて高圧通路51と低圧通路52との連通が遮断される。 In the regulator 43, a pressure regulating valve 60 is provided on the downstream side of the shutoff valve 45. As a configuration of the pressure regulating valve 60, a valve body chamber 61 is provided in the high pressure passage 51, and a valve body 62 is accommodated in the valve body chamber 61. The valve body 62 is an opening / closing member that opens and closes the valve seat portion 63 that is an inlet portion of the low pressure passage 52. If the valve body 62 is in the open position, the valve seat portion 63 is opened and the high pressure passage 51, the low pressure passage 52, Is communicated. If the valve body 62 is in the closed position, the valve seat 63 is closed and the communication between the high pressure passage 51 and the low pressure passage 52 is blocked.
 弁体62は、低圧通路52内の燃料圧力(噴射圧に相当)と、弁体作動部65により生じる開弁方向の力とに応じて開閉される。弁体作動部65は、大気に開放された空間であってその内部に調整ばね66が設けられた大気開放部67を有するとともに、大気開放部67と低圧通路52とを仕切る仕切部材としてのダイアフラム68を有している。ダイアフラム68は弁体62に一体に設けられている。ダイアフラム68には、閉弁方向の力として低圧通路52内の燃料圧力が作用し、開弁方向の力として調整ばね66の付勢力と大気圧とが作用する。 The valve body 62 is opened and closed according to the fuel pressure (corresponding to the injection pressure) in the low-pressure passage 52 and the force in the valve opening direction generated by the valve body operating portion 65. The valve element actuating portion 65 is a space that is open to the atmosphere, and has an air opening portion 67 in which an adjustment spring 66 is provided, and a diaphragm as a partition member that partitions the air release portion 67 and the low-pressure passage 52. 68. The diaphragm 68 is provided integrally with the valve body 62. Fuel pressure in the low pressure passage 52 acts on the diaphragm 68 as a force in the valve closing direction, and an urging force of the adjustment spring 66 and atmospheric pressure act as a force in the valve opening direction.
 かかる構成において、「閉弁方向の力>開弁方向の力」になっていれば、弁体62が閉弁位置で保持される。一方、第1噴射弁21の燃料噴射等により低圧通路52内の燃料圧力が低下し、「閉弁方向の力<開弁方向の力」になると、ダイアフラム68の変位に伴い弁体62が開弁される。このとき、閉弁方向の力と開弁方向の力との差に応じて弁体62の開位置(弁体リフト量)が決まり、その開位置に応じて弁座部63における開口面積が変更され、ひいては高圧通路51から低圧通路52に流入する燃料量が調整される。 In such a configuration, if “force in the valve closing direction> force in the valve opening direction” is satisfied, the valve body 62 is held in the valve closing position. On the other hand, when the fuel pressure in the low pressure passage 52 decreases due to fuel injection or the like of the first injection valve 21 and becomes “force in the valve closing direction <force in the valve opening direction”, the valve element 62 opens with the displacement of the diaphragm 68. To be spoken. At this time, the opening position (valve lift amount) of the valve body 62 is determined according to the difference between the force in the valve closing direction and the force in the valve opening direction, and the opening area of the valve seat 63 is changed according to the opening position. As a result, the amount of fuel flowing from the high pressure passage 51 into the low pressure passage 52 is adjusted.
 低圧通路52から分岐した分岐部52aには、低圧通路52内の燃料圧力が異常高圧になった場合にガス抜きをするリリーフ弁69が設けられている。 A relief valve 69 that vents gas when the fuel pressure in the low pressure passage 52 becomes abnormally high is provided in the branch portion 52a branched from the low pressure passage 52.
 本実施形態では、レギュレータ43において、弁体62や弁体作動部65といった構成部品からなる圧力調整弁60により圧力調整手段が構成されている。図3の構成では、レギュレータ43において遮断弁45と圧力センサ46と圧力調整弁60とを一体に設けたが、遮断弁45と圧力センサ46とをレギュレータ43とは別体として高圧配管部41aに設けることも可能である。 In the present embodiment, in the regulator 43, the pressure adjusting means is constituted by the pressure adjusting valve 60 made up of components such as the valve body 62 and the valve body operating portion 65. In the configuration of FIG. 3, the shut-off valve 45, the pressure sensor 46, and the pressure adjustment valve 60 are integrally provided in the regulator 43. However, the shut-off valve 45 and the pressure sensor 46 are separated from the regulator 43 in the high-pressure piping 41 a. It is also possible to provide it.
 図1の説明に戻り、液体燃料供給部70において、第2噴射弁22には、燃料配管71を介して燃料タンク72が接続されている。また、燃料配管71には、燃料タンク72内の液体燃料を第2噴射弁22に給送する燃料ポンプ73が設けられている。 1, in the liquid fuel supply unit 70, a fuel tank 72 is connected to the second injection valve 22 via a fuel pipe 71. The fuel pipe 71 is provided with a fuel pump 73 that feeds the liquid fuel in the fuel tank 72 to the second injection valve 22.
 制御部80は、CPU81と、ROM82と、RAM83と、バックアップRAM84と、インターフェース85と、双方向バス86とを備えている。CPU81、ROM82、RAM83、バックアップRAM84、及びインターフェース85は、双方向バス86によって互いに接続されている。 The control unit 80 includes a CPU 81, a ROM 82, a RAM 83, a backup RAM 84, an interface 85, and a bidirectional bus 86. The CPU 81, ROM 82, RAM 83, backup RAM 84, and interface 85 are connected to each other by a bidirectional bus 86.
 CPU81は、本システムにおける各部の動作を制御するためのルーチン(プログラム)を実行する。ROM82には、CPU81が実行するルーチン、及びこのルーチン実行の際に参照されるマップ類(マップの他、テーブルや関係式等を含む)、パラメータ、等の各種データが予め格納されている。RAM83は、CPU81がルーチンを実行する際に、必要に応じてデータを一時的に格納する。バックアップRAM84は、電源が投入された状態でCPU81の制御下でデータを適宜格納するとともに、この格納されたデータを電源遮断後も保持する。 The CPU 81 executes a routine (program) for controlling the operation of each unit in the system. The ROM 82 stores in advance various data such as a routine executed by the CPU 81, maps (including tables, relational expressions, and the like), parameters, and the like referred to when the routine is executed. The RAM 83 temporarily stores data as necessary when the CPU 81 executes a routine. The backup RAM 84 appropriately stores data under the control of the CPU 81 in a state where the power is turned on, and retains the stored data even after the power is shut off.
 インターフェース85は、上述したスロットル開度センサ15b、排気センサ18、圧力センサ46,48、温度センサ47,49、タンク内圧センサ50を含む、本システムに設けられたセンサ(クランク角センサ、エアフロメータ、冷却水温センサ、車速センサ等)と電気的に接続されており、これらのセンサからの出力(検出信号)をCPU81に伝達する。また、インターフェース85は、スロットルアクチュエータ15a、点火装置20a、各噴射弁21,22、タンク主止弁44、遮断弁45等の駆動部と電気的に接続されていて、これらの駆動部を駆動させるためにCPU81から送出された駆動信号を当該駆動部に向けて出力する。すなわち、制御部80は、上述のセンサ類の出力信号等に基づいて運転状態を取得し、この運転状態に基づいて上述の駆動部の制御を実施する。 The interface 85 includes sensors (crank angle sensor, air flow meter, air flow meter, etc.) provided in the present system, including the throttle opening sensor 15b, the exhaust sensor 18, the pressure sensors 46, 48, the temperature sensors 47, 49, and the tank internal pressure sensor 50 described above. A cooling water temperature sensor, a vehicle speed sensor, etc.) are electrically connected, and outputs (detection signals) from these sensors are transmitted to the CPU 81. The interface 85 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20a, the injection valves 21 and 22, the tank main stop valve 44, the shutoff valve 45, and the like, and drives these driving units. Therefore, the drive signal sent from the CPU 81 is output toward the drive unit. That is, the control unit 80 acquires an operation state based on the output signals of the above-described sensors, and performs the above-described drive unit control based on the operation state.
 図4は、車両”C”において燃料噴射システムの構成要素の配置を示す概略図である。図4に示すように、車両”C”には、車両前部にエンジン10が配置され、そのエンジン近辺にレギュレータ43及び遮断弁45が設けられている。エンジン10には第1噴射弁21が設けられている。一方、車両後部には、ガスタンク42が配置され、その出口部分にタンク主止弁44が設けられている。そして、車両前後方向に延びるようにしてガス配管41が設けられている。 FIG. 4 is a schematic diagram showing the arrangement of components of the fuel injection system in the vehicle “C”. As shown in FIG. 4, the vehicle “C” has an engine 10 disposed in the front portion of the vehicle, and a regulator 43 and a shut-off valve 45 are provided in the vicinity of the engine. The engine 10 is provided with a first injection valve 21. On the other hand, a gas tank 42 is disposed at the rear of the vehicle, and a tank main stop valve 44 is provided at the outlet thereof. And the gas piping 41 is provided so that it may extend in the vehicle front-back direction.
 ところで、レギュレータ上流圧(圧力調整弁60の上流側圧力)が高圧になっている状況下では、圧力調整弁60において上流側から下流側への高圧燃料の漏れが生じやすく、その燃料漏れに起因して噴射圧の過上昇が生じることが考えられる。そして、こうした噴射圧の過上昇が生じると、第1噴射弁21において弁体32の開弁作動に影響が及ぶことが懸念され、ひいては噴射圧の過上昇により弁体32が開弁位置に移動できずガス燃料を正常に噴射できなくなるおそれが生じる。具体的には、第1噴射弁21は、上記のとおりセルフシール構造を有しており、レギュレータ下流側の燃料圧力(噴射圧)が弁体32を閉弁させる向きに作用している。そのため、噴射圧が高いほど、開弁しづらくなるようになっている。 By the way, under the situation where the regulator upstream pressure (upstream pressure of the pressure regulating valve 60) is high, the pressure regulating valve 60 is likely to leak high pressure fuel from the upstream side to the downstream side. Therefore, it is considered that the injection pressure is excessively increased. When such an excessive increase in the injection pressure occurs, there is a concern that the valve opening operation of the valve body 32 may be affected in the first injection valve 21, and as a result, the valve body 32 moves to the valve opening position due to the excessive increase in the injection pressure. There is a risk that the gas fuel cannot be injected normally. Specifically, the first injection valve 21 has a self-sealing structure as described above, and the fuel pressure (injection pressure) on the downstream side of the regulator acts in the direction in which the valve body 32 is closed. Therefore, the higher the injection pressure, the harder it is to open the valve.
 そこで本実施形態では、制御部80において、第1噴射弁21による燃料噴射が停止される前の時点であることを判定するとともに、レギュレータ上流圧があらかじめ定めた所定値以上であるか否かを判定し、噴射停止の前の時点であり、かつレギュレータ上流圧が所定値以上であると判定された場合に、第1噴射弁21による燃料噴射を継続したまま、遮断弁45を開放状態、タンク主止弁44を閉鎖状態にしてレギュレータ上流圧を低下させるようにしている(噴射停止判定手段、圧力判定手段、圧力制御手段)。 Therefore, in the present embodiment, the control unit 80 determines that it is a time before the fuel injection by the first injection valve 21 is stopped, and determines whether the regulator upstream pressure is equal to or higher than a predetermined value. When it is determined that it is a time before the stop of the injection and the regulator upstream pressure is equal to or higher than a predetermined value, the shutoff valve 45 is opened while the fuel injection by the first injection valve 21 is continued. The main stop valve 44 is closed to reduce the regulator upstream pressure (injection stop determination means, pressure determination means, pressure control means).
 また本実施形態では、第1噴射弁21によるガス燃料の噴射中においてその燃料噴射が停止される前の時点であること(換言すれば、燃料噴射が停止される可能性が高いこと)を判定する手段として、以下の(1)~(3)を想定している。
(1)ガス燃料から液体燃料への切替要求が生じたことに基づいてガス燃料の噴射停止の前の時点であると判定する。
(2)所定の低負荷状態にあると判定されたことに基づいてガス燃料の噴射停止の前の時点であると判定する。
(3)エンジン停止要求が生じたことに基づいてガス燃料の噴射停止の前の時点であると判定する。なおこれは、ガス燃料の噴射中にエンジン停止要求が生じたのであれば、ガス燃料の噴射停止要求が生じたことに相当する。
Further, in this embodiment, it is determined that the fuel injection is stopped before the fuel injection is stopped by the first injection valve 21 (in other words, the fuel injection is likely to be stopped). The following (1) to (3) are assumed as means for performing this.
(1) Based on the request for switching from gas fuel to liquid fuel, it is determined that the time is before the stop of injection of gas fuel.
(2) Based on the determination that the vehicle is in a predetermined low load state, it is determined that the time is before the stop of the injection of gas fuel.
(3) Based on the request for stopping the engine, it is determined that the time is before the stop of gas fuel injection. In addition, if the engine stop request | requirement has arisen during the injection of gas fuel, it is equivalent to the injection stop request | requirement of gas fuel having arisen.
 以下、上記(1)~(3)の各場合における燃料噴射制御処理を、図5~図7のフローチャートを参照しながら説明する。図5は、上記(1)の場合における燃料噴射制御処理を示すフローチャートであり、図6は、上記(2)の場合における燃料噴射制御処理を示すフローチャートであり、図7は、上記(3)の場合における燃料噴射制御処理を示すフローチャートである。これら各処理は、制御部80のCPU81により所定周期で繰り返し実施される。なお、図5の処理を第1燃料噴射制御処理、図6の処理を第2燃料噴射制御処理、図7の処理を第3燃料噴射制御処理と呼ぶ。 Hereinafter, the fuel injection control process in each of the cases (1) to (3) will be described with reference to the flowcharts of FIGS. FIG. 5 is a flowchart showing the fuel injection control process in the case (1), FIG. 6 is a flowchart showing the fuel injection control process in the case (2), and FIG. 7 is the above (3). 6 is a flowchart showing a fuel injection control process in the case of FIG. Each of these processes is repeatedly performed by the CPU 81 of the control unit 80 at a predetermined cycle. The process of FIG. 5 is called a first fuel injection control process, the process of FIG. 6 is called a second fuel injection control process, and the process of FIG. 7 is called a third fuel injection control process.
 図5に示す第1燃料噴射制御処理において、ステップS11では、ガス燃料から液体燃料への切替要求が生じているか否かにより、ガス燃料の噴射停止の前の時点であるか否かを判定する。このとき、ガス燃料から液体燃料への切替は、例えばエンジン運転状態や燃料残量等に基づいて行われるとよい。そして、切替要求が生じていなければそのまま本処理を終了する。 In the first fuel injection control process shown in FIG. 5, in step S11, it is determined whether or not it is a time point before the stop of the injection of the gas fuel depending on whether or not a request for switching from the gas fuel to the liquid fuel is generated. . At this time, the switching from the gas fuel to the liquid fuel may be performed based on, for example, the engine operating state or the remaining amount of fuel. If no switching request is generated, the process is terminated.
 また、切替要求が生じていればステップS12に進み、タンク主止弁44を閉弁させる閉指令を出力する。その後、ステップS13では、レギュレータ上流圧が所定の判定値K1以上であるか否かを判定する。レギュレータ上流圧は、圧力センサ46の検出値により算出される。又は、レギュレータ上流圧は、タンク内圧センサ50の検出値により算出されるとよい。なお、ステップS11がYESになった当初は、ステップS13の判定がタンク主止弁44の閉弁直後(又は閉弁時)に行われるため、タンク内圧センサ50の検出値によりレギュレータ上流圧の算出が可能となっている。判定値K1は、レギュレータ上流圧が、遮断弁45の開弁動作に影響を及ぼす程度に高圧になっているか否かを判定するためのしきい値であり、例えば10MPaである。 If a switching request is generated, the process proceeds to step S12, and a close command for closing the tank main stop valve 44 is output. Thereafter, in step S13, it is determined whether or not the regulator upstream pressure is equal to or higher than a predetermined determination value K1. The regulator upstream pressure is calculated from the detection value of the pressure sensor 46. Alternatively, the regulator upstream pressure may be calculated from the detection value of the tank internal pressure sensor 50. Since the determination in step S13 is made immediately after the main tank stop valve 44 is closed (or when the tank is closed) when step S11 becomes YES, the regulator upstream pressure is calculated from the detected value of the tank internal pressure sensor 50. Is possible. The determination value K1 is a threshold value for determining whether the regulator upstream pressure is high enough to affect the valve opening operation of the shutoff valve 45, and is, for example, 10 MPa.
 そして、レギュレータ上流圧が判定値K1未満であれば、ステップS14に進み、遮断弁45を閉弁させる閉指令を出力する。続くステップS15では、第1噴射弁21によるガス燃料の噴射を停止させる。そしてその後、本処理を終了する。 If the regulator upstream pressure is less than the determination value K1, the process proceeds to step S14, and a close command for closing the shutoff valve 45 is output. In the subsequent step S15, the injection of gas fuel by the first injection valve 21 is stopped. Thereafter, this process is terminated.
 また、レギュレータ上流圧が判定値K1以上であれば、直ぐには遮断弁45の閉鎖と液体燃料への切替とは行わず、以下のステップS16~S18の各処理を実施する。 Further, if the regulator upstream pressure is equal to or higher than the judgment value K1, the shutoff valve 45 is not immediately closed and the switching to the liquid fuel is not performed, and the following steps S16 to S18 are performed.
 すなわち、ステップS16では、空燃比フィードバック制御における空燃比学習値の更新を禁止する。空燃比フィードバック制御と空燃比学習とについて簡単に説明する。制御部80では、排気センサ18により検出された実空燃比と、目標空燃比(例えば理論空燃比)との偏差を算出するとともに、その偏差に基づいて空燃比フィードバック補正値を算出する。そして、空燃比フィードバック補正値によりガス燃料の噴射量を補正する。また、空燃比フィードバック補正値に基づいて空燃比学習値を算出し、その学習値をバックアップRAM84(又はEEPROM)に記憶する。このとき、空燃比学習値の前回値が今回値により更新される。ステップS16では、こうした空燃比学習値の更新を禁止する。 That is, in step S16, the update of the air-fuel ratio learning value in the air-fuel ratio feedback control is prohibited. Air-fuel ratio feedback control and air-fuel ratio learning will be briefly described. The controller 80 calculates a deviation between the actual air-fuel ratio detected by the exhaust sensor 18 and a target air-fuel ratio (for example, the theoretical air-fuel ratio), and calculates an air-fuel ratio feedback correction value based on the deviation. Then, the injection amount of the gas fuel is corrected by the air-fuel ratio feedback correction value. Further, an air-fuel ratio learning value is calculated based on the air-fuel ratio feedback correction value, and the learned value is stored in the backup RAM 84 (or EEPROM). At this time, the previous value of the air-fuel ratio learning value is updated with the current value. In step S16, such update of the air-fuel ratio learning value is prohibited.
 ステップS17では、ガス燃料供給系統の異常判定を禁止する。ガス燃料供給系統の異常判定について簡単に説明する。制御部80では、ガス燃料の噴射中においてレギュレータ上流圧に応じてガス配管41(高圧配管部41a)の異常を判定する。ただしこの場合、ガス燃料を噴射している状況下において、タンク主止弁44が開弁状態であるか閉弁状態であるかによっては、ガス配管41内の燃料圧力の大きさや変化の挙動が相違する。そのため、ガス燃料の噴射中なのにタンク主止弁44を閉鎖していると、誤判定のおそれが生じる。また、ガス燃料の噴射状態においては、エンジン10の運転負荷に応じて噴射圧の大きさが変動し、燃料噴射量が比較的少ないアイドル等の低負荷では噴射圧が高めになり、燃料噴射量が比較的多い高負荷では噴射圧が低めになる。制御部80では、負荷領域ごと噴射圧の正常範囲を定めておき、噴射圧がその正常範囲に入っているか否かにより圧力調整弁60の異常判定を実施する。ただしこの場合、ガス燃料の噴射中なのにタンク主止弁44を閉鎖していると、誤判定のおそれが生じる。ステップS17では、こうした異常判定を禁止する。又は、異常判定で用いる異常判定値を変更することで異常判定に制限を加えるようにしてもよい。 In step S17, abnormality determination of the gas fuel supply system is prohibited. The abnormality determination of the gas fuel supply system will be briefly described. The control unit 80 determines abnormality of the gas piping 41 (high pressure piping portion 41a) according to the regulator upstream pressure during the injection of gas fuel. However, in this case, under the situation where gas fuel is being injected, depending on whether the tank main stop valve 44 is open or closed, the magnitude of the fuel pressure in the gas pipe 41 and the behavior of the change may vary. Is different. Therefore, if the tank main stop valve 44 is closed while the gas fuel is being injected, there is a risk of erroneous determination. Further, in the gas fuel injection state, the magnitude of the injection pressure fluctuates according to the operating load of the engine 10, and the injection pressure becomes higher at low loads such as an idle with a relatively small fuel injection amount. The injection pressure becomes lower at a high load with a relatively large amount. In the control unit 80, a normal range of the injection pressure is determined for each load region, and abnormality determination of the pressure adjustment valve 60 is performed depending on whether or not the injection pressure is within the normal range. However, in this case, if the tank main stop valve 44 is closed while the gas fuel is being injected, there is a risk of erroneous determination. In step S17, such abnormality determination is prohibited. Alternatively, the abnormality determination may be limited by changing the abnormality determination value used in the abnormality determination.
 また、ステップS18では、ガスタンク42における燃料残量の推定を禁止する。燃料残量の推定処理について簡単に説明する。ガスタンク42の燃料残量とタンク内圧とには相関がある。そこで、ガスタンク42の燃料残量とタンク内圧との関係をあらかじめ求めておき、制御部80は、タンク内圧センサ50の検出値からタンク内圧を算出し、そのタンク内圧に基づいて燃料残量を推定する。又は、タンク主止弁44を開弁した状態ではタンク内圧とレギュレータ上流圧とは略同じであるため、制御部80は、圧力センサ46の検出値からタンク内圧を算出し、そのタンク内圧に基づいて燃料残量を推定する。ステップS18では、こうした燃料残量の推定を禁止する。 In step S18, the estimation of the remaining amount of fuel in the gas tank 42 is prohibited. The fuel remaining amount estimation process will be briefly described. There is a correlation between the remaining amount of fuel in the gas tank 42 and the tank internal pressure. Therefore, the relationship between the fuel remaining amount in the gas tank 42 and the tank internal pressure is obtained in advance, and the control unit 80 calculates the tank internal pressure from the detection value of the tank internal pressure sensor 50 and estimates the fuel remaining amount based on the tank internal pressure. To do. Alternatively, since the tank internal pressure and the regulator upstream pressure are substantially the same in a state where the tank main stop valve 44 is opened, the control unit 80 calculates the tank internal pressure from the detection value of the pressure sensor 46 and based on the tank internal pressure. To estimate the remaining fuel. In step S18, such estimation of the remaining amount of fuel is prohibited.
 また、図6に示す第2燃料噴射制御処理において、ステップS21では、レギュレータ上流圧が所定の判定値K1以上であるか否かを判定し(図5のステップS13と同様)、ステップS22では、今現在、アイドル運転中であるか否かにより、ガス燃料の噴射停止の前の時点であるか否かを判定する。そして、レギュレータ上流圧が判定値K1未満であるか、又はアイドル運転中でなければ、ステップS23に進み、タンク主止弁44を開弁させる開指令を出力する。なお、タンク主止弁44が既に開状態になっていればその開状態が維持される。 In the second fuel injection control process shown in FIG. 6, in step S21, it is determined whether the regulator upstream pressure is equal to or higher than a predetermined determination value K1 (similar to step S13 in FIG. 5). In step S22, It is determined whether or not it is a time point before the stop of the injection of the gas fuel depending on whether or not the engine is idling. If the regulator upstream pressure is less than the determination value K1 or not during idling, the process proceeds to step S23, and an opening command for opening the tank main stop valve 44 is output. If the tank main stop valve 44 has already been opened, the opened state is maintained.
 また、レギュレータ上流圧が判定値K1以上であり、かつアイドル運転中であれば、ステップS24に進み、タンク主止弁44を閉弁させる閉指令を出力する。その後、ステップS25~S27において、空燃比フィードバック制御において空燃比学習値の更新を禁止する処理、ガス燃料供給系統の異常判定を禁止する処理、ガスタンク42における燃料残量の推定を禁止する処理、を各々実施する(図5のステップS16~S18と同様)。 Further, if the regulator upstream pressure is equal to or higher than the determination value K1 and the engine is idling, the process proceeds to step S24, and a close command for closing the tank main stop valve 44 is output. Thereafter, in steps S25 to S27, processing for prohibiting update of the air-fuel ratio learning value in air-fuel ratio feedback control, processing for prohibiting determination of abnormality in the gas fuel supply system, and processing for prohibiting estimation of the remaining amount of fuel in the gas tank 42 are performed. Each is carried out (similar to steps S16 to S18 in FIG. 5).
 図7に示す第3燃料噴射制御処理において、ステップS31では、エンジン10の停止要求が生じているか否かにより、ガス燃料の噴射停止の前の時点であるか否かを判定する。このとき、例えばイグニッションスイッチがオフに操作されると、エンジン停止要求が生じていると判定する。そして、エンジン停止要求が生じていなければステップS32に進み、タンク主止弁44を開弁させる開指令を出力する。なお、タンク主止弁44が既に開状態になっていればその開状態が維持される。 In the third fuel injection control process shown in FIG. 7, in step S31, it is determined whether or not it is a time point before the stop of the injection of gas fuel, depending on whether or not a stop request for the engine 10 is generated. At this time, for example, when the ignition switch is turned off, it is determined that an engine stop request is generated. If no engine stop request is generated, the process proceeds to step S32, and an opening command for opening the tank main stop valve 44 is output. If the tank main stop valve 44 has already been opened, the opened state is maintained.
 また、エンジン停止要求が生じていればステップS33に進み、タンク主止弁44を閉弁させる閉指令を出力する。その後、ステップS34では、レギュレータ上流圧が所定の判定値K1以上であるか否かを判定する(図5のステップS13と同様)。そして、レギュレータ上流圧が判定値K1未満であれば、ステップS35に進み、遮断弁45を閉弁させる閉指令を出力する。続くステップS36では、第1噴射弁21によるガス燃料の噴射を停止させる。そしてその後、本処理を終了する。 If an engine stop request is generated, the process proceeds to step S33, and a close command for closing the tank main stop valve 44 is output. Thereafter, in step S34, it is determined whether or not the regulator upstream pressure is equal to or higher than a predetermined determination value K1 (similar to step S13 in FIG. 5). If the regulator upstream pressure is less than the determination value K1, the process proceeds to step S35, and a close command for closing the shutoff valve 45 is output. In the subsequent step S36, the injection of gas fuel by the first injection valve 21 is stopped. Thereafter, this process is terminated.
 また、レギュレータ上流圧が判定値K1以上であれば、ステップS37~S39において、空燃比フィードバック制御において空燃比学習値の更新を禁止する処理、ガス燃料供給系統の異常判定を禁止する処理、ガスタンク42における燃料残量の推定を禁止する処理、を各々実施する(図5のステップS16~S18と同様)。 If the regulator upstream pressure is equal to or higher than the determination value K1, in steps S37 to S39, processing for prohibiting update of the air-fuel ratio learning value in air-fuel ratio feedback control, processing for prohibiting abnormality determination of the gas fuel supply system, and gas tank 42 are performed. The process for prohibiting the estimation of the remaining amount of fuel is performed (similar to steps S16 to S18 in FIG. 5).
 その後、ステップS40では、第1噴射弁21によるガス燃料の噴射を継続させる。そしてその後、本処理を終了する。 Thereafter, in step S40, the injection of gas fuel by the first injection valve 21 is continued. Thereafter, this process is terminated.
 次いで、燃料噴射制御の作用についてより具体的に説明する。図8は、ガス燃料から液体燃料への切替要求が生じる場合の作用を説明するためのタイムチャートであり、これは図5で説明した第1燃料噴射制御処理に対応するものである。図8において、タイミングt1以前は、ガス燃料による燃料噴射が行われている状態であり、タンク主止弁44及び遮断弁45が共に開弁状態となっている。 Next, the operation of the fuel injection control will be described more specifically. FIG. 8 is a time chart for explaining the operation when a request to switch from gas fuel to liquid fuel is generated, and this corresponds to the first fuel injection control process described in FIG. In FIG. 8, before the timing t1, the fuel is injected with the gas fuel, and both the tank main stop valve 44 and the shutoff valve 45 are in the open state.
 さて、タイミングt1では、ガス燃料から液体燃料への切替要求が生じている。本例では、タイミングt1において、タンク内圧とレギュレータ上流圧とは同じ圧力であり、共に判定値K1以上であるとしている。そして、このタイミングt1で、遮断弁45の開弁と、第1噴射弁21によるガス燃料の噴射とが継続された状態のまま、タンク主止弁44が閉鎖される。これにより、タンク内圧が高圧で維持されたまま、レギュレータ上流圧が低下し始める。 Now, at timing t1, a request for switching from gas fuel to liquid fuel is generated. In this example, at the timing t1, the tank internal pressure and the regulator upstream pressure are the same pressure, and are both equal to or higher than the determination value K1. Then, at this timing t1, the tank main stop valve 44 is closed while the shut-off valve 45 and the gas fuel injection by the first injection valve 21 are continued. As a result, the regulator upstream pressure starts to decrease while the tank internal pressure is maintained at a high level.
 その後、タイミングt2では、レギュレータ上流圧が判定値K1まで低下し、それに伴い遮断弁45が閉弁される。これに加え、第1噴射弁21によるガス燃料の噴射が停止されるとともに、第2噴射弁22による液体燃料の噴射が開始される。タイミングt2以降、レギュレータ上流圧は判定値K1付近でほぼ一定値で保持される。この場合、仮に圧力調整弁60において弁体シート部(弁座部63)を介して高圧側のガス燃料の低圧側に漏れ出たとしても、噴射圧(第1噴射弁21への供給ガス圧)の過剰な上昇が生じることを抑制できる。したがって、その後のガス燃料の噴射再開に際し、噴射圧が高すぎることで第1噴射弁21の燃料噴射が実施困難になるといった不都合を抑制できる。 Thereafter, at timing t2, the regulator upstream pressure decreases to the determination value K1, and the shutoff valve 45 is closed accordingly. In addition, the injection of gas fuel by the first injection valve 21 is stopped and the injection of liquid fuel by the second injection valve 22 is started. After timing t2, the regulator upstream pressure is held at a substantially constant value in the vicinity of the determination value K1. In this case, even if the pressure regulating valve 60 leaks to the low pressure side of the high pressure gas fuel via the valve body seat portion (valve seat portion 63), the injection pressure (supply gas pressure to the first injection valve 21). ) Can be prevented from occurring. Therefore, when restarting the subsequent injection of the gas fuel, it is possible to suppress the inconvenience that it becomes difficult to perform the fuel injection of the first injection valve 21 due to the injection pressure being too high.
 図9は、エンジン運転状態がアイドル状態(低負荷状態)になった場合の作用を説明するためのタイムチャートであり、これは図6で説明した第2燃料噴射制御処理に対応するものである。なお、エンジン10がアイドル状態となるタイミングt11の直前においては、例えばアクセル踏み込み量が低減されることに伴い、エンジン負荷率が減少している。図9において、タイミングt11以前は、ガス燃料による燃料噴射が行われている状態であり、タンク主止弁44及び遮断弁45が共に開弁状態となっている。 FIG. 9 is a time chart for explaining the operation when the engine operating state becomes an idle state (low load state), and this corresponds to the second fuel injection control process described in FIG. . Note that immediately before the timing t11 at which the engine 10 is in the idle state, for example, the engine load factor is reduced as the accelerator depression amount is reduced. In FIG. 9, before the timing t11, the fuel injection by the gas fuel is being performed, and the tank main stop valve 44 and the shutoff valve 45 are both opened.
 さて、タイミングt11では、アイドルフラグがセットされる。本例では、タイミングt11において、タンク内圧とレギュレータ上流圧とは同じ圧力であり、共に判定値K1以上であるとしている。そして、このタイミングt11では、遮断弁45が開弁された状態と、第1噴射弁21によるガス燃料の噴射が実施された状態とが継続されたまま、タンク主止弁44が閉鎖される。これにより、タンク内圧が高圧で維持されたまま、レギュレータ上流圧が低下し始める。 Now, at timing t11, an idle flag is set. In this example, at the timing t11, the tank internal pressure and the regulator upstream pressure are the same pressure, and are both equal to or higher than the determination value K1. At the timing t11, the tank main stop valve 44 is closed while the state in which the shutoff valve 45 is opened and the state in which the gas fuel is injected by the first injection valve 21 are continued. As a result, the regulator upstream pressure starts to decrease while the tank internal pressure is maintained at a high level.
 その後、タイミングt12では、レギュレータ上流圧が判定値K1まで低下し、それに伴いタンク主止弁44が開弁される。これにより、レギュレータ上流圧が上昇し、タイミングt13でレギュレータ上流圧が、「K1+α」で設定された判定値K2に達すると、再びタンク主止弁44が閉弁される。そして、レギュレータ上流圧が再び低下する。なお、上述した図6の燃料噴射制御処理における判定値K2は、ステップS21の判定処理においてヒステリシスを持たせたことを意味する。タンク主止弁44が閉弁された状態でレギュレータ上流圧がK1まで低下し、さらにタンク主止弁44の開弁により圧力上昇した後は、レギュレータ上流圧がK1よりも高圧側のK2に達することでタンク主止弁44が再び閉弁されるようになっている。 After that, at timing t12, the regulator upstream pressure decreases to the determination value K1, and the tank main stop valve 44 is opened accordingly. As a result, the regulator upstream pressure rises, and when the regulator upstream pressure reaches the determination value K2 set by “K1 + α” at the timing t13, the tank main stop valve 44 is closed again. Then, the regulator upstream pressure decreases again. Note that the determination value K2 in the fuel injection control process of FIG. 6 described above means that hysteresis is provided in the determination process of step S21. After the tank main stop valve 44 is closed, the regulator upstream pressure decreases to K1, and after the tank main stop valve 44 is opened, the regulator upstream pressure reaches K2 on the higher pressure side than K1. Thus, the tank main stop valve 44 is closed again.
 その後、タイミングt14で、イグニッションスイッチのオフ操作等によりエンジン停止要求が生じると、遮断弁45が閉弁されるとともに、第1噴射弁21によるガス燃料の噴射が停止される。タイミングt14以降、レギュレータ上流圧は判定値K1~K2の間の圧力で維持される。この場合、仮に圧力調整弁60において弁体シート部(弁座部63)を介して高圧側のガス燃料の低圧側に漏れ出たとしても、噴射圧(第1噴射弁21への供給ガス圧)の過剰な上昇が生じることを抑制できる。したがって、その後のエンジン再始動に際し、噴射圧が高すぎることで第1噴射弁21の燃料噴射が実施困難になってエンジン始動に悪影響が及ぶといった不都合を抑制できる。 Thereafter, at timing t14, when an engine stop request is generated by turning off the ignition switch or the like, the shutoff valve 45 is closed and the gas fuel injection by the first injection valve 21 is stopped. After timing t14, the regulator upstream pressure is maintained at a pressure between the determination values K1 and K2. In this case, even if the pressure regulating valve 60 leaks to the low pressure side of the high pressure gas fuel via the valve body seat portion (valve seat portion 63), the injection pressure (supply gas pressure to the first injection valve 21). ) Can be prevented from occurring. Therefore, when the engine is restarted thereafter, it is possible to suppress the inconvenience that the fuel injection of the first injection valve 21 is difficult to be performed due to the injection pressure being too high and the engine start is adversely affected.
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above in detail, the following excellent effects can be obtained.
 第1噴射弁21のガス燃料噴射によるエンジン運転状態でその燃料噴射が停止される前時点において、レギュレータ上流圧が所定の高圧状態になっていれば、第1噴射弁21による燃料噴射を継続したまま、遮断弁45を開放状態、タンク主止弁44を閉鎖状態にしてレギュレータ上流圧を低下させるようにした。この場合、ガス燃料の噴射停止前にレギュレータ上流圧を積極的に下げておくことで、圧力調整弁60での燃料漏れが生じにくくなり、また仮に燃料漏れが生じたとしても噴射圧の上昇レベルを抑えることができる。その結果、ガス燃料の噴射停止中に圧力調整弁60での燃料漏れにより噴射圧が過上昇してしまい、ひいてはガス燃料の噴射再開後においてそのガス燃料の噴射に支障が生じるといった不都合を抑制できる。 If the upstream pressure of the regulator is in a predetermined high pressure state before the fuel injection is stopped in the engine operating state by the gas fuel injection of the first injection valve 21, the fuel injection by the first injection valve 21 is continued. The shut-off valve 45 is opened and the tank main stop valve 44 is closed to reduce the regulator upstream pressure. In this case, by positively lowering the regulator upstream pressure before stopping the injection of gas fuel, fuel leakage at the pressure regulating valve 60 is less likely to occur, and even if fuel leakage occurs, the injection pressure rise level Can be suppressed. As a result, it is possible to suppress the inconvenience that the injection pressure excessively rises due to fuel leakage at the pressure regulating valve 60 while the gas fuel injection is stopped, and that the gas fuel injection is hindered after the gas fuel injection is resumed. .
 ガス燃料を用いた運転状態から液体燃料を用いた運転状態への切替要求が生じた場合に、第1噴射弁21による燃料噴射が停止される前の時点であると判定し、上記のとおりレギュレータ上流圧を低下させる処理を実施するようにした。また、ガス燃料の噴射停止要求が生じた場合にも同様に、第1噴射弁21による燃料噴射が停止される前の時点であると判定し、上記のとおりレギュレータ上流圧を低下させる処理を実施するようにした。この場合、ガス燃料の噴射停止後(液体燃料への切替後、エンジン停止後を含む)において噴射圧が過剰に上昇し、その後のガス燃料による噴射再開時にガス燃料の噴射に支障が生じる、といった不都合を抑制できる。 When a request for switching from an operation state using gas fuel to an operation state using liquid fuel is made, it is determined that the fuel injection by the first injection valve 21 is stopped, and the regulator as described above. A process for reducing the upstream pressure was performed. Similarly, when a gas fuel injection stop request is generated, it is determined that the time is before fuel injection by the first injection valve 21 is stopped, and the processing for reducing the regulator upstream pressure is performed as described above. I tried to do it. In this case, after the injection of gas fuel is stopped (after switching to liquid fuel and after the engine is stopped), the injection pressure rises excessively, and the injection of gas fuel is hindered when the injection with the gas fuel is resumed thereafter. Inconvenience can be suppressed.
 エンジン10がアイドル等の低負荷状態にある場合には、それに引き続いてエンジン10の停止が行われる(停止要求が生じる)ことが考えられる。そこで、低負荷状態である場合には、その後にエンジン停止されることを見越して、レギュレータ上流圧を低下させておくようにした。これにより、エンジン停止後において噴射圧が過剰に上昇し、その後のガス燃料による噴射再開時にガス燃料の噴射に支障が生じる、といった不都合を抑制できる。 When the engine 10 is in a low load state such as idle, it is conceivable that the engine 10 is subsequently stopped (a stop request is generated). Therefore, in the case of a low load state, the regulator upstream pressure is reduced in anticipation of the engine being stopped after that. As a result, it is possible to suppress the inconvenience that the injection pressure increases excessively after the engine is stopped and the gas fuel injection is hindered when the injection with the gas fuel is resumed thereafter.
 第1噴射弁21による燃料噴射を継続したまま、遮断弁45を開放状態、タンク主止弁44を閉鎖状態にする場合に、空燃比学習値の更新を禁止するようにした。タンク主止弁44が閉弁された状態でガス燃料が噴射される場合には、タンク主止弁44が開弁された状態でガス燃料が噴射される場合(通常時)と比べてレギュレータ上流圧や噴射圧の変化の態様が相違する。したがって、ガス燃料噴射量の補正値が通常時と異なる値になることが懸念される。この点、タンク主止弁44が閉弁された状態でガス燃料が噴射される場合に学習値の更新が禁止されるため、誤学習を防止できる。ゆえに、誤学習によりエミッションの悪化を招くといった不都合を抑制できる。 The update of the air-fuel ratio learning value is prohibited when the shutoff valve 45 is opened and the tank main stop valve 44 is closed while the fuel injection by the first injection valve 21 is continued. When the gas fuel is injected with the tank main stop valve 44 closed, the upstream side of the regulator is higher than when the gas fuel is injected with the tank main stop valve 44 opened (normal time). The mode of change in pressure and injection pressure is different. Therefore, there is a concern that the correction value of the gas fuel injection amount becomes a value different from the normal value. In this respect, since the update of the learning value is prohibited when the gas fuel is injected with the tank main stop valve 44 closed, erroneous learning can be prevented. Therefore, it is possible to suppress the inconvenience that the emission is deteriorated due to erroneous learning.
 第1噴射弁21による燃料噴射を継続したまま、遮断弁45を開放状態、タンク主止弁44を閉鎖状態にする場合に、ガス燃料の燃料供給系における異常判定を停止又は制限するようにした。タンク主止弁44が閉弁された状態でガス燃料が噴射される場合には、タンク主止弁44が開弁された状態でガス燃料が噴射される場合(通常時)と比べてレギュレータ上流圧や噴射圧の変化の態様が相違する。したがって、遮断弁45や圧力調整弁60といった燃料供給系の構成が正常であるにもかかわらず、レギュレータ上流圧や噴射圧が正常範囲から外れることが懸念される。本実施形態では、タンク主止弁44が閉弁された状態でガス燃料が噴射される場合に異常判定が停止される又は制限されるため、異常の誤判定を防止できる。 When the shutoff valve 45 is in the open state and the tank main stop valve 44 is in the closed state while the fuel injection by the first injection valve 21 is continued, the abnormality determination in the fuel supply system of the gas fuel is stopped or limited. . When the gas fuel is injected with the tank main stop valve 44 closed, the upstream side of the regulator is higher than when the gas fuel is injected with the tank main stop valve 44 opened (normal time). The mode of change in pressure and injection pressure is different. Accordingly, there is a concern that the regulator upstream pressure and the injection pressure may be out of the normal range even though the configuration of the fuel supply system such as the shutoff valve 45 and the pressure regulating valve 60 is normal. In the present embodiment, the abnormality determination is stopped or limited when gas fuel is injected with the tank main stop valve 44 closed, so that erroneous determination of abnormality can be prevented.
 第1噴射弁21による燃料噴射を継続したまま、遮断弁45を開放状態、タンク主止弁44を閉鎖状態にする場合に、ガスタンク42の燃料残量の推定を禁止するようにした。タンク主止弁44が閉弁された状態でガス燃料が噴射されると、タンク内圧に関係なくレギュレータ上流圧が低下する。そのため、レギュレータ上流圧(圧力センサ46の検出圧力)に基づいてガスタンク42内の燃料残量を推定する場合に燃料残量が誤って推定されるおそれがある。また、タンク内圧の検出値(タンク内圧センサ50の検出圧力)に基づいてガスタンク42内の燃料残量を推定する場合にも、実際に消費されている燃料分が反映されないため、やはり燃料残量が誤って推定されるおそれがある。本実施形態では、タンク主止弁44が閉弁された状態でガス燃料が噴射される場合に燃料残量の推定が禁止されるため、燃料残量の誤推定を防止できる。 The estimation of the remaining amount of fuel in the gas tank 42 is prohibited when the shutoff valve 45 is opened and the tank main stop valve 44 is closed while the fuel injection by the first injection valve 21 is continued. When gas fuel is injected with the tank main stop valve 44 closed, the regulator upstream pressure decreases regardless of the tank internal pressure. Therefore, when the remaining fuel amount in the gas tank 42 is estimated based on the upstream pressure of the regulator (the pressure detected by the pressure sensor 46), the remaining fuel amount may be erroneously estimated. Further, when the remaining amount of fuel in the gas tank 42 is estimated based on the detected value of the tank internal pressure (detected pressure of the tank internal pressure sensor 50), the amount of fuel actually consumed is not reflected, so that the remaining amount of fuel is also used. May be estimated incorrectly. In this embodiment, since estimation of the remaining amount of fuel is prohibited when gas fuel is injected with the tank main stop valve 44 closed, erroneous estimation of the remaining amount of fuel can be prevented.
 車両の燃料噴射システムとして、エンジン10、第1噴射弁21、圧力調整弁60及び遮断弁45を車両の前側部分に搭載し、ガスタンク42及びタンク主止弁44を車両の後側部分に搭載する構成を採用した。ガスタンク42と圧力調整弁60との間のガス配管41が長くなり、それに応じて通路容積も大きくなる。したがって、第1噴射弁21による燃料噴射を停止する前にタンク主止弁44を閉弁したとしても、ガスタンク42と圧力調整弁60との間のガス配管41にはその後しばらくの間の燃料噴射が可能となる分のガス燃料が残っており、上記のとおりレギュレータ上流圧を下げつつガス燃料の噴射を継続させるようにする上で好都合である。 As a vehicle fuel injection system, the engine 10, the first injection valve 21, the pressure regulating valve 60, and the shutoff valve 45 are mounted on the front portion of the vehicle, and the gas tank 42 and the tank main stop valve 44 are mounted on the rear portion of the vehicle. Adopted the configuration. The gas pipe 41 between the gas tank 42 and the pressure regulating valve 60 becomes longer, and the passage volume increases accordingly. Therefore, even if the tank main stop valve 44 is closed before the fuel injection by the first injection valve 21 is stopped, the fuel injection for a while after that is performed in the gas pipe 41 between the gas tank 42 and the pressure regulating valve 60. Therefore, it is convenient to continue the injection of the gas fuel while lowering the regulator upstream pressure as described above.
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
(Other embodiments)
You may change the said embodiment as follows, for example.
 タンク主止弁44が、その開度を可変に調整できる機能を有するものであるとよい。この場合、制御部80はタンク主止弁44の開度制御を実施し、それにより、レギュレータ上流圧が所定の圧力域(例えば判定値K2以下の圧力域)となるように制御される。タンク主止弁44の開度を全開状態に対して閉じ側に調整する制御が「タンク主止弁44を開放制限状態にする制御」に相当する。具体的には図10に示すように、ステップS41で、タンク内圧が所定の判定値K3以上であるか否かを判定し、NOならステップS42に進んで、タンク主止弁44を全開にする。また、ステップS41がYESなら、ステップS43に進んで、レギュレータ上流圧の現在値と目標値との解離量を算出する。ステップS44では、レギュレータ上流圧の現在値が目標値に一致するようにタンク主止弁44の開度をフィードバック制御する。上記制御は、ガス燃料の噴射が停止される前の時点であると判定された場合のみ実施されるとよい。 The tank main stop valve 44 may have a function capable of variably adjusting the opening degree. In this case, the control unit 80 controls the opening degree of the tank main stop valve 44, and thereby the regulator upstream pressure is controlled to be in a predetermined pressure range (for example, a pressure range equal to or lower than the determination value K2). Control for adjusting the opening of the tank main stop valve 44 to the closed side with respect to the fully open state corresponds to “control for bringing the tank main stop valve 44 into the open restriction state”. Specifically, as shown in FIG. 10, it is determined in step S41 whether or not the tank internal pressure is equal to or higher than a predetermined determination value K3. If NO, the process proceeds to step S42 and the tank main stop valve 44 is fully opened. . If step S41 is YES, the process proceeds to step S43, and the dissociation amount between the current value of the regulator upstream pressure and the target value is calculated. In step S44, the opening degree of the tank main stop valve 44 is feedback-controlled so that the current value of the regulator upstream pressure matches the target value. The above control may be performed only when it is determined that the time is before the injection of gas fuel is stopped.
 図11は、図10のレギュレータ上流圧制御処理をより具体的に説明するためのタイムチャートである。図11では、レギュレータ上流圧の制御目標値が定められており、その目標値に一致するようにしてタンク主止弁44の開度がフィードバック制御されている。そして、タイミングt21では、アイドルフラグがセットされる(図9のタイミングt11と同様)。この場合、タイミングt21の前後を通じてレギュレータ上流圧が目標値付近に維持されている。 FIG. 11 is a time chart for explaining the regulator upstream pressure control process of FIG. 10 more specifically. In FIG. 11, the control target value of the regulator upstream pressure is determined, and the opening degree of the tank main stop valve 44 is feedback-controlled so as to coincide with the target value. At timing t21, an idle flag is set (similar to timing t11 in FIG. 9). In this case, the regulator upstream pressure is maintained near the target value before and after the timing t21.
 その後、タイミングt22で、イグニッションスイッチのオフ操作等によりエンジン停止要求が生じると、タンク主止弁44と遮断弁45とが共に閉弁されるとともに、第1噴射弁21によるガス燃料の噴射が停止される。タイミングt22以降も、レギュレータ上流圧は目標値付近で維持される。この場合、エンジン10の停止前においてレギュレータ上流圧を所望の圧力に維持でき、仮に圧力調整弁60において弁体シート部(弁座部63)を介して高圧側のガス燃料の低圧側に漏れ出たとしても、噴射圧(第1噴射弁21への供給ガス圧)の過剰な上昇が生じることを抑制できる。したがって、その後のエンジン再始動に際し、噴射圧が高すぎることで第1噴射弁21の燃料噴射が実施困難になってエンジン始動に悪影響が及ぶといった不都合を抑制できる。 Thereafter, when an engine stop request is generated by turning off the ignition switch at timing t22, both the tank main stop valve 44 and the shutoff valve 45 are closed, and injection of gas fuel by the first injection valve 21 is stopped. Is done. Even after timing t22, the regulator upstream pressure is maintained near the target value. In this case, the regulator upstream pressure can be maintained at a desired pressure before the engine 10 is stopped, and the pressure regulating valve 60 leaks to the low pressure side of the high pressure side gas fuel via the valve body seat portion (valve seat portion 63). Even so, it is possible to suppress an excessive increase in the injection pressure (the supply gas pressure to the first injection valve 21). Therefore, when the engine is restarted thereafter, it is possible to suppress the inconvenience that the fuel injection of the first injection valve 21 is difficult to be performed due to the injection pressure being too high and the engine start is adversely affected.
 また、上記構成ではタンク主止弁44として弁開度を可変に調整できる構成を用いたため、全閉と全開を繰り返す構成を用いた場合に比べて、レギュレータ上流圧が安定する。そのため、レギュレータ下流圧である噴射圧が安定し、圧力変動による空燃比変動などを抑制できる。 Further, in the above configuration, since the configuration in which the valve opening degree can be variably adjusted is used as the tank main stop valve 44, the regulator upstream pressure is stabilized as compared with the case where a configuration in which the valve is fully closed and fully opened is used. As a result, the injection pressure, which is the downstream pressure of the regulator, is stabilized, and air-fuel ratio fluctuations due to pressure fluctuations can be suppressed.
 レギュレータ上流圧を検出する圧力センサ46(第1圧力センサに相当)と、タンク内圧を検出するタンク内圧センサ50(第2圧力センサに相当)との両方の検出結果を用いてレギュレータ上流圧の制御を実施するようにしてもよい。その処理の内容を図12により説明する。図12の処理は、図5の処理の一部を変更したものであるが、便宜上、空燃比学習値の更新禁止等の処理(ステップS16~S18)は割愛している。 Control of the regulator upstream pressure using the detection results of both the pressure sensor 46 (corresponding to the first pressure sensor) for detecting the regulator upstream pressure and the tank internal pressure sensor 50 (corresponding to the second pressure sensor) for detecting the tank internal pressure. May be implemented. The contents of the processing will be described with reference to FIG. The process in FIG. 12 is obtained by changing a part of the process in FIG. 5, but for the sake of convenience, the process of prohibiting the update of the air-fuel ratio learning value (steps S16 to S18) is omitted.
 図12において、ガス燃料から液体燃料への切替要求が生じていると判定され、かつレギュレータ上流圧が所定の判定値K1以上であると判定された場合(ステップS11,S13が共にYESの場合)、ステップS51に進み、タンク内圧センサ50により検出したタンク内圧を取得する。続くステップS52では、レギュレータ上流圧が、タンク内圧よりも低圧の所定範囲に入っているか否かを判定する。このとき、レギュレータ上流圧が「タンク内圧-β」未満となる圧力範囲(K1以上、タンク内圧-β未満の圧力範囲)に入っていればステップS52が肯定される。なお、上記圧力範囲は「K1以上、タンク内圧未満」であってもよい。そして、ステップS52がNOならタンク主止弁44を閉弁させてレギュレータ上流圧を低下させ、ステップS52がYESならタンク主止弁44を開弁させてレギュレータ上流圧を上昇させる。こうした制御により、レギュレータ上流圧がタンク内圧よりも低い圧力で維持される。この場合、レギュレータ上流圧が下がりすぎないようにすることもできる。 In FIG. 12, when it is determined that there is a request for switching from gas fuel to liquid fuel, and it is determined that the regulator upstream pressure is equal to or higher than a predetermined determination value K1 (when both steps S11 and S13 are YES). In step S51, the tank internal pressure detected by the tank internal pressure sensor 50 is acquired. In a succeeding step S52, it is determined whether or not the regulator upstream pressure is within a predetermined range lower than the tank internal pressure. At this time, if the regulator upstream pressure is within a pressure range (K1 or more, a pressure range less than the tank internal pressure −β) that is less than “tank internal pressure −β”, step S52 is affirmed. The pressure range may be “K1 or more and less than tank internal pressure”. If step S52 is NO, the tank main stop valve 44 is closed to decrease the regulator upstream pressure, and if step S52 is YES, the tank main stop valve 44 is opened to increase the regulator upstream pressure. By such control, the regulator upstream pressure is maintained at a pressure lower than the tank internal pressure. In this case, it is possible to prevent the regulator upstream pressure from dropping too much.
 各噴射弁21,22として、図示しない電磁駆動部が電気的に駆動されることで弁開度(噴射口の開口面積)が連続的又は多段的に調整される開度調整タイプの噴射弁を用いることも可能であり、この場合には制御部80から入力されるデューティ信号により弁開度が調整される。このとき、各噴射弁21,22の弁開度に応じて単位時間当たりの燃料流量が調整され、その流量調整された燃料(ガス燃料、液体燃料)が各気筒の吸気ポートに供給される。 As each of the injection valves 21 and 22, an opening adjustment type injection valve whose valve opening (opening area of the injection port) is adjusted continuously or in multiple stages by electrically driving an electromagnetic driving unit (not shown). In this case, the valve opening degree is adjusted by a duty signal input from the control unit 80. At this time, the fuel flow rate per unit time is adjusted according to the valve opening degree of each injection valve 21, 22, and the fuel (gas fuel, liquid fuel) whose flow rate is adjusted is supplied to the intake port of each cylinder.
 上記実施形態では、多気筒エンジンの気筒ごとに各噴射弁21,22を設ける構成としたが、これを変更し、複数の気筒に共通にして各噴射弁21,22を設ける構成としてもよい。例えば吸気系統11の集合部分に対してガス燃料や液体燃料を噴射する構成としてもよい。 In the above embodiment, the injection valves 21 and 22 are provided for each cylinder of the multi-cylinder engine. However, the injection valves 21 and 22 may be provided in common for a plurality of cylinders. For example, it is good also as a structure which injects gas fuel and liquid fuel with respect to the collection part of the intake system 11. FIG.
 上記実施形態では、ガス燃料(CNG)と液体燃料(ガソリン)とを燃焼用の燃料としたが、これを変更し、ガス燃料のみを用いても良い。 In the above embodiment, gas fuel (CNG) and liquid fuel (gasoline) are used as combustion fuel, but this may be changed and only gas fuel may be used.
 上記実施形態では、ガス燃料としてCNG燃料を用いたが、標準状態で気体となるその他のガス燃料を用いることもできる。例えばメタン、エタン、プロパン、ブタン、水素、DMEなどを主成分とする燃料を用いる構成としてもよい。また、液体燃料についてもガソリン燃料に限らず、例えば軽油などを用いる構成としてもよい。 In the above embodiment, the CNG fuel is used as the gas fuel, but other gas fuels that are gas in the standard state can also be used. For example, it is possible to use a fuel mainly composed of methane, ethane, propane, butane, hydrogen, DME, or the like. Further, the liquid fuel is not limited to gasoline fuel, and for example, light oil or the like may be used.

Claims (10)

  1.  ガス燃料を高圧状態で貯蔵するガスタンク(42)と、
     該ガスタンクから燃料通路(41)を通じて供給されるガス燃料を噴射するガス燃料噴射弁(21)と、
     前記燃料通路に設けられ、前記ガス燃料噴射弁に供給されるガス燃料の圧力を減圧調整する圧力調整弁(60)と、
     前記燃料通路において前記圧力調整弁の上流側であってかつその近傍に設けられ、ガス燃料の流通を遮断する遮断機能を有する遮断弁(45)と、
    を備える燃料噴射システムに適用される内燃機関の燃料噴射制御装置であって、
     前記ガスタンクの燃料出口近傍に設けられ、ガス燃料の流通を遮断する遮断機能を有するタンク出口弁(44)と、
     前記ガス燃料噴射弁による燃料噴射が停止される前の時点であるか否かを判定する噴射停止判定手段(80)と、
     前記ガスタンクと前記圧力調整弁との間の高圧通路部(41a,51)の燃料圧力があらかじめ定めた所定値以上であるか否かを判定する圧力判定手段(80)と、
     前記噴射停止判定手段により噴射停止の前の時点であると判定され、かつ前記圧力判定手段により前記高圧通路部の燃料圧力が所定値以上であると判定された場合に、前記ガス燃料噴射弁による燃料噴射を継続したまま、前記遮断弁を開放状態、前記タンク出口弁を閉鎖状態又は開放制限状態にして前記高圧通路部の燃料圧力を低下させる圧力制御手段(80)と、を備える内燃機関の燃料噴射制御装置。
    A gas tank (42) for storing gaseous fuel in a high pressure state;
    A gas fuel injection valve (21) for injecting gas fuel supplied from the gas tank through the fuel passage (41);
    A pressure regulating valve (60) provided in the fuel passage and configured to depressurize and regulate the pressure of the gaseous fuel supplied to the gaseous fuel injection valve;
    A shutoff valve (45) provided in the fuel passage upstream and in the vicinity of the pressure regulating valve and having a shutoff function for shutting off the flow of gas fuel;
    A fuel injection control device for an internal combustion engine applied to a fuel injection system comprising:
    A tank outlet valve (44) provided in the vicinity of the fuel outlet of the gas tank and having a shut-off function for shutting off the flow of gas fuel;
    An injection stop determination means (80) for determining whether or not it is a time before fuel injection by the gas fuel injection valve is stopped;
    Pressure determining means (80) for determining whether or not the fuel pressure in the high pressure passage (41a, 51) between the gas tank and the pressure regulating valve is equal to or greater than a predetermined value;
    When it is determined by the injection stop determination means that the time is before injection stop, and when the pressure determination means determines that the fuel pressure in the high pressure passage portion is equal to or higher than a predetermined value, the gas fuel injection valve An internal combustion engine having pressure control means (80) for reducing the fuel pressure in the high-pressure passage section by opening the shut-off valve, closing the tank outlet valve, or closing or limiting the open state while continuing fuel injection. Fuel injection control device.
  2.  前記噴射停止判定手段は、前記ガス燃料の噴射停止要求が生じた場合に、前記ガス燃料噴射弁による燃料噴射が停止される前の時点であると判定する請求項1に記載の内燃機関の燃料噴射制御装置。 2. The fuel for an internal combustion engine according to claim 1, wherein the injection stop determination unit determines that the fuel injection by the gas fuel injection valve is stopped before the gas fuel injection stop request is generated. 3. Injection control device.
  3.  液体燃料を噴射する液体燃料噴射弁(22)を更に備え、
     前記噴射停止判定手段は、前記ガス燃料を用いた運転状態から前記液体燃料を用いた運転状態への切替要求が生じた場合に、前記ガス燃料噴射弁による燃料噴射が停止される前の時点であると判定する請求項1又は2に記載の内燃機関の燃料噴射制御装置。
    A liquid fuel injection valve (22) for injecting liquid fuel;
    The injection stop determination means is a time point before the fuel injection by the gas fuel injection valve is stopped when a request for switching from the operation state using the gas fuel to the operation state using the liquid fuel occurs. The fuel injection control device for an internal combustion engine according to claim 1, wherein the fuel injection control device is determined to be present.
  4.  前記内燃機関の運転負荷が所定の低負荷状態にあることを判定する負荷判定手段を備え、
     前記噴射停止判定手段は、前記負荷判定手段により低負荷状態にあると判定された場合に、前記ガス燃料噴射弁による燃料噴射が停止される前の時点であると判定する請求項1乃至3いずれか一項に記載の内燃機関の燃料噴射制御装置。
    Load determining means for determining that the operating load of the internal combustion engine is in a predetermined low load state;
    The injection stop determination means determines that it is a time before fuel injection by the gas fuel injection valve is stopped when it is determined that the load determination means is in a low load state. A fuel injection control device for an internal combustion engine according to claim 1.
  5.  前記タンク出口弁は、その弁開度を可変に調整できる機能を有しており、
     前記圧力制御手段は、前記タンク出口弁を前記開放制限状態にする制御として、前記高圧通路部の燃料圧力が所定の圧力域で保持されるように前記タンク出口弁の弁開度を制御する請求項1乃至4のいずれか一項に記載の内燃機関の燃料噴射制御装置。
    The tank outlet valve has a function of variably adjusting the valve opening,
    The pressure control means controls the valve opening degree of the tank outlet valve so that the fuel pressure in the high-pressure passage is maintained in a predetermined pressure range as control for bringing the tank outlet valve into the open restriction state. Item 5. The fuel injection control device for an internal combustion engine according to any one of Items 1 to 4.
  6.  前記高圧通路部に設けられ該高圧通路部内の燃料圧力を検出する第1圧力センサ(46)と、前記ガスタンクに設けられタンク内圧を検出する第2圧力センサ(50)とを更に備え、
     前記圧力判定手段は、前記第1圧力センサにより検出された燃料圧力に基づいて、前記高圧通路部の燃料圧力が所定値以上であるか否かを判定し、
     前記圧力制御手段は、前記第1圧力センサにより検出された燃料圧力が、前記第2圧力センサにより検出されたタンク内圧よりも低圧の所定範囲に入るよう制御を実施する請求項1乃至5のいずれか一項に記載の内燃機関の燃料噴射制御装置。
    A first pressure sensor (46) provided in the high-pressure passage for detecting fuel pressure in the high-pressure passage, and a second pressure sensor (50) provided in the gas tank for detecting the tank internal pressure;
    The pressure determining means determines whether or not the fuel pressure in the high pressure passage portion is equal to or higher than a predetermined value based on the fuel pressure detected by the first pressure sensor;
    6. The pressure control unit according to claim 1, wherein the pressure control unit performs control so that the fuel pressure detected by the first pressure sensor falls within a predetermined range lower than the tank internal pressure detected by the second pressure sensor. A fuel injection control device for an internal combustion engine according to claim 1.
  7.  前記ガス燃料噴射弁によるガス燃料の噴射に際して空燃比フィードバック制御を実施するとともに、当該空燃比フィードバック制御において学習値の算出及び更新を実施する空燃比制御手段を更に備え、
     前記圧力制御手段において前記ガス燃料噴射弁による燃料噴射を継続したまま、前記遮断弁を開放状態、前記タンク出口弁を閉鎖状態又は開放制限状態にする場合に、前記学習値の更新を禁止する更新禁止手段を備える請求項1乃至6のいずれか一項に記載の内燃機関の燃料噴射制御装置。
    Air-fuel ratio feedback control is performed when gas fuel is injected by the gas fuel injection valve, and air-fuel ratio control means is further provided for calculating and updating the learning value in the air-fuel ratio feedback control.
    Update for prohibiting updating of the learning value when the pressure control means continues the fuel injection by the gas fuel injection valve and the shut-off valve is in an open state and the tank outlet valve is in a closed state or an open restriction state. The fuel injection control device for an internal combustion engine according to any one of claims 1 to 6, further comprising prohibition means.
  8.  前記タンク出口弁よりも下流側の前記燃料通路における燃料圧力に基づいて前記ガス燃料の燃料供給系における異常の有無を判定する異常判定手段を更に備え、
     前記圧力制御手段において前記ガス燃料噴射弁による燃料噴射を継続したまま、前記遮断弁を開放状態、前記タンク出口弁を閉鎖状態又は開放制限状態にする場合に、前記異常判定手段による異常判定を停止又は制限する停止手段を備える請求項1乃至7のいずれか一項に記載の内燃機関の燃料噴射制御装置。
    An abnormality determining means for determining whether or not there is an abnormality in the fuel supply system of the gaseous fuel based on a fuel pressure in the fuel passage downstream of the tank outlet valve;
    In the pressure control means, when the fuel injection by the gas fuel injection valve is continued, the abnormality determination by the abnormality determination means is stopped when the shutoff valve is opened and the tank outlet valve is closed or open restricted. The fuel injection control device for an internal combustion engine according to any one of claims 1 to 7, further comprising stop means for limiting.
  9.  前記高圧通路部の燃料圧力又は前記ガスタンク内の燃料圧力に基づいて前記ガスタンク内の燃料残量を推定する燃料残量推定手段を更に備え、
     前記圧力制御手段において前記ガス燃料噴射弁による燃料噴射を継続したまま、前記遮断弁を開放状態、前記タンク出口弁を閉鎖状態又は開放制限状態にする場合に、前記燃料残量推定手段による燃料残量の推定を禁止する推定禁止手段を備える請求項1乃至8のいずれか一項に記載の内燃機関の燃料噴射制御装置。
    A fuel remaining amount estimating means for estimating a fuel remaining amount in the gas tank based on a fuel pressure in the high pressure passage portion or a fuel pressure in the gas tank;
    When the pressure control means continues the fuel injection by the gas fuel injection valve and the shut-off valve is in the open state and the tank outlet valve is in the closed state or the open restriction state, the fuel remaining amount estimating means The fuel injection control device for an internal combustion engine according to any one of claims 1 to 8, further comprising estimation prohibiting means for prohibiting estimation of the amount.
  10.  請求項1乃至9のいずれか一項に記載の内燃機関の燃料噴射制御装置を備える車両の燃料噴射システムであって、
     前記内燃機関と、前記ガスタンクと、前記ガス燃料噴射弁と、前記圧力調整弁と、前記遮断弁と、前記タンク出口弁とを備え、
     前記内燃機関、前記ガス燃料噴射弁、前記圧力調整弁及び前記遮断弁は前記車両の前側部分に搭載され、前記ガスタンク及び前記タンク出口弁は前記車両の後側部分に搭載されている車両の燃料噴射システム。
    A fuel injection system for a vehicle comprising the fuel injection control device for an internal combustion engine according to any one of claims 1 to 9,
    The internal combustion engine, the gas tank, the gas fuel injection valve, the pressure regulating valve, the shutoff valve, and the tank outlet valve,
    The internal combustion engine, the gas fuel injection valve, the pressure regulating valve, and the shutoff valve are mounted on a front portion of the vehicle, and the gas tank and the tank outlet valve are mounted on a rear portion of the vehicle. Injection system.
PCT/JP2013/006772 2012-12-12 2013-11-19 Fuel injection control device for internal combustion engine, and vehicle fuel injection system WO2014091680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-271377 2012-12-12
JP2012271377A JP2014114792A (en) 2012-12-12 2012-12-12 Fuel injection control device of internal combustion engine, and fuel injection system of vehicle

Publications (1)

Publication Number Publication Date
WO2014091680A1 true WO2014091680A1 (en) 2014-06-19

Family

ID=50933988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006772 WO2014091680A1 (en) 2012-12-12 2013-11-19 Fuel injection control device for internal combustion engine, and vehicle fuel injection system

Country Status (2)

Country Link
JP (1) JP2014114792A (en)
WO (1) WO2014091680A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050503A (en) * 2014-08-29 2016-04-11 株式会社デンソー Fuel injection control device for internal combustion engine
DE102016201511A1 (en) * 2016-02-02 2017-08-03 Robert Bosch Gmbh Method for operating a fuel supply system and fuel supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610689A (en) * 1992-06-24 1994-01-18 Mazda Motor Corp Control device for hydrogen fueled engine
JP2004079451A (en) * 2002-08-22 2004-03-11 Honda Motor Co Ltd Stopping method of gas-using engine
WO2007129599A1 (en) * 2006-05-01 2007-11-15 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel internal combustion engine
JP2011196258A (en) * 2010-03-19 2011-10-06 Keihin Corp Fuel supply system and shut-off valve fault diagnosis device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610689A (en) * 1992-06-24 1994-01-18 Mazda Motor Corp Control device for hydrogen fueled engine
JP2004079451A (en) * 2002-08-22 2004-03-11 Honda Motor Co Ltd Stopping method of gas-using engine
WO2007129599A1 (en) * 2006-05-01 2007-11-15 Yamaha Hatsudoki Kabushiki Kaisha Gas fuel internal combustion engine
JP2011196258A (en) * 2010-03-19 2011-10-06 Keihin Corp Fuel supply system and shut-off valve fault diagnosis device

Also Published As

Publication number Publication date
JP2014114792A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US9273638B2 (en) Variable pressure gaseous fuel regulator
WO2014091691A1 (en) Fuel injection control device for internal combustion engine
JP5212546B2 (en) Fuel supply device
US20160290248A1 (en) Fuel supply system for internal combustion engine and control method therefor
JP2008215130A (en) Injector control device for gas engine
WO2014091678A1 (en) Fuel injection control device for internal combustion engine
JP4988677B2 (en) Engine fuel supply system
WO2014091680A1 (en) Fuel injection control device for internal combustion engine, and vehicle fuel injection system
JP5874622B2 (en) Fuel injection control device for internal combustion engine
JP4818962B2 (en) Fuel supply device for internal combustion engine
WO2014091722A1 (en) Fuel injection control device for internal combustion engine
JP2013160138A (en) Fuel supply control device
JP2015090076A (en) Abnormality diagnosis device for fuel supply system
WO2014091723A1 (en) Fuel injection control device for internal combustion engine
JP2016056699A (en) Fuel injection system for internal combustion engine
JP4388514B2 (en) Fuel supply device
JP2015224583A (en) Internal combustion engine control unit
WO2016031135A1 (en) Fuel injection control device for internal combustion engine
JP2016070245A (en) Fuel injection control device of internal combustion engine
WO2016132708A1 (en) Fuel injection control device
JP2016142146A (en) Gas fuel supply device
JP2015090075A (en) Abnormality diagnosis device for fuel supply system
JP6446286B2 (en) Gas fuel supply device
JP2010024853A (en) Control device for internal combustion engine
WO2014115511A1 (en) Fuel injection device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862512

Country of ref document: EP

Kind code of ref document: A1