JP2010133301A - Method of controlling fuel injection of bi-fuel internal combustion engine - Google Patents

Method of controlling fuel injection of bi-fuel internal combustion engine Download PDF

Info

Publication number
JP2010133301A
JP2010133301A JP2008308796A JP2008308796A JP2010133301A JP 2010133301 A JP2010133301 A JP 2010133301A JP 2008308796 A JP2008308796 A JP 2008308796A JP 2008308796 A JP2008308796 A JP 2008308796A JP 2010133301 A JP2010133301 A JP 2010133301A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
cylinder
liquid fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308796A
Other languages
Japanese (ja)
Other versions
JP5203157B2 (en
Inventor
Goichi Kitagawa
五一 北川
Tooru Akao
徹 赤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HKS Co Ltd
Original Assignee
HKS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HKS Co Ltd filed Critical HKS Co Ltd
Priority to JP2008308796A priority Critical patent/JP5203157B2/en
Publication of JP2010133301A publication Critical patent/JP2010133301A/en
Application granted granted Critical
Publication of JP5203157B2 publication Critical patent/JP5203157B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bi-fuel internal combustion engine in which combustion is stabilized in transition where a throttle opening degree or its change rate, or an engine intake air amount or its change rate becomes not less than a preset value. <P>SOLUTION: A method of controlling a fuel injection of a bi-fuel internal combustion engine 10 performs, during a gaseous fuel operation in which the gaseous fuel is injected into each cylinder with an amount according to an operating condition of the internal combustion engine 10 for every predetermined crank angle, when an engine rotating speed is not higher than a given value, and when the throttle opening degree or its change rate, or the engine intake air amount or its change rate becomes not less than the preset value, immediately switching to a liquid fuel operation in which liquid fuel is injected into each cylinder for a given period of time, and then resuming the gaseous fuel operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はバイフューエル内燃機関の燃料噴射制御方法に関する。   The present invention relates to a fuel injection control method for a bi-fuel internal combustion engine.

バイフューエル内燃機関として、特許文献1に記載の如く、ガソリン等の液体燃料を供給する液体燃料噴射弁と、CNG(圧縮天然ガス)等のガス燃料を供給するガス燃料噴射弁とを制御し、液体燃料とガス燃料のいずれかの燃料を多気筒内燃機関の各気筒に供給可能にするものがある。従来技術では、始動時には液体燃料運転を行ない、内燃機関の冷却水温が一定値以上になるとガス燃料運転に切換わる。
特公平6-43814
As a bi-fuel internal combustion engine, as described in Patent Document 1, a liquid fuel injection valve that supplies liquid fuel such as gasoline and a gas fuel injection valve that supplies gas fuel such as CNG (compressed natural gas) are controlled. There is a fuel that can supply liquid fuel or gas fuel to each cylinder of a multi-cylinder internal combustion engine. In the prior art, liquid fuel operation is performed at the time of start-up, and switching to gas fuel operation is performed when the coolant temperature of the internal combustion engine exceeds a certain value.
JP 6-43814

バイフューエル内燃機関の液体燃料運転では、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量の液体燃料を同期噴射するとともに、スロットル開度の変化率が一定値以上になる等の過渡時であることを検出したときには、その過渡状態に基づいて各気筒にクランク角と無関係に非同期に液体燃料を噴射する。このとき、スロットル開度t(図4(C))の変化に対し、内燃機関の空気過剰率λは図4(A)に示す如くに遅れなく加速増量されて空燃比はリッチになり、車両加速度Gは図4(B)に示す如くに安定的に加速される。   In the liquid fuel operation of the bi-fuel internal combustion engine, the liquid fuel in an amount corresponding to the operation state of the internal combustion engine is synchronously injected into each cylinder at every predetermined crank angle, and the change rate of the throttle opening becomes a certain value or more. When it is detected that the engine is in a transient state, liquid fuel is injected into each cylinder asynchronously regardless of the crank angle based on the transient state. At this time, with respect to the change in the throttle opening t (FIG. 4C), the excess air ratio λ of the internal combustion engine is accelerated without delay as shown in FIG. 4A, and the air-fuel ratio becomes rich. The acceleration G is stably accelerated as shown in FIG.

ところが、内燃機関に例えば後付けされてなるガス燃料噴射弁が燃焼室から遠くに配置されると、ガスの比重も低いため、噴射されたガス燃料は燃焼室に到達するまでの時間遅れを伴い、内燃機関の空気過剰率λは過渡的には図4(A)のP1に示す如くにオーバーリーンになり、ガス燃料の燃焼が不安定になる結果、特に車両の発進加速時に、車両加速度Gは図4(B)のP1に示す如くに加速されない。このオーバーリーンを補う目的で過渡時に非同期噴射されたガス燃料も、噴射から遅れて燃焼室に到達し、内燃機関の空気過剰率λはその時図4(A)のP2に示す如くに逆にオーバーリッチになり、ガス燃料の燃焼が不安定になる結果、車両加速度Gは図4(B)のP2に示す如くにもたつく。   However, when a gas fuel injection valve retrofitted to the internal combustion engine, for example, is arranged far from the combustion chamber, the specific gravity of the gas is low, so that the injected gas fuel has a time delay until it reaches the combustion chamber, The excess air ratio λ of the internal combustion engine becomes transient as shown by P1 in FIG. 4 (A) and the combustion of the gas fuel becomes unstable. It is not accelerated as indicated by P1 in FIG. In order to compensate for this overlean, the gas fuel injected asynchronously at the time of transition also reaches the combustion chamber with a delay from the injection, and the excess air ratio λ of the internal combustion engine is overrun as shown at P2 in FIG. As a result of the richness and unstable combustion of the gas fuel, the vehicle acceleration G fluctuates as indicated by P2 in FIG.

ガス燃料噴射弁を後付されてなるバイフーエルシステムの制御では、ガソリン用ECU(後述の第1ECU)の基本噴射信号の液体燃料噴射弁開成通電時間に、運転状態に応じて定まる各種の補正係数を乗じてガス燃料噴射弁開成通電時間を演算している。ガス運転時は全ての運転条件で同期、非同期噴射にかかわらずこのガス燃料噴射弁開成通電時間でガス燃料噴射弁からガス燃料を噴射しているため、上述した加速不良は避けられなかった。   In the control of the bi-fuel system that is retrofitted with a gas fuel injection valve, various correction factors that are determined according to the operating state during the liquid fuel injection valve opening energization time of the basic injection signal of the gasoline ECU (first ECU described later) To calculate the gas fuel injection valve opening energization time. During gas operation, the above-mentioned acceleration failure is inevitable because the gas fuel is injected from the gas fuel injection valve during this gas fuel injection valve opening energization time regardless of synchronous or asynchronous injection under all operating conditions.

本発明の課題は、バイフューエル内燃機関において、スロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になる過渡時における燃焼の安定を図ることにある。   An object of the present invention is to stabilize combustion in a bi-fuel internal combustion engine at the time of transition when the throttle opening degree or its opening change rate, or the intake air amount of the engine or its change rate becomes a certain value or more.

請求項1の発明は、液体燃料を供給する液体燃料噴射弁と、ガス燃料を供給するガス燃料噴射弁とを制御し、液体燃料とガス燃料のいずれかの燃料を多気筒内燃機関の各気筒に供給可能にするバイフューエル内燃機関の燃料噴射制御方法において、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量のガス燃料を同期噴射するガス燃料運転中に、機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になったとき、直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、前記ガス燃料運転に戻すようにしたものである。   According to a first aspect of the present invention, a liquid fuel injection valve that supplies liquid fuel and a gas fuel injection valve that supplies gas fuel are controlled, and any one of the liquid fuel and the gas fuel is supplied to each cylinder of the multi-cylinder internal combustion engine. In the fuel injection control method of a bi-fuel internal combustion engine that enables supply to the engine, the rotation of the engine during the gas fuel operation in which the amount of gas fuel corresponding to the operation state of the internal combustion engine is synchronously injected into each cylinder at every predetermined crank angle. When the speed is below a certain value and the throttle opening or its rate of change of opening, or the amount of intake air of the engine or its rate of change exceeds a certain value, liquid fuel is injected into each cylinder immediately over a certain period of time. The operation is switched to the liquid fuel operation and then returned to the gas fuel operation.

請求項2の発明は、請求項1の発明において更に、前記ガス燃料運転中に、各気筒にクランク角と無関係のタイミングで燃料を噴射する非同期噴射信号を捕らえたら、直ちに液体燃料運転に切換え、その後一定時間、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量の液体燃料を同期噴射し、その後、前記ガス燃料運転に戻すようにしたものである。   According to a second aspect of the invention, in the first aspect of the invention, when an asynchronous injection signal for injecting fuel to each cylinder at a timing unrelated to the crank angle is captured during the gas fuel operation, the operation is immediately switched to the liquid fuel operation. Thereafter, liquid fuel in an amount corresponding to the operating state of the internal combustion engine is synchronously injected into each cylinder at a predetermined crank angle for a certain period of time, and then returned to the gas fuel operation.

(請求項1)
(a)バイフューエル内燃機関において、各気筒に所定のクランクタイミングで内燃機関の運転状態に応じた量のガス燃料を噴射する(所謂同期噴射)ガス燃料運転中に、機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になった過渡時に、直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、前記ガス燃料運転に戻す。
(Claim 1)
(a) In a bi-fuel internal combustion engine, an amount of gas fuel corresponding to the operation state of the internal combustion engine is injected into each cylinder at a predetermined crank timing (so-called synchronous injection). Liquid fuel operation for injecting liquid fuel into each cylinder immediately for a certain period of time when the throttle opening or the rate of change of its opening, or the amount of intake air of the engine or its rate of change is greater than a certain value. And then return to the gas fuel operation.

従って、内燃機関に例えば後付けされるガス燃料噴射弁が燃焼室から液体燃料噴射弁よりも遠くに配置され、ガス燃料の比重が液体燃料より低くても、上述の過渡時には、液体燃料噴射弁から噴射される液体燃料が燃焼室に遅れなく到達するものになり、内燃機関の空気過剰率λは過渡的に図3(A)に示す如くにリッチになり、この液体燃料が直ちに一定時間安定的に燃焼する結果、車両加速度Gは図3(B)に示す如くに安定的に加速される。   Therefore, for example, even if the gas fuel injection valve retrofitted to the internal combustion engine is disposed farther from the combustion chamber than the liquid fuel injection valve and the specific gravity of the gas fuel is lower than that of the liquid fuel, the liquid fuel injection valve The injected liquid fuel reaches the combustion chamber without delay, and the excess air ratio λ of the internal combustion engine becomes transiently rich as shown in FIG. 3A, and this liquid fuel is immediately stable for a certain time. As a result, the vehicle acceleration G is stably accelerated as shown in FIG.

このことは、車両が低速度の低負荷(例えばスロットル開度1/6以下)・低回転(例えば1400rpm以下)から、スロットル弁を急開して機関の吸入空気量を増加させ、機関出力を増大させようとする発進加速時に特に有用である。   This means that when the vehicle is running at low speed and low load (for example, throttle opening 1/6 or less) and low rotation (for example, 1400 rpm or less), the throttle valve is suddenly opened to increase the intake air amount of the engine and increase the engine output. This is particularly useful at the time of starting acceleration to be increased.

(請求項2)
(b)上述(a)の過渡時における液体燃料運転が、各気筒にクランク角と無関係に非同期に液体燃料を噴射し、その非同期噴射後の一定時間、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量の液体燃料を同期噴射する。これにより、上述(a)の過渡時に非同期噴射により増量された液体燃料が、燃焼室に直ちに遅れなく到達し、内燃機関の空気過剰率λは過渡的に図3(A)に示す如くにリッチになり、この液体燃料が直ちに一定時間安定的に燃焼する結果、車両加速度Gは図3(B)に示す如くに安定的に加速される。
(Claim 2)
(b) The liquid fuel operation during the transition of (a) above injects liquid fuel into each cylinder asynchronously regardless of the crank angle, and for a certain period of time after the asynchronous injection, internal combustion is performed at each predetermined crank angle for each cylinder. An amount of liquid fuel corresponding to the operating state of the engine is synchronously injected. As a result, the liquid fuel increased by the asynchronous injection at the time of the transition (a) reaches the combustion chamber immediately without delay, and the excess air ratio λ of the internal combustion engine is transiently rich as shown in FIG. As a result, the liquid fuel immediately burns stably for a certain period of time. As a result, the vehicle acceleration G is stably accelerated as shown in FIG.

(c)尚、内燃機関に液体燃料噴射弁とその作動を電気制御する第1ECUを先付けし、ガス燃料噴射弁とその作動を電磁制御する第2ECUを後付けしたバイフューエル内燃機であって、第1ECUが機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になったとき、各気筒の吸気系にクランク角と無関係のタイミングで燃料を噴射させる非同期噴射信号を発生させるものにあっては、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量のガス燃料を噴射するガス燃料運転中に、第1ECUが発生させた非同期噴射信号を第2ECUが捕らえたことを条件に、第2ECUが直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、ガス燃料運転に戻すものとすることもできる。   (c) A bi-fuel internal combustion engine in which a liquid fuel injection valve and a first ECU that electrically controls the operation thereof are attached to the internal combustion engine, and a gas fuel injection valve and a second ECU that electromagnetically controls the operation of the internal combustion engine are retrofitted. When the engine speed is below a certain value and the throttle opening or its opening change rate, or when the engine intake air amount or its change rate exceeds a certain value, the intake system of each cylinder has no relation to the crank angle. In the case of generating an asynchronous injection signal for injecting fuel at the timing of the above, during the gas fuel operation in which an amount of gas fuel corresponding to the operating state of the internal combustion engine is injected into each cylinder at a predetermined crank angle, On the condition that the second ECU has captured the asynchronous injection signal generated by the 1ECU, the second ECU immediately switches over to a liquid fuel operation in which liquid fuel is injected into each cylinder over a certain period of time. After it may be made to return to the gas fuel operation.

図1はバイフューエル内燃機関を示す模式図、図2は本発明による噴射燃料切換関係を示す模式図、図3は本発明によるバイフューエル内燃機関の運転状態を示す模式図、図4は従来技術によるバイフューエル内燃機関の運転状態を示す模式図である。   FIG. 1 is a schematic diagram showing a bi-fuel internal combustion engine, FIG. 2 is a schematic diagram showing a fuel injection switching relationship according to the present invention, FIG. 3 is a schematic diagram showing an operating state of the bi-fuel internal combustion engine according to the present invention, and FIG. It is a schematic diagram which shows the driving | running state of the bi-fuel internal combustion engine by.

図1に示す多気筒バイフューエル内燃機関10は、吸気系に、アクセルペダルに連動するスロットル弁11を設け、その下流側にサージタンク12を設けている。サージタンク12に連通する吸気マニホールド12Aには液体燃料(ガソリン)噴射弁14を設け、吸気マニホールド12Aにおける液体燃料噴射弁14よりも燃焼室から遠い位置に例えば後付けされるガス燃料(CNG)噴射弁15を設けている。排気系には、排気ガス中の酸素濃度を測定するOセンサ16が、排気マフラにおける三元触媒の上流に配置してある。Oセンサ16は、酸素濃度に対応する電圧信号vを出力する。 A multi-cylinder bi-fuel internal combustion engine 10 shown in FIG. 1 is provided with a throttle valve 11 linked to an accelerator pedal in an intake system, and a surge tank 12 on the downstream side thereof. The intake manifold 12A communicating with the surge tank 12 is provided with a liquid fuel (gasoline) injection valve 14, and a gas fuel (CNG) injection valve that is retrofitted, for example, at a position farther from the combustion chamber than the liquid fuel injection valve 14 in the intake manifold 12A. 15 is provided. In the exhaust system, an O 2 sensor 16 for measuring the oxygen concentration in the exhaust gas is disposed upstream of the three-way catalyst in the exhaust muffler. The O 2 sensor 16 outputs a voltage signal v corresponding to the oxygen concentration.

バイフューエル内燃機関10は、第1ECU(電子制御装置)20と、例えば後付けの第2ECU(電子制御装置)30を有している。2つのECU20、30は合体して1個になっても良い。   The bi-fuel internal combustion engine 10 includes a first ECU (electronic control unit) 20 and, for example, a second ECU (electronic control unit) 30 attached later. The two ECUs 20 and 30 may be combined into one.

第1ECU20の入力インターフェイスには、サージタンク12内の吸気圧センサ13から出力される吸気圧信号a、カムポジションセンサ17から出力される気筒判別信号c1、クランクポジションセンサ18から出力されるクランク角度基準信号c2及び回転数信号N、スロットル弁11の開き量を検出するスロットルセンサ19から出力されるスロットル開度信号t、内燃機関10の冷却水温を検出する水温センサ101から出力される水温信号w、Oセンサ16から出力される電圧信号v、エアフローメータ102から出力される吸入空気量信号q等が入力される。第1ECU20の出力インターフェイスからは、ガス燃料噴射弁15に対するガス燃料噴射信号f1と、液体燃料噴射弁14に対する液体燃料噴射信号f2を決定するための基本となる基本噴射信号fと、点火プラグ10Aに対する点火パルス信号等を出力する。 The input interface of the first ECU 20 includes an intake pressure signal a output from the intake pressure sensor 13 in the surge tank 12, a cylinder discrimination signal c 1 output from the cam position sensor 17, and a crank angle reference output from the crank position sensor 18. A signal c2 and a rotational speed signal N, a throttle opening signal t output from a throttle sensor 19 that detects the opening amount of the throttle valve 11, a water temperature signal w output from a water temperature sensor 101 that detects a cooling water temperature of the internal combustion engine 10, A voltage signal v output from the O 2 sensor 16, an intake air amount signal q output from the air flow meter 102, and the like are input. From the output interface of the first ECU 20, a gas fuel injection signal f1 for the gas fuel injection valve 15, a basic injection signal f serving as a basis for determining the liquid fuel injection signal f2 for the liquid fuel injection valve 14, and the spark plug 10A are determined. Ignition pulse signal etc. are output.

第1ECU20は、吸気圧センサ13から出力される吸気圧信号aとクランクポジジョンセンサ18から出力される回転数信号Nとを主情報とし、内燃機関10の運転状況に応じて決まる各種の補正係数で基本噴射時間を演算して燃料噴射弁開成通電時間T1を決定し、その決定された通電時間を用いて液体燃料噴射弁14を制御し、内燃機関10の負荷に応じた燃料を液体燃料噴射弁14から各気筒の吸気系に、所定のクランク角タイミングで、1気筒当り、2クランク回転に1回噴射(同期噴射)させるためのプログラムが内蔵してある。また、第1ECU20は、クランクポジションセンサ18から出力された内燃機関10の回転速度が一定値以下で、かつスロットルセンサ19から出力されたスロットル開度の開き変化率、もしくはエアフローメータ100から出力された機関の吸入空気量又はその変化率が一定値以上になる過渡時に、各気筒の吸気系にクランク角と無関係のタイミングで直ちに開き変化率に応じて燃料を噴射(非同期噴射)させるための非同期噴射信号を発生させるプログラムも、同期噴射におけると同様にして内蔵してある。   The first ECU 20 uses the intake pressure signal a output from the intake pressure sensor 13 and the rotation speed signal N output from the crank position sensor 18 as main information, and various correction coefficients determined according to the operating condition of the internal combustion engine 10. The basic injection time is calculated to determine the fuel injection valve opening energization time T1, the liquid energization valve 14 is controlled using the determined energization time, and the fuel corresponding to the load of the internal combustion engine 10 is supplied to the liquid fuel injection valve. A program for injecting once every two crank rotations (synchronous injection) per cylinder at a predetermined crank angle timing is built in the intake system of each cylinder from 14. Further, the first ECU 20 has the rotational speed of the internal combustion engine 10 output from the crank position sensor 18 equal to or lower than a certain value, and the opening change rate of the throttle opening output from the throttle sensor 19 or output from the air flow meter 100. Asynchronous injection for injecting fuel into the intake system of each cylinder immediately at a timing independent of the crank angle and injecting fuel (asynchronous injection) according to the rate of change at the time of transition when the intake air amount of the engine or the rate of change is more than a certain value A program for generating a signal is also incorporated in the same manner as in synchronous injection.

尚、第1ECU20が演算した上述の同期噴射と非同期噴射の各燃料噴射弁開成通電時間T1は、燃料を液体燃料とすることを前提としている。   The above-described synchronous injection and asynchronous injection fuel injection valve opening energization time T1 calculated by the first ECU 20 is based on the premise that the fuel is liquid fuel.

図2の基本噴射信号fは、上述の同期噴射信号(fa)と、非同期噴射信号(fb)を示すものである。   The basic injection signal f in FIG. 2 indicates the above-described synchronous injection signal (fa) and asynchronous injection signal (fb).

第2ECU30は、ガス燃料噴射弁15を例えば後付けしたことに対応して設けたものであり、前述の吸気圧センサ13からの吸気圧信号a、カムポジションセンサ17からの気筒判別信号c1、クランクポジションセンサ18からのクランク角度基準信号c2、回転数信号N、スロットルセンサ19からのスロットル開度信号t、水温センサ101からの水温信号w、Oセンサ16からの電圧信号v、エアフローメータ102から出力される吸入空気量信号q等の内燃機関10の各種運転信号を入力インターフェイスに入力され、これらの入力情報に基づいて内燃機関10の現在の運転状態を判別し、内燃機関10のこの運転状態に応じて、第1ECU20が出力する前述の基本噴射信号fと、燃料噴射弁開成通電時間T1を用いることにより、ガス燃料噴射弁開成通電時間T2を演算するプログラムと液体燃料噴射弁14とガス燃料噴射弁15を以下の如くに切換え制御するプログラムを内蔵している。 The second ECU 30 is provided in correspondence with, for example, the retrofitting of the gas fuel injection valve 15. The intake pressure signal a from the intake pressure sensor 13, the cylinder discrimination signal c 1 from the cam position sensor 17, and the crank position are provided. Crank angle reference signal c 2 from sensor 18, rotation speed signal N, throttle opening signal t from throttle sensor 19, water temperature signal w from water temperature sensor 101, voltage signal v from O 2 sensor 16, output from air flow meter 102 Various operation signals of the internal combustion engine 10 such as the intake air amount signal q to be input are input to the input interface, the current operation state of the internal combustion engine 10 is determined based on the input information, and this operation state of the internal combustion engine 10 is determined. Accordingly, by using the basic injection signal f output from the first ECU 20 and the fuel injection valve opening energization time T1. Thus, a program for calculating the gas fuel injection valve opening energization time T2 and a program for switching control of the liquid fuel injection valve 14 and the gas fuel injection valve 15 as follows are incorporated.

(1)内燃機関10の通常運転時
第2ECU30により内燃機関10の運転状態が通常運転状態にあると判断したとき、第2ECU30は第1ECU20が出力する前述の基本噴射信号fと、燃料噴射弁開成通電時間T1を用いて、ガス燃料噴射弁15を駆動するガス燃料運転を行なう。
(1) During normal operation of the internal combustion engine 10 When the second ECU 30 determines that the operation state of the internal combustion engine 10 is in the normal operation state, the second ECU 30 opens the fuel injection valve and the basic injection signal f output from the first ECU 20. The gas fuel operation for driving the gas fuel injection valve 15 is performed using the energization time T1.

即ち、第2ECU30は、第1ECU20が出力する基本噴射信号fの中の同期噴射信号(fa)で各気筒のガス燃料噴射弁15を駆動する。   That is, the second ECU 30 drives the gas fuel injection valve 15 of each cylinder with the synchronous injection signal (fa) in the basic injection signal f output from the first ECU 20.

このとき、第2ECU30は、第1ECU20が出力する液体燃料のための燃料噴射弁開成通電時間T1を内燃機関10の運転状態に応じて定まる各種の補正係数で補正してガス燃料噴射弁開成通電時間T2を演算し、このガス燃料噴射弁開成通電時間T2によりガス燃料噴射弁15を開成制御する。   At this time, the second ECU 30 corrects the fuel injection valve opening energization time T1 for the liquid fuel output by the first ECU 20 with various correction coefficients determined according to the operating state of the internal combustion engine 10, and the gas fuel injection valve opening energization time. T2 is calculated, and the gas fuel injection valve 15 is controlled to open according to the gas fuel injection valve opening energization time T2.

従って、第2ECU30は、図2に示すガス燃料噴射信号f1で、ガス燃料噴射弁15を上述の如くに駆動制御し、各気筒に所定のクランク角毎に内燃機関10の運転状態に応じた量のガス燃料を同期噴射する。   Accordingly, the second ECU 30 controls the driving of the gas fuel injection valve 15 as described above with the gas fuel injection signal f1 shown in FIG. 2, and the amount corresponding to the operating state of the internal combustion engine 10 for each predetermined crank angle for each cylinder. The gas fuel is synchronously injected.

(2)内燃機関10の過渡運転時
第2ECU30により、クランクポジションセンサ18から出力された内燃機関10の回転速度が一定値以下で、かつスロットルセンサ19から出力されたスロットル開度又はその開き変化率、もしくはエアフローメータ102から出力された機関の吸入空気量又はその変化率が一定値以上になる過渡運転状態に入ったことが判断されたとき、第2ECU30は第1ECU20が出力する前述の基本噴射信号fと、燃料噴射弁開成通電時間T1を用いて、直ちに一定時間に渡り、液体燃料噴射弁14を駆動する液体燃料運転に切換える。
(2) During transient operation of the internal combustion engine 10 The rotational speed of the internal combustion engine 10 output from the crank position sensor 18 by the second ECU 30 is equal to or less than a predetermined value, and the throttle opening output from the throttle sensor 19 or the rate of change in opening thereof. Alternatively, when it is determined that the engine has entered a transient operation state in which the amount of intake air of the engine output from the air flow meter 102 or the rate of change thereof is greater than a certain value, the second ECU 30 outputs the basic injection signal described above. Using f and the fuel injection valve opening energization time T1, the operation is immediately switched to the liquid fuel operation for driving the liquid fuel injection valve 14 over a certain period of time.

即ち、第2ECU30は、第1ECU20が出力する基本噴射信号fの中の非同期噴射信号(fb)と、この非同期噴射信号(fb)に続く同期噴射信号(fa)で各気筒の液体燃料噴射弁14を駆動する(図2の液体燃料噴射信号f2)。   That is, the second ECU 30 uses the asynchronous injection signal (fb) in the basic injection signal f output from the first ECU 20 and the synchronous injection signal (fa) following the asynchronous injection signal (fb) to liquid fuel injection valves 14 of each cylinder. Is driven (liquid fuel injection signal f2 in FIG. 2).

このとき、第2ECU30は、第1ECU20が出力する液体燃料のための燃料噴射弁開成通電時間T1をそのまま用い、この燃料噴射弁開成通電時間T1により液体燃料噴射弁14を開成制御する。   At this time, the second ECU 30 uses the fuel injection valve opening energization time T1 for the liquid fuel output from the first ECU 20 as it is, and controls the liquid fuel injection valve 14 to open according to the fuel injection valve opening energization time T1.

液体燃料噴射後一定時間経過すると第2ECU30はガス燃料噴射弁15を用いる上述(1)のガス燃料運転に戻す。   When a certain time has elapsed after the liquid fuel injection, the second ECU 30 returns to the gas fuel operation (1) using the gas fuel injection valve 15.

本実施例によれば、以下の作用効果を奏する。
(a)バイフューエル内燃機関10において、各気筒に所定のクランク角毎に内燃機関10の運転状態に応じた量のガス燃料を同期噴射するガス燃料運転中に、機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になった過渡時に、直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、前記ガス燃料運転に戻す。
According to the present embodiment, the following operational effects can be obtained.
(a) In the bi-fuel internal combustion engine 10, during the gas fuel operation in which an amount of gas fuel corresponding to the operation state of the internal combustion engine 10 is synchronously injected to each cylinder at a predetermined crank angle, the engine rotation speed is a certain value or less. In a liquid fuel operation in which liquid fuel is injected into each cylinder immediately over a certain period of time when the throttle opening or its opening change rate, or the intake air amount of the engine or its change rate exceeds a certain value. After switching, the gas fuel operation is resumed.

従って、内燃機関10に例えば後付されるガス燃料噴射弁15が燃焼室から液体燃料噴射弁14よりも遠くに配置され、ガス燃料の比重が液体燃料より低くても、上述の過渡時には、液体燃料噴射弁14から噴射される液体燃料が燃焼室に遅れなく到達するものになり、内燃機関10の空気過剰率λは過渡的に図3(A)に示す如くにリッチになり、この液体燃料が直ちに一定時間安定的に燃焼する結果、車両加速度Gは図3(B)に示す如くに安定的に加速される。   Therefore, for example, even if the gas fuel injection valve 15 retrofitted to the internal combustion engine 10 is disposed farther from the combustion chamber than the liquid fuel injection valve 14 and the specific gravity of the gas fuel is lower than that of the liquid fuel, at the time of the transient, the liquid The liquid fuel injected from the fuel injection valve 14 reaches the combustion chamber without delay, and the excess air ratio λ of the internal combustion engine 10 becomes transiently rich as shown in FIG. As a result, the vehicle acceleration G is stably accelerated as shown in FIG. 3B.

このことは、車両が低速度の低負荷(例えばスロットル開度1/6以下)・低回転(例えば1400rpm以下)から、スロットル弁11を急開して機関の吸入空気量を増加させ、機関出力を増大させようとする発進加速時に特に有用である。   This means that the throttle valve 11 is suddenly opened to increase the intake air amount of the engine from a low load (for example, throttle opening 1/6 or less) and low rotation (for example, 1400 rpm or less) at a low speed. This is particularly useful at the time of starting acceleration to increase the engine speed.

(b)上述(a)の過渡時における液体燃料運転が、各気筒にクランク角と無関係に非同期に液体燃料を噴射し、その非同期噴射後の一定時間、各気筒に所定のクランク角毎に内燃機関10の運転状態に応じた量の液体燃料を同期噴射する。これにより、上述(a)同様、内燃機関10の空気過剰率λは過渡的に図3(A)に示す如くにリッチになり、この液体燃料が直ちに一定時間安定的に燃焼する結果、車両加速度Gは図3(B)に示す如くに安定的に加速される。   (b) The liquid fuel operation during the transition of (a) above injects liquid fuel into each cylinder asynchronously regardless of the crank angle, and for a certain period of time after the asynchronous injection, internal combustion is performed at each predetermined crank angle for each cylinder. An amount of liquid fuel corresponding to the operating state of the engine 10 is synchronously injected. As a result, as in the case (a), the excess air ratio λ of the internal combustion engine 10 becomes transiently rich as shown in FIG. 3A, and this liquid fuel immediately and stably burns for a certain period of time. G is stably accelerated as shown in FIG.

(c)尚、内燃機関10に液体燃料噴射弁14とその作動を電気制御する第1ECU20を先付けし、ガス燃料噴射弁15とその作動を電磁制御する第2ECU30を後付けしたバイフューエル内燃機であって、第1ECU20が機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になったとき、各気筒の吸気系にクランク角と無関係のタイミングで燃料を噴射させる非同期噴射信号を発生させるものにあっては、各気筒に所定のクランク角毎に内燃機関10の運転状態に応じた量のガス燃料を噴射するガス燃料運転中に、第1ECU20が発生させた非同期噴射信号を第2ECU30が捕らえたことを条件に、第2ECU30が直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、ガス燃料運転に戻すものとすることもできる。   (c) It is a bi-fuel internal combustion engine in which a liquid fuel injection valve 14 and a first ECU 20 that electrically controls the operation thereof are preceded by an internal combustion engine 10 and a gas ECU 15 and a second ECU 30 that electromagnetically controls the operation thereof are retrofitted. When the engine speed is below a certain value and the throttle opening or the rate of change in opening thereof, or the amount of intake air in the engine or the rate of change above a certain value, the first ECU 20 In the case of generating an asynchronous injection signal for injecting fuel at a timing unrelated to the angle, the gas fuel operation in which an amount of gas fuel corresponding to the operating state of the internal combustion engine 10 is injected into each cylinder at a predetermined crank angle. On the condition that the asynchronous injection signal generated by the first ECU 20 is captured by the second ECU 30, the second ECU 30 immediately applies a liquid to each cylinder over a certain period of time. Switched to the liquid fuel operation for injecting fuel, it can then also be made to return to the gas fuel operation.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

図1はバイフューエル内燃機関を示す模式図である。FIG. 1 is a schematic diagram showing a bi-fuel internal combustion engine. 図2は本発明による噴射燃料切換関係を示す模式図である。FIG. 2 is a schematic diagram showing an injection fuel switching relationship according to the present invention. 図3は本発明によるバイフューエル内燃機関の運転状態を示す模式図である。FIG. 3 is a schematic view showing an operating state of the bi-fuel internal combustion engine according to the present invention. 図4は従来技術によるバイフューエル内燃機関の運転状態を示す模式図である。FIG. 4 is a schematic diagram showing an operating state of a bi-fuel internal combustion engine according to the prior art.

符号の説明Explanation of symbols

10 バイフューエル内燃機関
11 スロットル弁
14 液体燃料噴射弁
15 ガス燃料噴射弁
20 第1ECU(電子制御装置)
30 第2ECU(電子制御装置)
DESCRIPTION OF SYMBOLS 10 Bi-fuel internal combustion engine 11 Throttle valve 14 Liquid fuel injection valve 15 Gas fuel injection valve 20 1ECU (electronic control unit)
30 Second ECU (Electronic Control Device)

Claims (2)

液体燃料を供給する液体燃料噴射弁と、ガス燃料を供給するガス燃料噴射弁とを制御し、液体燃料とガス燃料のいずれかの燃料を多気筒内燃機関の各気筒に供給可能にするバイフューエル内燃機関の燃料噴射制御方法において、
各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量のガス燃料を噴射するガス燃料運転中に、機関の回転速度が一定値以下で、かつスロットル開度又はその開き変化率、もしくは機関の吸入空気量又はその変化率が一定値以上になったとき、直ちに一定時間に渡り、各気筒に液体燃料を噴射する液体燃料運転に切換え、その後、前記ガス燃料運転に戻すことを特徴とするバイフューエル内燃機関の燃料噴射制御方法。
A bi-fuel that controls a liquid fuel injection valve that supplies liquid fuel and a gas fuel injection valve that supplies gas fuel, and can supply either liquid fuel or gas fuel to each cylinder of a multi-cylinder internal combustion engine. In a fuel injection control method for an internal combustion engine,
During gas fuel operation in which an amount of gas fuel corresponding to the operation state of the internal combustion engine is injected into each cylinder at a predetermined crank angle, the engine rotational speed is equal to or less than a certain value, and the throttle opening or the rate of change in opening thereof, Alternatively, when the intake air amount of the engine or the rate of change thereof exceeds a certain value, the operation is immediately switched over to a liquid fuel operation in which liquid fuel is injected into each cylinder over a certain period of time, and then returned to the gas fuel operation. A fuel injection control method for a bi-fuel internal combustion engine.
前記液体燃料運転が、各気筒にクランク角と無関係に非同期に液体燃料を噴射し、その非同期噴射後の一定時間、各気筒に所定のクランク角毎に内燃機関の運転状態に応じた量の液体燃料を同期噴射する請求項1に記載のバイフューエル内燃機関の燃料噴射制御方法。   In the liquid fuel operation, liquid fuel is injected into each cylinder asynchronously irrespective of the crank angle, and an amount of liquid corresponding to the operating state of the internal combustion engine for each predetermined crank angle for a predetermined time after the asynchronous injection. The fuel injection control method for a bi-fuel internal combustion engine according to claim 1, wherein the fuel is injected synchronously.
JP2008308796A 2008-12-03 2008-12-03 Fuel injection control method for bi-fuel internal combustion engine Expired - Fee Related JP5203157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308796A JP5203157B2 (en) 2008-12-03 2008-12-03 Fuel injection control method for bi-fuel internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308796A JP5203157B2 (en) 2008-12-03 2008-12-03 Fuel injection control method for bi-fuel internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010133301A true JP2010133301A (en) 2010-06-17
JP5203157B2 JP5203157B2 (en) 2013-06-05

Family

ID=42344814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308796A Expired - Fee Related JP5203157B2 (en) 2008-12-03 2008-12-03 Fuel injection control method for bi-fuel internal combustion engine

Country Status (1)

Country Link
JP (1) JP5203157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113283A (en) * 2011-12-01 2013-06-10 Mycar Plaza Corp Attachment for fuel supply device, fuel supply device using the same and automobile
JPWO2011148904A1 (en) * 2010-05-24 2013-07-25 ビレッジロード株式会社 Retrofitted gas fuel supply kit that can be installed later in an internal combustion engine using liquid fuel
JP2017223208A (en) * 2016-06-17 2017-12-21 株式会社エッチ・ケー・エス Fuel injection changeover device for bi-fuel engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734915A (en) * 1993-07-20 1995-02-03 Nissan Motor Co Ltd Fuel supply control device for internal combustion engine
JP2007255360A (en) * 2006-03-24 2007-10-04 Fujitsu Ten Ltd Engine control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734915A (en) * 1993-07-20 1995-02-03 Nissan Motor Co Ltd Fuel supply control device for internal combustion engine
JP2007255360A (en) * 2006-03-24 2007-10-04 Fujitsu Ten Ltd Engine control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011148904A1 (en) * 2010-05-24 2013-07-25 ビレッジロード株式会社 Retrofitted gas fuel supply kit that can be installed later in an internal combustion engine using liquid fuel
JP2013113283A (en) * 2011-12-01 2013-06-10 Mycar Plaza Corp Attachment for fuel supply device, fuel supply device using the same and automobile
JP2017223208A (en) * 2016-06-17 2017-12-21 株式会社エッチ・ケー・エス Fuel injection changeover device for bi-fuel engine

Also Published As

Publication number Publication date
JP5203157B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP2008309036A (en) Fuel estimation device
JP4040307B2 (en) Engine gasoline alternative fuel injection control device
US20080060616A1 (en) Control System for Internal Combustion Engine
JP4605512B2 (en) Control device for internal combustion engine
JP4054579B2 (en) Engine gasoline alternative fuel injection control device
JP5203157B2 (en) Fuel injection control method for bi-fuel internal combustion engine
JP2009121364A (en) Fuel injection control device
JP2007239638A (en) Fuel injection control device for internal combustion engine
JP2005307889A (en) Control device for ignition timing of internal combustion engine
JPWO2012157043A1 (en) Control device for internal combustion engine
JP4415864B2 (en) Control device for internal combustion engine
JP4353104B2 (en) Engine control device
JP4841963B2 (en) Engine fuel supply method and fuel supply apparatus
JP2010024996A (en) Internal combustion engine, and fuel injection control device for the same
JP4661747B2 (en) Engine stop control device
JP2007278189A (en) Start control device for internal combustion engine
JP6009987B2 (en) Fuel injection control device for internal combustion engine
JP2008232095A (en) Control device for internal combustion engine
JP4464616B2 (en) Secondary air supply control device for internal combustion engine
WO2014087596A1 (en) Fuel supply device
WO2017130543A1 (en) Bifuel engine system
WO2014087582A1 (en) Fuel supply device
JP2016217330A (en) Fuel injection controller of internal combustion engine
JP2006170138A (en) Fuel supply device for engine
JP4320555B2 (en) Secondary air supply control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5203157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees