WO2014136387A1 - Abnormality diagnosis device for internal combustion engine - Google Patents

Abnormality diagnosis device for internal combustion engine Download PDF

Info

Publication number
WO2014136387A1
WO2014136387A1 PCT/JP2014/000821 JP2014000821W WO2014136387A1 WO 2014136387 A1 WO2014136387 A1 WO 2014136387A1 JP 2014000821 W JP2014000821 W JP 2014000821W WO 2014136387 A1 WO2014136387 A1 WO 2014136387A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
abnormality
abnormal
combustion
internal combustion
Prior art date
Application number
PCT/JP2014/000821
Other languages
French (fr)
Japanese (ja)
Inventor
福田 圭佑
若原 啓二
和賢 野々山
向井 弥寿夫
和田 実
優一 竹村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014136387A1 publication Critical patent/WO2014136387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0623Failure diagnosis or prevention; Safety measures; Testing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is based on Japanese Application No. 2013-43373 filed on March 5, 2013 and Japanese Application No. 2013-261006 filed on December 18, 2013. Is used.
  • the present invention relates to an abnormality diagnosis device for an internal combustion engine, and more particularly to an abnormality diagnosis device for a combustion system of an internal combustion engine having two fuel supply units for gas fuel and liquid fuel.
  • a fuel supply unit that supplies gaseous fuel into a cylinder of the internal combustion engine connects a gas tank that stores the gaseous fuel in a high pressure state, a fuel injection valve that injects the gaseous fuel, and the gas tank and the fuel injection valve.
  • a pressure adjustment valve that is provided in the middle of the fuel pipe and that depressurizes the pressure of the gaseous fuel supplied from the gas tank, and a shutoff valve that is provided upstream of the pressure adjustment valve and blocks the flow of the gaseous fuel to the pressure adjustment valve And comprising.
  • the present invention has been made to solve the above-described problem, and an abnormality has occurred in the combustion state of the internal combustion engine in the combustion system of the internal combustion engine having two fuel supply portions for gas fuel and liquid fuel. It is a main object of the present invention to provide an abnormality diagnosis device for an internal combustion engine that can identify an abnormal part.
  • the present invention includes a gaseous fuel supply unit that supplies gaseous fuel into a cylinder of an internal combustion engine, a liquid fuel supply unit that supplies liquid fuel into the cylinder, a combustion time of the gaseous fuel, and a combustion time of the liquid fuel.
  • the present invention relates to an abnormality diagnosis device applied to a combustion system of an internal combustion engine, which includes an ignition device that is used in common and ignites fuel supplied into the cylinder.
  • the abnormality diagnosis device of the present invention is based on a combustion parameter related to combustion of the internal combustion engine during the period in which the operation of the internal combustion engine is performed by combustion of one of the gaseous fuel and the liquid fuel.
  • First determination means for determining whether the combustion state of the internal combustion engine is normal or abnormal
  • fuel switching means for switching the used fuel from the one fuel to the other fuel after the determination of the combustion state by the first determination means And whether the combustion state is normal or abnormal based on the combustion parameters during the period in which the internal combustion engine is operated by combustion of the other fuel after the fuel is switched by the fuel switching means. And when the combustion state is determined to be abnormal by at least one of the second determination means, the first determination means, and the second determination means. And a abnormality identifying means for identifying the abnormal region based on the determination result by the determination result and the second determination means according to the first determination means.
  • the combustion parameters acquired in each period are set in each of the period in which the operation of the internal combustion engine is performed by combustion of gaseous fuel and the period in which the operation of the internal combustion engine is performed by combustion of liquid fuel. Based on this, abnormality diagnosis for the combustion system (injection supply system and ignition system) is performed. In addition, when it is determined that there is an abnormality in the abnormality diagnosis at the time of combustion of any fuel, based on the determination result of the abnormality diagnosis when using the gaseous fuel and the determination result of the abnormality diagnosis when using the liquid fuel To identify the abnormal part. Only one of the diagnosis results cannot identify whether the currently occurring combustion abnormality is caused by a fuel supply system abnormality or an ignition system abnormality. According to the above configuration, since the diagnosis results for the two fuels are used, it is possible to identify an abnormal region that causes the combustion abnormality according to the combination of the diagnosis results.
  • FIG. 1 is an overall schematic configuration diagram of an engine combustion system.
  • the flowchart which shows the process sequence of an abnormality diagnosis process.
  • the flowchart which shows the process sequence of an abnormality specific process.
  • the time chart showing the embodiment of the abnormality diagnosis at the time of abnormality of a liquid fuel supply part.
  • the time chart showing the embodiment of the abnormality diagnosis at the time of generation
  • the first embodiment will be described below with reference to the drawings.
  • the present embodiment is applied to a so-called bi-fuel type on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) that uses compressed natural gas (CNG) that is gaseous fuel and gasoline that is liquid fuel as combustion fuel. It is embodied as a combustion system. An overall schematic diagram of this system is shown in FIG.
  • An engine 10 shown in FIG. 1 is a multi-cylinder (for example, in-line three-cylinder) spark ignition engine, and an intake pipe 11 is connected to an intake port via an intake manifold 12, and an exhaust manifold is connected to an exhaust port.
  • An exhaust pipe 14 is connected via 13.
  • the intake pipe 11 is provided with a throttle valve 15 as air amount adjusting means.
  • the throttle valve 15 is configured as an electronically controlled throttle valve whose opening degree is adjusted by an actuator 15a such as a DC motor.
  • the opening (throttle opening) of the throttle valve 15 is detected by a throttle opening sensor 15b built in the actuator 15a.
  • the exhaust pipe 14 is provided with an exhaust sensor for detecting exhaust components and a catalyst 19 for purifying the exhaust.
  • an exhaust sensor for detecting exhaust components
  • a catalyst 19 for purifying the exhaust.
  • oxygen sensors 18 a and 18 b that output detection signals corresponding to the oxygen concentration in the exhaust are provided on the upstream side and the downstream side of the catalyst 19, respectively.
  • the intake port and the exhaust port of the engine 10 are respectively provided with an intake valve 25 and an exhaust valve 26 as engine valves for adjusting the amount of air introduced into the cylinder 16.
  • the air-fuel mixture is introduced into the cylinder 16 by the opening operation of the intake valve 25, and the exhaust gas after combustion is discharged into the exhaust passage by the opening operation of the exhaust valve 26.
  • a spark plug 20 is provided in each cylinder 16 of the engine 10.
  • a high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition circuit unit 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel supplied into the cylinder 16 is ignited and used for combustion.
  • the ignition plug 20 and the ignition circuit unit 20a constitute an ignition device, and the ignition device is a common component for the combustion of gaseous fuel and the combustion of liquid fuel.
  • a gas fuel supply unit 40 that supplies gaseous fuel (CNG fuel) and a liquid fuel supply that supplies liquid fuel (gasoline). Part 70 is provided.
  • CNG fuel gaseous fuel
  • a liquid fuel supply that supplies liquid fuel (gasoline).
  • the gaseous fuel supply unit 40 includes a first injection valve 21 that injects gaseous fuel, and the gaseous fuel is supplied to the intake port of each cylinder 16 by the injection of the first injection valve 21.
  • a gas tank 42 is connected to the first injection valve 21 via a gas pipe 41, and a pressure adjustment function for adjusting the pressure of the gaseous fuel supplied to the first injection valve 21 is reduced in the middle of the gas pipe 41.
  • a regulator 43 is provided. The regulator 43 adjusts the pressure of a gaseous fuel in a high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 42 to a mechanically determined pressure value (for example, 0.3 to 0.4 MPa). The gaseous fuel after the decompression adjustment is supplied to the first injection valve 21 through the gas pipe 41.
  • the fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 disposed in the vicinity of the fuel outlet of the gas tank 42 and a fuel inlet of the regulator 43 that is downstream of the tank main stop valve 44.
  • a shut-off valve 45 disposed in the vicinity is provided. These valves 44 and 45 allow and block the flow of gaseous fuel in the gas pipe 41.
  • Both the tank main stop valve 44 and the shutoff valve 45 are electromagnetic on-off valves, and are normally closed types that shut off the flow of gaseous fuel when not energized and allow the flow of gaseous fuel when energized.
  • the regulator 43 is integrally provided with a pressure sensor 46 that detects a fuel pressure before pressure reduction adjustment.
  • a gas pipe 41 on the downstream side of the regulator 43 includes a pressure sensor 47 that detects an injection pressure, and a gas pipe 41.
  • a temperature sensor 48 for detecting the temperature of the gaseous fuel is provided.
  • a gaseous fuel supply unit 40 is configured by the first injection valve 21, the gas pipe 41, the gas tank 42, and the like.
  • the liquid fuel supply unit 70 includes a second injection valve 22 that injects liquid fuel, and the liquid fuel is supplied to the intake port of each cylinder 16 by the injection of the second injection valve 22.
  • a fuel tank 72 is connected to the second injection valve 22 via a fuel pipe 71.
  • the fuel pipe 71 is provided with a fuel pump 73 that feeds the liquid fuel in the fuel tank 72 to the second injection valve 22.
  • the control unit 80 includes a CPU, a ROM, a RAM, a backup RAM, and the like, and executes various control programs stored in the ROM, thereby performing various controls of the engine 10 according to each engine operating state. .
  • the control unit 80 is electrically connected to the various sensors described above and other sensors (crank angle sensor 81, intake pipe pressure sensor 82, cooling water temperature sensor 83, vehicle speed sensor, etc.) provided in the system. The outputs (detection signals) from these sensors are input.
  • the control unit 80 is electrically connected to driving units such as the ignition circuit unit 20a and the injection valves 21 and 22, and drives each driving unit by outputting a driving signal to each driving unit. Control.
  • a drive signal is input from the control unit 80 to the drive unit such as the ignition circuit unit 20a and each of the injection valves 21 and 22, and each drive unit is driven according to the input drive signal.
  • the ignition circuit unit 20a outputs a high voltage according to the ignition signal from the control unit 80, and causes the spark plug 20 to generate an ignition spark.
  • the first injection valve 21 injects an amount of gaseous fuel according to the injection signal from the control unit 80 into the intake port
  • the second injection valve 22 outputs an amount of liquid fuel according to the injection signal from the control unit 80. Inject into the intake port.
  • the control unit 80 selectively switches the fuel to be used according to the engine operating state, the fuel remaining amount in the tank, an input signal from a fuel changeover switch (not shown) operated by the driver, and the like. Specifically, when the remaining amount of gaseous fuel in the gas tank 42 falls below a predetermined value or when the use of the liquid fuel is selected by the fuel changeover switch, the liquid fuel is preferentially used. When the remaining amount of liquid fuel in the fuel tank 72 falls below a predetermined value, or when the use of gaseous fuel is selected by the fuel changeover switch, the gaseous fuel is preferentially used.
  • air-fuel ratio control of the present embodiment feedback control based on the deviation between the actual value (actual air-fuel ratio) of the air-fuel ratio and the target value (target air-fuel ratio) is performed.
  • the target air-fuel ratio is calculated based on the engine operating state (for example, engine speed and engine load), and the actual air-fuel ratio is calculated based on the detection value of the oxygen sensor 18a provided on the upstream side of the catalyst 19. calculate.
  • an air-fuel ratio feedback correction amount (hereinafter also referred to as “air-fuel ratio FB amount”) is calculated according to the deviation between the actual air-fuel ratio and the target air-fuel ratio, and the basic injection amount is corrected based on the calculated air-fuel ratio FB amount.
  • the basic injection amount is a fuel amount necessary for obtaining the target air-fuel ratio, and is calculated based on the intake air amount detected by the intake pipe pressure sensor 82 and the target air-fuel ratio, for example.
  • the air-fuel ratio FB amount is decreased by a predetermined amount when the air-fuel ratio detected by the oxygen sensor 18a is rich, while it is increased by a predetermined amount when it is lean. Further, when the air-fuel ratio detected by the oxygen sensor 18a is switched from rich to lean or from lean to rich, the air-fuel ratio FB amount is increased or decreased stepwise.
  • the controllability of the air-fuel ratio control is enhanced by adding a correction based on the detection value of the oxygen sensor 18b on the downstream side of the catalyst.
  • control unit 80 performs an abnormality diagnosis as to whether or not an abnormality has occurred in the fuel supply system and the ignition system of the engine 10 based on the combustion state of the engine 10 during the period in which the engine 10 is being operated. is doing.
  • the abnormality diagnosis based on the engine combustion state is carried out in each of the above. Then, the abnormal part is specified based on the determination results of two different fuels.
  • control unit 80 is a combustion parameter that is a parameter related to combustion of the engine 10 during a period in which the operation of the engine 10 is performed by combustion of one of the gaseous fuel and liquid fuel (fuel before switching). Get parameters. Further, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (first determination process). After the execution of the first determination process, this time, the used fuel is switched to the other fuel (switched fuel), and the combustion parameters in a state where the operation of the engine 10 is being performed by burning the other fuel are acquired. Further, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (second determination process). Based on the determination result of the first determination process and the result of the second determination process, whether or not there is an abnormality in the fuel supply system and the ignition system of the engine 10 is determined. It is going to be specified.
  • step S101 it is determined whether or not the engine 10 is being operated by burning one of the gaseous fuel and the liquid fuel.
  • the process proceeds to step S102, and it is determined whether or not the use fuel has been switched. If a negative determination is made, that is, before fuel switching, the process proceeds to step S103.
  • step S103 a parameter (combustion parameter) related to the combustion state of the engine 10 is acquired, and it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (first determination process).
  • the air-fuel ratio FB amount calculated by an air-fuel ratio feedback routine (not shown) is acquired as a combustion parameter, and the combustion state of the engine 10 is determined based on whether or not the acquired air-fuel ratio FB amount is within the control range. .
  • step S104 If the air-fuel ratio FB amount is within the control range, the process proceeds to step S104, and the first abnormality determination flag indicating the determination result of the first determination process is turned off. On the other hand, when the air-fuel ratio FB amount is out of the control range, the process proceeds to step S105, and the first abnormality determination flag is turned on. After the determination by the first determination process, the process proceeds to step S106, in which it is determined whether or not the fuel switch has been turned on (whether or not there has been a fuel switching request). If the fuel switch is ON, the process proceeds to step S107, and the fuel used for combustion of the engine 10 is switched from the pre-switching fuel that is currently in use to the post-switching fuel that is the other fuel (fuel switching means). .
  • step S108 a combustion parameter under the condition where the operation of the engine 10 is performed by combustion of the fuel after switching is acquired, and it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter. (Second determination process).
  • the air-fuel ratio FB amount is acquired as a combustion parameter, and the engine combustion state is determined based on whether or not the acquired air-fuel ratio FB amount is within the control range.
  • step S109 when the air-fuel ratio FB amount is within the control range, the process proceeds to step S109, and the second abnormality determination flag indicating the determination result of the second determination process is turned off.
  • step S110 when the air-fuel ratio FB amount is out of the control range, the process proceeds to step S110, and the second abnormality determination flag is turned on.
  • step S111 after a predetermined time has elapsed since the use of fuel was switched, the determination results of the first determination process and the second determination process, that is, the abnormality shown in FIG. 3 using the first abnormality determination flag and the second abnormality determination flag. Execute specific processing.
  • step S201 it is determined whether or not the first abnormality determination flag is on. If it is off, the process proceeds to step S202. In step S202, it is determined whether or not the second abnormality determination flag is on. If it is off, the process proceeds to step S203, and it is determined that the fuel supply system and the ignition system of the engine 10 are normal. On the other hand, if the second abnormality determination flag is ON, the process proceeds to step S204, and the fuel supply part of the pre-switching fuel is identified as an abnormal part.
  • the liquid fuel supply unit 70 is identified as the abnormal part.
  • the abnormality of the liquid fuel supply unit 70 include an injection abnormality of the second injection valve 22 and a malfunction of the fuel pump 73.
  • step S205 determines whether or not the second abnormality determination flag is on.
  • step S206 the fuel supply part of the pre-switching fuel is identified as an abnormal part.
  • the pre-switching fuel is gaseous fuel and the post-switching fuel is liquid fuel, and abnormal determination is made in the first determination process and normal determination is made in the second determination process, the gaseous fuel supply unit 40 is identified as an abnormal part. To do.
  • an abnormality of the gaseous fuel supply unit 40 for example, an injection abnormality of the first injection valve 21, a failure in which the opening of the tank main stop valve 44 or the shutoff valve 45 is restricted, and the closing of these valves 44 and 45 are restricted. A failure, a malfunction of the regulator 43, etc. are mentioned. If the second abnormality determination flag is ON in step S205, the process proceeds to step S207, and the ignition system part including the ignition circuit unit 20a and the ignition plug 20 of the engine 10 is specified as an abnormal part.
  • the reason for specifying an ignition system abnormality when both the first abnormality determination flag and the second abnormality determination flag are “on” is as follows. Combustion using gas fuel and liquid fuel are used when combustion abnormality is detected during combustion of one fuel and the combustion abnormality continues after switching to the other fuel. It can be determined that the combustion is not performed properly. Also, the fact that both combustion using gaseous fuel and combustion using liquid fuel are not appropriate means that there is an abnormality in the ignition system parts that are commonly used in the combustion, and the combustion of the fuel is properly performed due to the ignition system abnormality. There is a high possibility that it has not been implemented. Therefore, in the present embodiment, when both the first abnormality determination flag and the second abnormality determination flag are “on”, it is specified that the ignition system is abnormal.
  • the ignition system abnormality includes, for example, intermittent ignition, lack of ignition energy, and the like, and the cause thereof may be an energization failure of the ignition circuit unit 20a, a discharge failure of the spark plug 20, and the like.
  • step S208 to notify the driver that an abnormality has occurred in the engine combustion system by a lamp display or a message display.
  • the output of the engine 10 may be limited, the fuel supply unit may be switched to a normal fuel, and the like.
  • FIGS. 4 shows a case where an abnormality has occurred in the liquid fuel supply unit 70
  • FIG. 5 shows a case where an abnormality has occurred in the ignition system.
  • the air-fuel ratio FB amount is corrected to increase the fuel injection amount as shown in FIG. It is gradually changed to the increasing side (to the increasing side).
  • the air-fuel ratio FB amount becomes the upper limit guard value, and at time t11 after the state continues for a predetermined time, the first abnormality determination flag is switched from OFF to ON.
  • the liquid fuel injection by the second injection valve 22 is switched to the gaseous fuel injection by the first injection valve 21 (t12). Further, the air-fuel ratio FB amount is reset along with the fuel switching. At this time, if the gaseous fuel supply unit 40 is normal, an appropriate amount of gaseous fuel based on the command value is injected into the cylinder 16 from the first injection valve 21, and the air-fuel ratio FB amount becomes an appropriate value within the control range.
  • the engine 10 is based on the combustion parameters acquired within each period.
  • the determination result of abnormality diagnosis when using gaseous fuel if it is determined that there is an abnormality in the abnormality diagnosis at the time of combustion of any fuel, the determination result of abnormality diagnosis when using gaseous fuel, The configuration is such that the abnormal part is specified based on the determination result of the abnormality diagnosis when using the fuel. According to this configuration, since the diagnosis results for the two fuels are used, the abnormal part that causes the combustion abnormality can be specified according to the combination of the diagnosis results.
  • the first abnormality determination flag when the first abnormality determination flag is on and the second abnormality determination flag is on, it can be specified that the ignition system is abnormal. Further, when the first abnormality determination flag is on and the second abnormality determination flag is off, it can be specified that there is an abnormality in the fuel supply portion of the fuel before switching. Further, when the first abnormality determination flag is off and the second abnormality determination flag is on, it can be specified that there is an abnormality in the fuel supply portion of the fuel after switching.
  • the combustion parameter used in the abnormality diagnosis is the air-fuel ratio FB amount, and it is configured to determine whether the combustion state of the engine 10 is normal or abnormal based on the air-fuel ratio FB amount.
  • the second embodiment will be described focusing on differences from the first embodiment.
  • the ignition system part including the ignition circuit unit 20a and the ignition plug 20 of the engine 10 is specified as an abnormal part.
  • either the ignition system part or the intake system part of the engine 10 is specified as an abnormal part.
  • the intake system of the engine 10 is also a component that is commonly used in engine combustion, and that both combustion using gaseous fuel and combustion using liquid fuel are not appropriate means that the intake system component that is commonly used in those combustions This is because there is an abnormality in the intake system, and it is considered that fuel combustion is not properly performed due to the abnormality in the intake system.
  • the intake system abnormality for example, various components provided in the engine intake system such as the throttle valve 15, the actuator 15a, the throttle opening sensor 15b, the intake pipe pressure sensor 82, and an intake air temperature sensor (not shown) are normal. Includes abnormalities that operate in different modes.
  • the present embodiment is the same as the first embodiment described above in that the abnormality diagnosis process is performed according to the flowchart of FIG.
  • the flowchart of FIG. 6 is used as the abnormality specifying process in step S111 of FIG. Below, the abnormality identification process of this embodiment is demonstrated using FIG.
  • steps S301 to S305 the same processing as in steps S201 to S205 in FIG. 3 is performed. If the second abnormality determination flag is off in step S305, the process proceeds to step S306, and the fuel supply part of the pre-switching fuel is identified as an abnormal part. On the other hand, if the second abnormality determination flag is on, the process proceeds to step S307, and the common part of each fuel in the engine combustion is specified as an abnormal part.
  • an abnormality occurs in the ignition system part including the ignition circuit portion 20a and the ignition plug 20 of the engine 10 or the intake system part including the throttle valve 15, the actuator 15a, the throttle opening sensor 15b, and the intake pipe pressure sensor 82. Judge that there is. Then, this routine ends.
  • the second embodiment when it is determined that there is an abnormality in both the first determination process and the second determination process, it is determined that either an ignition system abnormality or an intake system abnormality of the engine 10 has occurred. It was. The fact that the combustion using gaseous fuel and the combustion using liquid fuel are both inappropriate is presumed to be an abnormality of the common parts used in common in the combustion. In addition to the ignition system parts, the common parts include intake system parts. Therefore, when the abnormality of the combustion state continues even when the fuel used is switched, the abnormal part is set to either the ignition system component or the intake system component.
  • the fuel changeover switch when the fuel changeover switch is operated, the fuel is switched from one fuel to the other fuel, and the second determination process is performed when the fuel is changed. Regardless of whether or not there is a configuration, the fuel used may be switched to the other fuel after the first determination process is completed, and the second determination process may be performed after the switching. In this case, before the fuel changeover switch is operated, it can be confirmed in advance whether or not there is an abnormality in the fuel supply portion of the fuel after the changeover.
  • the ignition device including the ignition plug 20 and the ignition circuit unit 20a is specified as the abnormal part.
  • the ignition device has failed or the gaseous fuel supply unit 40 and the liquid fuel supply It is determined that the simultaneous failure of the unit 70 has occurred. Failures in the gas fuel supply unit 40 and the liquid fuel supply unit 70 rarely occur, and even if the gas fuel supply unit 40 and the liquid fuel supply unit 70 fail simultaneously, it can be said that it is extremely rare. In this embodiment, such a rare case is taken into consideration to prevent a diagnosis failure.
  • a mode of change of the combustion parameter before fuel switching and a mode of change of the combustion parameter after fuel switching are further provided. Compare. It is set as the structure which identifies an abnormal site
  • the cause of the combustion abnormality is an ignition system abnormality
  • the mode of change of the combustion parameter before and after the fuel switching is the same. Specifically, for example, when the air-fuel ratio FB amount is reached, the lower limit guard value is maintained during combustion of one fuel, and when the fuel is switched thereafter, the air-fuel ratio is also maintained during combustion of the other fuel. The FB amount is held at the lower limit guard value. Considering this point and adopting the above-described configuration, it is possible to further improve the accuracy of identifying an abnormal site.
  • the first determination process and the second determination process are each performed once, and the abnormality diagnosis is performed based on the determination results.
  • the first determination process and the second determination process may be alternately performed a plurality of times, and an abnormality diagnosis may be performed based on the results of the plurality of times.
  • the air-fuel ratio FB amount is used as the combustion parameter, and it is configured to determine whether the combustion state of the engine 10 is normal or abnormal based on the air-fuel ratio FB amount. It is not limited to. For example, when the actual air-fuel ratio is controlled at the target air-fuel ratio by adjusting the intake air amount of the engine 10, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the correction amount of the intake air amount. Also good.
  • an abnormality when it is determined by the abnormality specifying process in FIG. 6 that an abnormality has occurred in either the ignition system component or the intake system component, an abnormality has occurred in either the ignition system component or the intake system component. You may implement the process which specifies whether it is.
  • the relationship between the throttle opening and the intake air amount is stored in advance. There is a method that is performed by determining whether or not it matches a certain relationship. Specifically, it is determined whether or not the intake pipe pressure detected by the intake pipe pressure sensor 82 matches the current throttle opening control amount. If the relationship between the throttle opening and the intake pipe pressure matches the relationship stored in advance, the intake system components are normal. Therefore, among the ignition system components and intake system components, the ignition system components are identified as abnormal parts. To do. On the other hand, if the relationship between the throttle opening and the intake pipe pressure does not match the relationship stored in advance, the intake system component is determined as an abnormal part.
  • the process of identifying which of the ignition system parts and the intake system parts is abnormal can be performed during the fuel cut.
  • the gaseous fuel has a larger volume per unit mass than the liquid fuel. Therefore, in the intake pipe pressure sensor 82, it is considered that not only the air in the intake pipe but also the gaseous fuel injected from the first injection valve 21 causes a detection error due to the influence of the injected fuel. Therefore, in the present embodiment, abnormality determination of intake system components is performed based on each sensor value during fuel cut that is not affected by gaseous fuel. Specifically, for example, the sensor value of the throttle opening and the sensor value of the intake air amount are acquired during the fuel cut, and the relationship between the throttle opening and the intake air amount matches the relationship stored in advance. A process of determining whether or not is performed. By adopting such a configuration, it is possible to identify an abnormal site with higher accuracy.
  • the abnormal part is either the ignition system part or the intake system part. Simultaneous failure may be considered. Although it can be said that an ignition system component and an intake system component fail at the same time in the engine 10 is an extremely rare case, it is possible to prevent a diagnosis omission by considering such a rare case.
  • an existing gasoline engine having only a fuel injection valve for gasoline injection as a fuel injection means may be changed to a system capable of injecting two types of fuel by installing a fuel supply unit for gaseous fuel.
  • the present invention can also be applied to such a system. Specifically, an injection pipe is connected to the tip of the first injection valve 21, and this injection pipe is provided in the intake pipe. The gaseous fuel ejected from the first injection valve 21 is injected into the intake port of the engine 10 through the injection pipe.
  • the gaseous fuel is CNG fuel, but other gaseous fuels that are gaseous in the standard state can also be used.
  • liquid fuel is not limited to gasoline fuel.
  • the present invention may be applied to a configuration in which a fuel injection system for gaseous fuel is mounted on a diesel engine using light oil as a liquid fuel for combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A control unit (80) executes a first determination process for determining whether the combustion state of an engine (10) is normal or abnormal during a period in which the engine (10) is operated on the basis of one fuel, said determination being made on the basis of the combustion parameters for that period. After the combustion state has been determined by the first determination process the fuel being used is switched from the one fuel to another fuel, and a second determination process is executed for determining whether the combustion state of the engine (10) is normal or abnormal during a period in which the engine (10) is operated on the basis of the other fuel, said determination being made on the basis of the combustion parameters for that period. When it is determined by the first determination process and/or the second determination process that the operating state of the engine is abnormal, the abnormal part is identified on the basis of the determination result from the first determination process and the determination result from the second determination process.

Description

内燃機関の異常診断装置Abnormality diagnosis device for internal combustion engine 関連出願の相互参照Cross-reference of related applications
 本発明は、2013年3月5日に出願された日本出願番号2013-43373号、及び2013年12月18日に出願された日本出願番号2013-261006号に基づくもので、ここにその記載内容を援用する。 The present invention is based on Japanese Application No. 2013-43373 filed on March 5, 2013 and Japanese Application No. 2013-261006 filed on December 18, 2013. Is used.
 本発明は、内燃機関の異常診断装置に関し、詳しくは気体燃料用と液体燃料用との2系統の燃料供給部を有する内燃機関の燃焼システムにおける異常診断装置に関する。 The present invention relates to an abnormality diagnosis device for an internal combustion engine, and more particularly to an abnormality diagnosis device for a combustion system of an internal combustion engine having two fuel supply units for gas fuel and liquid fuel.
 圧縮天然ガス(CNG)等の気体燃料を燃焼させて駆動する内燃機関が実用化されている。こうした内燃機関において、気体燃料を内燃機関の気筒内に供給する燃料供給部は、気体燃料を高圧状態で貯蔵するガスタンクと、気体燃料を噴射する燃料噴射弁と、ガスタンクと燃料噴射弁とを繋ぐ燃料配管の途中に設けられ、ガスタンクから供給される気体燃料の圧力を減圧調整する圧力調整弁と、圧力調整弁よりも上流側に設けられ、圧力調整弁に対する気体燃料の流通を遮断する遮断弁と、を備える。また、気体燃料の燃料供給部と液体燃料の燃料供給部とを備え、内燃機関の運転状態や燃料残量等に応じて気体燃料と液体燃料とを切り替えて使用する内燃機関の燃焼システムが知られている。 An internal combustion engine that is driven by burning gaseous fuel such as compressed natural gas (CNG) has been put into practical use. In such an internal combustion engine, a fuel supply unit that supplies gaseous fuel into a cylinder of the internal combustion engine connects a gas tank that stores the gaseous fuel in a high pressure state, a fuel injection valve that injects the gaseous fuel, and the gas tank and the fuel injection valve. A pressure adjustment valve that is provided in the middle of the fuel pipe and that depressurizes the pressure of the gaseous fuel supplied from the gas tank, and a shutoff valve that is provided upstream of the pressure adjustment valve and blocks the flow of the gaseous fuel to the pressure adjustment valve And comprising. Also known is a combustion system for an internal combustion engine that includes a fuel supply unit for gaseous fuel and a fuel supply unit for liquid fuel, and switches between gaseous fuel and liquid fuel according to the operating state of the internal combustion engine, the remaining amount of fuel, and the like. It has been.
 また従来、空燃比を目標空燃比とする空燃比フィードバック制御により燃料噴射量を補正するシステムにおいて、その補正量(空燃比フィードバック補正量)が正常範囲を逸脱したことを検出することにより、燃料系の異常を検出することが提案されている(例えば、特許文献1参照)。 Conventionally, in a system for correcting the fuel injection amount by air-fuel ratio feedback control in which the air-fuel ratio is the target air-fuel ratio, by detecting that the correction amount (air-fuel ratio feedback correction amount) has deviated from the normal range, It has been proposed to detect such abnormalities (see, for example, Patent Document 1).
特開2012-172603号公報 空燃比フィードバック補正量が正常範囲から外れる場合としては、燃料系の異常の他に点火系の異常も考えられる。具体的には、例えば点火エネルギの不足が原因で、内燃機関に供給された燃料の一部が未燃燃料として排出されている場合、空燃比リッチと判断されることに伴い、空燃比フィードバック補正量としては燃料減量側に変更される。しかしながら、上記特許文献1に記載の技術では燃料系の異常しか考慮されておらず、診断精度が低下することが懸念される。JP, 2012-172603, A As a case where the air-fuel ratio feedback correction amount is out of the normal range, there may be an abnormality in the ignition system in addition to an abnormality in the fuel system. Specifically, for example, when a part of the fuel supplied to the internal combustion engine is discharged as unburned fuel due to a shortage of ignition energy, the air-fuel ratio feedback correction is performed in accordance with the determination that the air-fuel ratio is rich. The amount is changed to the fuel reduction side. However, the technique described in Patent Document 1 only considers abnormality in the fuel system, and there is a concern that the diagnostic accuracy is lowered.
 本発明は上記課題を解決するためになされたものであり、気体燃料用と液体燃料用との2系統の燃料供給部を有する内燃機関の燃焼システムにおいて、内燃機関の燃焼状態に異常が生じた場合に異常部位を特定することができる内燃機関の異常診断装置を提供することを主たる目的とする。 The present invention has been made to solve the above-described problem, and an abnormality has occurred in the combustion state of the internal combustion engine in the combustion system of the internal combustion engine having two fuel supply portions for gas fuel and liquid fuel. It is a main object of the present invention to provide an abnormality diagnosis device for an internal combustion engine that can identify an abnormal part.
 本発明は、内燃機関の気筒内に気体燃料を供給する気体燃料供給部と、前記気筒内に液体燃料を供給する液体燃料供給部と、前記気体燃料の燃焼時と前記液体燃料の燃焼時で共通に用いられ前記気筒内に供給された燃料に着火する点火装置と、を備える内燃機関の燃焼システムに適用される異常診断装置に関する。本発明の異常診断装置は、前記気体燃料及び前記液体燃料のうち一方の燃料の燃焼により前記内燃機関の運転を実施している期間において、該期間での前記内燃機関の燃焼に関する燃焼パラメータに基づいて前記内燃機関の燃焼状態が正常か異常かを判定する第1判定手段と、前記第1判定手段による前記燃焼状態の判定後に、使用燃料を前記一方の燃料から他方の燃料に切り替える燃料切替手段と、前記燃料切替手段による燃料の切替後、前記他方の燃料の燃焼により前記内燃機関の運転を実施している期間において、該期間での前記燃焼パラメータに基づいて前記燃焼状態が正常か異常かを判定する第2判定手段と、前記第1判定手段及び前記第2判定手段の少なくともいずれかにより前記燃焼状態が異常であると判定された場合に、前記第1判定手段による判定結果と前記第2判定手段による判定結果とに基づいて異常部位を特定する異常特定手段と、を備える。 The present invention includes a gaseous fuel supply unit that supplies gaseous fuel into a cylinder of an internal combustion engine, a liquid fuel supply unit that supplies liquid fuel into the cylinder, a combustion time of the gaseous fuel, and a combustion time of the liquid fuel. The present invention relates to an abnormality diagnosis device applied to a combustion system of an internal combustion engine, which includes an ignition device that is used in common and ignites fuel supplied into the cylinder. The abnormality diagnosis device of the present invention is based on a combustion parameter related to combustion of the internal combustion engine during the period in which the operation of the internal combustion engine is performed by combustion of one of the gaseous fuel and the liquid fuel. First determination means for determining whether the combustion state of the internal combustion engine is normal or abnormal, and fuel switching means for switching the used fuel from the one fuel to the other fuel after the determination of the combustion state by the first determination means And whether the combustion state is normal or abnormal based on the combustion parameters during the period in which the internal combustion engine is operated by combustion of the other fuel after the fuel is switched by the fuel switching means. And when the combustion state is determined to be abnormal by at least one of the second determination means, the first determination means, and the second determination means. And a abnormality identifying means for identifying the abnormal region based on the determination result by the determination result and the second determination means according to the first determination means.
 上記構成では、気体燃料の燃焼により内燃機関の運転を実施している期間と、液体燃料の燃焼により内燃機関の運転を実施している期間とのそれぞれにおいて、各期間内で取得した燃焼パラメータに基づいて燃焼システム(噴射供給系及び点火系)についての異常診断を実施する。また、いずれかの燃料の燃焼時における異常診断で異常有りと判断された場合には、気体燃料の使用時における異常診断の判定結果と、液体燃料の使用時における異常診断の判定結果とに基づいて異常部位を特定する。いずれか一方の診断結果のみでは、現在発生している燃焼異常が、燃料供給系の異常に起因するものか、それとも点火系の異常に起因するものかを特定できない。上記構成によれば、2つの燃料についての診断結果を用いることから、その診断結果の組み合わせの態様に応じて、燃焼異常の原因となっている異常部位を特定することができる。 In the above-described configuration, the combustion parameters acquired in each period are set in each of the period in which the operation of the internal combustion engine is performed by combustion of gaseous fuel and the period in which the operation of the internal combustion engine is performed by combustion of liquid fuel. Based on this, abnormality diagnosis for the combustion system (injection supply system and ignition system) is performed. In addition, when it is determined that there is an abnormality in the abnormality diagnosis at the time of combustion of any fuel, based on the determination result of the abnormality diagnosis when using the gaseous fuel and the determination result of the abnormality diagnosis when using the liquid fuel To identify the abnormal part. Only one of the diagnosis results cannot identify whether the currently occurring combustion abnormality is caused by a fuel supply system abnormality or an ignition system abnormality. According to the above configuration, since the diagnosis results for the two fuels are used, it is possible to identify an abnormal region that causes the combustion abnormality according to the combination of the diagnosis results.
  本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
エンジン燃焼システムの全体概略構成図。 異常診断処理の処理手順を示すフローチャート。 異常特定処理の処理手順を示すフローチャート。 液体燃料供給部の異常時での異常診断の実施態様を表すタイムチャート。 点火系異常の発生時における異常診断の実施態様を表すタイムチャート。 第2実施形態における異常特定処理の処理手順を示すフローチャート。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is an overall schematic configuration diagram of an engine combustion system. The flowchart which shows the process sequence of an abnormality diagnosis process. The flowchart which shows the process sequence of an abnormality specific process. The time chart showing the embodiment of the abnormality diagnosis at the time of abnormality of a liquid fuel supply part. The time chart showing the embodiment of the abnormality diagnosis at the time of generation | occurrence | production of ignition system abnormality. The flowchart which shows the process sequence of the abnormality specific process in 2nd Embodiment.
 (第1実施形態)
 以下、第1実施形態について図面を参照しつつ説明する。本実施形態は、気体燃料である圧縮天然ガス(CNG)と液体燃料であるガソリンとを燃焼用の燃料として使用する、いわゆるバイフューエルタイプの車載多気筒エンジン(多気筒内燃機関)に適用される燃焼システムとして具体化されている。本システムの全体概略図を図1に示す。
(First embodiment)
The first embodiment will be described below with reference to the drawings. The present embodiment is applied to a so-called bi-fuel type on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) that uses compressed natural gas (CNG) that is gaseous fuel and gasoline that is liquid fuel as combustion fuel. It is embodied as a combustion system. An overall schematic diagram of this system is shown in FIG.
 図1に示すエンジン10は、多気筒(例えば直列3気筒)の火花点火式エンジンよりなり、その吸気ポートには吸気マニホールド12を介して吸気管11が接続されており、排気ポートには排気マニホールド13を介して排気管14が接続されている。吸気管11には、空気量調整手段としてのスロットル弁15が設けられている。このスロットル弁15は、DCモータ等のアクチュエータ15aにより開度調節される電子制御式のスロットル弁として構成されている。スロットル弁15の開度(スロットル開度)は、アクチュエータ15aに内蔵されたスロットル開度センサ15bにより検出される。 An engine 10 shown in FIG. 1 is a multi-cylinder (for example, in-line three-cylinder) spark ignition engine, and an intake pipe 11 is connected to an intake port via an intake manifold 12, and an exhaust manifold is connected to an exhaust port. An exhaust pipe 14 is connected via 13. The intake pipe 11 is provided with a throttle valve 15 as air amount adjusting means. The throttle valve 15 is configured as an electronically controlled throttle valve whose opening degree is adjusted by an actuator 15a such as a DC motor. The opening (throttle opening) of the throttle valve 15 is detected by a throttle opening sensor 15b built in the actuator 15a.
 排気管14には、排気の成分を検出する排気センサと、排気を浄化する触媒19とが設けられている。排気センサとしては、排気中の酸素濃度に応じた検出信号を出力する酸素センサ18a,18bが触媒19の上流側及び下流側にそれぞれ設けられている。 The exhaust pipe 14 is provided with an exhaust sensor for detecting exhaust components and a catalyst 19 for purifying the exhaust. As the exhaust sensors, oxygen sensors 18 a and 18 b that output detection signals corresponding to the oxygen concentration in the exhaust are provided on the upstream side and the downstream side of the catalyst 19, respectively.
 エンジン10の吸気ポート及び排気ポートには、気筒16内に導入される空気量を調整する機関バルブとしての吸気バルブ25及び排気バルブ26がそれぞれ設けられている。吸気バルブ25の開動作により空気と燃料との混合気が気筒16内に導入され、排気バルブ26の開動作により燃焼後の排気が排気通路に排出される。 The intake port and the exhaust port of the engine 10 are respectively provided with an intake valve 25 and an exhaust valve 26 as engine valves for adjusting the amount of air introduced into the cylinder 16. The air-fuel mixture is introduced into the cylinder 16 by the opening operation of the intake valve 25, and the exhaust gas after combustion is discharged into the exhaust passage by the opening operation of the exhaust valve 26.
 エンジン10の各気筒16には点火プラグ20が設けられている。点火プラグ20には、点火コイル等よりなる点火回路部20aを通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ20の対向電極間に火花放電が発生し、気筒16内に供給された燃料が着火され燃焼に供される。なお、点火プラグ20及び点火回路部20aにより点火装置が構成されており、当該点火装置は、気体燃料の燃焼時と液体燃料の燃焼時で共通の構成部品となっている。 A spark plug 20 is provided in each cylinder 16 of the engine 10. A high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition circuit unit 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel supplied into the cylinder 16 is ignited and used for combustion. The ignition plug 20 and the ignition circuit unit 20a constitute an ignition device, and the ignition device is a common component for the combustion of gaseous fuel and the combustion of liquid fuel.
 本システムには、エンジン10の各気筒16に対して燃料を供給する燃料供給部として、気体燃料(CNG燃料)を供給する気体燃料供給部40と、液体燃料(ガソリン)を供給する液体燃料供給部70とが設けられている。 In this system, as a fuel supply unit that supplies fuel to each cylinder 16 of the engine 10, a gas fuel supply unit 40 that supplies gaseous fuel (CNG fuel) and a liquid fuel supply that supplies liquid fuel (gasoline). Part 70 is provided.
 気体燃料供給部40は、気体燃料を噴射する第1噴射弁21を備えており、第1噴射弁21の噴射により気体燃料が各気筒16の吸気ポートに供給される。第1噴射弁21には、ガス配管41を介してガスタンク42が接続されており、ガス配管41の途中に、第1噴射弁21に供給される気体燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ43が設けられている。レギュレータ43は、ガスタンク42内に貯蔵された高圧状態(例えば最大20MPa)の気体燃料を、機械的に定められた圧力値(例えば0.3~0.4MPa)に減圧調整するものである。減圧調整後の気体燃料は、ガス配管41を通って第1噴射弁21に供給される。 The gaseous fuel supply unit 40 includes a first injection valve 21 that injects gaseous fuel, and the gaseous fuel is supplied to the intake port of each cylinder 16 by the injection of the first injection valve 21. A gas tank 42 is connected to the first injection valve 21 via a gas pipe 41, and a pressure adjustment function for adjusting the pressure of the gaseous fuel supplied to the first injection valve 21 is reduced in the middle of the gas pipe 41. A regulator 43 is provided. The regulator 43 adjusts the pressure of a gaseous fuel in a high pressure state (for example, a maximum of 20 MPa) stored in the gas tank 42 to a mechanically determined pressure value (for example, 0.3 to 0.4 MPa). The gaseous fuel after the decompression adjustment is supplied to the first injection valve 21 through the gas pipe 41.
 ガス配管41等により形成される燃料通路には更に、ガスタンク42の燃料出口の付近に配置されたタンク主止弁44と、タンク主止弁44よりも下流側であってレギュレータ43の燃料入口の付近に配置された遮断弁45とが設けられている。これら各弁44,45によって、ガス配管41における気体燃料の流通が許容及び遮断される。タンク主止弁44及び遮断弁45はいずれも電磁式の開閉弁であり、非通電時に気体燃料の流通を遮断し、通電時に気体燃料の流通を許容する常閉式となっている。 The fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 disposed in the vicinity of the fuel outlet of the gas tank 42 and a fuel inlet of the regulator 43 that is downstream of the tank main stop valve 44. A shut-off valve 45 disposed in the vicinity is provided. These valves 44 and 45 allow and block the flow of gaseous fuel in the gas pipe 41. Both the tank main stop valve 44 and the shutoff valve 45 are electromagnetic on-off valves, and are normally closed types that shut off the flow of gaseous fuel when not energized and allow the flow of gaseous fuel when energized.
 レギュレータ43には、減圧調整前の燃料圧力を検出する圧力センサ46が一体に設けられており、レギュレータ43の下流側のガス配管41には、噴射圧を検出する圧力センサ47と、ガス配管41内の気体燃料の温度を検出する温度センサ48とが設けられている。なお、第1噴射弁21、ガス配管41、ガスタンク42等によって気体燃料供給部40が構成されている。 The regulator 43 is integrally provided with a pressure sensor 46 that detects a fuel pressure before pressure reduction adjustment. A gas pipe 41 on the downstream side of the regulator 43 includes a pressure sensor 47 that detects an injection pressure, and a gas pipe 41. A temperature sensor 48 for detecting the temperature of the gaseous fuel is provided. A gaseous fuel supply unit 40 is configured by the first injection valve 21, the gas pipe 41, the gas tank 42, and the like.
 液体燃料供給部70は、液体燃料を噴射する第2噴射弁22を備えており、第2噴射弁22の噴射により液体燃料が各気筒16の吸気ポートに供給される。第2噴射弁22には、燃料配管71を介して燃料タンク72が接続されている。燃料配管71には、燃料タンク72内の液体燃料を第2噴射弁22に給送する燃料ポンプ73が設けられている。 The liquid fuel supply unit 70 includes a second injection valve 22 that injects liquid fuel, and the liquid fuel is supplied to the intake port of each cylinder 16 by the injection of the second injection valve 22. A fuel tank 72 is connected to the second injection valve 22 via a fuel pipe 71. The fuel pipe 71 is provided with a fuel pump 73 that feeds the liquid fuel in the fuel tank 72 to the second injection valve 22.
 制御部80は、CPU、ROM、RAM、バックアップRAM等を備えており、ROMに記憶された各種の制御プログラムを実行することで、都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。具体的には、制御部80は、上述した各種センサや、本システムに設けられたその他のセンサ類(クランク角センサ81、吸気管圧力センサ82、冷却水温センサ83、車速センサ等)と電気的に接続されており、これらのセンサからの出力(検出信号)が入力される。また、制御部80は、点火回路部20a、各噴射弁21,22等の駆動部と電気的に接続されており、駆動信号を各駆動部に向けて出力することにより各駆動部の駆動を制御する。 The control unit 80 includes a CPU, a ROM, a RAM, a backup RAM, and the like, and executes various control programs stored in the ROM, thereby performing various controls of the engine 10 according to each engine operating state. . Specifically, the control unit 80 is electrically connected to the various sensors described above and other sensors (crank angle sensor 81, intake pipe pressure sensor 82, cooling water temperature sensor 83, vehicle speed sensor, etc.) provided in the system. The outputs (detection signals) from these sensors are input. Further, the control unit 80 is electrically connected to driving units such as the ignition circuit unit 20a and the injection valves 21 and 22, and drives each driving unit by outputting a driving signal to each driving unit. Control.
 点火回路部20aや各噴射弁21,22等の駆動部には、制御部80から駆動信号が入力されるようになっており、その入力した駆動信号に応じて各駆動部が駆動される。具体的には、点火回路部20aは、制御部80からの点火信号に応じて高電圧を出力し点火プラグ20に点火火花を生じさせる。第1噴射弁21は、制御部80からの噴射信号に応じた量の気体燃料を吸気ポートに噴射し、第2噴射弁22は、制御部80からの噴射信号に応じた量の液体燃料を吸気ポートに噴射する。 A drive signal is input from the control unit 80 to the drive unit such as the ignition circuit unit 20a and each of the injection valves 21 and 22, and each drive unit is driven according to the input drive signal. Specifically, the ignition circuit unit 20a outputs a high voltage according to the ignition signal from the control unit 80, and causes the spark plug 20 to generate an ignition spark. The first injection valve 21 injects an amount of gaseous fuel according to the injection signal from the control unit 80 into the intake port, and the second injection valve 22 outputs an amount of liquid fuel according to the injection signal from the control unit 80. Inject into the intake port.
 制御部80は、エンジン運転状態やタンク内の燃料残量、運転者によって操作される図示しない燃料切替スイッチからの入力信号等に応じて、使用燃料を選択的に切り替えている。具体的には、ガスタンク42内の気体燃料の残存量が所定値を下回った場合又は燃料切替スイッチにより液体燃料の使用が選択されている場合には、液体燃料を優先的に使用する。燃料タンク72内の液体燃料の残存量が所定値を下回った場合又は燃料切替スイッチにより気体燃料の使用が選択されている場合には、気体燃料を優先的に使用する。 The control unit 80 selectively switches the fuel to be used according to the engine operating state, the fuel remaining amount in the tank, an input signal from a fuel changeover switch (not shown) operated by the driver, and the like. Specifically, when the remaining amount of gaseous fuel in the gas tank 42 falls below a predetermined value or when the use of the liquid fuel is selected by the fuel changeover switch, the liquid fuel is preferentially used. When the remaining amount of liquid fuel in the fuel tank 72 falls below a predetermined value, or when the use of gaseous fuel is selected by the fuel changeover switch, the gaseous fuel is preferentially used.
 本実施形態の空燃比制御では、空燃比の実際値(実空燃比)と目標値(目標空燃比)との偏差に基づくフィードバック制御を実施している。具体的には、エンジン運転状態(例えばエンジン回転速度及びエンジン負荷)に基づいて目標空燃比を算出するとともに、触媒19の上流側に設けられた酸素センサ18aの検出値に基づいて実空燃比を算出する。そして、実空燃比と目標空燃比との偏差に応じて空燃比フィードバック補正量(以下、「空燃比FB量」ともいう。)を算出し、その算出した空燃比FB量により基本噴射量を補正することで実空燃比を目標空燃比に一致させるようにしている。ここで、基本噴射量は目標空燃比を得るために必要な燃料量であり、例えば吸気管圧力センサ82により検出された吸入空気量と目標空燃比とに基づいて算出される。空燃比FB量は、酸素センサ18aにより検出される空燃比がリッチである場合には所定量ずつ減量され、一方、リーンである場合には所定量ずつ増量される。また、酸素センサ18aにより検出される空燃比がリッチからリーンへ、又はリーンからリッチへ切り替わった場合には、空燃比FB量が階段状に増減される。なお、本システムの空燃比フィードバック制御では、触媒下流側の酸素センサ18bの検出値に基づく補正を加えることにより、空燃比制御の制御性を高めるようにしている。 In the air-fuel ratio control of the present embodiment, feedback control based on the deviation between the actual value (actual air-fuel ratio) of the air-fuel ratio and the target value (target air-fuel ratio) is performed. Specifically, the target air-fuel ratio is calculated based on the engine operating state (for example, engine speed and engine load), and the actual air-fuel ratio is calculated based on the detection value of the oxygen sensor 18a provided on the upstream side of the catalyst 19. calculate. Then, an air-fuel ratio feedback correction amount (hereinafter also referred to as “air-fuel ratio FB amount”) is calculated according to the deviation between the actual air-fuel ratio and the target air-fuel ratio, and the basic injection amount is corrected based on the calculated air-fuel ratio FB amount. By doing so, the actual air-fuel ratio is made to coincide with the target air-fuel ratio. Here, the basic injection amount is a fuel amount necessary for obtaining the target air-fuel ratio, and is calculated based on the intake air amount detected by the intake pipe pressure sensor 82 and the target air-fuel ratio, for example. The air-fuel ratio FB amount is decreased by a predetermined amount when the air-fuel ratio detected by the oxygen sensor 18a is rich, while it is increased by a predetermined amount when it is lean. Further, when the air-fuel ratio detected by the oxygen sensor 18a is switched from rich to lean or from lean to rich, the air-fuel ratio FB amount is increased or decreased stepwise. In the air-fuel ratio feedback control of this system, the controllability of the air-fuel ratio control is enhanced by adding a correction based on the detection value of the oxygen sensor 18b on the downstream side of the catalyst.
 また、制御部80は、エンジン10の運転を実施している期間でのエンジン10の燃焼状態に基づいて、エンジン10の燃料供給系及び点火系に異常が生じているか否かの異常診断を実施している。特に本実施形態では、第1噴射弁21による気体燃料の噴射によりエンジン10の運転を実施している期間と、第2噴射弁22による液体燃料の噴射によりエンジン10の運転を実施している期間との各々でエンジン燃焼状態に基づく異常診断を実施する。そして、異なる2つの燃料の判定結果に基づいて異常部位を特定することとしている。 Further, the control unit 80 performs an abnormality diagnosis as to whether or not an abnormality has occurred in the fuel supply system and the ignition system of the engine 10 based on the combustion state of the engine 10 during the period in which the engine 10 is being operated. is doing. In particular, in the present embodiment, a period during which the engine 10 is operated by the gaseous fuel injection by the first injection valve 21 and a period during which the engine 10 is operated by the liquid fuel injection by the second injection valve 22. The abnormality diagnosis based on the engine combustion state is carried out in each of the above. Then, the abnormal part is specified based on the determination results of two different fuels.
 より具体的には、制御部80は、気体燃料及び液体燃料のうち一方の燃料(切替前燃料)の燃焼によりエンジン10の運転を実施している期間において、エンジン10の燃焼に関するパラメータである燃焼パラメータを取得する。また、その取得した燃焼パラメータに基づいて、エンジン10の燃焼状態が正常か異常かを判定する(第1判定処理)。第1判定処理の実施後、今度は使用燃料を他方の燃料(切替後燃料)に切り替え、その他方の燃料の燃焼によりエンジン10の運転を実施している状態での燃焼パラメータを取得する。また、その取得した燃焼パラメータに基づいて、エンジン10の燃焼状態が正常か異常かを判定する(第2判定処理)。そして、第1判定処理の判定結果と、第2判定処理の結果とに基づいて、エンジン10の燃料供給系及び点火系における異常の有無を判断するとともに、異常有りの場合にはその異常部位を特定することとしている。 More specifically, the control unit 80 is a combustion parameter that is a parameter related to combustion of the engine 10 during a period in which the operation of the engine 10 is performed by combustion of one of the gaseous fuel and liquid fuel (fuel before switching). Get parameters. Further, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (first determination process). After the execution of the first determination process, this time, the used fuel is switched to the other fuel (switched fuel), and the combustion parameters in a state where the operation of the engine 10 is being performed by burning the other fuel are acquired. Further, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (second determination process). Based on the determination result of the first determination process and the result of the second determination process, whether or not there is an abnormality in the fuel supply system and the ignition system of the engine 10 is determined. It is going to be specified.
 次に、本実施形態の異常診断処理について図2のフローチャートを用いて説明する。この処理は、制御部80により所定周期毎に実行される。 Next, the abnormality diagnosis process of the present embodiment will be described using the flowchart of FIG. This process is executed by the control unit 80 at predetermined intervals.
 ステップS101では、気体燃料及び液体燃料のうちいずれか一方の燃料の燃焼によってエンジン10の運転実施中か否かを判定する。エンジン運転の実施中の場合にはステップS102へ進み、使用燃料の切り替えを実施した後であるか否かを判定する。否定判定された場合、つまり燃料切替前であればステップS103へ進む。 In step S101, it is determined whether or not the engine 10 is being operated by burning one of the gaseous fuel and the liquid fuel. When the engine operation is being performed, the process proceeds to step S102, and it is determined whether or not the use fuel has been switched. If a negative determination is made, that is, before fuel switching, the process proceeds to step S103.
 ステップS103では、エンジン10の燃焼状態に関するパラメータ(燃焼パラメータ)を取得し、その取得した燃焼パラメータに基づいてエンジン10の燃焼状態が正常か異常かを判定する(第1判定処理)。本実施形態では、図示しない空燃比フィードバックルーチンで算出した空燃比FB量を燃焼パラメータとして取得し、その取得した空燃比FB量が制御範囲内であるか否かによってエンジン10の燃焼状態を判定する。 In step S103, a parameter (combustion parameter) related to the combustion state of the engine 10 is acquired, and it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter (first determination process). In this embodiment, the air-fuel ratio FB amount calculated by an air-fuel ratio feedback routine (not shown) is acquired as a combustion parameter, and the combustion state of the engine 10 is determined based on whether or not the acquired air-fuel ratio FB amount is within the control range. .
 空燃比FB量が制御範囲内にある場合にはステップS104へ進み、第1判定処理の判定結果を表す第1異常判定フラグをオフにする。一方、空燃比FB量が制御範囲から外れている場合にはステップS105へ進み、第1異常判定フラグをオンにする。第1判定処理による判定後、ステップS106へ進み、燃料切替スイッチがオンになったか否か(燃料の切替要求があったか否か)を判定する。燃料切替スイッチONの場合にはステップS107へ進み、エンジン10の燃焼に使用する燃料を、現在使用中の燃料である切替前燃料から、他方の燃料である切替後燃料に切り替える(燃料切替手段)。 If the air-fuel ratio FB amount is within the control range, the process proceeds to step S104, and the first abnormality determination flag indicating the determination result of the first determination process is turned off. On the other hand, when the air-fuel ratio FB amount is out of the control range, the process proceeds to step S105, and the first abnormality determination flag is turned on. After the determination by the first determination process, the process proceeds to step S106, in which it is determined whether or not the fuel switch has been turned on (whether or not there has been a fuel switching request). If the fuel switch is ON, the process proceeds to step S107, and the fuel used for combustion of the engine 10 is switched from the pre-switching fuel that is currently in use to the post-switching fuel that is the other fuel (fuel switching means). .
 ステップS102で肯定判定されるとステップS108へ進む。ステップS108では、切替後燃料の燃焼によりエンジン10の運転を実施している状況下での燃焼パラメータを取得し、その取得した燃焼パラメータに基づいてエンジン10の燃焼状態が正常か異常かを判定する(第2判定処理)。第2判定処理では、第1判定処理と同様、空燃比FB量を燃焼パラメータとして取得し、その取得した空燃比FB量が制御範囲内であるか否かによってエンジン燃焼状態を判定する。 If a positive determination is made in step S102, the process proceeds to step S108. In step S108, a combustion parameter under the condition where the operation of the engine 10 is performed by combustion of the fuel after switching is acquired, and it is determined whether the combustion state of the engine 10 is normal or abnormal based on the acquired combustion parameter. (Second determination process). In the second determination process, similarly to the first determination process, the air-fuel ratio FB amount is acquired as a combustion parameter, and the engine combustion state is determined based on whether or not the acquired air-fuel ratio FB amount is within the control range.
 第2判定処理において、空燃比FB量が制御範囲内にある場合にはステップS109へ進み、第2判定処理の判定結果を表す第2異常判定フラグをオフにする。一方、空燃比FB量が制御範囲から外れている場合にはステップS110へ進み、第2異常判定フラグをオンにする。ステップS111では、使用燃料を切り替えてから所定時間が経過した後、第1判定処理及び第2判定処理による判定結果、つまり第1異常判定フラグ及び第2異常判定フラグを用いて図3に示す異常特定処理を実行する。 In the second determination process, when the air-fuel ratio FB amount is within the control range, the process proceeds to step S109, and the second abnormality determination flag indicating the determination result of the second determination process is turned off. On the other hand, when the air-fuel ratio FB amount is out of the control range, the process proceeds to step S110, and the second abnormality determination flag is turned on. In step S111, after a predetermined time has elapsed since the use of fuel was switched, the determination results of the first determination process and the second determination process, that is, the abnormality shown in FIG. 3 using the first abnormality determination flag and the second abnormality determination flag. Execute specific processing.
 図3において、ステップS201では、第1異常判定フラグがオンであるか否かを判定し、オフである場合にはステップS202へ進む。ステップS202では、第2異常判定フラグがオンであるか否かを判定する。オフの場合には、ステップS203へ進み、エンジン10の燃料供給系及び点火系は正常である旨判定する。一方、第2異常判定フラグがオンの場合にはステップS204へ進み、切替前燃料の燃料供給部を異常部位と特定する。例えば、切替前燃料が気体燃料、切替後燃料が液体燃料であって、第1判定処理で正常判定、第2判定処理で異常判定された場合には、液体燃料供給部70を異常部位と特定する。この液体燃料供給部70の異常としては、例えば第2噴射弁22の噴射異常、燃料ポンプ73の作動不良等が挙げられる。 In FIG. 3, in step S201, it is determined whether or not the first abnormality determination flag is on. If it is off, the process proceeds to step S202. In step S202, it is determined whether or not the second abnormality determination flag is on. If it is off, the process proceeds to step S203, and it is determined that the fuel supply system and the ignition system of the engine 10 are normal. On the other hand, if the second abnormality determination flag is ON, the process proceeds to step S204, and the fuel supply part of the pre-switching fuel is identified as an abnormal part. For example, when the pre-switching fuel is gaseous fuel and the post-switching fuel is liquid fuel, if the normal determination is made in the first determination process and the abnormal determination is made in the second determination process, the liquid fuel supply unit 70 is identified as the abnormal part. To do. Examples of the abnormality of the liquid fuel supply unit 70 include an injection abnormality of the second injection valve 22 and a malfunction of the fuel pump 73.
 一方、第1異常判定フラグがオンの場合にはステップS205へ進み、第2異常判定フラグがオンであるか否かを判定する。第2異常判定フラグがオフの場合、ステップS206へ進み、切替前燃料の燃料供給部を異常部位と特定する。例えば、切替前燃料が気体燃料、切替後燃料が液体燃料であって、第1判定処理で異常判定、第2判定処理で正常判定された場合には、気体燃料供給部40を異常部位と特定する。この気体燃料供給部40の異常としては、例えば第1噴射弁21の噴射異常、タンク主止弁44又は遮断弁45の開きが制限される故障、それら各弁44,45の閉じが制限される故障、レギュレータ43の作動不良等が挙げられる。また、ステップS205で第2異常判定フラグがオンである場合にはステップS207へ進み、エンジン10の点火回路部20a及び点火プラグ20を含む点火系部品を異常部位と特定する。 On the other hand, if the first abnormality determination flag is on, the process proceeds to step S205 to determine whether or not the second abnormality determination flag is on. When the second abnormality determination flag is off, the process proceeds to step S206, and the fuel supply part of the pre-switching fuel is identified as an abnormal part. For example, when the pre-switching fuel is gaseous fuel and the post-switching fuel is liquid fuel, and abnormal determination is made in the first determination process and normal determination is made in the second determination process, the gaseous fuel supply unit 40 is identified as an abnormal part. To do. As an abnormality of the gaseous fuel supply unit 40, for example, an injection abnormality of the first injection valve 21, a failure in which the opening of the tank main stop valve 44 or the shutoff valve 45 is restricted, and the closing of these valves 44 and 45 are restricted. A failure, a malfunction of the regulator 43, etc. are mentioned. If the second abnormality determination flag is ON in step S205, the process proceeds to step S207, and the ignition system part including the ignition circuit unit 20a and the ignition plug 20 of the engine 10 is specified as an abnormal part.
 第1異常判定フラグ及び第2異常判定フラグが共に「オン」の場合に点火系異常と特定する理由は以下の通りである。一方の燃料の燃焼によりエンジン運転を実施している期間に燃焼異常が検出され、またその燃焼異常が他方の燃料に切り替えた後にも継続した場合、気体燃料を用いた燃焼と液体燃料を用いた燃焼とが共に適正に行われていない状況であると判断できる。また、気体燃料を用いた燃焼と液体燃料を用いた燃焼とが共に適正でないということは、それらの燃焼に際し共通に用いられる点火系部品に異常があり、点火系異常によって燃料の燃焼が適正に実施されていない可能性が高い。そこで本実施形態では、第1異常判定フラグ及び第2異常判定フラグが共に「オン」の場合には点火系異常であると特定する。なお、点火系異常としては、例えば間欠的な着火、点火エネルギの不足等が含まれ、これらの原因としては点火回路部20aの通電不良、点火プラグ20の放電不良等が考えられる。 The reason for specifying an ignition system abnormality when both the first abnormality determination flag and the second abnormality determination flag are “on” is as follows. Combustion using gas fuel and liquid fuel are used when combustion abnormality is detected during combustion of one fuel and the combustion abnormality continues after switching to the other fuel. It can be determined that the combustion is not performed properly. Also, the fact that both combustion using gaseous fuel and combustion using liquid fuel are not appropriate means that there is an abnormality in the ignition system parts that are commonly used in the combustion, and the combustion of the fuel is properly performed due to the ignition system abnormality. There is a high possibility that it has not been implemented. Therefore, in the present embodiment, when both the first abnormality determination flag and the second abnormality determination flag are “on”, it is specified that the ignition system is abnormal. Note that the ignition system abnormality includes, for example, intermittent ignition, lack of ignition energy, and the like, and the cause thereof may be an energization failure of the ignition circuit unit 20a, a discharge failure of the spark plug 20, and the like.
 燃料システムの異常の有無の判定及び異常部位の特定が終了すると、ステップS208へ進み、エンジン燃焼システムに異常が発生している旨をランプ表示やメッセージ表示等で運転者に通知する。また、上記通知と共に、エンジン10の出力制限、燃料供給部が正常な燃料への切り替え等を実施してもよい。 When the determination of the presence / absence of abnormality of the fuel system and the identification of the abnormal part are completed, the process proceeds to step S208 to notify the driver that an abnormality has occurred in the engine combustion system by a lamp display or a message display. In addition to the above notification, the output of the engine 10 may be limited, the fuel supply unit may be switched to a normal fuel, and the like.
 次に、本実施形態の異常診断処理の具体的態様を図4及び図5のタイムチャートを用いて説明する。図4は、液体燃料供給部70に異常が発生した場合について、図5は、点火系異常が発生した場合について示している。 Next, a specific aspect of the abnormality diagnosis process of the present embodiment will be described using the time charts of FIGS. 4 shows a case where an abnormality has occurred in the liquid fuel supply unit 70, and FIG. 5 shows a case where an abnormality has occurred in the ignition system.
 まず、液体燃料を用いてエンジン10の運転を行っている期間に、例えば第2噴射弁22でデポジット等による詰まり異常が生じ、第2噴射弁22による液体燃料の噴射量が継続的に制限された状態になったと仮定する。この場合、気筒16内に供給される燃料量が指令値よりも少ないこと(空燃比のリーン化)に起因して、図4に示すように、空燃比FB量が、燃料噴射量を増量補正する側に(増大側に)徐々に変更される。やがて空燃比FB量が上限ガード値となり、その状態が所定時間継続した後の時刻t11で、第1異常判定フラグがオフからオンに切り替えられる。 First, during the operation of the engine 10 using liquid fuel, for example, a clogging abnormality due to deposit or the like occurs in the second injection valve 22, and the amount of liquid fuel injected by the second injection valve 22 is continuously limited. Assuming that In this case, due to the amount of fuel supplied into the cylinder 16 being smaller than the command value (air-fuel ratio leaning), the air-fuel ratio FB amount is corrected to increase the fuel injection amount as shown in FIG. It is gradually changed to the increasing side (to the increasing side). Eventually, the air-fuel ratio FB amount becomes the upper limit guard value, and at time t11 after the state continues for a predetermined time, the first abnormality determination flag is switched from OFF to ON.
 その後、燃料切替スイッチの操作に伴い燃料の切替指令が入力されると、第2噴射弁22による液体燃料の噴射から第1噴射弁21による気体燃料の噴射に切り替えられる(t12)。また、燃料の切り替えに伴い空燃比FB量がリセットされる。このとき、気体燃料供給部40が正常であれば、気筒16内には第1噴射弁21により指令値に基づく適正量の気体燃料が噴射され、空燃比FB量が制御範囲内の適正値を示し、第2異常判定フラグはオフのままにされる。また、燃料切り替えから所定時間が経過した後の診断タイミングt13での第1異常判定フラグ及び第2異常判定フラグが参照される。そして、第1異常判定フラグ=オン、第2異常判定フラグ=オフであることに基づき、燃焼システムに異常有りと特定されるとともに、液体燃料供給部70が異常部位として特定される。 Thereafter, when a fuel switching command is input in accordance with the operation of the fuel switch, the liquid fuel injection by the second injection valve 22 is switched to the gaseous fuel injection by the first injection valve 21 (t12). Further, the air-fuel ratio FB amount is reset along with the fuel switching. At this time, if the gaseous fuel supply unit 40 is normal, an appropriate amount of gaseous fuel based on the command value is injected into the cylinder 16 from the first injection valve 21, and the air-fuel ratio FB amount becomes an appropriate value within the control range. The second abnormality determination flag is kept off. Further, the first abnormality determination flag and the second abnormality determination flag at the diagnosis timing t13 after a predetermined time has elapsed from the fuel switching are referred to. Then, based on the fact that the first abnormality determination flag = on and the second abnormality determination flag = off, it is specified that there is an abnormality in the combustion system, and the liquid fuel supply unit 70 is specified as an abnormal part.
 次に、液体燃料を用いてエンジン10の運転を行っている期間に、点火系異常が継続的に生じた場合(例えば点火エネルギ不足)を考える。この場合、気筒16内に供給された燃料のうちの一部が燃焼に供されないまま排気通路内に排出されることにより、図5に示すように、空燃比FB量が、燃料噴射量を減量補正する側に(減少側に)徐々に変更される。やがて空燃比FB量が下限ガード値となり、その状態が所定時間継続した後の時刻t21で、第1異常判定フラグがオフからオンに切り替えられる。 Next, let us consider a case where an abnormality in the ignition system continuously occurs during the period of operation of the engine 10 using liquid fuel (for example, insufficient ignition energy). In this case, a part of the fuel supplied into the cylinder 16 is discharged into the exhaust passage without being used for combustion, so that the air-fuel ratio FB amount decreases the fuel injection amount as shown in FIG. It is gradually changed to the correcting side (decreasing side). Eventually, the air-fuel ratio FB amount becomes the lower limit guard value, and at time t21 after the state continues for a predetermined time, the first abnormality determination flag is switched from OFF to ON.
 その後、燃料切替スイッチの操作に伴い燃料の切替指令が入力されると、第2噴射弁22による液体燃料の噴射から第1噴射弁21による気体燃料の噴射に切り替えられる(t22)。また、燃料の切り替えに伴い空燃比FB量がリセットされる。点火系異常が生じている場合には、噴射燃料を切り替えた後でもその異常は解消されず、燃料の一部が未燃のまま排気通路に排出されることにより、空燃比FB量が下限ガード値に張り付いた状態になる。そのため、第2異常判定フラグがオフからオンに切り替えられる。また、診断タイミングt23では、第1異常判定フラグ及び第2異常判定フラグが参照される。そして、第1異常判定フラグ=オン、第2異常判定フラグ=オンであることに基づき、燃焼システムに異常有りと特定されるとともに、点火装置が異常部位として特定される。 Thereafter, when a fuel switching command is input in accordance with the operation of the fuel switch, the liquid fuel injection by the second injection valve 22 is switched to the gaseous fuel injection by the first injection valve 21 (t22). Further, the air-fuel ratio FB amount is reset along with the fuel switching. If an ignition system abnormality has occurred, the abnormality is not resolved even after the injected fuel is switched, and a part of the fuel is discharged to the exhaust passage without being burned. It will stick to the value. Therefore, the second abnormality determination flag is switched from off to on. Further, at the diagnosis timing t23, the first abnormality determination flag and the second abnormality determination flag are referred to. Then, based on the fact that the first abnormality determination flag = on and the second abnormality determination flag = on, it is specified that there is an abnormality in the combustion system, and the ignition device is specified as an abnormal part.
 以上詳述した本実施形態によれば、次の効果が得られる。 According to the embodiment described above in detail, the following effects can be obtained.
 気体燃料の燃焼によりエンジン10の運転を実施している期間、及び液体燃料の燃焼によりエンジン10の運転を実施している期間の各々において、各期間内で取得した燃焼パラメータに基づいてエンジン10の噴射供給系及び点火系についての異常診断を実施するとともに、いずれかの燃料の燃焼時における異常診断で異常有りと判断された場合には、気体燃料の使用時における異常診断の判定結果と、液体燃料の使用時における異常診断の判定結果とに基づいて異常部位を特定する構成とした。本構成によれば、2つの燃料についての診断結果を用いることから、それらの診断結果の組み合わせの態様に応じて、燃焼異常の原因となっている異常部位を特定することができる。 In each of the period in which the operation of the engine 10 is performed by the combustion of the gaseous fuel and the period in which the operation of the engine 10 is performed by the combustion of the liquid fuel, the engine 10 is based on the combustion parameters acquired within each period. In addition to performing abnormality diagnosis on the injection supply system and ignition system, if it is determined that there is an abnormality in the abnormality diagnosis at the time of combustion of any fuel, the determination result of abnormality diagnosis when using gaseous fuel, The configuration is such that the abnormal part is specified based on the determination result of the abnormality diagnosis when using the fuel. According to this configuration, since the diagnosis results for the two fuels are used, the abnormal part that causes the combustion abnormality can be specified according to the combination of the diagnosis results.
 具体的には、例えば、第1異常判定フラグがオン、第2異常判定フラグがオンの組み合わせの場合には点火系異常であると特定することができる。また、第1異常判定フラグがオン、第2異常判定フラグがオフの組み合わせの場合には、切替前燃料の燃料供給部に異常有りと特定することができる。また、第1異常判定フラグがオフ、第2異常判定フラグがオンの組み合わせの場合には、切替後燃料の燃料供給部に異常有りと特定することができる。 Specifically, for example, when the first abnormality determination flag is on and the second abnormality determination flag is on, it can be specified that the ignition system is abnormal. Further, when the first abnormality determination flag is on and the second abnormality determination flag is off, it can be specified that there is an abnormality in the fuel supply portion of the fuel before switching. Further, when the first abnormality determination flag is off and the second abnormality determination flag is on, it can be specified that there is an abnormality in the fuel supply portion of the fuel after switching.
 異常診断の際に用いる燃焼パラメータを空燃比FB量とし、空燃比FB量に基づいてエンジン10の燃焼状態が正常か異常かを判定する構成とした。空燃比FB量に基づき燃焼システムの異常の有無を診断する構成とすることにより、燃料供給部や点火系の異常に起因してエンジン10が運転不能になる前の段階で異常を把握することができる。 The combustion parameter used in the abnormality diagnosis is the air-fuel ratio FB amount, and it is configured to determine whether the combustion state of the engine 10 is normal or abnormal based on the air-fuel ratio FB amount. By adopting a configuration that diagnoses whether there is an abnormality in the combustion system based on the air-fuel ratio FB amount, it is possible to grasp the abnormality before the engine 10 becomes inoperable due to an abnormality in the fuel supply unit or the ignition system. it can.
 (第2実施形態)
 以下、第2実施形態について上記第1実施形態との相違点を中心に説明する。上記第1実施形態では、第1判定処理及び第2判定処理で共に異常有りと判定された場合には、エンジン10の点火回路部20a及び点火プラグ20を含む点火系部品を異常部位と特定した。これに対し、本実施形態では、第1判定処理及び第2判定処理で共に異常有りと判定された場合に、点火系部品及びエンジン10の吸気系部品のいずれかが異常部位であると特定する。エンジン10の吸気系もエンジン燃焼に際し共通に用いられる部品であり、気体燃料を用いた燃焼と液体燃料を用いた燃焼とが共に適正でないということは、それらの燃焼に際し共通に用いられる吸気系部品に異常が生じ、その吸気系異常によって燃料の燃焼が適正に実施されていないとも考えられるからである。
(Second Embodiment)
Hereinafter, the second embodiment will be described focusing on differences from the first embodiment. In the first embodiment, when it is determined that there is an abnormality in both the first determination process and the second determination process, the ignition system part including the ignition circuit unit 20a and the ignition plug 20 of the engine 10 is specified as an abnormal part. . On the other hand, in this embodiment, when it is determined that there is an abnormality in both the first determination process and the second determination process, either the ignition system part or the intake system part of the engine 10 is specified as an abnormal part. . The intake system of the engine 10 is also a component that is commonly used in engine combustion, and that both combustion using gaseous fuel and combustion using liquid fuel are not appropriate means that the intake system component that is commonly used in those combustions This is because there is an abnormality in the intake system, and it is considered that fuel combustion is not properly performed due to the abnormality in the intake system.
 ここで、吸気系異常としては、例えばスロットル弁15、アクチュエータ15a、スロットル開度センサ15b及び吸気管圧力センサ82や、図示しない吸気温センサなどのエンジン吸気系に設けられた各種部品が正常時とは異なる態様で作動する異常等が挙げられる。 Here, as the intake system abnormality, for example, various components provided in the engine intake system such as the throttle valve 15, the actuator 15a, the throttle opening sensor 15b, the intake pipe pressure sensor 82, and an intake air temperature sensor (not shown) are normal. Includes abnormalities that operate in different modes.
 次に、本実施形態の異常診断処理の処理手順について説明する。本実施形態では、図2のフローチャートに従って異常診断処理を実施する点は上記の第1実施形態と同じである。図2のステップS111の異常特定処理として図6のフローチャートを用いる。以下では、本実施形態の異常特定処理について図6を用いて説明する。 Next, the processing procedure of the abnormality diagnosis processing of this embodiment will be described. The present embodiment is the same as the first embodiment described above in that the abnormality diagnosis process is performed according to the flowchart of FIG. The flowchart of FIG. 6 is used as the abnormality specifying process in step S111 of FIG. Below, the abnormality identification process of this embodiment is demonstrated using FIG.
 図6において、ステップS301~S305では図3のステップS201~S205と同じ処理を実施する。ステップS305で第2異常判定フラグがオフである場合にはステップS306へ進み、切替前燃料の燃料供給部を異常部位と特定する。一方、第2異常判定フラグがオンの場合には、ステップS307へ進み、エンジン燃焼において各燃料での共通部品を異常部位と特定する。ここでは、エンジン10の点火回路部20a及び点火プラグ20を含む点火系部品か、又はスロットル弁15、アクチュエータ15a、スロットル開度センサ15b及び吸気管圧力センサ82を含む吸気系部品で異常が生じている旨判定する。そして本ルーチンを終了する。 In FIG. 6, in steps S301 to S305, the same processing as in steps S201 to S205 in FIG. 3 is performed. If the second abnormality determination flag is off in step S305, the process proceeds to step S306, and the fuel supply part of the pre-switching fuel is identified as an abnormal part. On the other hand, if the second abnormality determination flag is on, the process proceeds to step S307, and the common part of each fuel in the engine combustion is specified as an abnormal part. Here, an abnormality occurs in the ignition system part including the ignition circuit portion 20a and the ignition plug 20 of the engine 10 or the intake system part including the throttle valve 15, the actuator 15a, the throttle opening sensor 15b, and the intake pipe pressure sensor 82. Judge that there is. Then, this routine ends.
 上記第2実施形態では、第1判定処理及び第2判定処理で共に異常有りと判定された場合には、エンジン10の点火系異常及び吸気系異常のいずれかが生じているものと判定することとした。気体燃料を用いた燃焼と液体燃料を用いた燃焼とが共に適正でないということは、それらの燃焼に際し共通に用いられる共通部品の異常が想定される。また、こうした共通部品としては、点火系部品の他に吸気系部品が挙げられる。したがって、使用燃料を切り替えた場合にも燃焼状態の異常が継続する場合には、異常部位を点火系部品及び吸気系部品のいずれかとする。 In the second embodiment, when it is determined that there is an abnormality in both the first determination process and the second determination process, it is determined that either an ignition system abnormality or an intake system abnormality of the engine 10 has occurred. It was. The fact that the combustion using gaseous fuel and the combustion using liquid fuel are both inappropriate is presumed to be an abnormality of the common parts used in common in the combustion. In addition to the ignition system parts, the common parts include intake system parts. Therefore, when the abnormality of the combustion state continues even when the fuel used is switched, the abnormal part is set to either the ignition system component or the intake system component.
 (他の実施形態)
 本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be implemented as follows, for example.
 上記実施形態では、燃料切替スイッチの操作があった場合に一方の燃料から他方の燃料に切り替えるとともに、その燃料の切り替えに伴い第2判定処理を実施する構成としたが、燃料切替スイッチの操作があったか否かに関係なく、第1判定処理の終了後に使用燃料を他方の燃料に切り替え、その切り替え後に第2判定処理を実施する構成としてもよい。この場合、燃料切替スイッチの操作が行われる前に、その切り替え後の燃料の燃料供給部に異常がないかどうかを事前に確認しておくことができる。 In the above-described embodiment, when the fuel changeover switch is operated, the fuel is switched from one fuel to the other fuel, and the second determination process is performed when the fuel is changed. Regardless of whether or not there is a configuration, the fuel used may be switched to the other fuel after the first determination process is completed, and the second determination process may be performed after the switching. In this case, before the fuel changeover switch is operated, it can be confirmed in advance whether or not there is an abnormality in the fuel supply portion of the fuel after the changeover.
 上記第1実施形態では、第1判定処理及び第2判定処理の両方でエンジン10の燃焼異常有りと判定された場合に、点火プラグ20及び点火回路部20aを含む点火装置を異常部位と特定した。これに対し、本実施形態では、第1判定処理及び第2判定処理の両方でエンジン10の燃焼異常有りと判定された場合に、点火装置の故障か、又は気体燃料供給部40及び液体燃料供給部70の同時故障が生じているものと判断する。気体燃料供給部40や液体燃料供給部70での故障は滅多に発生するものではなく、ましてや気体燃料供給部40と液体燃料供給部70とが同時故障するとなると極めて稀であるといえる。本実施形態では、このような稀な場合についても考慮しておくことにより診断漏れを防ぐようにする。 In the first embodiment, when it is determined that there is a combustion abnormality of the engine 10 in both the first determination process and the second determination process, the ignition device including the ignition plug 20 and the ignition circuit unit 20a is specified as the abnormal part. . On the other hand, in this embodiment, when it is determined that there is a combustion abnormality of the engine 10 in both the first determination process and the second determination process, the ignition device has failed or the gaseous fuel supply unit 40 and the liquid fuel supply It is determined that the simultaneous failure of the unit 70 has occurred. Failures in the gas fuel supply unit 40 and the liquid fuel supply unit 70 rarely occur, and even if the gas fuel supply unit 40 and the liquid fuel supply unit 70 fail simultaneously, it can be said that it is extremely rare. In this embodiment, such a rare case is taken into consideration to prevent a diagnosis failure.
 第1判定処理及び第2判定処理の両方でエンジン10の燃焼異常有りと判定された場合、更に、燃料切替前の燃焼パラメータの変化の態様と、燃料切替後の燃焼パラメータの変化の態様とを比較する。その比較結果に基づいて異常部位を特定する構成とする。燃焼異常の原因が点火系異常である場合には、燃料の切り替え前後での燃焼パラメータの変化の態様が同じになる。具体的には、例えば空燃比FB量であれば、一方の燃料の燃焼時に下限ガード値で保持された状態になり、その後に燃料を切り替えた場合には、他方の燃料の燃焼時にも空燃比FB量が下限ガード値で保持された状態になる。この点を考慮し、上記構成とすることにより、異常部位の特定精度を更に向上させることが可能になる。 When it is determined in both the first determination process and the second determination process that there is a combustion abnormality of the engine 10, a mode of change of the combustion parameter before fuel switching and a mode of change of the combustion parameter after fuel switching are further provided. Compare. It is set as the structure which identifies an abnormal site | part based on the comparison result. When the cause of the combustion abnormality is an ignition system abnormality, the mode of change of the combustion parameter before and after the fuel switching is the same. Specifically, for example, when the air-fuel ratio FB amount is reached, the lower limit guard value is maintained during combustion of one fuel, and when the fuel is switched thereafter, the air-fuel ratio is also maintained during combustion of the other fuel. The FB amount is held at the lower limit guard value. Considering this point and adopting the above-described configuration, it is possible to further improve the accuracy of identifying an abnormal site.
 上記実施形態では、第1判定処理と第2判定処理とをそれぞれ1回ずつ実施し、それらの判定結果に基づいて異常診断を実施する構成とした。第1判定処理と第2判定処理とを交互に複数回実施し、それら複数回の結果に基づいて異常診断を実施してもよい。 In the above embodiment, the first determination process and the second determination process are each performed once, and the abnormality diagnosis is performed based on the determination results. The first determination process and the second determination process may be alternately performed a plurality of times, and an abnormality diagnosis may be performed based on the results of the plurality of times.
 上記実施形態では、燃焼パラメータとして空燃比FB量を用い、空燃比FB量に基づいてエンジン10の燃焼状態が正常か異常かを判定する構成としたが、エンジン10の燃焼状態の判定方法はこれに限定しない。例えば、エンジン10の吸入空気量を調整することにより実空燃比を目標空燃比で制御する場合に、吸入空気量の補正量に基づいてエンジン10の燃焼状態が正常か異常かを判定する構成としてもよい。 In the above-described embodiment, the air-fuel ratio FB amount is used as the combustion parameter, and it is configured to determine whether the combustion state of the engine 10 is normal or abnormal based on the air-fuel ratio FB amount. It is not limited to. For example, when the actual air-fuel ratio is controlled at the target air-fuel ratio by adjusting the intake air amount of the engine 10, it is determined whether the combustion state of the engine 10 is normal or abnormal based on the correction amount of the intake air amount. Also good.
 上記第2実施形態において、図6の異常特定処理により点火系部品か又は吸気系部品に異常が生じている旨判定された場合に、更に、点火系部品及び吸気系部品のいずれに異常が生じているかを特定する処理を実施してもよい。 In the second embodiment, when it is determined by the abnormality specifying process in FIG. 6 that an abnormality has occurred in either the ignition system component or the intake system component, an abnormality has occurred in either the ignition system component or the intake system component. You may implement the process which specifies whether it is.
 点火系部品及び吸気系部品のいずれに異常が生じているかを特定する処理としては、例えば気体燃料又は液体燃料の燃料噴射中において、スロットル開度と吸入空気量との関係が、予め記憶してある関係と一致しているか否かを判定することにより行う方法が挙げられる。具体的には、今現在のスロットル開度の制御量に対して、吸気管圧力センサ82により検出される吸気管圧力が一致しているか否かを判定する。スロットル開度と吸気管圧力との関係が、予め記憶してある関係と一致していれば吸気系部品は正常であり、したがって点火系部品及び吸気系部品のうち点火系部品を異常部位と特定する。一方、スロットル開度と吸気管圧力との関係が、予め記憶してある関係と一致していなければ吸気系部品を異常部位とする。 As a process for specifying which of the ignition system component and the intake system component is abnormal, for example, during fuel injection of gaseous fuel or liquid fuel, the relationship between the throttle opening and the intake air amount is stored in advance. There is a method that is performed by determining whether or not it matches a certain relationship. Specifically, it is determined whether or not the intake pipe pressure detected by the intake pipe pressure sensor 82 matches the current throttle opening control amount. If the relationship between the throttle opening and the intake pipe pressure matches the relationship stored in advance, the intake system components are normal. Therefore, among the ignition system components and intake system components, the ignition system components are identified as abnormal parts. To do. On the other hand, if the relationship between the throttle opening and the intake pipe pressure does not match the relationship stored in advance, the intake system component is determined as an abnormal part.
 点火系部品及び吸気系部品のいずれに異常が生じているかを特定する処理は燃料カット中に実施することもできる。ここで、気体燃料は、単位質量あたりの体積が液体燃料に比べて大きい。そのため、吸気管圧力センサ82では、吸気管内の空気だけでなく第1噴射弁21から噴射された気体燃料が検出されることによって、噴射燃料の影響による検出誤差が生じることが考えられる。そこで本実施形態では、気体燃料の影響を受けない燃料カット中に各センサ値に基づいて吸気系部品の異常判定を実施する。具体的には、例えば燃料カット中にスロットル開度のセンサ値及び吸入空気量のセンサ値を取得し、スロットル開度と吸入空気量との関係が、予め記憶してある関係と一致しているか否かを判定する処理を実施する。こうした構成とすることにより異常部位の特定をより高精度に行うことができる。 The process of identifying which of the ignition system parts and the intake system parts is abnormal can be performed during the fuel cut. Here, the gaseous fuel has a larger volume per unit mass than the liquid fuel. Therefore, in the intake pipe pressure sensor 82, it is considered that not only the air in the intake pipe but also the gaseous fuel injected from the first injection valve 21 causes a detection error due to the influence of the injected fuel. Therefore, in the present embodiment, abnormality determination of intake system components is performed based on each sensor value during fuel cut that is not affected by gaseous fuel. Specifically, for example, the sensor value of the throttle opening and the sensor value of the intake air amount are acquired during the fuel cut, and the relationship between the throttle opening and the intake air amount matches the relationship stored in advance. A process of determining whether or not is performed. By adopting such a configuration, it is possible to identify an abnormal site with higher accuracy.
 点火系部品及び吸気系部品のいずれに異常が生じているかを特定する処理を液体燃料の噴射期間中に実施する構成としてもよい。この場合、吸気管圧力センサ82の検出誤差の少ない状況下で異常部位が吸気系部品であるか否かを特定することができる。 It is good also as a structure which implements the process which pinpoints which abnormality has arisen in an ignition system component or an intake system component during the injection period of a liquid fuel. In this case, it is possible to specify whether or not the abnormal part is an intake system component under a situation where the detection error of the intake pipe pressure sensor 82 is small.
 上記第2実施形態では、第1判定処理及び第2判定処理で共に異常と判定された場合に、異常部位は点火系部品及び吸気系部品のいずれかとしたが、点火系部品及び吸気系部品の同時故障を考慮してもよい。エンジン10において点火系部品と吸気系部品とが同時故障することは極めて稀なケースといえるが、このような稀なケースについても考慮しておくことにより診断漏れを防ぐことが可能となる。 In the second embodiment, when both the first determination process and the second determination process are determined to be abnormal, the abnormal part is either the ignition system part or the intake system part. Simultaneous failure may be considered. Although it can be said that an ignition system component and an intake system component fail at the same time in the engine 10 is an extremely rare case, it is possible to prevent a diagnosis omission by considering such a rare case.
 燃料噴射手段としてガソリン噴射用の燃料噴射弁のみを備える既存のガソリンエンジンに対して、気体燃料の燃料供給ユニットを搭載することによって2種類の燃料を噴射可能なシステムに変更することがある。このようなシステムに本発明を適用することもできる。具体的には、第1噴射弁21の先端部に噴射管が接続されており、この噴射管が吸気管に設けられている。第1噴射弁21から噴出された気体燃料は噴射管を介してエンジン10の吸気ポートに噴射される。 In some cases, an existing gasoline engine having only a fuel injection valve for gasoline injection as a fuel injection means may be changed to a system capable of injecting two types of fuel by installing a fuel supply unit for gaseous fuel. The present invention can also be applied to such a system. Specifically, an injection pipe is connected to the tip of the first injection valve 21, and this injection pipe is provided in the intake pipe. The gaseous fuel ejected from the first injection valve 21 is injected into the intake port of the engine 10 through the injection pipe.
 上記実施形態では気体燃料をCNG燃料としたが、標準状態で気体のその他のガス燃料を用いることもでき、例えばメタン、エタン、プロパン、ブタン、水素、ジメチルエーテルなどを主成分とする燃料を用いる構成としてもよい。また、液体燃料についてもガソリン燃料に限定しない。例えば、液体燃料としての軽油を燃焼用の燃料とするディーゼルエンジンに、気体燃料の燃料噴射システムを搭載した構成に本発明を適用してもよい。 In the above embodiment, the gaseous fuel is CNG fuel, but other gaseous fuels that are gaseous in the standard state can also be used. For example, a configuration using a fuel mainly composed of methane, ethane, propane, butane, hydrogen, dimethyl ether, or the like. It is good. Further, liquid fuel is not limited to gasoline fuel. For example, the present invention may be applied to a configuration in which a fuel injection system for gaseous fuel is mounted on a diesel engine using light oil as a liquid fuel for combustion.

Claims (6)

  1.  内燃機関(10)の気筒(16)内に気体燃料を供給する気体燃料供給部(40)と、前記気筒内に液体燃料を供給する液体燃料供給部(70)と、前記気体燃料の燃焼時と前記液体燃料の燃焼時で共通に用いられ前記気筒内に供給された燃料に着火する点火装置(20a、20)と、を備える内燃機関の燃焼システムに適用され、
     前記気体燃料及び前記液体燃料のうち一方の燃料の燃焼により前記内燃機関の運転を実施している期間において、該期間での前記内燃機関の燃焼に関する燃焼パラメータに基づいて前記内燃機関の燃焼状態が正常か異常かを判定する第1判定手段と、
     前記第1判定手段による前記燃焼状態の判定後に、使用燃料を前記一方の燃料から他方の燃料に切り替える燃料切替手段と、
     前記燃料切替手段による燃料の切替後、前記他方の燃料の燃焼により前記内燃機関の運転を実施している期間において、該期間での前記燃焼パラメータに基づいて前記燃焼状態が正常か異常かを判定する第2判定手段と、
     前記第1判定手段及び前記第2判定手段の少なくともいずれかにより前記燃焼状態が異常であると判定された場合に、前記第1判定手段による判定結果と前記第2判定手段による判定結果とに基づいて異常部位を特定する異常特定手段と、
    を備えることを特徴とする内燃機関の異常診断装置。
    A gaseous fuel supply unit (40) for supplying gaseous fuel into the cylinder (16) of the internal combustion engine (10), a liquid fuel supply unit (70) for supplying liquid fuel into the cylinder, and at the time of combustion of the gaseous fuel And an ignition device (20a, 20) that is used in common when the liquid fuel is burned and ignites the fuel supplied into the cylinder, and is applied to a combustion system of an internal combustion engine,
    In a period in which the operation of the internal combustion engine is performed by combustion of one of the gaseous fuel and the liquid fuel, the combustion state of the internal combustion engine is determined based on a combustion parameter related to combustion of the internal combustion engine in the period. First determination means for determining whether normal or abnormal;
    Fuel switching means for switching the used fuel from the one fuel to the other fuel after the determination of the combustion state by the first determination means;
    After the fuel is switched by the fuel switching means, it is determined whether the combustion state is normal or abnormal based on the combustion parameter during the period in which the internal combustion engine is operated by burning the other fuel. Second determining means for
    Based on the determination result by the first determination means and the determination result by the second determination means when the combustion state is determined to be abnormal by at least one of the first determination means and the second determination means. An abnormality identifying means for identifying an abnormal part
    An abnormality diagnosis device for an internal combustion engine, comprising:
  2.  前記異常特定手段は、前記第1判定手段により前記燃焼状態が異常であると判定され、かつ前記第2判定手段により前記燃焼状態が異常であると判定された場合に、前記点火装置を前記異常部位と特定する請求項1に記載の内燃機関の異常診断装置。 The abnormality specifying unit determines that the ignition device is abnormal when the first determination unit determines that the combustion state is abnormal and the second determination unit determines that the combustion state is abnormal. The abnormality diagnosis device for an internal combustion engine according to claim 1, wherein the abnormality diagnosis device identifies the part.
  3.  前記燃焼システムは、前記気体燃料の燃焼時と前記液体燃料の燃焼時で共通に用いられ前記気筒内に空気を供給する吸気系装置(11,15,15a,15b,82)を備え、
     前記異常特定手段は、前記第1判定手段により前記燃焼状態が異常であると判定され、かつ前記第2判定手段により前記燃焼状態が異常であると判定された場合に、前記点火装置及び前記吸気系装置の少なくともいずれかが前記異常部位であると特定する請求項1に記載の内燃機関の異常診断装置。
    The combustion system includes an intake system device (11, 15, 15a, 15b, 82) that is commonly used during combustion of the gaseous fuel and combustion of the liquid fuel and supplies air into the cylinder.
    The abnormality specifying means determines that the ignition device and the intake air when the first determination means determines that the combustion state is abnormal and the second determination means determines that the combustion state is abnormal. The abnormality diagnosis device for an internal combustion engine according to claim 1, wherein at least one of the system devices is specified as the abnormal portion.
  4.  前記内燃機関の吸入空気量を検出する空気量検出手段(82)を備え、
     前記異常特定手段により前記点火装置及び前記内燃機関の吸気系の少なくともいずれかが前記異常部位と特定された場合に、前記内燃機関の燃料カット中において前記空気量検出手段により検出された吸入空気量に基づいて前記内燃機関の吸気系に異常が生じているか否かを特定する請求項3に記載の内燃機関の異常診断装置。
    Air amount detecting means (82) for detecting the amount of intake air of the internal combustion engine;
    The intake air amount detected by the air amount detecting means during the fuel cut of the internal combustion engine when at least one of the ignition device and the intake system of the internal combustion engine is specified as the abnormal portion by the abnormality specifying means The abnormality diagnosis device for an internal combustion engine according to claim 3, wherein an abnormality is determined in the intake system of the internal combustion engine based on
  5.  前記異常特定手段は、前記第1判定手段により前記燃焼状態が異常であると判定され、かつ前記第2判定手段により前記燃焼状態が正常であると判定された場合に、前記燃料切替手段による切替前の燃料の燃料供給部を前記異常部位と特定する請求項1乃至4のいずれか一項に記載の内燃機関の異常診断装置。 The abnormality specifying unit switches the fuel switching unit when the combustion state is determined to be abnormal by the first determination unit and the combustion state is determined to be normal by the second determination unit. The abnormality diagnosis apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein a fuel supply unit of a previous fuel is specified as the abnormal part.
  6.  前記異常特定手段は、前記第1判定手段により前記燃焼状態が正常であると判定され、かつ前記第2判定手段により前記燃焼状態が異常であると判定された場合に、前記燃料切替手段による切替後の燃料の燃料供給部を前記異常部位と特定する請求項1乃至5のいずれか一項に記載の内燃機関の異常診断装置。 The abnormality specifying means switches the fuel switching means when the first determination means determines that the combustion state is normal and the second determination means determines that the combustion state is abnormal. The abnormality diagnosis device for an internal combustion engine according to any one of claims 1 to 5, wherein a fuel supply unit for a subsequent fuel is identified as the abnormal portion.
PCT/JP2014/000821 2013-03-05 2014-02-18 Abnormality diagnosis device for internal combustion engine WO2014136387A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-043373 2013-03-05
JP2013043373 2013-03-05
JP2013-261006 2013-12-18
JP2013261006A JP2014196734A (en) 2013-03-05 2013-12-18 Abnormality diagnostic system for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2014136387A1 true WO2014136387A1 (en) 2014-09-12

Family

ID=51490926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000821 WO2014136387A1 (en) 2013-03-05 2014-02-18 Abnormality diagnosis device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014196734A (en)
WO (1) WO2014136387A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080920A1 (en) * 2014-11-17 2016-05-26 Monro Enerji Insaat Madencilik Gida Otomotiv Arastirma Gelistirme Lojistik Gaz Dolum Danismanlik Hizmetleri Sanayi Ticaret Limited Sirketi Electronic controlled device operated by a single control card for usage and control of alternative fuels in internal combustion engine
JP2016217160A (en) * 2015-05-14 2016-12-22 トヨタ自動車株式会社 Control device of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6183384B2 (en) * 2015-01-15 2017-08-23 マツダ株式会社 Multi-fuel engine fuel control system
JP6269602B2 (en) * 2015-07-15 2018-01-31 マツダ株式会社 Fuel control system for gaseous fuel engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231878A (en) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd Fuel supply device for internal combustion engine
JP2008144723A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Control device for internal combustion engine
JP2008144637A (en) * 2006-12-08 2008-06-26 Mazda Motor Corp Control device for dual fuel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231878A (en) * 2006-03-02 2007-09-13 Nissan Motor Co Ltd Fuel supply device for internal combustion engine
JP2008144637A (en) * 2006-12-08 2008-06-26 Mazda Motor Corp Control device for dual fuel engine
JP2008144723A (en) * 2006-12-13 2008-06-26 Toyota Motor Corp Control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080920A1 (en) * 2014-11-17 2016-05-26 Monro Enerji Insaat Madencilik Gida Otomotiv Arastirma Gelistirme Lojistik Gaz Dolum Danismanlik Hizmetleri Sanayi Ticaret Limited Sirketi Electronic controlled device operated by a single control card for usage and control of alternative fuels in internal combustion engine
JP2016217160A (en) * 2015-05-14 2016-12-22 トヨタ自動車株式会社 Control device of internal combustion engine

Also Published As

Publication number Publication date
JP2014196734A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
US20160290248A1 (en) Fuel supply system for internal combustion engine and control method therefor
WO2014136387A1 (en) Abnormality diagnosis device for internal combustion engine
JP2006336499A (en) Fuel supply device for internal combustion engine
KR101383751B1 (en) Control method of bi-fuel feed system
WO2013099094A1 (en) Control apparatus for an internal combustion engine
JP2017210876A (en) Gas fuel system
WO2011129267A1 (en) Air-fuel ratio learning control device for bifuel engine
JP5862552B2 (en) Fuel injection control device for internal combustion engine
JP5874622B2 (en) Fuel injection control device for internal combustion engine
JP2015137579A (en) Control device of internal combustion engine
US9121364B2 (en) Control apparatus for internal combustion engine
US20140069383A1 (en) Controller for engine
KR100765642B1 (en) Apparatus and method for operating limp home mode according to trouble of fuel pump in car fitted with lpg injection system
EP2527624B1 (en) Method for controlling fuel injection in a multifuel internal-combustion engine in the event of pressure jumps
JP2016070245A (en) Fuel injection control device of internal combustion engine
JP2015224583A (en) Internal combustion engine control unit
JP2014196736A (en) Control device for internal combustion engine
WO2016132708A1 (en) Fuel injection control device
WO2017130543A1 (en) Bifuel engine system
JP2014190187A (en) Catalyst deterioration diagnostic apparatus for internal combustion engine
JP2011132930A (en) Ignition system of gas fuel internal combustion engine
WO2014091723A1 (en) Fuel injection control device for internal combustion engine
WO2014087596A1 (en) Fuel supply device
JP2014152657A (en) Fuel injection control device of internal combustion engine
JP5988721B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759854

Country of ref document: EP

Kind code of ref document: A1