WO2017130543A1 - Bifuel engine system - Google Patents

Bifuel engine system Download PDF

Info

Publication number
WO2017130543A1
WO2017130543A1 PCT/JP2016/084749 JP2016084749W WO2017130543A1 WO 2017130543 A1 WO2017130543 A1 WO 2017130543A1 JP 2016084749 W JP2016084749 W JP 2016084749W WO 2017130543 A1 WO2017130543 A1 WO 2017130543A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
cng
engine
fuel
cylinder
Prior art date
Application number
PCT/JP2016/084749
Other languages
French (fr)
Japanese (ja)
Inventor
文人 中谷
雄司 菱田
Original Assignee
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛三工業株式会社 filed Critical 愛三工業株式会社
Publication of WO2017130543A1 publication Critical patent/WO2017130543A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine for operation.
  • a control method for a bi-fuel engine described in Patent Document 1 is known.
  • a gasoline injector that injects gasoline into an intake pipe in the vicinity of an engine cylinder (cylinder), and a CNG injector that injects CNG as gas fuel into an intake pipe away from the engine cylinder via a hose.
  • a gasoline injector and a CNG injector are switched and used by a changeover switch, and the engine is operated by gasoline or CNG.
  • the gasoline switch is switched from the gasoline injector to the CNG injector while the gasoline injector is operating by injecting gasoline
  • the gasoline injection from the gasoline injector and the CNG injection from the CNG injector are performed. It is designed to overlap.
  • the fuel can be switched without any trouble without causing dilution of CNG due to an increase in the volume of the hose or the like.
  • acceleration may be required for the engine during operation by CNG.
  • the CNG injector injects CNG at a position away from each cylinder of the engine. For this reason, even if the amount of CNG injection is increased during acceleration, it takes time for the increased amount of CNG to reach the cylinder, which may cause a delay in response to acceleration.
  • FIG. 6 shows a conventional bi-fuel engine (a) CNG or gasoline operation during engine acceleration, (b) engine speed NE, (c) throttle opening TA, (d) change in throttle opening.
  • the behavior of ⁇ TA and (e) air-fuel ratio A / F is shown by a time chart.
  • the throttle opening degree TA and the change amount ⁇ TA of the throttle opening degree change at time t1 see FIGS. 6C and 6D
  • the engine is requested to accelerate
  • the operation by CNG changes.
  • the CNG injection is increased in accordance with the throttle opening degree TA.
  • the present invention has been made in view of the above circumstances, and an object thereof is a bi-fuel engine system configured to supply gas fuel to an engine by using the SPI method, from during operation with gas fuel.
  • An object of the present invention is to provide a bi-fuel engine system that can improve the acceleration response of an engine.
  • one aspect of the present invention is a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine.
  • gasoline supply means adopting a multi-point injection (MPI) system for injecting gasoline corresponding to each cylinder in the vicinity of each cylinder, and supplying gas fuel to the engine Therefore
  • gas fuel supply means adopting a single point injection (SPI) system for injecting gas fuel into the intake passage at a position away from each cylinder, gasoline supply means according to the operating state of the engine, and Control means for controlling the gas fuel supply means, and the control means is provided to the engine during operation with gas fuel.
  • MPI multi-point injection
  • SPI single point injection
  • the gas fuel supply means adopts the SPI method in which fuel gas is injected into the intake passage at a position away from each cylinder, it corresponds to each cylinder in the vicinity of each cylinder when returning from the gas fuel cut. Then, the gasoline is supplied to each cylinder with good responsiveness by the MPI type gasoline supply means for injecting the gasoline.
  • FIG. 1 is a schematic configuration diagram illustrating a bi-fuel engine system mounted on an automobile according to an embodiment.
  • the flowchart which shows the content of the fuel-injection control at the time of acceleration during CNG driving
  • the flowchart which shows the content of the fuel-injection control at the time of F / C return
  • (a) operation with CNG or gasoline during engine acceleration, (b) engine rotation speed, (c) throttle opening, (d) change in throttle opening, and (e) air-fuel ratio behavior A time chart showing.
  • FIG. 1 is a schematic configuration diagram showing a bi-fuel engine system mounted on an automobile in this embodiment.
  • the multi-cylinder engine 1 explodes and burns a combustible mixture of fuel and air supplied through an intake passage 2 in a combustion chamber of each cylinder 3, and exhausts the burned exhaust gas through the exhaust passage 4. Discharge outside. As a result, the engine 1 operates the piston 5 to rotate the crankshaft 6 to obtain power.
  • the intake passage 2 includes an air cleaner 11, an electronic throttle device 12, and an intake manifold 13 in that order from the inlet side.
  • the air cleaner 11 cleans the air taken into the intake passage 2.
  • the electronic throttle device 12 adjusts the amount of air (intake amount) Ga that flows through the intake passage 2 and is sucked into the combustion chamber of each cylinder 3.
  • the electronic throttle device 12 drives the throttle valve 15 to open and close by a motor 14.
  • a throttle sensor 41 provided in the electronic throttle device 12 detects an opening degree (throttle opening degree) TA of the throttle valve 15 and outputs an electric signal corresponding to the detected value.
  • the intake manifold 13 distributes the intake air flowing through the intake passage 2 to each cylinder 3.
  • the bi-fuel engine system of this embodiment is configured to switch and supply gasoline and compressed natural gas (CNG) as fuel to the multi-cylinder engine 1 and operate, and a gasoline supply device 21 for supplying gasoline.
  • the fuel supply device 20 includes a CNG supply device 31 that supplies CNG.
  • CNG corresponds to an example of the gas fuel of the present invention.
  • the gasoline supply device 21 includes a plurality of gasoline injectors 22 provided corresponding to the respective cylinders 3, a gasoline tank 23 for supplying gasoline to each gasoline injector 22, a gasoline line 24, a gasoline pump 25, and a delivery pipe 26. Is provided.
  • the gasoline injector 22 employs a port injection type and a multi-point injection (MPI) method in which gasoline is injected into the intake port 7 corresponding to each cylinder 3 in the vicinity of each cylinder 3 of the engine 1. This corresponds to an example of the gasoline supply means of the present invention.
  • the gasoline tank 23 stores gasoline.
  • the gasoline pump 25 pumps gasoline from the gasoline tank 23 to the gasoline line 24.
  • the gasoline pumped to the gasoline line 24 is supplied to each gasoline injector 22 via the delivery pipe 26.
  • the supplied gasoline is injected into each intake port 7 and supplied to each cylinder 3 by controlling each injector 22.
  • the CNG supply device 31 includes one CNG injector 32, and a CNG cylinder 33 and a CNG line 34 for supplying CNG to the injector 32.
  • the CNG injector 32 employs a single point injection (SPI) system for injecting CNG into the intake manifold 13 at a position distant from each cylinder 3 of the engine 1, and the gas fuel supply means of the present invention. It corresponds to an example.
  • the CNG line 34 is provided with a main valve 35, a shut-off valve 36, and a CNG regulator 37.
  • the main valve 35 is composed of an electromagnetic valve that is opened and closed to control the supply and shutoff of CNG from the CNG cylinder 33 to the CNG line 34.
  • the shut-off valve 36 is composed of an electromagnetic valve that is opened and closed to control the flow of CNG.
  • the CNG regulator 37 adjusts CNG fed to the CNG injector 32 to a predetermined pressure.
  • CNG supplied from the CNG cylinder 33 to the CNG injector 32 through the CNG line 34 is injected into the intake manifold 13 by the control of the CNG injector 32, and is supplied to each cylinder 3 through each intake port 7.
  • 1st CNG pressure sensor 61 for detecting the pressure of CNG in the part is provided in CNG line 34 downstream from main valve 35.
  • a delivery pipe 38 is provided on the CNG line 34 between the CNG regulator 37 and the CNG injector 32.
  • the delivery pipe 38 is provided with a second CNG pressure sensor 62 for detecting the CNG pressure in the pipe 38 and a CNG temperature sensor 63 for detecting the temperature of the CNG in the pipe 38.
  • the plurality of spark plugs 16 provided in the engine 1 corresponding to the respective cylinders 3 perform an ignition operation by receiving a high voltage output from the ignition coil 17.
  • the ignition timing of each spark plug 16 is determined by the output timing of the high voltage from the ignition coil 17.
  • the catalytic converter 8 provided in the exhaust passage 4 purifies the exhaust discharged from the engine 1 to the exhaust passage 4.
  • the oxygen sensor 43 provided in the exhaust passage 4 detects the oxygen concentration Ox in the exhaust discharged from the engine 1 to the exhaust passage 4 and outputs an electric signal corresponding to the detected value.
  • the rotational speed sensor 44 provided in the engine 1 detects the rotational speed of the crankshaft 6, that is, the engine rotational speed NE, and outputs an electrical signal corresponding to the detected value.
  • a water temperature sensor 45 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electrical signal corresponding to the detected value.
  • the automobile is provided with a vehicle speed sensor 46 that detects the vehicle speed and outputs an electrical signal corresponding to the detected value.
  • the electronic control unit (ECU) 50 inputs various signals output from the various sensors 41, 43 to 46. Based on these input signals, that is, according to the operating state of the engine 1, the ECU 50 performs each fuel injector 22, CNG injector 32, and ignition coil in order to execute fuel injection control including ignition control and ignition timing control. 17 is controlled.
  • the fuel injection control is to control the fuel injection amount and the fuel injection timing by controlling the injectors 22 and 32 in accordance with the operating state of the engine 1.
  • the air-fuel ratio control is a feedback control of the air-fuel ratio of the engine 1 to a predetermined target air-fuel ratio such as the theoretical air-fuel ratio by controlling the injectors 22 and 32 based on the detection signal of the oxygen sensor 43.
  • the ECU 50 uses the gasoline to perform the idling operation immediately after the start of the engine 1 and the completion of the start as the use of gasoline and CNG in the fuel injection control, and then switches to the operation using the CNG. ing.
  • the ignition timing control is to control the ignition timing by each spark plug 16 by controlling the ignition coil 17 according to the operating state of the engine 1.
  • the ECU 50 corresponds to an example of the control means of the present invention.
  • the ECU 50 has a known configuration including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a backup RAM, and the like.
  • the ROM stores in advance predetermined control programs related to the various controls described above.
  • the ECU 50 is configured to execute the various controls described above according to these control programs.
  • the driver's seat of the car is for selecting a gasoline mode that uses only gasoline for driving the engine 1, a CNG mode that uses only CNG, and a normal mode that selectively uses gasoline and CNG.
  • a mode switch 66 is provided.
  • the driver's seat is provided with a mode lamp 67 for displaying whether the current driving is the gasoline mode, the CNG mode, or the normal mode.
  • the mode switch 66 and the mode lamp 67 are connected to the ECU 50, respectively. The display of the mode lamp 67 is controlled by the ECU 50.
  • the bi-fuel engine system of this embodiment employs the SPI method for CNG injection
  • the bi-fuel engine system can be configured relatively inexpensively and can increase the degree of freedom of mounting on the vehicle.
  • the SPI method for the CNG injection there is a risk that the arrival of the CNG, which is increased in quantity when the engine 1 is accelerated, may be delayed or the CNG distribution to each cylinder 3 may be deteriorated.
  • the CNG injected reaches the cylinders 3 at the time of return from the fuel cut, or the CNG distribution to the cylinders 3 is deteriorated.
  • FIG. 2 is a flowchart showing the content of fuel injection control during acceleration during CNG operation.
  • step 100 the ECU 50 determines whether or not the current mode is a normal mode in which gasoline and CNG are selectively used.
  • the ECU 50 proceeds to step 110 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
  • step 110 the ECU 50 determines whether or not the current operation is CNG operation using CNG. If this determination result is affirmative, the ECU 50 proceeds to step 120, and if this determination result is negative, the ECU 50 proceeds to step 130.
  • step 120 the ECU 50 determines whether a precondition for switching to gasoline is satisfied. For example, the ECU 50 determines that (a) the engine speed NE is within a predetermined range, (b) the throttle opening TA is within a predetermined range, and (c) a change amount ⁇ TA of the throttle opening TA is a predetermined value. Assuming that the above is the case, that is, when the engine 1 is accelerating, (d) the vehicle speed is equal to or higher than a predetermined value, and (e) the driving time using CNG is equal to or longer than a predetermined time, When all the conditions a) to (e) are satisfied, it is determined that the precondition for switching to gasoline is satisfied. The ECU 50 proceeds to step 150 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
  • step 130 the ECU 50 determines whether or not CNG operation is possible.
  • the ECU 50 determines that the CNG operation is possible when the gasoline injection is performed a predetermined number of times or more after the acceleration of the engine 1 is started.
  • the ECU 50 proceeds to step 140 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
  • step 140 the ECU 50 switches to CNG operation. That is, the ECU 50 permits the opening of the CNG injector 32 in order to inject CNG. Thus, CNG is injected from each CNG injector 32 at a predetermined timing.
  • step 150 the ECU 50 clears the estimated number of injections CEI to “0”.
  • the ECU 50 estimates the number of injections by the gasoline injector 22 when the engine 1 is in operation.
  • step 160 the ECU 50 switches to gasoline operation. That is, the ECU 50 drives the gasoline pump 25 to inject gasoline, and permits the opening of each gasoline injector 22. As a result, gasoline is injected from each gasoline injector 22 at a predetermined timing. Thereafter, the ECU 50 returns the process to step 100.
  • the gasoline pump 25 when the ECU 50 determines that acceleration is required for the engine 1 during the operation by the CNG, the gasoline pump 25, the gasoline injector 22 and the CNG injector 32 are switched from the operation by the CNG to the operation by the gasoline. And to control. Specifically, the gasoline pump 25 is driven, the gasoline injector 22 is opened at a predetermined timing, and the CNG injector 32 is closed.
  • FIG. 3 is a flowchart showing the content of fuel injection control at the time of fuel cut return during CNG operation.
  • the time of fuel cut return during CNG operation means when CNG injection is once interrupted during CNG operation and then returned to CNG injection.
  • the flowchart of FIG. 3 is the same as that of the flowchart of FIG. 2 in terms of the contents of steps 100, 110, and 130-160. 3 is different from the flowchart of FIG. 2 in that the content of step 125 is different from step 120 of the flowchart of FIG. 2 and that step 200 is added between step 120 and step 150.
  • the ECU 50 determines whether or not a precondition for switching to gasoline is satisfied in step 125 after executing the processing of step 100 and step 110.
  • the ECU 50 is premised on (g) that the engine rotational speed NE is equal to or higher than a predetermined value, (h) that the vehicle speed is higher than or equal to a predetermined value, and (i) that the previous fuel cut is in progress.
  • the ECU 50 proceeds to step 200 when this determination result is affirmative, and returns the process to step 100 when this determination result is negative.
  • the ECU 50 determines in step 130 that the CNG operation is possible when gasoline injection is performed a predetermined number of times or more after the fuel cut of the engine 1 is restored.
  • step 200 the ECU 50 determines whether or not it is a return from the fuel cut (F / C). In this embodiment, the ECU 50 determines that the fuel has been returned from the fuel cut (F / C) when the estimated number of injection estimations CEI reaches a predetermined value. The ECU 50 proceeds to step 150 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
  • step 150 executes the processing of step 150 and step 160, and then returns the processing to step 100.
  • the ECU 50 determines that a return from the fuel cut of the CNG is requested during the operation by the CNG, the ECU 50 switches from the operation by the CNG to the operation by the gasoline in order to switch from the operation by the CNG.
  • the CNG injector 32 is controlled. Specifically, the gasoline pump 25 is driven, the gasoline injector 22 is opened at a predetermined timing, and the CNG injector 32 is closed.
  • FIG. 4 shows a bi-fuel engine system according to this embodiment.
  • A Operation with CNG or gasoline when the engine 1 is accelerated,
  • Throttle The behavior of the change amount ⁇ TA of the opening degree,
  • (g) air-fuel ratio A / F is shown by a time chart.
  • FIG. 4 when the throttle opening degree TA and the change amount ⁇ TA of the throttle opening degree change at time t1 (see FIGS. 4C and 4D), the engine 1 is determined to be accelerated (FIG. 4E). (See FIG. 4 (a)), and the gasoline injection is increased according to the throttle opening degree TA.
  • the operation by the CNG is switched to the operation by the gasoline, and the engine 1 is operated by the gasoline. Therefore, even if the SPI system for injecting CNG into the intake manifold 13 at a position away from each cylinder 3 is adopted for the CNG injector 32, the vicinity of each cylinder 3 (intake port 7) when returning from CNG fuel cut. ), The gasoline is supplied to each cylinder 3 with good responsiveness by the MPI type gasoline injector 22 which injects gasoline corresponding to each cylinder 3.
  • the bi-fuel engine system configured to supply the CNG to the engine 1 by adopting the SPI method, it is possible to suppress a decrease in the rotation of the engine 1 at the time of return from the fuel cut during the operation by the CNG, and to generate an engine stall. It can be prevented in advance.
  • FIG. 5 relates to the bi-fuel engine system of this embodiment.
  • A Operation with CNG or gasoline,
  • Engine rotational speed NE (b) Engine rotational speed NE,
  • CEI Estimated number of injections CEI
  • d Fuel cut (F / C) return determination
  • e Air-fuel ratio
  • FIG. 5 when the fuel cut (F / C) return is determined (YES) at time t1 (see FIG. 5D), the operation is switched from the CNG operation to the gasoline operation (see FIG. 5A). ), Fuel is supplied to the engine 1 by gasoline injection. That is, the gasoline injected by the MPI gasoline injector 22 disposed in the vicinity of each cylinder 3 (intake port 7) is immediately supplied to each cylinder 3.
  • this embodiment is configured to switch from driving by CNG to driving by gasoline at the time of acceleration during driving by CNG and return from fuel cut.
  • the acceleration response is also improved.
  • the engine 1 is operated with both CNG and gasoline, two types of fuel are consumed simultaneously, and the overall fuel consumption of the engine 1 is deteriorated.
  • driving using both CNG and gasoline is not employed, it is possible to suppress the deterioration of the overall fuel consumption of the engine.
  • the port injection type gasoline injector 22 is used as the gasoline supply means, but a cylinder injection type gasoline injector can also be used. In this case, the same effect as that of the above embodiment can be obtained.
  • CNG is used as the gas fuel, but liquefied petroleum gas (LPG) can also be used. In this case, the same effect as that of the above embodiment can be obtained.
  • LPG liquefied petroleum gas
  • the throttle opening degree TA and the change amount ⁇ TA of the throttle opening degree are used for the acceleration determination, but the opening degree of the accelerator pedal operated to open and close the electronic throttle device 12 is detected.
  • the opening degree and the amount of change in the opening degree can also be used. In this case, the responsiveness of the engine acceleration determination can be improved.
  • the present invention can be used in a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

This bifuel engine system is provided with: multi-point injection (MPI) type gasoline injectors (22) which are located in the vicinity of each cylinder of a multi-cylinder engine (1), and which correspondingly inject gasoline into each cylinder; a single-point injection (SPI) type compressed natural gas (CNG) injector (32) which is located in a position away from each cylinder of the engine (1), and which injects CNG into an intake manifold (13); and an electronic control device (ECU) (50) for controlling the gasoline injectors (22) and the CNG injector (32) in accordance with the operation state of the engine (1). When it is determined that acceleration is demanded of the engine (1) during CNG operation, the ECU (50) controls the gasoline injectors (22) and the CNG injector (32) in order to switch from CNG operation to gasoline operation.

Description

バイフューエルエンジンシステムBi-fuel engine system
 この発明は、多気筒エンジンに燃料としてガソリンとガス燃料とを切り替えて供給し運転するように構成したバイフューエルエンジンシステムに関する。 The present invention relates to a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine for operation.
 従来、この種の技術として、例えば、特許文献1に記載されるバイフューエルエンジンの制御方法が知られている。この制御方法は、エンジンのシリンダ(気筒)近傍にてガソリンを吸気管に噴射するガソリンインジェクタと、エンジンの気筒から離れた吸気管にホースを介してガス燃料としてのCNGを噴射するCNGインジェクタとを備え、ガソリンインジェクタとCNGインジェクタとを切替スイッチにより切り替えて使用し、ガソリン又はCNGによりエンジンを運転するようになっている。そして、この制御方法では、ガソリンインジェクタによりガソリンを噴射して運転している状態で切替スイッチによりガソリンインジェクタからCNGインジェクタに切り替えたときに、ガソリンインジェクタからのガソリン噴射とCNGインジェクタからのCNG噴射とをオーバラップさせるようになっている。これにより、ガソリンによる運転からCNGによる運転に切り替えた際に、ホース等の容積増加によるCNGの希薄化が生じることなく何ら支障なく燃料の切り替えを行えるようにしている。 Conventionally, as this type of technology, for example, a control method for a bi-fuel engine described in Patent Document 1 is known. In this control method, a gasoline injector that injects gasoline into an intake pipe in the vicinity of an engine cylinder (cylinder), and a CNG injector that injects CNG as gas fuel into an intake pipe away from the engine cylinder via a hose. In addition, a gasoline injector and a CNG injector are switched and used by a changeover switch, and the engine is operated by gasoline or CNG. In this control method, when the gasoline switch is switched from the gasoline injector to the CNG injector while the gasoline injector is operating by injecting gasoline, the gasoline injection from the gasoline injector and the CNG injection from the CNG injector are performed. It is designed to overlap. As a result, when the operation using gasoline is switched to the operation using CNG, the fuel can be switched without any trouble without causing dilution of CNG due to an increase in the volume of the hose or the like.
特開2015-17594号公報JP 2015-17594 A
 ところで、特許文献1に記載されるバイフューエルエンジンでは、CNGによる運転中にエンジンに加速が要求されることがある。ところが、特許文献1に記載の技術では、CNGインジェクタが、エンジンの各気筒から離れた位置にてCNGを噴射するようになっている。そのため、加速時にCNG噴射を増量しても、その増量噴射したCNGが気筒に到達するまでに時間がかかり、加速に応答遅れが生じるおそれがあった。 By the way, in the bi-fuel engine described in Patent Document 1, acceleration may be required for the engine during operation by CNG. However, in the technique described in Patent Document 1, the CNG injector injects CNG at a position away from each cylinder of the engine. For this reason, even if the amount of CNG injection is increased during acceleration, it takes time for the increased amount of CNG to reach the cylinder, which may cause a delay in response to acceleration.
 ここで、バイフューエルエンジンをより安価に構成するために、CNG等のガス燃料の噴射方式をシングル・ポイント・インジェクション(SPI)方式にすることが考えられる。このようにガス燃料の噴射をSPI方式にすることで、バイフューエルエンジンの車両に対する搭載自由度を高められることが期待される。その反面、SPI方式では、加速時の増量噴射に応答遅れが生じたり、各気筒への燃料分配が悪化したりするなどのおそれがある。 Here, in order to construct a bi-fuel engine at a lower cost, it is conceivable to use a single point injection (SPI) system for the injection of gas fuel such as CNG. Thus, it is expected that the degree of freedom for mounting the bi-fuel engine on the vehicle can be increased by using the gas fuel injection in the SPI system. On the other hand, in the SPI method, there is a possibility that a delay in response occurs in the increased injection at the time of acceleration, or the fuel distribution to each cylinder is deteriorated.
 図6に、従来のバイフューエルエンジンに係り、エンジン加速時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度NE、(c)スロットル開度TA、(d)スロットル開度の変化量ΔTA及び(e)空燃比A/Fの挙動をタイムチャートにより示す。図6において、時刻t1で、スロットル開度TA及びスロットル開度の変化量ΔTAが変化して(図6(c),(d)参照)エンジンに加速が要求されると、CNGによる運転は変わらず(図6(a)参照)、スロットル開度TAに応じてCNG噴射が増量されることになる。しかしながら、CNG噴射が各気筒から離れた位置にてSPI方式により行われる場合には、CNGが各気筒に到達するまでに遅れが生じ、時刻t2~t3の間で、エンジン回転速度NEに回転上昇のもたつきが生じたり(図6(b)参照)、空燃比A/Fがリーン化したり(図6(e)参照)してしまう。 FIG. 6 shows a conventional bi-fuel engine (a) CNG or gasoline operation during engine acceleration, (b) engine speed NE, (c) throttle opening TA, (d) change in throttle opening. The behavior of ΔTA and (e) air-fuel ratio A / F is shown by a time chart. In FIG. 6, when the throttle opening degree TA and the change amount ΔTA of the throttle opening degree change at time t1 (see FIGS. 6C and 6D) and the engine is requested to accelerate, the operation by CNG changes. (See FIG. 6A), the CNG injection is increased in accordance with the throttle opening degree TA. However, when the CNG injection is performed by the SPI method at a position away from each cylinder, a delay occurs until the CNG reaches each cylinder, and the engine speed increases to NE between times t2 and t3. Or the air-fuel ratio A / F becomes lean (see FIG. 6E).
 この発明は、上記事情に鑑みてなされたものであって、その目的は、SPI方式を採用してエンジンにガス燃料を供給するように構成したバイフューエルエンジンシステムにおいて、ガス燃料による運転中からのエンジンの加速応答性を向上させることを可能としたバイフューエルエンジンシステムを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is a bi-fuel engine system configured to supply gas fuel to an engine by using the SPI method, from during operation with gas fuel. An object of the present invention is to provide a bi-fuel engine system that can improve the acceleration response of an engine.
 (1)上記目的を達成するために、本発明の一態様は、多気筒のエンジンに燃料としてガソリンとガス燃料とを切り替えて供給し運転するように構成したバイフューエルエンジンシステムであって、エンジンにガソリンを供給するために、各気筒の近傍にて各気筒に対応してガソリンを噴射するためのマルチ・ポイント・インジェクション(MPI)方式を採用したガソリン供給手段と、エンジンにガス燃料を供給するために、各気筒から離れた位置にて吸気通路にガス燃料を噴射するためのシングル・ポイント・インジェクション(SPI)方式を採用したガス燃料供給手段と、エンジンの運転状態に応じてガソリン供給手段及びガス燃料供給手段を制御するための制御手段とを備え、制御手段は、ガス燃料による運転中に、エンジンに加速が要求されたと判断したとき、ガス燃料による運転からガソリンによる運転へ切り替えるために、ガソリン供給手段とガス燃料供給手段を制御することを趣旨とする。 (1) In order to achieve the above object, one aspect of the present invention is a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine. In order to supply gasoline to the engine, gasoline supply means adopting a multi-point injection (MPI) system for injecting gasoline corresponding to each cylinder in the vicinity of each cylinder, and supplying gas fuel to the engine Therefore, gas fuel supply means adopting a single point injection (SPI) system for injecting gas fuel into the intake passage at a position away from each cylinder, gasoline supply means according to the operating state of the engine, and Control means for controlling the gas fuel supply means, and the control means is provided to the engine during operation with gas fuel. When it is determined that the speed is required, in order to switch to operation using gasoline operation with gaseous fuel, and the spirit of controlling the gasoline supply means and the gas fuel supply means.
 上記(1)の構成によれば、ガス燃料による運転中に、エンジンに加速が要求されたときには、ガス燃料による運転からガソリンによる運転へ切り替えられ、ガソリンによる運転によりエンジンが加速される。従って、ガス燃料供給手段に、各気筒から離れた位置にて吸気通路に燃料ガスを噴射するSPI方式が採用されても、エンジンの加速時には、各気筒の近傍にて各気筒に対応してガソリンを噴射するMPI方式のガソリン供給手段により応答性良く各気筒にガソリンが供給されることになる。 According to the configuration of (1) above, when the engine is requested to accelerate during operation using gas fuel, the operation is switched from operation using gas fuel to operation using gasoline, and the engine is accelerated by operation using gasoline. Therefore, even if the SPI system that injects the fuel gas into the intake passage at a position distant from each cylinder is adopted as the gas fuel supply means, the gasoline corresponding to each cylinder in the vicinity of each cylinder during engine acceleration. Gasoline is supplied to each cylinder with good responsiveness by the MPI type gasoline supply means for injecting fuel.
 (2)上記目的を達成するために、上記(1)の構成において、制御手段は、ガス燃料による運転中に、ガス燃料の供給遮断からの復帰が要求されたと判断したとき、ガス燃料による運転からガソリンによる運転へ切り替えるために、ガソリン供給手段とガス燃料供給手段を制御することが好ましい。 (2) In order to achieve the above object, in the configuration of (1) above, when the control means determines that a return from the cut off of the supply of the gas fuel is requested during the operation using the gas fuel, the operation using the gas fuel is performed. In order to switch from gasoline operation to gasoline operation, it is preferable to control the gasoline supply means and the gas fuel supply means.
 上記(2)の構成によれば、上記(1)の構成の作用に加え、ガス燃料による運転中に、ガス燃料の供給遮断(ガス燃料カット)からの復帰が要求されたときには、ガス燃料による運転からガソリンによる運転へ切り替えられ、ガソリンによりエンジンが運転される。従って、ガス燃料供給手段に、各気筒から離れた位置にて吸気通路に燃料ガスを噴射するSPI方式が採用されても、ガス燃料カットからの復帰時には、各気筒の近傍にて各気筒に対応してガソリンを噴射するMPI方式のガソリン供給手段により応答性良く各気筒にガソリンが供給されることになる。 According to the configuration of (2) above, in addition to the operation of the configuration of (1) above, when a return from gas fuel supply interruption (gas fuel cut) is requested during operation with gas fuel, Switching from driving to driving with gasoline, the engine is driven with gasoline. Therefore, even if the gas fuel supply means adopts the SPI method in which fuel gas is injected into the intake passage at a position away from each cylinder, it corresponds to each cylinder in the vicinity of each cylinder when returning from the gas fuel cut. Then, the gasoline is supplied to each cylinder with good responsiveness by the MPI type gasoline supply means for injecting the gasoline.
 上記(1)の構成によれば、SPI方式を採用してエンジンにガス燃料を供給するように構成したバイフューエルエンジンシステムにおいて、ガス燃料による運転中からのエンジンの加速応答性を向上させることができる。 According to the configuration of (1) above, in the bi-fuel engine system configured to supply gas fuel to the engine using the SPI method, it is possible to improve the acceleration response of the engine during operation with gas fuel. it can.
 上記(2)の構成によれば、上記(1)の構成の効果に加え、ガス燃料による運転中でのガス燃料カットからの復帰時にエンジンの回転低下を抑え、エンストの発生を未然に防止することができる。 According to the configuration of (2) above, in addition to the effect of the configuration of (1) above, a decrease in engine rotation is suppressed when returning from a gas fuel cut during operation with gas fuel, and engine stall is prevented. be able to.
一実施形態に係り、自動車に搭載されたバイフューエルエンジンシステムを示す概略構成図。1 is a schematic configuration diagram illustrating a bi-fuel engine system mounted on an automobile according to an embodiment. 一実施形態に係り、CNG運転中の加速時における燃料噴射制御の内容を示すフローチャート。The flowchart which shows the content of the fuel-injection control at the time of acceleration during CNG driving | operation concerning one Embodiment. 一実施形態に係り、CNG運転中のF/C復帰時における燃料噴射制御の内容を示すフローチャート。The flowchart which shows the content of the fuel-injection control at the time of F / C return | return during CNG driving | operation concerning one Embodiment. 一実施形態に係り、エンジンの加速時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度、(c)スロットル開度、(d)スロットル開度の変化量、(e)加速判定、(f)噴射推定回数及び(g)空燃比の挙動を示すタイムチャート。According to one embodiment, (a) driving with CNG or gasoline during engine acceleration, (b) engine rotation speed, (c) throttle opening, (d) amount of change in throttle opening, (e) acceleration determination, (F) Injection estimation frequency and (g) Time chart showing air-fuel ratio behavior. 一実施形態に係り、CNGカットからの復帰時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度、(c)噴射推定回数、(d)燃料カット復帰判定及び(e)空燃比の挙動を示すタイムチャート。According to one embodiment, (a) driving with CNG or gasoline, (b) engine speed, (c) estimated number of injections, (d) fuel cut return determination and (e) air-fuel ratio at the time of return from CNG cut Time chart showing behavior. 従来例に係り、エンジン加速時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度、(c)スロットル開度、(d)スロットル開度の変化量、及び(e)空燃比の挙動を示すタイムチャート。According to the conventional example, (a) operation with CNG or gasoline during engine acceleration, (b) engine rotation speed, (c) throttle opening, (d) change in throttle opening, and (e) air-fuel ratio behavior A time chart showing.
 以下、本発明におけるバイフューエルエンジンシステムを具体化した一実施形態につき図面を参照して詳細に説明する。 Hereinafter, an embodiment embodying a bi-fuel engine system according to the present invention will be described in detail with reference to the drawings.
 図1に、この実施形態における自動車に搭載されたバイフューエルエンジンシステムを概略構成図により示す。多気筒のエンジン1は、吸気通路2を通じて供給される燃料と空気との可燃混合気を、各気筒3の燃焼室にて爆発・燃焼させ、その燃焼後の排気ガスを排気通路4を介して外部へ排出させる。これにより、エンジン1は、ピストン5を動作させてクランクシャフト6を回転させ、動力を得るようになっている。 FIG. 1 is a schematic configuration diagram showing a bi-fuel engine system mounted on an automobile in this embodiment. The multi-cylinder engine 1 explodes and burns a combustible mixture of fuel and air supplied through an intake passage 2 in a combustion chamber of each cylinder 3, and exhausts the burned exhaust gas through the exhaust passage 4. Discharge outside. As a result, the engine 1 operates the piston 5 to rotate the crankshaft 6 to obtain power.
 吸気通路2は、その入口側から順にエアクリーナ11、電子スロットル装置12及び吸気マニホルド13を備える。エアクリーナ11は、吸気通路2に吸入される空気を清浄化する。電子スロットル装置12は、吸気通路2を流れ各気筒3の燃焼室に吸入される空気量(吸気量)Gaを調節する。電子スロットル装置12は、モータ14によりスロットル弁15を開閉駆動させる。電子スロットル装置12に設けられたスロットルセンサ41は、スロットル弁15の開度(スロットル開度)TAを検出し、その検出値に応じた電気信号を出力する。吸気マニホルド13は、吸気通路2を流れる吸気を各気筒3へ分配する。 The intake passage 2 includes an air cleaner 11, an electronic throttle device 12, and an intake manifold 13 in that order from the inlet side. The air cleaner 11 cleans the air taken into the intake passage 2. The electronic throttle device 12 adjusts the amount of air (intake amount) Ga that flows through the intake passage 2 and is sucked into the combustion chamber of each cylinder 3. The electronic throttle device 12 drives the throttle valve 15 to open and close by a motor 14. A throttle sensor 41 provided in the electronic throttle device 12 detects an opening degree (throttle opening degree) TA of the throttle valve 15 and outputs an electric signal corresponding to the detected value. The intake manifold 13 distributes the intake air flowing through the intake passage 2 to each cylinder 3.
 この実施形態のバイフューエルエンジシステムは、多気筒のエンジン1に対し、燃料としてガソリンと圧縮天然ガス(CNG)とを切り替えて供給し運転するように構成され、ガソリンを供給するガソリン供給装置21と、CNGを供給するCNG供給装置31とからなる燃料供給装置20を備える。この実施形態で、CNGは本発明のガス燃料の一例に相当する。ガソリン供給装置21は、各気筒3に対応して設けられた複数のガソリンインジェクタ22と、各ガソリンインジェクタ22へガソリンを供給するためのガソリンタンク23、ガソリンライン24、ガソリンポンプ25及びデリバリパイプ26とを備える。ガソリンインジェクタ22は、エンジン1の各気筒3の近傍にて各気筒3に対応して吸気ポート7にガソリンを噴射するポート噴射式及びマルチ・ポイント・インジェクション(MPI)方式を採用したものであり、本発明のガソリン供給手段の一例に相当する。ガソリンタンク23は、ガソリンを貯留する。ガソリンポンプ25は、ガソリンタンク23からガソリンライン24へガソリンを圧送する。ガソリンライン24へ圧送されたガソリンは、デリバリパイプ26を介して各ガソリンインジェクタ22へ供給される。供給されたガソリンは、各インジェクタ22が制御されることで、各吸気ポート7へ噴射され、各気筒3へ供給される。 The bi-fuel engine system of this embodiment is configured to switch and supply gasoline and compressed natural gas (CNG) as fuel to the multi-cylinder engine 1 and operate, and a gasoline supply device 21 for supplying gasoline. The fuel supply device 20 includes a CNG supply device 31 that supplies CNG. In this embodiment, CNG corresponds to an example of the gas fuel of the present invention. The gasoline supply device 21 includes a plurality of gasoline injectors 22 provided corresponding to the respective cylinders 3, a gasoline tank 23 for supplying gasoline to each gasoline injector 22, a gasoline line 24, a gasoline pump 25, and a delivery pipe 26. Is provided. The gasoline injector 22 employs a port injection type and a multi-point injection (MPI) method in which gasoline is injected into the intake port 7 corresponding to each cylinder 3 in the vicinity of each cylinder 3 of the engine 1. This corresponds to an example of the gasoline supply means of the present invention. The gasoline tank 23 stores gasoline. The gasoline pump 25 pumps gasoline from the gasoline tank 23 to the gasoline line 24. The gasoline pumped to the gasoline line 24 is supplied to each gasoline injector 22 via the delivery pipe 26. The supplied gasoline is injected into each intake port 7 and supplied to each cylinder 3 by controlling each injector 22.
 CNG供給装置31は、一つのCNGインジェクタ32と、そのインジェクタ32へCNGを供給するためのCNGボンベ33及びCNGライン34とを備える。CNGインジェクタ32は、エンジン1の各気筒3から離れた位置にて吸気マニホルド13にCNGを噴射するためのシングル・ポイント・インジェクション(SPI)方式を採用したものであり、本発明のガス燃料供給手段の一例に相当する。CNGライン34には、元弁35、遮断弁36及びCNGレギュレータ37が設けられる。元弁35は、CNGボンベ33からCNGライン34へのCNGの供給と遮断を制御するために開閉される電磁弁より構成される。遮断弁36は、CNGの流れを制御するために開閉される電磁弁より構成される。CNGレギュレータ37は、CNGインジェクタ32へ圧送されるCNGを所定圧力に調整する。CNGボンベ33からCNGライン34を通じてCNGインジェクタ32へ供給されるCNGは、CNGインジェクタ32が制御されることで、吸気マニホルド13へ噴射され、各吸気ポート7を介して各気筒3へ供給される。 The CNG supply device 31 includes one CNG injector 32, and a CNG cylinder 33 and a CNG line 34 for supplying CNG to the injector 32. The CNG injector 32 employs a single point injection (SPI) system for injecting CNG into the intake manifold 13 at a position distant from each cylinder 3 of the engine 1, and the gas fuel supply means of the present invention. It corresponds to an example. The CNG line 34 is provided with a main valve 35, a shut-off valve 36, and a CNG regulator 37. The main valve 35 is composed of an electromagnetic valve that is opened and closed to control the supply and shutoff of CNG from the CNG cylinder 33 to the CNG line 34. The shut-off valve 36 is composed of an electromagnetic valve that is opened and closed to control the flow of CNG. The CNG regulator 37 adjusts CNG fed to the CNG injector 32 to a predetermined pressure. CNG supplied from the CNG cylinder 33 to the CNG injector 32 through the CNG line 34 is injected into the intake manifold 13 by the control of the CNG injector 32, and is supplied to each cylinder 3 through each intake port 7.
 元弁35より下流のCNGライン34には、その部位におけるCNGの圧力を検出するための第1CNG圧力センサ61が設けられる。CNGレギュレータ37とCNGインジェクタ32との間のCNGライン34には、デリバリパイプ38が設けられる。このデリバリパイプ38には、同パイプ38におけるCNGの圧力を検出するための第2CNG圧力センサ62と、同パイプ38におけるCNGの温度を検出するためのCNG温度センサ63とが設けられる。元弁35及び遮断弁36が共に開弁された場合には、CNGボンベ33からCNGがCNGライン34等を介してCNGインジェクタ32へ供給される。一方、元弁35又は遮断弁36が閉弁された場合には、CNGインジェクタ32へCNGが供給されなくなる。 1st CNG pressure sensor 61 for detecting the pressure of CNG in the part is provided in CNG line 34 downstream from main valve 35. A delivery pipe 38 is provided on the CNG line 34 between the CNG regulator 37 and the CNG injector 32. The delivery pipe 38 is provided with a second CNG pressure sensor 62 for detecting the CNG pressure in the pipe 38 and a CNG temperature sensor 63 for detecting the temperature of the CNG in the pipe 38. When both the main valve 35 and the shutoff valve 36 are opened, CNG is supplied from the CNG cylinder 33 to the CNG injector 32 via the CNG line 34 and the like. On the other hand, when the main valve 35 or the shutoff valve 36 is closed, CNG is not supplied to the CNG injector 32.
 各気筒3に対応してエンジン1に設けられた複数の点火プラグ16は、イグニションコイル17から出力される高電圧を受けて点火動作をする。各点火プラグ16の点火時期は、イグニションコイル17による高電圧の出力タイミングにより決定される。 The plurality of spark plugs 16 provided in the engine 1 corresponding to the respective cylinders 3 perform an ignition operation by receiving a high voltage output from the ignition coil 17. The ignition timing of each spark plug 16 is determined by the output timing of the high voltage from the ignition coil 17.
 排気通路4に設けられた触媒コンバータ8は、エンジン1から排気通路4へ排出される排気を浄化する。排気通路4に設けられた酸素センサ43は、エンジン1から排気通路4へ排出される排気中の酸素濃度Oxを検出し、その検出値に応じた電気信号を出力する。 The catalytic converter 8 provided in the exhaust passage 4 purifies the exhaust discharged from the engine 1 to the exhaust passage 4. The oxygen sensor 43 provided in the exhaust passage 4 detects the oxygen concentration Ox in the exhaust discharged from the engine 1 to the exhaust passage 4 and outputs an electric signal corresponding to the detected value.
 エンジン1に設けられた回転速度センサ44は、クランクシャフト6の回転速度、即ち、エンジン回転速度NEを検出し、その検出値に応じた電気信号を出力する。エンジン1に設けられた水温センサ45は、エンジン1の内部を流れる冷却水の温度(冷却水温度)THWを検出し、その検出値に応じた電気信号を出力する。また、自動車には、その車速を検出し、その検出値に応じた電気信号を出力する車速センサ46が設けられる。 The rotational speed sensor 44 provided in the engine 1 detects the rotational speed of the crankshaft 6, that is, the engine rotational speed NE, and outputs an electrical signal corresponding to the detected value. A water temperature sensor 45 provided in the engine 1 detects the temperature (cooling water temperature) THW of the cooling water flowing inside the engine 1 and outputs an electrical signal corresponding to the detected value. In addition, the automobile is provided with a vehicle speed sensor 46 that detects the vehicle speed and outputs an electrical signal corresponding to the detected value.
 この実施形態で、電子制御装置(ECU)50は、各種センサ41,43~46から出力される各種信号を入力する。ECU50は、これら入力信号に基づいて、すなわちエンジン1の運転状態に応じて、空燃比制御を含む燃料噴射制御及び点火時期制御等を実行するために、各ガソリンインジェクタ22、CNGインジェクタ32及びイグニションコイル17を制御するようになっている。 In this embodiment, the electronic control unit (ECU) 50 inputs various signals output from the various sensors 41, 43 to 46. Based on these input signals, that is, according to the operating state of the engine 1, the ECU 50 performs each fuel injector 22, CNG injector 32, and ignition coil in order to execute fuel injection control including ignition control and ignition timing control. 17 is controlled.
 ここで、燃料噴射制御とは、エンジン1の運転状態に応じて各インジェクタ22,32を制御することにより、燃料噴射量及び燃料噴射時期を制御することである。空燃比制御とは、酸素センサ43の検出信号に基づいて各インジェクタ22,32を制御することにより、エンジン1の空燃比を理論空燃比等の所定の目標空燃比にフィードバック制御することである。この実施形態で、ECU50は、燃料噴射制御におけるガソリンとCNGの使い分けとして、エンジン1の始動と始動完了直後のアイドル運転をガソリンを使用して行い、その後、CNGを使用した運転へ切り替えるようになっている。点火時期制御とは、エンジン1の運転状態に応じてイグニションコイル17を制御することにより、各点火プラグ16による点火時期を制御することである。 Here, the fuel injection control is to control the fuel injection amount and the fuel injection timing by controlling the injectors 22 and 32 in accordance with the operating state of the engine 1. The air-fuel ratio control is a feedback control of the air-fuel ratio of the engine 1 to a predetermined target air-fuel ratio such as the theoretical air-fuel ratio by controlling the injectors 22 and 32 based on the detection signal of the oxygen sensor 43. In this embodiment, the ECU 50 uses the gasoline to perform the idling operation immediately after the start of the engine 1 and the completion of the start as the use of gasoline and CNG in the fuel injection control, and then switches to the operation using the CNG. ing. The ignition timing control is to control the ignition timing by each spark plug 16 by controlling the ignition coil 17 according to the operating state of the engine 1.
 この実施形態で、ECU50は、本発明の制御手段の一例に相当する。ECU50は中央処理装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及びバックアップRAM等よりなる周知の構成を備える。ROMは、前述した各種制御に係る所定の制御プログラムを予め記憶している。ECU50は、これらの制御プログラムに従って前述した各種制御等を実行するようになっている。 In this embodiment, the ECU 50 corresponds to an example of the control means of the present invention. The ECU 50 has a known configuration including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a backup RAM, and the like. The ROM stores in advance predetermined control programs related to the various controls described above. The ECU 50 is configured to execute the various controls described above according to these control programs.
 この他、自動車の運転席には、エンジン1の運転にガソリンのみを使用するガソリンモードと、CNGのみを使用するCNGモードと、ガソリンとCNGを選択的に使用する通常モードとを選択するためのモードスイッチ66が設けられる。同じく、運転席には、現在の運転がガソリンモードであるか、CNGモードであるか、通常モードであるかを表示するためのモードランプ67が設けられる。モードスイッチ66及びモードランプ67は、それぞれECU50に接続される。モードランプ67は、その表示がECU50により制御されるようになっている。 In addition, the driver's seat of the car is for selecting a gasoline mode that uses only gasoline for driving the engine 1, a CNG mode that uses only CNG, and a normal mode that selectively uses gasoline and CNG. A mode switch 66 is provided. Similarly, the driver's seat is provided with a mode lamp 67 for displaying whether the current driving is the gasoline mode, the CNG mode, or the normal mode. The mode switch 66 and the mode lamp 67 are connected to the ECU 50, respectively. The display of the mode lamp 67 is controlled by the ECU 50.
 上記したように、この実施形態のバイフューエルエンジンシステムは、CNG噴射のためにSPI方式を採用していることから、比較的安価に構成できると共に、車両に対する搭載自由度を高めることができる。しかしながら、CNG噴射をSPI方式とすることで、エンジン1の加速時に増量噴射されたCNGの各気筒3への到達に遅れが生じたり、各気筒3へのCNG分配が悪化したりするおそれがある。また、燃料カットからの復帰時にも噴射されたCNGの各気筒3への到達に遅れが生じたり、各気筒3へのCNG分配が悪化したりするおそれがある。この結果、燃料カットからの復帰時に、エンジン1の回転が低下し、エンストに至るおそれがある。そこで、この実施形態では、CNG運転中におけるエンジン1の加速時と燃料カットからの復帰時における燃料噴射制御を以下のように改善している。図2に、CNG運転中の加速時における燃料噴射制御の内容をフローチャートにより示す。 As described above, since the bi-fuel engine system of this embodiment employs the SPI method for CNG injection, the bi-fuel engine system can be configured relatively inexpensively and can increase the degree of freedom of mounting on the vehicle. However, by adopting the SPI method for the CNG injection, there is a risk that the arrival of the CNG, which is increased in quantity when the engine 1 is accelerated, may be delayed or the CNG distribution to each cylinder 3 may be deteriorated. . In addition, there is a risk that the CNG injected reaches the cylinders 3 at the time of return from the fuel cut, or the CNG distribution to the cylinders 3 is deteriorated. As a result, at the time of return from the fuel cut, the rotation of the engine 1 may be reduced, leading to an engine stall. Therefore, in this embodiment, the fuel injection control at the time of acceleration of the engine 1 during the CNG operation and the return from the fuel cut is improved as follows. FIG. 2 is a flowchart showing the content of fuel injection control during acceleration during CNG operation.
 処理がこのルーチンへ移行すると、ステップ100で、ECU50は、現在がガソリンとCNGを選択的に使用する通常モードであるか否かを判断する。ECU50は、この判断結果が肯定となる場合は処理をステップ110へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 When the process proceeds to this routine, in step 100, the ECU 50 determines whether or not the current mode is a normal mode in which gasoline and CNG are selectively used. The ECU 50 proceeds to step 110 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
 ステップ110では、ECU50は、現在がCNGを使用したCNG運転であるか否かを判断する。ECU50は、この判断結果が肯定となる場合は処理をステップ120へ移行し、この判断結果が否定となる場合は処理をステップ130へ移行する。 In step 110, the ECU 50 determines whether or not the current operation is CNG operation using CNG. If this determination result is affirmative, the ECU 50 proceeds to step 120, and if this determination result is negative, the ECU 50 proceeds to step 130.
 ステップ120で、ECU50は、ガソリンへ切り替えるための前提条件が成立しているか否かを判断する。ECU50は、例えば、(a)エンジン回転速度NEが所定の範囲内にあること、(b)スロットル開度TAが所定範囲内にあること、(c)スロットル開度TAの変化量ΔTAが所定値以上であること、すなわちエンジン1の加速時であること、(d)車速が所定値以上であること、(e)CNGを使用した運転時間が所定時間以上であることを前提条件とし、これら(a)~(e)の全ての条件が成立したときにガソリンへ切り替えるための前提条件が成立したと判断する。ECU50は、この判断結果が肯定となる場合は処理をステップ150へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 In step 120, the ECU 50 determines whether a precondition for switching to gasoline is satisfied. For example, the ECU 50 determines that (a) the engine speed NE is within a predetermined range, (b) the throttle opening TA is within a predetermined range, and (c) a change amount ΔTA of the throttle opening TA is a predetermined value. Assuming that the above is the case, that is, when the engine 1 is accelerating, (d) the vehicle speed is equal to or higher than a predetermined value, and (e) the driving time using CNG is equal to or longer than a predetermined time, When all the conditions a) to (e) are satisfied, it is determined that the precondition for switching to gasoline is satisfied. The ECU 50 proceeds to step 150 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
 一方、ステップ130では、ECU50は、CNG運転が可能であるか否かを判断する。ECU50は、エンジン1の加速開始時からガソリン噴射を所定回数以上行った場合にCNG運転が可能であると判断する。ECU50は、この判断結果が肯定となる場合は処理をステップ140へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 On the other hand, in step 130, the ECU 50 determines whether or not CNG operation is possible. The ECU 50 determines that the CNG operation is possible when the gasoline injection is performed a predetermined number of times or more after the acceleration of the engine 1 is started. The ECU 50 proceeds to step 140 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
 ステップ140で、ECU50は、CNG運転へ切り替える。すなわち、ECU50は、CNGを噴射するためにCNGインジェクタ32の開弁を許容する。これにより各CNGインジェクタ32からは、所定のタイミングでCNGが噴射されるようになる。 In step 140, the ECU 50 switches to CNG operation. That is, the ECU 50 permits the opening of the CNG injector 32 in order to inject CNG. Thus, CNG is injected from each CNG injector 32 at a predetermined timing.
 ステップ120から移行してステップ150では、ECU50は、噴射推定回数CEIを「0」にクリアする。ECU50は、エンジン1の運転時にガソリンインジェクタ22による噴射回数を推定するようになっている。 From step 120, in step 150, the ECU 50 clears the estimated number of injections CEI to “0”. The ECU 50 estimates the number of injections by the gasoline injector 22 when the engine 1 is in operation.
 次に、ステップ160で、ECU50は、ガソリン運転へ切り替える。すなわち、ECU50は、ガソリンを噴射するためにガソリンポンプ25を駆動すると共に、各ガソリンインジェクタ22の開弁を許容する。これにより各ガソリンインジェクタ22からは、所定のタイミングでガソリンが噴射されるようになる。その後、ECU50は、処理をステップ100へ戻す。 Next, in step 160, the ECU 50 switches to gasoline operation. That is, the ECU 50 drives the gasoline pump 25 to inject gasoline, and permits the opening of each gasoline injector 22. As a result, gasoline is injected from each gasoline injector 22 at a predetermined timing. Thereafter, the ECU 50 returns the process to step 100.
 上記制御によれば、ECU50は、CNGによる運転中に、エンジン1に加速が要求されたと判断したとき、CNGによる運転からガソリンによる運転へ切り替えるために、ガソリンポンプ25及びガソリンインジェクタ22とCNGインジェクタ32とを制御するようになっている。詳しくは、ガソリンポンプ25を駆動させ、ガソリンインジェクタ22を所定のタイミングで開弁すると共に、CNGインジェクタ32を閉止するようになっている。 According to the above control, when the ECU 50 determines that acceleration is required for the engine 1 during the operation by the CNG, the gasoline pump 25, the gasoline injector 22 and the CNG injector 32 are switched from the operation by the CNG to the operation by the gasoline. And to control. Specifically, the gasoline pump 25 is driven, the gasoline injector 22 is opened at a predetermined timing, and the CNG injector 32 is closed.
 次に、図3に、CNG運転中の燃料カット復帰時における燃料噴射制御の内容をフローチャートにより示す。CNG運転中の燃料カット復帰時とは、CNG運転中にCNG噴射を一旦遮断し、その後CNG噴射へ復帰するときを意味する。図3のフローチャートは、ステップ100,110,130~160の内容の点で図2のフローチャートのそれと同じである。また、図3のフローチャートは、ステップ125の内容が図2のフローチャートのステップ120と異なり、ステップ120とステップ150との間にステップ200が加えられた点で図2のフローチャートと異なる。 Next, FIG. 3 is a flowchart showing the content of fuel injection control at the time of fuel cut return during CNG operation. The time of fuel cut return during CNG operation means when CNG injection is once interrupted during CNG operation and then returned to CNG injection. The flowchart of FIG. 3 is the same as that of the flowchart of FIG. 2 in terms of the contents of steps 100, 110, and 130-160. 3 is different from the flowchart of FIG. 2 in that the content of step 125 is different from step 120 of the flowchart of FIG. 2 and that step 200 is added between step 120 and step 150.
 従って、処理がこのルーチンへ移行すると、ECU50は、ステップ100とステップ110の処理を実行した後、ステップ125で、ガソリンへ切り替えるための前提条件が成立したか否かを判断する。ここで、ECU50は、例えば、(g)エンジン回転速度NEが所定値以上であること、(h)車速が所定値以上であること、(i)前回燃料カット中であることを前提条件とし、これら(g)~(i)の全ての条件が成立したときにガソリンへ切り替えるための前提条件が成立したと判断するようになっている。ECU50は、この判断結果が肯定となる場合は処理をステップ200へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 Therefore, when the processing shifts to this routine, the ECU 50 determines whether or not a precondition for switching to gasoline is satisfied in step 125 after executing the processing of step 100 and step 110. Here, for example, the ECU 50 is premised on (g) that the engine rotational speed NE is equal to or higher than a predetermined value, (h) that the vehicle speed is higher than or equal to a predetermined value, and (i) that the previous fuel cut is in progress. When all the conditions (g) to (i) are satisfied, it is determined that the precondition for switching to gasoline is satisfied. The ECU 50 proceeds to step 200 when this determination result is affirmative, and returns the process to step 100 when this determination result is negative.
 この実施形態で、ECU50は、ステップ130で、エンジン1の燃料カット復帰時からガソリン噴射を所定回数以上行った場合にCNG運転が可能であると判断するようになっている。 In this embodiment, the ECU 50 determines in step 130 that the CNG operation is possible when gasoline injection is performed a predetermined number of times or more after the fuel cut of the engine 1 is restored.
 そして、ステップ200で、ECU50は、燃料カット(F/C)からの復帰か否かを判断する。この実施形態では、ECU50は、推定される噴射推定回数CEIが所定値となったときに燃料カット(F/C)からの復帰と判断するようになっている。ECU50は、この判断結果が肯定となる場合は処理をステップ150へ移行し、この判断結果が否定となる場合は処理をステップ100へ戻す。 In step 200, the ECU 50 determines whether or not it is a return from the fuel cut (F / C). In this embodiment, the ECU 50 determines that the fuel has been returned from the fuel cut (F / C) when the estimated number of injection estimations CEI reaches a predetermined value. The ECU 50 proceeds to step 150 when the determination result is affirmative, and returns the process to step 100 when the determination result is negative.
 その後、ECU50は、ステップ150及びステップ160の処理を実行した後、処理をステップ100へ戻す。 Thereafter, the ECU 50 executes the processing of step 150 and step 160, and then returns the processing to step 100.
 上記制御によれば、ECU50は、CNGによる運転中に、CNGの燃料カットからの復帰が要求されたと判断したとき、CNGによる運転からガソリンによる運転へ切り替えるために、ガソリンポンプ25及びガソリンインジェクタ22とCNGインジェクタ32とを制御するようになっている。詳しくは、ガソリンポンプ25を駆動させ、ガソリンインジェクタ22を所定のタイミングで開弁すると共に、CNGインジェクタ32を閉止するようになっている。 According to the above control, when the ECU 50 determines that a return from the fuel cut of the CNG is requested during the operation by the CNG, the ECU 50 switches from the operation by the CNG to the operation by the gasoline in order to switch from the operation by the CNG. The CNG injector 32 is controlled. Specifically, the gasoline pump 25 is driven, the gasoline injector 22 is opened at a predetermined timing, and the CNG injector 32 is closed.
 以上説明したこの実施形態のバイフューエルエンジンシステムによれば、CNGによる運転中に、エンジン1に加速が要求されたときには、CNGによる運転からガソリンによる運転へ切り替えられ、ガソリンによる運転によりエンジン1が加速される。従って、CNGインジェクタ32につき、各気筒3から離れた位置にて吸気マニホルド13にCNGを噴射するSPI方式が採用されても、エンジン1の加速時には、各気筒3の近傍(吸気ポート7)にて各気筒3に対応してガソリンを噴射するMPI方式のガソリンインジェクタ22により応答性良く各気筒3にガソリンが供給されることになる。このため、SPI方式を採用してエンジン1にCNGを供給するように構成したバイフューエルエンジンシステムにおいて、CNGによる運転中からのエンジンの加速応答性を向上させることができる。 According to the bi-fuel engine system of this embodiment described above, when the engine 1 is requested to accelerate during operation by CNG, operation from CNG is switched to operation by gasoline, and engine 1 is accelerated by operation by gasoline. Is done. Therefore, even if the SPI system for injecting CNG into the intake manifold 13 at a position away from each cylinder 3 is employed for the CNG injector 32, when the engine 1 is accelerated, it is in the vicinity of each cylinder 3 (intake port 7). Gasoline is supplied to each cylinder 3 with good responsiveness by the MPI type gasoline injector 22 that injects gasoline corresponding to each cylinder 3. For this reason, in the bi-fuel engine system configured to supply the CNG to the engine 1 by adopting the SPI method, it is possible to improve the acceleration response of the engine during operation by the CNG.
 図4に、この実施形態のバイフューエルエンジンシステムに係り、エンジン1の加速時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度NE、(c)スロットル開度TA、(d)スロットル開度の変化量ΔTA、(e)加速判定、(f)噴射推定回数CEI及び(g)空燃比A/Fの挙動をタイムチャートにより示す。図4において、時刻t1で、スロットル開度TA及びスロットル開度の変化量ΔTAが変化して(図4(c),(d)参照)エンジン1が加速判定されると(図4(e)参照)、CNGによる運転からガソリンによる運転に切り替えられ(図4(a)参照)、スロットル開度TAに応じてガソリン噴射が増量される。そして、この実施形態では、ガソリン噴射が各気筒3の近傍(吸気ポート7)にて各気筒3に対応してガソリンを噴射するMPI方式が採用されることから、噴射されたガソリンが各気筒3へ直ちに供給される。このため、図4(b)に破線楕円で囲って示すように、時刻t2から、エンジン回転速度NEがもたつくことなく上昇することになり、エンジン1の回転上昇に問題がない。また、図4(g)に示すように、空燃比A/Fも、時刻t2~t3の間でリーン化することがない。なお、この実施形態では、図4において、時刻t1で、「0」にクリアされた噴射推定回数CEIが、時刻t3で所定値C1に達したときに、ガソリンによる運転からCNGによる運転へ戻るようになっている。 FIG. 4 shows a bi-fuel engine system according to this embodiment. (A) Operation with CNG or gasoline when the engine 1 is accelerated, (b) Engine rotational speed NE, (c) Throttle opening TA, (d) Throttle The behavior of the change amount ΔTA of the opening degree, (e) acceleration determination, (f) estimated number of injections CEI and (g) air-fuel ratio A / F is shown by a time chart. In FIG. 4, when the throttle opening degree TA and the change amount ΔTA of the throttle opening degree change at time t1 (see FIGS. 4C and 4D), the engine 1 is determined to be accelerated (FIG. 4E). (See FIG. 4 (a)), and the gasoline injection is increased according to the throttle opening degree TA. In this embodiment, since the MPI method is employed in which gasoline is injected in the vicinity of each cylinder 3 (intake port 7) corresponding to each cylinder 3, the injected gasoline is injected into each cylinder 3. Will be supplied immediately. For this reason, as shown in FIG. 4B surrounded by a broken-line ellipse, the engine speed NE increases without delay from time t2, and there is no problem in increasing the rotation of the engine 1. Further, as shown in FIG. 4 (g), the air-fuel ratio A / F also does not become lean between times t2 and t3. In this embodiment, in FIG. 4, when the estimated number of injections CEI cleared to “0” at time t1 reaches a predetermined value C1 at time t3, the operation from gasoline is returned to the operation by CNG. It has become.
 また、この実施形態では、CNGによる運転中に、CNGの燃料カットからの復帰が要求されたときには、CNGによる運転からガソリンによる運転へ切り替えられ、ガソリンによりエンジン1が運転される。従って、CNGインジェクタ32につき、各気筒3から離れた位置にて吸気マニホルド13にCNGを噴射するSPI方式が採用されても、CNGの燃料カットからの復帰時には、各気筒3の近傍(吸気ポート7)にて各気筒3に対応してガソリンを噴射するMPI方式のガソリンインジェクタ22により応答性良く各気筒3にガソリンが供給されることになる。このため、SPI方式を採用してエンジン1にCNGを供給するように構成したバイフューエルエンジンシステムにおいて、CNGによる運転中での燃料カットからの復帰時にエンジン1の回転低下を抑え、エンストの発生を未然に防止することができる。 In this embodiment, when the CNG is requested to return from the fuel cut during the operation by the CNG, the operation by the CNG is switched to the operation by the gasoline, and the engine 1 is operated by the gasoline. Therefore, even if the SPI system for injecting CNG into the intake manifold 13 at a position away from each cylinder 3 is adopted for the CNG injector 32, the vicinity of each cylinder 3 (intake port 7) when returning from CNG fuel cut. ), The gasoline is supplied to each cylinder 3 with good responsiveness by the MPI type gasoline injector 22 which injects gasoline corresponding to each cylinder 3. For this reason, in the bi-fuel engine system configured to supply the CNG to the engine 1 by adopting the SPI method, it is possible to suppress a decrease in the rotation of the engine 1 at the time of return from the fuel cut during the operation by the CNG, and to generate an engine stall. It can be prevented in advance.
 図5に、この実施形態のバイフューエルエンジンシステムに係り、CNGの燃料カットからの復帰時における(a)CNG又はガソリンによる運転、(b)エンジン回転速度NE、(c)噴射推定回数CEI、(d)燃料カット(F/C)復帰判定及び(e)空燃比A/Fの挙動をタイムチャートにより示す。図5において、時刻t1で、燃料カット(F/C)復帰が判定(YES)されると(図5(d)参照)、CNGによる運転からガソリンによる運転に切り替えられ(図5(a)参照)、ガソリン噴射によりエンジン1に燃料が供給される。すなわち、各気筒3の近傍(吸気ポート7)に配置されたMPI方式のガソリンインジェクタ22により噴射されたガソリンが各気筒3へ直ちに供給される。そのため、図5(b)に示すように、時刻t1~t2の間で、エンジン回転速度NEの低下が緩やかとなり、エンジン1がエンストすることなく回転を持ちこたえることになる。また、図5(e)に示すように、時刻t1~t2の間では、空燃比A/Fがリーン化することがない。なお、この実施形態では、図5において、時刻t1で、「0」にクリアされた噴射推定回数CEIが、時刻t2で所定値C1に達したときに、ガソリンによる運転からCNGによる運転へ戻るようになっている。 FIG. 5 relates to the bi-fuel engine system of this embodiment. (A) Operation with CNG or gasoline, (b) Engine rotational speed NE, (c) Estimated number of injections CEI, d) Fuel cut (F / C) return determination and (e) Air-fuel ratio A / F behavior are shown in a time chart. In FIG. 5, when the fuel cut (F / C) return is determined (YES) at time t1 (see FIG. 5D), the operation is switched from the CNG operation to the gasoline operation (see FIG. 5A). ), Fuel is supplied to the engine 1 by gasoline injection. That is, the gasoline injected by the MPI gasoline injector 22 disposed in the vicinity of each cylinder 3 (intake port 7) is immediately supplied to each cylinder 3. Therefore, as shown in FIG. 5 (b), the decrease in the engine rotational speed NE is moderated between the times t1 and t2, and the engine 1 holds the rotation without being stalled. Further, as shown in FIG. 5E, the air-fuel ratio A / F does not become lean between times t1 and t2. In this embodiment, in FIG. 5, when the estimated number of injections CEI cleared to “0” at time t1 reaches a predetermined value C1 at time t2, the operation from gasoline is returned to the operation by CNG. It has become.
 ところで、この実施形態では、CNGによる運転中の加速時及び燃料カットからの復帰時に、CNGによる運転からガソリンによる運転に切り替えるように構成した。これに対し、CNGによる運転中の加速時及び燃料カットからの復帰時に、CNGによる運転からCNGとガソリンの両方による運転に切り替えることも考えられ、これによっても加速応答性を高められると考えられる。しかしながら、エンジン1をCNGとガソリンの両方により運転した場合は、2種類の燃料を同時に消費することになり、エンジン1の総合的な燃費が悪化することになる。この実施形態では、CNGとガソリンの両方による運転を採用しないので、エンジンの総合的な燃費の悪化を抑えることができる。 By the way, in this embodiment, it is configured to switch from driving by CNG to driving by gasoline at the time of acceleration during driving by CNG and return from fuel cut. On the other hand, at the time of acceleration during operation by CNG and at the time of return from the fuel cut, it is conceivable to switch from the operation by CNG to the operation by both CNG and gasoline, and it is considered that the acceleration response is also improved. However, when the engine 1 is operated with both CNG and gasoline, two types of fuel are consumed simultaneously, and the overall fuel consumption of the engine 1 is deteriorated. In this embodiment, since driving using both CNG and gasoline is not employed, it is possible to suppress the deterioration of the overall fuel consumption of the engine.
 なお、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更して実施することもできる。 Note that the present invention is not limited to the above-described embodiment, and a part of the configuration can be appropriately changed and implemented without departing from the spirit of the invention.
 (1)前記実施形態では、ガソリン供給手段として、ポート噴射方式のガソリンインジェクタ22を使用したが、筒内噴射方式のガソリンインジェクタを使用することもできる。この場合も前記実施形態と同等の作用効果を得ることができる。 (1) In the above embodiment, the port injection type gasoline injector 22 is used as the gasoline supply means, but a cylinder injection type gasoline injector can also be used. In this case, the same effect as that of the above embodiment can be obtained.
 (2)前記実施形態では、ガス燃料としてCNGを採用したが、液化石油ガス(LPG)を採用することもできる。この場合も前記実施形態と同等の作用効果を得ることができる。 (2) In the above embodiment, CNG is used as the gas fuel, but liquefied petroleum gas (LPG) can also be used. In this case, the same effect as that of the above embodiment can be obtained.
 (3)前記実施形態では、加速判定のためにスロットル開度TA及びスロットル開度の変化量ΔTAを使用したが、電子スロットル装置12を開閉するために操作されるアクセルペダルの開度を検出し、その開度及び開度の変化量を使用することもできる。この場合、エンジンの加速判定の応答性を高めることができる。 (3) In the above embodiment, the throttle opening degree TA and the change amount ΔTA of the throttle opening degree are used for the acceleration determination, but the opening degree of the accelerator pedal operated to open and close the electronic throttle device 12 is detected. The opening degree and the amount of change in the opening degree can also be used. In this case, the responsiveness of the engine acceleration determination can be improved.
 この発明は、多気筒エンジンに燃料としてガソリンとガス燃料とを切り替えて供給し運転するように構成したバイフューエルエンジンシステムに使用することができる。 The present invention can be used in a bi-fuel engine system configured to switch and supply gasoline and gas fuel as fuel to a multi-cylinder engine.
1 エンジン
2 吸気通路
3 気筒
13 吸気マニホルド
22 ガソリンインジェクタ(ガソリン供給手段)
32 CNGインジェクタ(ガス燃料供給手段)
50 ECU(制御手段)
1 Engine 2 Intake passage 3 Cylinder 13 Intake manifold 22 Gasoline injector (gasoline supply means)
32 CNG injector (gas fuel supply means)
50 ECU (control means)

Claims (2)

  1.  多気筒のエンジンに燃料としてガソリンとガス燃料とを切り替えて供給し運転するように構成したバイフューエルエンジンシステムであって、
     前記エンジンに前記ガソリンを供給するために、各気筒の近傍にて前記各気筒に対応して前記ガソリンを噴射するためのマルチ・ポイント・インジェクション(MPI)方式を採用したガソリン供給手段と、
     前記エンジンに前記ガス燃料を供給するために、前記各気筒から離れた位置にて吸気通路に前記ガス燃料を噴射するためのシングル・ポイント・インジェクション(SPI)方式を採用したガス燃料供給手段と、
     前記エンジンの運転状態に応じて前記ガソリン供給手段及び前記ガス燃料供給手段を制御するための制御手段と
    を備え、前記制御手段は、前記ガス燃料による運転中に、前記エンジンに加速が要求されたと判断したとき、前記ガス燃料による運転から前記ガソリンによる運転へ切り替えるために、前記ガソリン供給手段と前記ガス燃料供給手段を制御することを特徴とするバイフューエルエンジンシステム。
    A bi-fuel engine system configured to supply and operate gasoline and gas fuel as fuel for a multi-cylinder engine,
    Gasoline supply means adopting a multi-point injection (MPI) system for injecting the gasoline corresponding to each cylinder in the vicinity of each cylinder in order to supply the gasoline to the engine;
    Gas fuel supply means adopting a single point injection (SPI) system for injecting the gas fuel into the intake passage at a position away from each cylinder to supply the gas fuel to the engine;
    Control means for controlling the gasoline supply means and the gas fuel supply means according to the operating state of the engine, and the control means is requested to accelerate the engine during operation with the gas fuel. When judged, the bifuel engine system controls the gasoline supply means and the gas fuel supply means in order to switch from the gas fuel operation to the gasoline operation.
  2.  前記制御手段は、前記ガス燃料による運転中に、前記ガス燃料の供給遮断からの復帰が要求されたと判断したとき、前記ガス燃料による運転から前記ガソリンによる運転へ切り替えるために、前記ガソリン供給手段と前記ガス燃料供給手段を制御することを特徴とする請求項1に記載のバイフューエルエンジンシステム。 When the control means determines that a return from the gas fuel supply interruption is requested during the operation with the gas fuel, the control means switches the operation with the gas fuel to the operation with the gasoline. The bi-fuel engine system according to claim 1, wherein the gas fuel supply means is controlled.
PCT/JP2016/084749 2016-01-26 2016-11-24 Bifuel engine system WO2017130543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012687 2016-01-26
JP2016012687A JP2017133396A (en) 2016-01-26 2016-01-26 Bi-fuel engine system

Publications (1)

Publication Number Publication Date
WO2017130543A1 true WO2017130543A1 (en) 2017-08-03

Family

ID=59397906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084749 WO2017130543A1 (en) 2016-01-26 2016-11-24 Bifuel engine system

Country Status (2)

Country Link
JP (1) JP2017133396A (en)
WO (1) WO2017130543A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504364A (en) * 1994-06-21 1998-04-28 ジ エナジー リサーチ アンド ディベロプメント コーポレイション Auxiliary injection device
JP2013241905A (en) * 2012-05-22 2013-12-05 Suzuki Motor Corp Air-fuel ratio control device for internal combustion engine
WO2014163046A1 (en) * 2013-04-04 2014-10-09 日産自動車株式会社 Bi-fuel diagnosis device and bi-fuel diagnosis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504364A (en) * 1994-06-21 1998-04-28 ジ エナジー リサーチ アンド ディベロプメント コーポレイション Auxiliary injection device
JP2013241905A (en) * 2012-05-22 2013-12-05 Suzuki Motor Corp Air-fuel ratio control device for internal combustion engine
WO2014163046A1 (en) * 2013-04-04 2014-10-09 日産自動車株式会社 Bi-fuel diagnosis device and bi-fuel diagnosis method

Also Published As

Publication number Publication date
JP2017133396A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US7983831B2 (en) Control apparatus and method for internal combustion engine and fuel property determining apparatus and method
JP2006336499A (en) Fuel supply device for internal combustion engine
WO2013099094A1 (en) Control apparatus for an internal combustion engine
JP2014234791A (en) Start control device for internal combustion engine
WO2013150729A1 (en) Fuel injection control device
US8037875B2 (en) Control apparatus and control method for internal combustion engine
WO2014136387A1 (en) Abnormality diagnosis device for internal combustion engine
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP2015137579A (en) Control device of internal combustion engine
JP2007255360A (en) Engine control device
JP6118238B2 (en) Multi-fuel engine fuel supply system
WO2017130543A1 (en) Bifuel engine system
WO2013150739A1 (en) Engine control device
JP2010133301A (en) Method of controlling fuel injection of bi-fuel internal combustion engine
JP5856933B2 (en) Control device for internal combustion engine
JP2006220071A (en) Engine control device
WO2016132708A1 (en) Fuel injection control device
WO2014115510A1 (en) Fuel injection device for internal combustion engine
JP2009138654A (en) Control device for internal combustion engine
WO2014087596A1 (en) Fuel supply device
JP5310413B2 (en) Fuel injection control device for internal combustion engine
JP2007205256A (en) Fuel supply method and fuel supply device for engine
JP2018091194A (en) Gas fuel supply device
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP2016217331A (en) Fuel injection control device of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888127

Country of ref document: EP

Kind code of ref document: A1